
Froms: A Failure Tolerant and Mobility
Enabled Multicast Routing Paradigm with

Reinforcement Learning for WSNs

ANNA FÖRSTER
University of Lugano, Swizterland

and
AMY L. MURPHY

FBK-IRST, Trento, Italy

University of Lugano
Faculty of Informatics

Technical Report No. 2009/004
June 2009

Abstract

A growing class of wireless sensor network (WSN) applications re-
quire the use of sensed data inside the network at multiple, possibly
mobile base stations. Standard WSN routing techniques that move
data from multiple sources to a single, fixed base station are not ap-
plicable, motivating new solutions that efficiently achieve multicast.
This paper explores in depth the requirements of this set of application
scenarios and proposes, Froms, a machine learning-based approach.
The primary benefits are the flexibility to optimize routing on a variety
of properties such as route length, battery levels, etc., ease of recovery
after node failures, and native support for sink mobility. We provide
extensive simulation results supporting these claims, clearly showing
the benefits of Froms in terms of low routing overhead, extended
network lifetimes, and other key metrics for the WSN environment.

1

1 Introduction

The 1998 SmartDust [1] project is commonly used to mark the beginning
of wireless sensor network (WSNs) research, as it identified the vision for
large autonomous networks for monitoring environmental and industrial pa-
rameters. Since then the price of individual sensors has been decreasing,
while memory, processing and sensory abilities have been increasing, simul-
taneously expanding the potential application scenarios. Researchers and
practitioners from many scientific and industrial areas have already lever-
aged the achievements of the WSN community, deploying of sensor networks
with applications ranging from scientific monitoring of active volcanos [2]
and glaciers [3], through agricultural monitoring [4], military and rescue
applications[5, 6], to the futuristic vision of the InterPlaNetary Internet [7, 8],
designed to connect highly heterogeneous devices such as satellites, Mars and
Moon rovers, sensor networks, space shuttles, and common handheld devices
and laptops into one holistic network.

The growing number of applications for WSNs and especially their het-
erogeneous requirements and properties demand new communication proto-
cols and architectures. Routing for WSNs has attracted a lot of research in
recent years, and many different protocols has been developed for various
application scenarios and data traffic schedules. However, lately this area
has attracted extensive criticism: application scenarios are too restricted or
not carefully described, experimental setups are unrealistic, and simulation
environments are too abstract [9]. Further, despite the overwhelming number
and variety of routing protocols, key problems remain unsolved, importantly
energy efficiency in various application scenarios and for multiple traffic pat-
terns, and tolerance against failures and mobility has not been sufficiently
addressed. Additionally, the problem of sending data to multiple, possibly
mobile sinks via optimal paths (multicast) has not been solved efficiently.

This paper presents a novel multicast routing protocol called Froms
(Feedback ROuting to Multiple Sinks), which exploits reinforcement learn-
ing. Our target scenario includes any applications with periodic or long-
lasting sensory data reporting to multiple, mobile sinks in a multi-hop envi-
ronment. Froms easily accepts different cost metrics such as hops, latency,
remaining battery etc.. Its most salient advantages are: the ability to find
globally optimal multicast routes; to incorporate different cost metrics and
thus optimization goals; and to quickly recover in case of failures and sink
mobility. The main goal of Froms is to provide the WSN developer with one

2

routing solution, able to be tuned to many different application scenarios.
This paper presents a comprehensive view of Froms, including a theoret-

ical model and an analysis of its complexity and overall behavior; a complete
evaluation both in simulation and on real hardware; and a challenging com-
parison against geographic based multicast routing protocol MSTEAM [10]
and a multicast variation of Directed Diffusion [11]. The presented simulation
environment uses sophisticated radio propagation models and realistic MAC
protocols. In contrast to our previously reported results [12, 13], this paper
offers significantly more depth to the characterization of the Froms param-
eter space and its properties, and a complete comparison to other multicast
routing protocols both in simulation and on real hardware.

Next, Section 2 motivates the work and our approach, describing major
challenges and related works. Section 3 gives an intuitive introduction to
the Froms routing protocol, before Section 4 models multicast routing as a
reinforcement learning problem and presents our solution. Section 5 makes
a theoretical complexity and convergence analysis. Section 6 proceeds with
defining the Froms protocol and discussing implementation details, before
Sections 7 – 10 present our evaluation environment and discuss the simula-
tion and testbed experiments. Finally, Section 11 outlines future research
directions and challenges.

2 Motivation and related efforts

In the next paragraphs we concentrate on the requirements and properties
of well-known various WSN deployments and use them for defining our own
target application scenario. Then we discuss the current state of the art of
WSN routing protocols and how they meet the needs and challenges of our
identified scenario.

2.1 Target application scenario

Real deployments of wireless sensor networks usually implement one of three
general applications: periodic reporting, event detection [14], and data-base
like storage [15]. Periodic reporting is by far the most used and simplest
application scenario: at regular intervals the sensors sample the environment,
store the sensed data, and send it further to the base station(s). Actuators are
often directly connected with those sensor networks, for example automatic

3

irrigation systems or alarm systems.
In this work we consider periodic reporting scenarios, since they make up

the major part of current and future WSN deployments. The main property
of periodic reporting applications is the predictability of the data traffic and
volume. More precisely, we consider wireless sensor network applications to
disaster relief and military operations [5, 6], environmental monitoring and
surveillance [2, 16, 17, 4, 18] and the InterPlaNetary Internet [7, 8]. Although
these scenarios are very different in their nature and goals, they share a lot of
properties. In the next paragraphs we derive the properties of the application
scenario for our routing protocol.

1. Network size. The sample WSN deployments we use in this work span a
wide variety of network sizes and densities. Some of them are randomly
deployed with hundreds of nodes (e.g. military or disaster recovery
applications [5, 6]), others are thoroughly planned and include only
few to a dozen of nodes (volcano monitoring [2]).

Thus, we conclude that the number of nodes is unknown and can vary
from only several nodes to hundreds or even thousands randomly or-
ganized into a multi-hop topology.

2. Energy restrictions. One of the main challenges of wireless sensor net-
works are the highly restricted power reserves of the sensor nodes. They
typically have on-board low capacity batteries, which are used for sens-
ing, processing and communication. However, the primary power con-
sumer is the radio [19, 20], which drains the node’s battery quickly
for active listening of the wireless medium and data transmission. In
addition, many WSN deployments need to run unattended over weeks
or even months and batteries cannot be replaced. This is the case,
for example, for disaster relief operations [5] or for sensor networks as
part of the InterPlaNetary Internet [7, 8]. On the other hand, failing
of some sensor nodes might disconnect the network and stop data de-
livery. This event is often referred to as network death. Thus, one of
the major design goals and requirements for data dissemination proto-
cols is the efficient use of energy reserves and network life prolongation
through on-board optimization and node-wide balancing of communi-
cation overhead.

3. Node failures. Node failures are a direct consequence of the limited
energy availability on the nodes. With dwindling battery reserves, the

4

node’s behavior becomes first very unreliable in terms of communica-
tion and then the node fails completely. In unattended environments
the node will never recover. However, in agricultural monitoring [4, 18]
exchange of batteries is possible and the node will re-enter the network.
Node failure or restart can happen also for other reasons, for example
because of loose contacts, defect hardware or bad environmental con-
ditions. A data dissemination framework needs to cope well with all
these events and to guarantee continuous data delivery during the full
network lifetime. It also needs to accommodate new nodes to make
efficient use of all network resources.

4. Sink mobility. Sensor nodes in all our sample applications are usually
simple, static entities. Current deployments often plan only one fixed
base station. However, this approach has various drawbacks: the base
station is a single point of failure and other data consumers in the sensor
network have to retrieve the data directly from the base station. The
second argument is often considered an inconvenience rather than a
real risk. However, imagine a disaster relief scenario as described in [6],
where a sensor network has been deployed to observe the environment,
estimate risks and discover people. The rescue workers are equipped
with wireless handheld devices, which usually are able to communi-
cate with the base station (the emergency habitat). In the “normal”
situation they can get sensory data from it directly. However, what
happens when they move around and their handheld devices go out
of range of the base station? Usually no functioning infrastructure is
available to ensure communication. In such cases the sensor network
itself can take over the communication among the sensor network, the
base station and the rescue workers. The consequence for data dis-
semination protocols is that multiple mobile sinks are present in the
network.

Nearly the same situation arises in the InterPlaNetary Internet [7, 8].
For environmental monitoring the need of mobile sinks is not that ur-
gent, but it would be helpful to unobtrusively replace the base station
in case of failure or to receive the data directly from the sensor network
in case the used device has no access to the base station.

Thus, the routing protocol needs to support mobile sinks and to be able
to route data between heterogenous devices considering non-uniform

5

costs of the links.

5. Data generation, delivery and traffic. Usually there are many different
data types available in a sensor network, e.g. temperature, humidity,
light, gas concentration, acceleration. Sinks need to be able to choose
between different data types, data sensing intervals, reporting intervals,
compression parameters, etc. The sensing and reporting can be con-
tinuos or temporary. The achievable throughput of a network depends
mostly on the Medium ACcess (MAC) protocol in use. The contribu-
tion of the data dissemination protocols to managing data traffic is to
generate as few packets as possible. This lowers the overall latency,
and increases the delivery rate and reliability. At the same time, sinks’
requirements on data quality need to be met (see next point).

We assume that a suitable MAC protocol is used and the volume of
data traffic can be anything between few readings from a single node
to a single sink to all nodes reporting to several sinks.

6. Quality of service requirements. In addition to the data requirements
above, the sinks have also quality of service requirements. Different
applications have different requirements. For example, disaster relief
operations [5] need reliable minimum delay delivery of sensory data
for ensuring fast response. In contrast, agricultural monitoring [4] is a
delay-tolerant application where efficient energy use and long network
lifetimes are more important to keep maintenance effort and costs low.

In summary, the designed routing protocol needs not only to support
all of these quality of services requirements, but to be able to switch
between them quickly and efficiently. The most important requirements
are support of minimum delay, minimum energy expenditure, and high
reliability (delivery rate).

Additionally, there are some important design criteria concerning the
quality and the credibility of the conducted work. Unlike the requirements
outlined above, which arise directly from the described deployments and
applications, the design criteria and their fulfillment are important for prac-
titioners in the area and other researchers. They guarantee the real world
applicability of the implemented routing protocol.

• Simplicity. The protocols must be easy to understand and implement,
in order to be feasible for real-world deployments.

6

• Memory and processing requirements. The implementation must fit
comfortably onto a typical sensor node, leaving space for other proto-
cols and applications.

• Flexibility. The protocol must be easily adaptable to different applica-
tions and optimization goals.

• Scalability. The implemented protocols must be scalable in terms of
network size, number of sources, and number of sinks.

In order to design and implement the routing protocol, we need to make
some assumptions about the rest of the communication stack:

1. Sink announcements (data requests). We assume that sinks announce
themselves via a network-wide broadcast in which they state their op-
timization goal and data requirements. During this announcement, the
nodes in the network are able to gather some initial routing informa-
tion and to calculate in a localized manner their cluster membership.
Propagating sink announcements is a very common approach in WSNs.

2. MAC layer. Routing protocols rely heavily on the lower layer protocols’
performance. We consider a simple broadcast-enabled MAC protocol
without re-transmissions and without delivery guarantee, basically any
sensor network MAC protocol.

3. Neighborhood management. We do not assume any neighborhood man-
agement protocol - the neighbors’ reliability and quality needs to be
managed by the routing and clustering protocols directly, in order to
be able to manage failures and mobility in an efficient and holistic way.

This section presented and analyzed the most important application re-
quirements for this work. In summary, our routing protocol needs to cope
with different network sizes, multiple mobile sinks, failing nodes, restricted
energy reserves, and various data and quality of service requirements.

Our first intuition is that machine learning seems a good choice for solving
the above problems in an autonomous, self-organized, and energy-efficient
way. In the next Section 2.2 we will explore related efforts on multicast
routing for WSN and machine learning approaches for routing in WSNs.

7

2.2 Application scenario challenges and related works

While a large body of different routing protocols [5] has emerged in the last
years, there is still no general and well-performing routing protocol for WSNs.
Real deployments often decide for a simple, already implemented routing
protocol based on hops like MintRoute [21] for TinyOS. However, they often
also change the protocol according to their needs [16, 4, 2], for example by
using a different neighborhood management protocol or a custom cost metric.
Thus, the resulting protocols are highly specialized and optimized solutions
for the targeted network rather than a standard protocol for a broad variety
of scenarios.

Multicast routing for WSNs. Many routing protocols have emerged
from routing protocols for Mobile Ad Hoc Networks (MANETs). They build
a full routing path table at all nodes and each node keeps the full route
to each possible destination. The main disadvantage of such an approach
is that route information needs to be propagated throughout the network
(from the source to the destination and back). Second, a complicated route
repair procedure needs to be started in case of topology changes or failures to
re-build the routes. There are specialized multicast routing MANET rout-
ing protocols, like MAODV [22], LAM [23], and ADMR [24]. Mesh-based
routing protocols are a popular solution to multicast routing too, for exam-
ple ODMPR [25] and PUMA [26]. They proved to be very efficient in high
mobility scenarios, but cause great communication overhead for constructing
and maintaining the mesh and thus cannot be successfully applied to WSNs.
Such experiences were reported by various researchers while implementing
MANET routing protocols for WSNs, like the implementation of ADMR on
MicaZ motes [27]. There are some recent works using swarm intelligence [28]
(see the next section), but again the overhead from sending ants is unbearable
for wireless sensor networks.

Location-based (or geographic) network routing is based on the location-
awareness of the nodes. Traditional geographic routing protocol is GPSR [29],
which selects next hops based on their progress to the destination. In case
the routing is stuck (a node is reached with no progress to the sink), a
special face routing procedure is started to route the packet around the void
region. GMR [30] and MSTEAM [10] are both geographic based multicast
routing protocols. The main disadvantage of geographic routing protocols is
the length of the selected routes, especially in case of void regions. Another

8

problem with traditional geographic routing schemes is their preference of
long unreliable hops. In case no separate link protocol is used, geographic
routing selects next hops only based on their progress to the sink - thus,
mostly long lossy connections. An extensive study of this problem and a
comparison of various other location-based metrics on simulation and real
hardware is presented in [31].

Another approach for WSNs for multicasting is what we call “fake mul-
ticast”: unicast protocols, which are slightly optimized for multicast rout-
ing. Such protocols just build paths from a source to each of the sinks
without really considering sharing of paths or finding globally optimal ones.
For example, Directed Diffusion [11] is a very popular and powerful routing
paradigm, where routes from the source to the destinations are established
on-demand based on interests that are flooded through the network. This
flooding establishes gradients for data to follow from multiple sources to the
sinks. It can be easily extended to multiple sinks, but the resulting multi-
cast routes are not optimal. Nevertheless, Directed Diffusion has inspired a
lot of other routing protocols for WSNs, like Rumor routing [32] or GRE-
DD [33]. MintRoute [21] from TinyOS1 is very similar to Directed Diffusion,
but includes also a neighborhood management protocol.

Sink mobility management in WSNs. Some routing protocols as-
sume that the mobility pattern of the sinks is known a-priori at the sensor
nodes. One such protocol is the spatiotemporal mobicast routing algorithm
in [34]. This protocol is rather an overlay routing protocol, which decides
when to forward the data through a geographic routing protocol to which
neighbors. In this way it guarantees spatiotemporal delivery of needed data
to needed regions.

TTDD [35] is a layered routing protocol, developed especially for high
mobility scenarios. The authors concentrate on efficient delivery to multiple
mobile sinks through building a routing overlay. The network is clustered
into cells and mobile sinks flood their requests in the local cell only. Thus, the
overlay is always aware of the current position of the sinks and routes the data
to them. This approach proved to be very effective in high mobility scenarios.
However, the nodes building the overlay (a cell structure) drain their power
quickly and the overlay has to be rebuilt with high communication overhead.
Thats why the protocol is better suited for event-detecting sensor networks

1www.tinyos.org

9

with only sporadic traffic rather than continuous monitoring.
SEAD [36] and its successor DEED [37] optimize routing from single

source to multiple mobile sinks. Each sink selects an “access sensor node”,
to which data from the source is routed. A tree is built based on a geographic
location heuristic between the source and all access nodes. When the sink
moves away, a path between its current nearest neighbor and the access node
is maintained, so that it is not necessary to rebuild the tree. If the sink moves
too far away, a new access node is selected and the tree is rebuilt, but only
with high communication overhead. The approach shows very good results
compared to Directed Diffusion [11] or TTDD [35] in terms of dissipated
energy for data packets. However, no extensive evaluation of the control
overhead under mobile sinks is presented, which is expected to be high. An
analytical evaluation of virtual infrastructure routing protocols (TTDD [35],
SEAD [36] and others) is presented in [38].

2.3 Machine Learning applications to routing in WSNs

Machine learning has gained a lot of attention in latest years for solving
hard problems in wireless ad hoc networks such as routing [39, 40, 41]. In
WSNs, reinforcement learning (RL) has been already applied to point-to-
point routing in different settings - to support geographic routing [42]; for
discovering routes between two nodes [43], for finding optimal compression
routes between many sources and one sink [44] etc. All of these works show
the great advantage of using ML techniques for routing. However, to the
best of our knowledge, there are no works on applying machine learning
(especially RL) to multicast routing, which requires changes to the original
ML algorithms, while keeping their advantageous properties.

Another well known machine learning algorithm for routing is swarm in-
telligence and especially ant colony optimization. It has been applied to
routing in ad hoc networks in AntHocNet [28] and for point to point rout-
ing in WSNs, but with less success. The main challenge is overcoming the
communication overhead caused by the traveling ants. These algorithms are
well suited for highly mobile, energy-rich domains like MANETs and less for
energy-restricted, but rather static environments like WSNs.

10

P E A

BFH

CQ

S

G
source

sink

sink

Neighbor A

routing table : node S

sink P 3 hops
sink Q 5 hops

Neighbor B sink P 4 hops
sink Q 4 hops

Neighbor C sink P 5 hops
sink Q 3 hops

Figure 1: A sample topology with 2 sinks, the main routes to them from
source S and its initial routing table.

3 Protocol intuition and overview

The goal of our protocol is to find the optimal possible path for data to
follow from its source to all interested sinks. Optimal can be defined as
either minimum delay, minimum hop count, minimum geographic distance,
maximum remaining batteries or a combination of some of the above. Here,
we will use number of hops as an example.

Consider the sample network from Figure 1 with one source and two
sinks. One possible path from the source to the sinks is formed by the union
of the individual paths from the source to each sink (the dotted lines in the
figure), however a shorter path often exists. This shorter path takes the
form of a tree, as the one through nodes B, F and H. The challenge is to
globally identify this tree without full topology information and using only
local information exchange. The main task of our protocol is to update local
information regarding “next-hops” to reach sinks from each node such that
the cost of the resulting tree is optimal.

During an initial sink announcement phase, as proposed in Section 2.1,
all nodes gather some initial routing information and register known sinks in
the network. In our example from Figure 1 node S gathers hop information
for each sink individually as shown in its routing table in the figure. When
data packets arrive at the node for routing, the node needs to select one or
more next hops towards the sinks. However, instead of simply choosing the
best looking one (in this example: node C for sink Q and node A for sink
P), it also explores non-optimal routes in the assumption that some of them
might have lower costs than in its own routing table. This is because its
neighboring nodes may be able to share next hops too. For example, the
source node S estimates that node A needs 7 hops to reach both sinks: 5
hops to sink P , 3 hops to sink Q and the first hop is shared, thus the minus

11

1 or a total of 7 hops. However, node S does not know whether node A will
be able also to share the next hop or will need to split the packet and send
it through two different neighbors. In our example, node A is in fact able to
share the next hop. It calculates that it can reach the sinks through node E
(see the routing table of node A in the figure) in (2 + 4)− 1 = 5 hops. Thus,
node S will be able to reach both sinks in 1 hop to node A plus 5 hops from
node A to all sinks or a total of 6 hops, which is 1 hop less than the initial
information on the source node. Thus, node A needs to inform node S about
its own estimation of the costs to both sinks. It can do so while sending the
data packet further to the sink by making use of the broadcast environment
and piggybacking its own cost estimation.

Similarly, node E piggybacks its cost estimation and informs node A and
so on. There are four important observations to make: these piggybacked
values, which we also call feedbacks, propagate exactly one step back until
they reach the sinks, where the packet stops. Thus, the source needs to send
several data packets to node A before its own cost estimation for node A
represents the real hop cost of the route.

Second, the source needs to send data packets not only to node A, but
to all neighboring nodes a sufficient number of times, before all of its cost
estimations converge. The neighbors of the nodes need to also explore their
neighbors and so on. Third, feedback can be used not only by the previous
hop, but by all overhearing nodes of the transmitter and thus deliver ad-
ditional information to the nodes. And fourth, keeping all of the routes at
all nodes and always giving feedback to the neighbors with the current cost
estimations, innately handles recovery and mobility. For example, in case
node E fails, node A will switch to another route, for example through node
B, will update its cost estimations and will inform the source S via feedback
on the next data packet about its current costs. The information propagates
together with the data packets, without incurring any additional communi-
cation overhead and update automatically the routes and their costs on all
involved nodes.

The above made observations form a reinforcement learning based rout-
ing protocol. In the next section we formalize the ideas discussed here and
present the details of the Q-Learning model, solving the multicast problem
in WSNs.

12

4 FROMS: Solving Multicast with Q-Learning

The main goal of this section is to model the multicast routing problem and
solve it with reinforcement learning, as sketched in the pervious section. This
will not only build the basis of our protocol, but also give us the possibility to
make a theoretical analysis of the protocol in terms of complexity, correctness
and convergence.

4.1 Problem definition

We consider the network of sensors as a graph G = (V,E) where each sensor
node is a vertex vi and each edge eij is a bidirectional wireless communication
channel between a pair of nodes vi and vj. Without a loss of generality, we
consider a single source node s ∈ V and a set of destination nodes D ⊆ V .

Optimal routing to multiple destinations is defined as the minimum cost
path starting at the source vertex s, and reaching all destination vertices D.
This path is actually a spanning tree T = (VT , ET) whose vertexes include
the source and the destinations. The cost of a tree T is defined as a function
over its nodes and links C(T). For example, it can be the number of one-hop
broadcasts required to reach all destinations or in other words the number of
non-leaf nodes in T . Further cost functions are presented in Section 6.8 and
evaluated in Section 9.3.

4.2 Multicast Routing with Q-Learning

Finding the minimum cost tree T , also called the Steiner tree, is NP-hard,
even when the full topology is known [45]. Our goal, therefore, is to approx-
imate the optimal solution using localized techniques. We turn to reinforce-
ment learning and especially to Q-Learning [46].

In our multiple-sink scenario, each sensor node is an independent learning
agent, and actions are routing options using different neighbor(s) for the next
hop(s) toward a subset of the sinks, Dp ⊆ D, listed in the data packet. The
main challenge in our application is to model the actions of the nodes, since
they contain not a single next hop (route to some neighbor n), but a-priori
unknown number of next hops. The following provides additional detail for
the Q-Learning solution.

Agent states. We define the state of an agent as a tuple {Dp, routesN
Dp
},

13

whereDp ⊆ D are the sinks the packet must reach and routesN
Dp

is the routing
information about all neighboring nodes N with respect to the individual
sinks. Depending on this state, different actions are possible.

Actions. In our model, an action is one possible routing decision for a
data packet. However, the routing decision can include one or more different
neighbors as next hops. Consequently, we need to change the original Q-
Learning algorithm and define a possible action, a, as a set of sub-actions
{a1 . . . ak}. Each sub-action ai = (ni, Di) includes a single neighbor ni and a
set of destinations Di ⊆ Dp indicating that neighbor ni is the intended next
hop for routing to destinations Di. A complete action is a set of sub-actions
such that {D1 . . . Dk} partitions Dp (that is, each sink d ∈ Dp is covered by
exactly one sub-action ai).

Continuing with our example from Figure 1, consider a packet destined for
Dp = {P,Q}. One possible complete action of the source S is the single sub-
action (B, {P,Q}), indicating neighbor B as the next hop to all destinations.
Alternately, node S may choose two sub-actions, (A, {P}) and (C, {Q}),
indicating two different neighbors should take responsibility to forward the
packet to different subsets of sinks.

The distinction between complete actions and sub-actions is important,
as we assign rewards to sub-actions.

Q-Values. Q-Values represent the goodness of actions and the goal of
the agent is to learn the actual goodness of the available actions. Here we
differ from the original Q-Learning, which randomly initializes Q-Values, and
where Q-Values serve only for quantitative comparison.

In our case, we bound the Q-Values to represent the real cost of the routes,
for example, if the cost function is number of hops, the Q-Value of a route
is also the number of hops of this route. To initialize these values, we use a
more sophisticated approach than random assignment, which calculates an
estimate of the cost based on the individual information about the involved
neighbor and sinks. This non-random initialization significantly speeds up
the learning process and avoids oscillations of the Q-Values.

For example, without loss of generality and continuing our example with a
hop-based cost function, it estimates the route cost by using the hop counts
available in a standard routing table, such as that in Figure 1. We first
calculate the value of a sub-action, then of a complete action. The initial
Q-Value for a sub-action ai = (ni, Di) is thus:

14

Q(ai) =

(∑
d∈Di

hopsni
d

)
− 2(| Di | −1) (1)

where hopsni
d are the number of hops to reach destination d ∈ Di using

neighbor ni and | Di | is the number of sinks in Di. The first part of the
formula calculates the total number of hops to individually reach the sinks,
and the second part subtracts from this total based on the assumption that
broadcast communication is used both (hence the 2) for transmission to ni

as well as by ni to reach the next hop. Note that this estimation is an upper
bound of the actual value, as it assumes that the packet will not share any
links after the next hop. Therefore, during learning, Q-Values will always
decrease and the best actions will be denoted with small Q-Values.

The Q-Value of a complete action a with sub-actions {a1, . . . , ak} is:

Q(a) =

(∑
ai∈a,i=1...k

Q(ai)

)
− (k − 1) (2)

where k is the number of sub-actions. Intuitively this Q-Value is the
broadcast hop count from the agent to all sinks.

The above is an example of calculating the Q-Values when using the
specific hop-based cost. We will explore further cost metrics in Section 6.8.

Updating a Q-Value. To learn the real values of the actions, the agent
must receive the reward values from the environment. In our case, each
neighbor to which a data packet is forwarded sends the reward as feedback
with its evaluation of the goodness of the sub-action. The new Q-Value of
the sub-action is:

Qnew(ai) = Qold(ai) + γ(R(ai)−Qold(ai)) (3)

where R(ai) is the reward value and γ is the learning rate of the algorithm.
We use γ = 1 to speed up learning. Usually a lower learning rate needs to be
used with randomly initialized Q-Values, since otherwise they will oscillate
heavily in the beginning of the learning process. However, since our values
are guaranteed to decrease and not to oscillate, we can avoid the learning
rate and the resulting delay in learning. Therefore, with γ = 1, the formula
becomes

15

Qnew(ai) = R(ai) (4)

directly updating the Q-Value with the reward. The Q-Values of complete
actions are updated automatically, since their calculation is based on sub-
actions (Equation 2).

Reward function. Intuitively the reward is the downstream node’s op-
portunity to inform the upstream neighbors of its actual cost for the requested
action. Thus, when calculating the reward, the node selects its lowest (best)
Q-Value for the destination set and adds the cost of the action itself:

R(ai) = cai
+ min

a
Q(a) (5)

where cai
is the action’s cost (always 1 in our hop count metric). This

propagation of Q-Values upstream eventually allows all nodes to learn the
actual costs.

In contrast to the original Q-Learning algorithm, low reward values are
good and large values are bad. This is because we define the Q-Values to
represent the real hop costs of some route and thus the lowest Q-Values are
the best. Furthermore, rewards from the environment are generated and sent
out without real knowledge of who receives them. Note also that the reward
values are completely localized and simply indicate the current best Q-Value
at the rewarding node.

Exploration strategy (action selection policy). One final, impor-
tant learning parameter is the action selection policy. A trivial solution is
to greedily select the action with the best (lowest) Q-Value. However, this
policy ignores some actions which may, after learning, have lower Q-Values,
resulting in a locally optimal solution. Therefore, a tradeoff is required be-
tween exploitation of good routes and exploration among available routes. A
simple, though efficient strategy is ε-greedy, which selects the best available
action with probability 1− ε and a random one with probability ε. There are
also variants of ε-greedy, where ε is decreased with time or where the range
of random routes are restricted to the most promising ones. Section 6.9 gives
more details about the exploration strategies we use for Froms.

16

Parameter Description

D number of destinations

M diameter of the network

Y network density (maximum number of 1-hop neighbors)

|N | number of nodes in the network

A Maximum number of possible actions at each node

S Maximum number of action steps (sent packets) at the
source before convergence

Table 1: Summary of network scenario and complexity parameters, as used
in the discussion of Froms.

5 Theoretical analysis of FROMS

In this section we concentrate on the theoretical analysis of Froms: on
its convergence, complexity, memory, and processing requirements. First we
explore an idealized model of the environment and later we introduce realistic
properties like asymmetric links and link failures.

5.1 Worst-case complexity and convergence

We show first the worst-case complexity of Froms (time to stabilize) and
thus also implicitly its convergence. In our scenario, convergence means that
first, the protocol is stable and the Q-Values do not change any more, and
second and more importantly, that the optimal route has been identified. The
original Q-Learning algorithm has been shown to converge after an infinite
number of steps [46]. Here we need to show that our Q-Learning based
protocol converges after a finite number of steps. For this, we start by
calculating the number of steps until convergence.

First, we assume a Q-Learning algorithm like the one we presented in
the previous Section 4 with γ = 1, hop-based cost metric, and deterministic
exploration strategy, which chooses the routes in a round-robin manner. We
further assume a network N with the following properties: D is the number of
destinations, M is the diameter of the network (the longest shortest path in
the network between any two nodes in N) and Y is the density of the network
(the maximum number of 1-hop neighbors at any node inN). The parameters

17

are summarized in Table 1. We also assume static nodes and sinks and
perfect communication between the neighbors. Without loss of generality,
we assume a single source, since the routes are constructed depending on the
destinations, not on the sources. We will discuss multiple sources at the end
of this section.

Further, the maximum number of possible actions A at any node is, ac-
cording to the definition of actions in Section 4, the number of permutations
of size D over all neighbors Y with repetitions (because we are allowed to
use the same neighbor to reach multiple sinks) or:

A ≤ Y D (6)

In the worst case the source of the data or the initiator of the learning
process is at maximum distance M from all of the sinks. Our goal is to
compute how many action selection steps have to be taken on all nodes in
N , so that the Q-Values stabilize. With γ = 1 the feedback of any 1-hop
neighbor is used for direct replacement of the old Q-Value. Thus, in order to
learn the real costs of any route of length M we need exactly M − 1 steps.
However, the source has to first wait for all other nodes to stabilize their
Q-Values before it can be guaranteed that its Q-Values are stable too. In
the worst case it has to explore the full network and all possible routes in it.
Let us count the number of action selection steps S we need for the whole
system to converge.

Assuming the learning is always initiated by the source, we know that we
need to select each of the routes available M − 1 times. Using Equation 6
we have:

S ≤ (M − 1) · Y D

The 1-hop neighbors of the source need to do the same. Their distance
to the sinks is also at most M . Note this is the worst case and it actually
cannot exist in a real network: if all of the neighbors of some node are at the
same distance from the sinks as the node itself, the network is disconnected.
Thus, all of the nodes in the network have to select each of their routes at
most M times. Thus, we have for the complexity:

S ≤ (M − 1) · |N | · Y D = O
(
(M − 1) · |N | · Y D

)
(7)

This is the worst-case number of actions across all nodes (packet broad-
casts) for the protocol to converge. After convergence, exploration can be

18

stopped and the algorithm can proceed in a greedy mode, as the best route
has been identified and has the best Q-Value among all available. If there
are more than one best routes, they can be alternated to spread energy ex-
penditure.

However, this is a very loose upper bound of the complexity - no real
networks have the worst-case properties like ”all neighbors are M hops away
from the destinations”. However, it gives us an idea about the scalability
of the approach and its expected performance. In the next paragraphs we
discuss in detail how the convergence behavior changes with various network
parameters and what are the consequences for the protocol. We use experi-
mental evaluations to show the real behavior of the protocol in Sections 4-9.

Parameter analysis. The number of destinations D and the density Y
are not directly dependent on the number of nodes |N | in a network or on
the diameter M . To understand better the expected performance, we explore
these individual cases for each of the parameters:

The number of sinks D is completely independent from any of the other
network properties, |N |, M , or Y , as it is a requirement of the application.
The only limitation is that D ≤ |N |. With a growing number of sinks the
complexity grows exponentially, because D is in the power (see Equation 7).

With growing number of nodes |N |, usually either the diameter M or the
density Y are growing, or both, but at a lower rate. In both cases, we expect
the complexity to have a polynomial growth (from Equation 7).

In a network with constant number of nodes |N |, M and Y depend on each
other. When the diameter is growing, the number of neighbors is decreasing;
and vice versa. In the extreme case we have M = |N | = c, Y = 2, where we
have a chain network with maximum number of neighbors 2. In this case we
have:

S = O
(
|N |2 · 2D

)
(8)

The other extreme case is when the density or Y grows towards |N | and
M decreases towards 2 - note that the case M = 1 does not make sense,
because then any source will be exactly one hop from any sink and routing
would be trivial. In the case of M → 2 we have:

S = O
(
2|N |D+1

)
(9)

19

density Y density Ydiameter M diameter M

complexitycomplexity

Figure 2: Worst-case complexity for some M and Y values from different
views. The number of sinks is fixed to D = 3, |N | = 100. The thick line at
the welding of the graph corresponds to maximum expected complexity and
the single point near the origin to a real dense network with M = 10 and
Y = 10.

However, these equations do not consider the behavior inbetween. It is
more interesting to explore the complexity in a network with constant |N |
and different M and Y values. Figure 2 shows a case study for a network
of 100 nodes, 3 sinks and different densities and diameters. The worst-case
complexity is presented from two different points of view. Of course, as
expected, with growing M and Y , the complexity grows. However, the thick
line shows exactly the development when M is growing and Y decreasing -
it shows that the function has a maximum between the two extreme cases.
As a rule of thumb for practical networks it can be generalized, that having
a lower density is always a good idea, since Y is in the power of D (see again
Equation 7), unless M is very low, as the complexity decreases again. Note
also that the extreme case of Figure 2 where both M and Y are growing
towards |N | is impossible in practice [47]. Realistic values for a network with
100 nodes will be M = 10 and Y = 10, which corresponds to the single point
in Figure 2.

Probabilistic exploration strategy. The above complexity is given for
a deterministic round-robin exploration strategy. However, both the original
Q-Learning algorithm, as well as our protocol, use probabilistic exploration
strategies - for each route r there is a probability pr to be chosen at any step

20

st. If the probabilities of all routes are pr > 0, convergence is guaranteed.
However, complexity is hard to compute because of the non-deterministic
nature of the algorithm. Instead, we will show experimental evaluations in
the next sections.

Realistic communication environment. The above proof is built
under the assumption of perfect communication. However, the real world of
WSNs is seldom perfect. Packet losses are usual and have to be considered.

However, assuming some probability pm for delivering a message between
two nodes is enough to maintain the convergence criterium of the algorithm.
The convergence will take longer, but the correctness is not violated if the
probability pm is non-zero. In the special case of pm = 0 for some link(s),
the network model changes: these links are actually non-existing and under
the new network model the algorithm will converge.

A scenario with asymmetric links is slightly more complex. Here, two
neighboring nodes may have a one-way communication only. Thus, one of
the nodes may hear from the other, but not vice versa. Consequently data
packets may be forwarded through some node, but feedback will never be
received by the sender. If the node with the asymmetric link happens to
be on the optimal route, the sender of the packets will never learn its real
costs and the protocol will not converge to the optimal route. However, in
practice just links are often considered are not-existing at all because of their
unreliable nature. If we assume this and come back to the above discussion
of packet loss, convergence is guaranteed again. It is the responsibility of the
protocol’s implementation to recognize asymmetric links and to delete them
and we will discuss how we do this in the next Section 6.

Multiple sources. In the above paragraphs we assumed a single data
source learning the optimal routes to all sinks. However, what happens
when more sources are present in the network? In fact, this speeds up the
convergence process of all nodes in terms of data packets sent by one source.
Imagine a network with 2 sources, sending data at the same rate to 3 identical
sinks. In this case, nodes on the routes of both sources to the sinks receive
double feedback from sending data packets from both sources. This is because
our feedback is delivered to all neighboring nodes.

21

5.2 Correctness of Froms

The correctness of Froms is easily deducible from the definition of the used
Q-Learning model in Section 4. The goal is to show that after convergence,
the Q-Values of the full actions at any node will accurately reflect the hop-
based costs. We use simple induction to sketch the proof in sufficient detail
for our purposes. We begin by showing the correctness of Froms for one
sink, then expand the proof to multiple sinks.

Assumptions. We assume perfect communication, static network, and
the Q-Value calculation and update equations from Section 4.

Initial step. The induction starts with the sinks and we define the cost
of the sinks of routing to themselves to be always 0, since no forwarding is
needed any more. Thus, the reward of the sinks for routing to themselves is
always r = 0 + ca with ca = 1 from Equation 5. For γ = 1, the neighbors
update the Q-Value for the corresponding sub-action to Q = r = 1, which
we know is the correct cost of this sub-action, since the sink is exactly one
hop away.

Induction step. Assume that a node N (sink or any other node) has a
correct estimation of the costs to the sink QN . Its reward is always computed
as r = minaQ(a) + ca, where minaQ(a) is necessarily the above QN and
ca = 1. When node N sends its reward to its direct neighbors, they will
update their corresponding Q-Values for this node to QN + 1, which is the
correct estimation of the cost through node N , since they are exactly one
hop further away from the sink than node N . Thus, for any node N with
correct estimations of the cost, its direct neighbors also have correct cost
estimations.

We showed above that Froms converges to the correct hop-based costs for
one sink in the network. In fact we know that Froms is correct for one sink
also because of the sink announcement propagation. During this network-
wide broadcast, every node easily learns about the best routes in terms of
hops to a single sink. Thus, we have both a practical and a theoretical
proof that Froms converges to the correct costs for one sink. This is the
beginning of the second induction proof, which shows that Froms converges
to the correct hop-based costs also for more than one sink.

Assume a network with 2 sinks that the Q-Values for each sink individ-
ually at all nodes have already converged (see the discussion above). For

22

simplicity we call the sinks A and B. The costs of B to reach itself is 0 and
to reach sink A is a constant v = minaQB(a), which is the minimum Q-Value
for A at node B. Thus, the cost of reaching both A and B at B is 0 + v and
the reward of B is rB = (0 + v) + ca = v + 1. The direct neighbors of B
will update their own Q-Values to this reward value, which is the right cost:
they need one hop to reach sink B and further v costs to reach sink A. This
trivially extends to the next hops, as shown already above. It also intuitively
extends to more than 2 sinks.

Summarizing Sections 5.1 and 5.2, we have shown that Froms
converges to the correct hop-based costs of the routes after finite
number of steps.

5.3 Memory and processing requirements

Before explaining the implementation details of Froms and showing its ex-
perimental evaluation, we analyze the theoretical memory and processing
requirements of the algorithm for each node in the network.

Each node has to store all locally available routes. According to Equa-
tion 6 the expected storage requirement is O(Y D). The processing require-
ments include selecting a route and updating a Q-Value. The first function
requires in the worst case to loop through all available routes to compare
them in terms of their costs and is thus bounded by O(Y D). The update of a
Q-Value is itself an atomic action: given the old Q-Value and the reward, it
calculates the new one. Assuming a data structure, organized by neighbor,
we need as worst case for searching O(Y +D).

6 Protocol implementation details and param-

eters

The multicast routing protocol Froms is built upon the formal Q-Learning
model, presented in Section 4. A pseudo-code of the resulting protocol is
given in Figure 3. Basically, the routing protocol consists of three main pro-
cesses: sink announcement and initialization of routes (lines 3-4), selection of
routes (lines 9-12), and learning and feedback (lines 8 and 14). Additionally,
there are some parameters of Froms like exploration strategy (line 12) and
cost functions (line 2), and the sink mobility management module (line 7).

23

We step through all of these and give details in the following sections.

1: init:

2: init cost function();

3: on receive(DATA REQ req):

4: add nexthop(req.sinkID,req.neiID,req.hops,req.battery);

5: on receive(DATA d):

6: // snoop on all incoming packets

7: sinkControl.update(d.sinkStamps,d.neiID);

8: add feedback(d.feedback, d.neiID);

9: // route packet to next hop(s)

10: if (d.nexthops.includes(self))

11: routes = get possible routes(d.my sinks,cost function);

12: route = strategy.select route(routes);

13: d.routing = route;

14: d.feedback = best route cost;

15: broadcast(d);

16: end if

Figure 3: The main Froms algorithm

6.1 Sink announcement

Recall from our application scenario described in Section 2.1 that we as-
sume each of the sinks announces itself via a network-wide broadcast of a
DATA REQ message, during which initial routing information like hops to
the sink is gathered (lines 3-4 in Figure 3). Additionally, position informa-
tion, battery status of neighbors, etc, can be delivered to the nodes.

6.2 Feedback implementation

A substantial part of Froms is the exchange of feedback (reward). This is
what enables Froms to learn the global cost of the routes and to use the
globally optimal paths. We piggyback the feedback, which is usually only a
few bytes, on usual DATA packets (line 14 in Figure 3). There are several

24

advantages of this implementation: feedback is sent only on-demand and only
to local neighbors; and overhead is kept minimal because no extra control
packets need to be exchanged.

Note that feedback is accepted and route costs are updated even if the
feedback is negative and the previously known costs were better. Thus,
mobility and recovery are handled automatically. The feedback is usually
received by all overhearing neighbors, which speeds up the learning pro-
cess. However, feedback can also be delivered to the previous hop only, thus
avoiding energy expenditure for overhearing of packets. This implementation
requires a multicast MAC layer protocol, able to send the message only to
some subset of neighbors. Unfortunately there is no such protocol designed
for low-energy WSNs to the best of our knowledge and its implementation is
not trivial, since it requires a well-designed scheduling together with variable-
length preamble packets. We consider designing such a protocol and testing
it with various routing techniques in the future.

6.3 Data management

One of the implementation challenges of Froms is to design an efficient
multi-destination routing data structure. This data structure is different
from usual routing tables like the one in Figure 1 since it not only holds next
hops for individual sinks and their costs, but also combines shared paths to
multiple sinks. In other words, we need a data structure to hold the sub-
actions as described in Section 4. For example, the possible sub-actions for
node S from Figure 1 for each of the neighbors ni are: {ni, (P)}, {ni, (Q)}
and {ni, (P,Q)}.

Data structure API
As shown in the algorithm pseudocode from Figure 3, the multi-destination

routing data structure used by Froms has to implement efficiently and reli-
ably the following API:

add nexthop(sinkID, nexthop, hop cost, battery)

This function is called when a DATA REQ arrives, or when a feedback
for an unknown sub-action arrives. The second case happens, when sink
announcements were lost and some next hops are unknown at the node.
However, the first time when the unknown neighbor broadcasts a data
packet the node will repair its routing table.

25

add feedback(feedback, previous hop)

This is called every time the node hears a data packet. The data structure
has to find the required sub-action and to update its cost. The cost is
updated always and not only when it is better than before. The costs are
expected to be higher than previously known when a node fails or when
a sink moves away. All routes’ full cost, using this sub-action, have to be
updated. Additionally, if this sub-action cannot be found, it should be
recovered (see add nexthop).

get possible routes(sinks, cost function)

This is called by the exploration strategy and should return all possible
routes, which fulfill some requirements, like maximum hop cost, maximum
total cost etc (for loop management, see below). The routing strategy will
then select one of them for usage.

PSTable. Our Froms implementation uses an instantiation of the above
defined data structure called PSTable, or Path Sharing Table. Let us
continue with our example of Figure 1. Figure 4 presents the resulting data
structure for node S. For easy reference we have copied also the network
topology. The PSTable consists of two simple tables, for the sub-actions
and the routes (full actions), and three management variables. Note that
this sample PSTable contains the initial Q-Values for all sub-actions and full
actions and is based on hops for simplicity. Note that cost calculation for
sub-actions occurs only once: at initialization. After that, feedbacks are used
to update the Q-Values. Q-Values of full actions (Table allRoutes), which
we also call Q-full, are computed according to Equation 2 from the Q-Values
of the included sub-actions. Further details are given below:

• subActions: This table holds all available sub-actions for each of the
neighbors. They are organized by neighbor ID for speeding up search
in case of feedback. For each of the sub-actions, the table holds the
Q-Value of that action and assigns an ID, which is used as a pointer to
that sub-action. The grey-shaded fields are pruned sub-actions to save
memory and will be explained later in Section 6.4.

• allRoutes: This table holds basically all possible combinations of
sub-actions, such that in each route all sinks are covered exactly once.
The table holds the total Q-Value of the full action, computed from

26

neighbor

subActions

sinks Q-Value

Q 5
A P 3

P,Q 6

Q 4
B P 4

P,Q 6

Q 3
C P 5

P,Q 6

allRoutes

route ID subaction IDs

1 1,5
2
1

3

5
4

6

8
7

9

Q full

(3+4)-1=6

3 4,8 (4+3)-1=6
4 2,4 (5+4)-1=8
5 2,7 (5+5)-1=9
6 5,7 (4+5)-1=8
7 3 6-0=6

9 9 6-0=6

validSinks = {P,Q} costsChanged = false routesChanged = false

PSTABLE for Node S

A

routing table : node S

P 3
Q 5

B P 4
Q 4

C P 5
Q 3

Neigh sink hops

...

...

...

...

...

...

...

subaction
ID

2 1,8 (3+3)-1=5

8 6 6-0=6

P E A

BFH

CQ

S

G
source

sink

sink

route 2

route 8

Figure 4: The PSTable for node S from Figure 1. Grey-shaded boxes are
ignored sub-actions (not stored), which saves memory after applying route
storage pruning heuristics C = 1,Nr = 3 (see Section 6.4).

the Q-Value of the included sub-actions according to Equation 2. Two
examples are emphasized in the figure, route 2 and 8. Route 2 (marked
bold in the figure) consists of two sub-actions with IDs 1 and 8 and
corresponds to the dashed route in the network topology in the same
figure. Its full route costs (its full Q-Value) is 5, which is the cost in
terms of hops for this route. In contrast, route 8 consists of only 1
sub-action with ID 6 and its full cost is also 6 hops.

Note that these two tables must be separate: rewards are assigned and de-
livered by sub-actions, but full routes are needed when routing data packets.
Putting them together will increase significantly the search time for incom-
ing rewards, because sub-actions will be presented several times in different

27

routes and the full table would need to be traversed to find them.

• validSinks: The sinks, for which the full Q-Value is computed and
stored. We apply lazy evaluation of routes to speed up the route selec-
tion. For example, if a route to only one of the sinks is desired (e.g. for
sink Q), the Q-Values of the routes will be re-computed as to include
only the desired sinks. If this computation is impossible, for example
as it is for route 8, the Q-Value is marked with -1. This is the case
when needed and unneeded sinks are combined into one sub-action: for
example, sub-action 6 of route 8 contains both sinks P and Q and thus
separated computation of the cost to sink Q only is impossible.

• routesChanged: This variable indicates that the allRoutes table has
to be rebuilt because new routes are available or old ones lost.

• costsChanged: This indicates that the costs of some routes have
changed and have to be recalculated or that the costs are not valid
any more (validSinks has changed). This happens usually when new
feedback arrives, which in fact changes the routes’ Q-Values. Then all
routes which use the updated Q-Value become invalid. For example, if
sub-action 1 from our Figure 4 gets updated, routes 1 and 2 become
invalid. However, instead of immediately searching for those routes
and recalculating their costs, we mark the whole table as invalid and
wait until a data packet arrives for routing. This saves processing effort
when the node is overhearing a lot of feedback from its neighbors, but
does not route data packets.

In the simulation environment (described in Section 9) we use dynamic
memory allocation for subActions and allRoutes and memory pointers to the
sub-actions. In the real hardware environment (described in Section 8) we do
not have dynamic memory allocation and use a static array of subActions

items and a static array of allRoutes items. The size of both of them
are large enough to accommodate all possible sink combinations and routes.
Instead of memory pointers we use IDs, like in the example in Figure 4.

6.4 Route storage reducing heuristics

As pointed out in Section 5, the storage requirements for all routes grow
exponentially with number of sinks and polynomially with number of neigh-
bors. In practice this means that for large number of sinks and neighbors we

28

are not able to store all routes. The consequence is that we cannot guarantee
any more that the algorithm is optimal. However, its near-optimality can be
easily preserved by wisely managing which routes to store and which not.

We have developed two route pruning heuristics: C - cost over best maxi-
mum and Nr - maximum number of routes to sink. The first one checks what
is the currently best cost to the sink in question and if the newly arrived route
has cost more than this best one plus the threshold C, it ignores the route.
The second one is a limit over the number of routes per sink - when this
number is exceeded, the newly arrived route is ignored. In Figure 4 ignored
entries after applying C = 1,Nr = 3 are shown in grey. Note that these
heuristics not only limit the memory requirement at the nodes, but also the
convergence time, since less routes need to be explored.

6.5 Loop management

Froms explores non-optimal routes for finding the globally best route. This
means that it chooses a route with a non-limited length. Thus it can happen
that a packet travels in a loop, even forever. In order to manage this, we
have introduced the maximum allowed hop cost for a neighbor. Each node
receives the data packet together with the subset of sinks which it has to care
of, and a maximum hop cost for the selected route. We set this maximum
allowed cost to the currently known cost for this sub-action. Thus, if the
cost estimate is right and the node has no better routes, it will be forced to
use the best one. The reason for requiring this is that if the cost estimate is
right the probability that this estimate is also the real cost is very high.

6.6 Mobility management

The Q-Learning algorithm has the innate ability to manage changing net-
work conditions. They will be delivered as feedback and the Q-Values will
be updated accordingly in the usual learning process. However, practical
challenges arise: growing costs of some route could either mean mobile sinks
moving away or a disconnection from some sinks. The first case is normal
and should be handled as usual. The second one, however, will cause looping
packets, traveling forever and searching for non-existing routes.

An important special case for managing moving sinks is when a node is
a direct neighbor of a sink. In this case we exclude this sink from learning
and always send directly to it. However, this causes problems when the sink

29

sink

SinkControl : node 7

last
timestamp

direct
neighbor

sink 2 -14 sec false
sink 1 -2 sec true

direct
timestamp

-
-2 sec

Figure 5: SinkControl for node E (direct neighbor of sink P from Figures 1
and 4).

moves away and the sink needs to be included in normal learning again.
Thus, we need a technique to recognize alive sinks moving out of range.

SinkControl is a simple data structure whose goal is to detect moving or
disconnected sinks. It does not affect the Q-Learning algorithm, but manages
the available routes, erasing invalid ones. It stores information about each
known sink in the network. Figure 5 presents it for the sample topology of
Figure 1. The feedback delivers a last timestamp for each included sink; this
is the last time this neighbor has heard of the sink. If this timestamp is too
old (a threshold parameter), the sink is deleted. This is the case when either
the sink itself has failed or disappeared from the network or the network is
disconnected between the sink and the node. In both cases the application
layer has to be notified to delete the data delivery task for those sinks and
routing to them has to be stopped.

On the other hand, while the sink is “fresh” data delivery can continue
even if the routes’ costs to it are growing. In order to detect sinks in the
direct neighborhood, we also store the last time the node has heard from
a sink directly. If the threshold is exceeded, the flag for direct neighbor is
deleted and Froms is notified.

This simple module enables detection of sink mobility and learning of new
routes with minimum communication overhead, the additional last times-
tamp feedback. Despite using timestamps, Froms does not require a time
synchronization protocol or any other means of global time. It is enough to
use timestamps like in Figure 5: (now − n · sec). The goal is to detect sinks,
which are not responsive for a long time.

Obviously, this sink mobility detection can be implemented for any rout-
ing protocol. However, it is not sufficient to handle sink mobility: it only
checks whether a route can exist or not. Finding the optimal route is still
performed by Froms and its learning and feedback mechanism. Most im-

30

portantly, delivery of data to the sinks continues while recovering the routes
and learning the new costs.

6.7 Node failures

Node failures are managed the same way as sink mobility. Each node stores
the last time it heard from any 1-hop neighbor. Additionally, it stores the
last time it routed something to that neighbor. In case the difference between
both timestamps exceeds some threshold, the neighbor is deleted. Note that
if this happens by mistake, the next time the node hears again from this
neighbor, the route will be recovered.

Note that unlike many link management protocols, Froms does not use
any beacons or periodic full-network broadcasts. Only overhearing of data
packets is used to check the status of neighbors.

6.8 Cost metrics

Here we present Froms innate ability to incorporate different cost functions
to reach different optimization goals. The cost function is used to calculate
the initial Q-Values in Froms. A simple hop-based metric was presented
already in Section 4 with Equations 1 and 2. Its optimization goal is to
find the shortest shared path for multiple sinks in terms of hops. The hop-
based cost function can be easily exchanged with any other cost-per-link
metric, like energy needed to reach the farthest neighbor, geographic distance
or geographic progress to the sinks, etc. Various cost metrics and their
properties are summarized in Table 2.

Another example for a cost-per-link function is a latency-based cost met-
ric. Here we need to gather latency information during sink announcement
to the sensor nodes. The latency needs to represent the radio propagation
latency (where the differences will be negligible for usual sensor networks)
and the latency caused by the packet queues on the nodes. However, note
that such a cost metric is what we call here a dynamic cost metric: it is
expected to change during network lifetime and to change fast. For Froms
this means that it will never globally converge, nor stay in a converged state.
However, we show in the next paragraphs other dynamic cost functions and
how to handle their behavior. In fact, we make use of this non-converging
behavior and turn it into an advantage.

31

Cost met-
ric

Calculation of
initial values

Optimization
goal

Conver-
gence

Dyna-
mic

Best
Q-
Values

simple metrics

Hops
∑

hops shortest shared path
(Steiner tree)

guaran-
teed

no lowest

Latency
∑

latency least latency path no yes lowest

Transmission
energy

∑
energies least energy path guaran-

teed
no lowest

Geographic
distance

∑
dist shortest shared path guaran-

teed
no lowest

Aggr. rate
∑

rates maximum aggr.
path

slow no highest

combined metrics

Hops & rem.
battery of
nodes

∑
hops ·

hcm(bathops)
shortest shared path
through nodes with
high battery

no yes lowest

Table 2: Different possible cost metrics for Froms and their main properties.

Here we concentrate on one combined cost metric to demonstrate how
to use such complex cost metrics with Froms. We use a combination of
remaining battery on the nodes and minimum hops. In this case we calculate
the Q-Values as a combination of two metrics as follows:

Qcomb(route) = f(Ehops , Ebattery) (10)

where Ehops is the estimated hop cost of the route exactly as we calculate
it in equations 1 and 2, and Ebattery is the estimated battery cost of this route,
which we define as the minimum remaining battery of all nodes along it:

Ebattery(route) = min
ni∈route

battery (11)

The function f that combines the two estimates into a single Q-Value is
based on a simple and widely used function:

f(Ehops , Ebattery) = hcm(Ebattery) · Ehops (12)

32

100 90 80 70 60 50 40 30 20 10 0

1

2

3

4

5

battery level [%]

ho
p

co
un

t m
ul

tip
lie

r (
hc

m
)

hop based
steep linear
linear
exponential

Figure 6: Hop count multiplier (hcm) functions for different optimization
goals.

hcm is the hop-count-multiplier, a function that weights the hop count
estimate based on the remaining battery. For simplicity we drop the “esti-
mation” and denote the Q-Value components as hops and battery .

Figure 6 shows four different hcm functions. If the battery level is com-
pletely irrelevant, then hcm(battery) is a constant and f(hops , battery) is
reduced to a hop-based function only. Instead, if the desired behavior is to
linearly increase f as the battery levels decrease, a linear hcm function should
be considered. Figure 6 shows two linear functions. The first (labeled linear),
has minimal effect on the routing behavior. For example, a greedy protocol
which always uses the best (lowest) Q-Values available, when faced with two
routes with f(1, 10%) = 1.9 and f(2, 100%) = 2, will select the shorter route
even though the battery is nearly exhausted. Even when faced with longer
routes of length 2 and 3 respectively, it will use the shorter route until its
battery drops to 40%. Only when their values become f(2, 40%) = 3.2 and
f(3, 100%) = 3, the protocol will switch to the longer route. Thus, this trade-
off of weighing the hop count of routes (their length) versus the remaining
batteries must be taken into account when defining hcm.

The main drawback of linear hcm functions is that they do not differenti-
ate between battery levels in the low and high power domain. For example,
a difference of 10% battery looks the same for 20 − 30% and for 80 − 90%.
Thus, to meet our goal of spreading the energy expenditure among the nodes,
we require an exponential function that starts by slowly increasing the value

33

of hcm with decreasing battery, initially giving preference to shorter routes.
However, as batteries start to deplete, it should more quickly increase hcm
in order to use other available routes, even if they are much longer, thus
maximizing the lifetime of individual nodes. Of course, such a function gives
preference to longer energy-rich routes, and will increase the per packet costs
in the network.

The presented battery and hop based function is a dynamic function,
which means that it is expected to change during the network lifetime. Ob-
viously, the remaining batteries of the nodes will change and thus the Q-
Values as well. The major consequence of this is that Froms does not sta-
bilize, because the Q-Values never stabilize. However, this is not necessarily
a disadvantage: Froms will just continue exploring routes throughout the
network lifetime. Combining a dynamic cost function with a mostly greedy
exploration strategy will ensure that Froms is not spending too much en-
ergy on exploration of routes and is mostly using the best available routes.
On the other side, we need to ensure that Froms is still able to find the
best routes. For this, we use the advantage of a dynamic cost function. The
Q-Values change because of the dynamic nature of the cost metric and force
Froms to use different routes (because it mostly selects the best ones): thus,
it implicitly forces Froms to explore new routes.

This property of dynamic cost functions we call the dynamic cost advan-
tage of implicit exploration, which is a very important property of Froms.
It allows Froms to use a very simple greedy or ε-greedy exploration strategy
with very low probability for exploration (see next section) and still ensures
that the optimal routes are found. This simplifies significantly the imple-
mentation of Froms both in terms of processing and memory requirements
and make Froms much more intuitive.

Similarly, one can easily design and implement other cost metrics, both
simple and combined. The used cost function depends on the application
scenario and needs to be revisited for each deployment. However, the power
of Froms is its innate ability to accommodate nearly any cost function. The
changes to the protocol are marginal and do not affect its basic functionality.

6.9 Exploration strategies

The exploration strategy controls how Froms chooses between the available
routes. It also controls the exploration/exploitation ratio, which is respon-
sible for both finding the optimal route and minimizing routing costs. In

34

10 20 30 40 50 60
0

5

10

15
FROMS uniform stochastic

[secs]

[e
p
s
ilo

n
 |
 t
e
m

p
 |
 E

T
X

]

FROMS uniform stochastic

!" #" $" %" &" '"
"

&

!"

!&
()*+,-./01234!56..78-91:;-:.</.6=:>6.

?0.@0A

?.
/
01
23
4
-B
-:
.
<
/
-B
-C
D
E
A

-

-

FROMS epsilon greedy
with temperature

temperature taken routes

best available routes

exploration

best available routes

taken routes

!" #" $" %" &" '"
"

&

!"

!&
()*+,-./01/23456-/734895!61//.:

;3/03<

;/
7
3
489
5
-=
->
/
?
7
-=
-@
A
B
<

-

-

/C78912>495
0D11/5>-19D>/-093>3
E/3>-2F2482E8/-093>3

10 20 30 40 50 60
0

5

10

15
FROMS epsilon greedy 0.3

[secs]

[e
p

si
lo

n
 |
 t
e

m
p
 |
E

T
X

]

FROMS epsilon greedy

exploration rate

taken routes

best available routes

FROMS decreasing
epsilon greedy

exploration rate

taken routes

best available routes

Figure 7: The route selection behavior at the source with different exploration
strategies in a sample 50 node topology with 3 sinks and 1 source.

our preliminary studies [12], we have applied two different techniques for
exploration: greedy and probabilistic. The greedy strategy simply ignores
exploration and always chooses between the best available routes. Stochastic
exploration strategies on the other hand assign a probability to each of the
routes, depending or not on their current or initial Q-Values, and choose the
routes accordingly. These exploration strategies showed good results, but are
very complicated to implement since they require updating the probabilities
after each reward.

Here, we turn to a new set of exploration strategies for two main reasons
for the main reason of making them more intuitive and simple to implement.
The behavior of the considered strategies is depicted in Figure 7.

35

ε - greedy. This strategy is taken directly from the original Q-Learning
algorithm and is very simple to apply and implement: with probability ε
select any of the available routes; with probability 1 − ε, select one of the
best routes. Note that when ε = 0 we have the old greedy strategy from [12].

decreasing ε - greedy. This strategy is the same as before, but ad-
ditionally decreases ε with time. The reason for this is that usually at the
beginning of the algorithm the Q-Values change a lot, but with time these
updates become more rare and eventually stop. After convergence it is more
appropriate for Froms to be greedy, since no changes are expected and the
routing costs should be as low as possible. ε increases again in case of failures
or mobility.

ε - greedy with temperature. This strategy is again a variation of ε-
greedy, but instead of decreasing ε itself, it limits the set of routes presented
to the strategy. At the beginning, with high temperature T , all routes are
presented to the strategy, independent from their current Q-Values. With
decreasing T , however, only routes with better Q-Values are presented and
with T = 0 only the best routes are presented. ε remains constant and the
temperature is increased in case of failures or mobility.

uniform stochastic with stopping strategy. This strategy is taken
from our previous work [12] (it performed the best out of all compared
stochastic strategies there) and is used for comparison reasons. It assigns
the same probability to each sub-action and updates it every time a reward
arrives for it, decreasing it with neutral rewards, increasing it with negative
rewards, and leaving it the same with positive rewards. It stops exploration
completely after some number of continuous neutral rewards to the node and
starts it again with negative/positive rewards.

6.10 Summary

In this section we presented all parameters and implementation details of
Froms. The main parameters which need to be specified before deploying
Froms are its cost function and exploration strategies. Additionally, node
failure management is a necessary option in nearly any WSN. However, all
other presented modules implement special features, like sink mobility sup-
port or route pruning heuristics for extremely memory-resticted hardware
systems, and need to be deployed only when necessary. In the following sec-

36

tions we present an extensive evaluation of Froms and all of its components
and features both under simulation and on real hardware.

7 Evaluation methodology and environment

Additionally to the theoretical analysis in Section 5, we use evaluation through
simulation and on real hardware to show the most of the aspects and prop-
erties of Froms. We use a wide range of evaluation metrics across many
different network scenarios and parameters. Of course, an exhaustive analy-
sis under any possible environmental conditions is not possible for time and
space reasons.

Simulation environment. We use the OMNeT++ network discrete
event simulator, together with its extensions Mobility Framework and prob-
abilistic radio propagation models [48]. This is a user friendly environment
with active development community, easily extendable with our own models.
Unfortunately, there are no energy expenditure models, nor realistic MAC
protocols for the Mobility Framework. Thus, we needed to implement the
following additional simulation models:

• Linear battery model. A linear battery model which accounts for
different energy expenditures for radio sleeping, receiving and sending,
is sufficient for the evaluation of a routing protocol. We use the energy
expenditure model of Mica2 nodes, see Table 3.

• MAC protocols. We have implemented BMAC [49] and LMAC [50]
as representatives of low power listening MAC protocols and TDMA
based protocols. Both have been used for real WSN deployments and
are widely accepted by the WSN community. Frame and slot dura-
tions were identified experimentally so that all evaluated data traffic
models are accommodated without MAC buffer overflow. In LMAC we
reserved 5 node IDs for mobile nodes to avoid continuous slot changing.

Hardware testbed. We implement and test the developed routing pro-
tocol Froms on a real hardware testbed, consisting of 10-15 MSB430 nodes
from ScatterWeb [51], organized in multi-hop topologies (see Figure 9). Their
main characteristics are summarized in Figure 8. For implementation we use

37

Layer Protocol/model Parameters

Application regular data report
data rate: every 10 sec

sink announcement: every
100 sec

Routing

Froms

see text
unicastDD

multicastDD

MSTEAM

Medium access

LMAC slots: 32

slot length: 60 ms

preamble length: 12 bytes

BMAC slot length: 50 ms

preamble length: 120 bytes

Energy Linear battery SLEEP: 36 mW

expenditure (Mica-2) RX, TX: 117 mW

Radio propagation 1-Nakagami -

Table 3: Summary of simulation environment model for our experiments.

the OS-like ScatterWeb2 library, which provides simple interfaces for send-
ing/receiving messages, setting timers, reading sensory data etc. We use the
provided non-persistent idle CSMA MAC protocol without acknowledgments.

Comparative analysis. For conducting a comparative analysis of Froms,
we have implemented three well known state-of-the-art routing protocols:

• Msteam [10] is a recent state-of-the-art geographic multicast routing
protocol. The comparison between Msteam and Froms is especially
interesting and challenging, as they require different available informa-
tion on the nodes to achieve the same goal. Thus, also a general perfor-
mance comparison between hop-based and geographic based protocols
is presented. We use the same application layer and sink announce-
ment broadcasts for both Froms and Msteam. They have several
advantages against the typical pre-known set of sink coordinates, used
by many geographic-based protocols. First, it replaces the use of bea-
cons for discovering and maintaining neighbors and, second, it enables
recovery and mobility, which are not covered by the original version

38

MSB430

Provider ScatterWeb, Berlin, Germany
Processor MSP430
Frequency 8MHz
Memory 5 KB RAM + 55 KB Flash
Radio ChipCon 1020
OS ScatterWeb2, TinyOS, Contiki, etc.
Other SD-card slot

Figure 8: Characteristics of the MSB430 sensor nodes

of the protocol. Two versions of Msteam are evaluated: the original
Msteam uses cost over progress to sinks metric to evaluate possi-
ble next hops, where the cost is a function of the geographic distance
between the nodes. We also implemented a simplified version, called
Msteam-const, where the cost is always 1 and thus only the progress
to the sinks is considered.

We decided to add Msteam to our analysis since it represents a very
well performing class of protocols for multicast applications. Indeed,
most of the multicast protocols for WSNs are location-based and we
desire to have a direct comparison with one of them.

• Unicast Directed Diffusion (udd) [11] is a well known, simple,
and efficient routing paradigm, where each of the nodes builds gradients
towards the sinks. We label this version of Directed Diffusion ”unicast”
(or udd for short), since we consider the original one-phase pull version
of the protocol, as opposed to multicast Directed Diffusion (or
mdd), as explained next.

• Multicast Directed Diffusion (mdd) is a multicast-optimized
variation of udd of our own design [52]. It is searching locally on
the nodes for shared paths for multiple sinks. It can be considered a
simplified version of greedy-Froms, which keeps only the best hops to
individual sinks, does not explore, and the cost function is based on
hops only. However, it does not incorporate the learning mechanism

39

1

73

4

8 9

5

2

6

10

1

2

3

8

9

7

4

6

5

14

12

15

13

10

11

Figure 9: Topologies 1 (left) and 2 (right) for the real hardware testbed,
sinks are shaded, source is node 6.

of Froms, nor it is able to find the globally optimal path unless by
chance.

We compare the performance of all here presented routing protocols under
simulation. On the hardware testbed we have implemented only Froms and
mdd. We decided against the original Directed Diffusion, because it is a
unicast routing protocol and against Msteam, because its implementation
is very processing and memory intensive and did not fit on the used hardware.

8 Evaluation of FROMS on the hardware testbed

We compare the performance of Froms with ε-greedy exploration strategy
against the multicast version of Directed Diffusion of our own design [52].
We use two controlled network topologies as given in Figure 9. In these
experiments, we allowed the nodes to process packets only from some prede-
fined set of nodes and to drop immediately all others. We were forced to do
this, because we were unable to create a natural multi-hop topology, which
is essential for the evaluation of the routing protocol [53].

8.1 Memory and processing requirements

Here we present and discuss the memory and processing requirements as
obtained from the real hardware testbed. No simulated results are presented,

40

41

42

43

44

45

msec

mDD

2 sinks

mDD

3 sinks

FROMS

2 sinks

FROMS

3 sinks

46

FROMS +
ACKs

FROMS

mDD +
ACKs

mDD

Scatterweb2

33610

31986

29648

28024

19628

ROM (bytes)

3345

3326

2952

2932

1476

RAM (bytes)

Figure 10: (left) Memory usage at compile time. The Scatterweb library
alone is given for comparison. (right) Processing time to find a route in
milliseconds for mdd and Froms and max-min intervals.

since they depend strongly on the simulation environment used and are not
comparable to real hardware requirements.

Memory usage. Figure 10 (left) presents the memory footprints at
compile-time for mdd and Froms together with the application layer. It
shows the memory reserved for the flash ROM and the RAM. The footprint
of the ScatterWeb2 library alone is given for comparison. The vanilla im-
plementation of mdd on top of ScatterWeb2 e.g. consumes roughly 3KB of
RAM at compile time, leaving 2KB for stack allocation and application-level
protocols. Compared to the standalone implementation of ScatterWeb2, this
is negligible.

Both implementations of Froms and mdd use static data structures,
because there is no working dynamic memory management implementation
for the microprocessor of the used hardware platform MSB430. No route
storage heuristics are used for Froms and thus all possible routes are kept
at all times. Thus the data structures are already included also in the memory
footprints in Figure 10. Although Froms’s data structures are more complex
and large than the routing table of mdd, its memory requirements are not
significantly higher. mdd has a very tiny data structure, but despite this, its
implementation size is not negligible. In fact, the majority of its memory is
used for the functionality of the protocol, not for data structures.

Processing time. We measured the time needed to find a route for each

41

82 % 94 %

mDD FROMS

50 %

100 %

de
liv

er
y

ra
te

co
st

s
pe

r p
ac

ke
t i

n
ET

X

6

3

4

5

7

topo 1, sinks 2
mDD FROMS
topo 1, sinks 3

mDD FROMS
topo 2, sinks 2

mDD FROMS
topo 2, sinks 3

71 %
87 % 83 % 94 %

64 % 74 %

cost per received packet
cost per generated packet
optimal (Steiner tree) cost

9

8

10

mDD FROMS
topo 1, sinks 2

mDD FROMS
topo 1, sinks 3

mDD FROMS
topo 2, sinks 2

mDD FROMS
topo 2, sinks 3

Figure 11: Routing costs and delivery rates for Froms and mdd in various
network scenarios.

packet in the network at every node in milliseconds. Basically, we discovered
that it takes slightly longer to find a route to more sinks but the difference
between the protocols is very small. The results in Figure 10 (right) are
summarized based on the number of sinks in the network. They are obtained
from experiments with topology 2 only. The reason why Froms needs more
time to find a route for a data packet is its routing data structure. We need
to search through all of the available routes to find the best available one.
Consequently, with 3 sinks the processing time increases further.

These results are an important proof of the applicability of Froms and
in general of reinforcement learning based communication protocols on real
hardware. They show that Froms is easily implementable and that its mem-
ory and processing requirements are negligibly higher than those of a very
simple routing protocol like mdd. The comparative evaluation of both pro-
tocols on the real testbed is discussed later in Section 8.2.

42

82 % 88 % 87 %

DD, 2 sinks
no 1 ms 100 ms

70 % 78 %

DD, 3 sinks
no 100 ms

94 % 94 % 99 %

FROMS, 2 sinks
no 1 ms 100 ms

87 % 99 %

FROMS, 3 sinks
no 100 ms

50 %

100 %

de
liv

er
y

ra
te

co
st

s
pe

r p
ac

ke
t i

n
ET

X

0

6

1

2

3

4

5

7
cost per received packet
cost per generated packet
optimal (Steiner tree) cost

DD, 2 sinks DD, 3 sinks FROMS, 2 sinks FROMS, 3 sinks

Figure 12: In-network performance when applying transmission backoff, re-
sults from topology 1.

8.2 Comparative analysis

Next, we compare the performance of Froms and mdd on real hardware in
terms of delivery rate and routing costs. Figure 11 summarizes the results for
several network configurations. As expected from our simulation experiments
and theoretical analysis, Froms achieves lower routing costs. This can be
attributed to its learning algorithm which actively explores the network for
optimal routes. We also compare the performance against the theoretically
optimal cost of the Steiner tree.

In simulation we are unable to measure accurate delivery rates since trans-
mission failures cannot be reliably simulated. Here, instead, we confirm our
theoretical expectation that Froms is able to achieve higher delivery rate
in any network scenario. Data is lost in mdd mainly due to the higher
in-network communication caused by the periodic sink announcements (see
Section 9) and the longer routes to the sinks. This increases the traffic and
collision probability leading to packet losses. Figure 11 supports these ob-
servations, showing that the delivery rate of both protocols clearly drops in
networks with larger numbers of nodes and sinks.

Figure 12 presents the results when using transmission backoff, clearly

43

83 %
94 %

DD FROMS

50 %

100 %

de
liv

er
y

ra
te

co
st

s
pe

r p
ac

ke
t i

n
ET

X

8

4

6

10

no acks, no backoff
DD FROMS

acks, no backoff
DD FROMS

acks, backoff 1ms

91 % 98 % 94 %
100 %

16

12

14
cost per received packet
cost per generated packet
optimal (Steiner tree) cost

DD FROMS
no acks, no backoff

DD FROMS
acks, no backoff

DD FROMS
acks, backoff 1ms

Figure 13: In-network performance when using acknowledgments, results
from topology 2.

showing that the technique is highly effective at improving delivery rates.
We implemented a simple algorithm in which a parameter (in our case 0,
1 or 100 ms) is multiplied with the node’s ID and this delay is applied be-
fore forwarding any packet. This backoff reduces packet collisions and thus
increases successful delivery.

Another common mechanism to increase the delivery rate is to force
packet acknowledgments. We use overhearing of DATA packets as implicit ac-
knowledgments, avoiding additional costs. Figure 13 shows how routing costs
skyrocket, while the delivery rate also increase. The incurred overhead stems
from re-sending unacknowledged packets. Communication failures cause not
only data loss, but also loss of acknowledgments. This results in resending
packets which were actually received, but not acknowledged. Consequently,
the communication traffic explodes, leading to even higher loss rates.

44

heuristic number of sinks
Nr C 2 3 4 5 6

P
S
T

si
ze

[b
yt

es
] 10 3 25 115 737 2469 17326

5 1 29 77 369 1437 6590
4 1 19 51 253 671 4682
2 1 10 36 192 215 1731

O
ve

rh
ea

d
[n

or
m

.]

10 3 1 1 1.03 1.03 1.06
5 1 1 1.07 1.08 1.09 1.12
4 1 1.05 1.06 1.04 1.06 1.12
2 1 1 1 1.02 1.03 1.15

Table 4: PSTable pruning heuristics, evaluated in terms of PSTable size (in
bytes) and achieved overhead per packet (normalized by optimal Steiner).

9 Parameter analysis of FROMS (simulated

environment)

In this section we explore the performance of Froms under various parameter
settings. We conduct these experiments on simulation, since it allows us to
more efficiently explore larger parameter spaces.

9.1 Route storage heuristics

As discussed in Section 6.4, different heuristics can be applied to the PSTable,
limiting its size and thus saving memory on the nodes and speeding up the
learning process. We consider two PST route pruning heuristics: limiting the
number of routes per sink to Nr , and limiting the maximum route cost to a
sink to bestCost +C. Both types of information refer to the routing table (see
Figure 4), before the sub-actions and actions are computed and initialized. As
the PST size decreases, fewer actions are available for selection. Because the
best route may be among those pruned, we expect the protocol performance
to decrease as the size of the PST decreases. This trend is shown for Froms
ε - greedy in Table 4 for various values of Nr and C and for multiple numbers
of sinks. In this experiment we compare the routing overhead of Froms in
terms of number of transmissions (ETX) against an optimal Steiner tree.

Interestingly the largest table (with (Nr = 10, C = 3) does not always
discover the best routes. This is due mainly to packet loss, especially when

45

the number of sinks in the network increases. This causes higher data traffic
and thus more data loss.

In the remainder of our experiments, however, we do NOT use any route
pruning heuristics in order to limit the number of used parameters and sim-
plify evaluation and understanding of the results. Furthermore, as we already
showed in the previous Section 8.1, we are able to implement Froms with
no route pruning heuristics on real hardware. In case the implementation
needs to be restricted because of a very large number of sinks or very high
density of the nodes, we suggest using a moderate size for the PSTable with
(Nr = 4, C = 1) that yields route costs close enough to optimal.

9.2 Exploration strategies

In the next paragraphs we explore the behavior and performance of Froms
with different exploration strategies. We consider the following four types of
strategies: ε - greedy, ε - greedy with temperature, decreasing ε - greedy and
uniform-stochastic (see also Section 6.9).

The experimental results are shown in Figure 14. In the top graphs we
fix the number of nodes to 50, the number of sources to 1 and vary the
number of sinks from 1 to 5. All exploration strategies are normalized by
Froms decreasing ε-greedy. The deviation of the first node death time (left
graph) is only insignificant and does not exceed 1%. On the other hand,
the differences in the routing overhead (number of ETX per delivered packet
in the network) reaches 10%. This deviation is a result of the MAC layer.
BMAC uses only broadcast transmissions. This diminishes small differences
in the number of sent packets (ETX) from the routing layer, and shows how
important the MAC layer is for minimizing the energy spent and maximizing
network lifetime. On the other hand, less traffic is always an advantage since
it increases the delivery rate and thus the overall efficiency of the network.

The rest of the graphs in Figure 14 present experiments with varying
number of sources and nodes respectively. They support the above made
observations. Given the results obtained in this step, we will consider two
exploration strategies in our comparative analysis experiments: decreasing
ε-greedy with ε = 0.5 and ε-greedy with ε = 0.1.

46

0 1 2 3 4 5 6

1.002

1.

0.998

0.996

0.994

0.992

0.99
number of sinks

tim
e

(n
or

m
al

ize
d)

First node death comparison, BMAC

FROMS decr 05
FROMS greedy 01
FROMS greedy 03
FROMS temp
FROMS uniform

0 1 2 3 4 5 6

1

1.02

1.04

1.06

1.08

1.1

number of sinks

E
T

X
 (

n
o

rm
a

liz
e

d
)

Routing overhead after 2000 secs, BMAC

FROMS decr 05

FROMS greedy 01

FROMS greedy 03

FROMS temp

FROMS uniform

ov
er

he
ad

 (n
or

m
al

iz
ed

)

0 1 2 3 4 5 6
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

number of sources

tim
e

(n
or

m
al

ize
d)

First node death comparison, BMAC

FROMS decr 05
FROMS greedy 01
FROMS greedy 03
FROMS temp
FROMS uniform

0 1 2 3 4 5 6
0.95

1

1.05

1.1

1.15

1.2

1.25

number of sources

E
T

X
 (

n
o

rm
a

liz
e

d
)

Routing overhead for 2000 secs, BMAC

FROMS decr 05

FROMS greedy 01

FROMS greedy 03

FROMS temp

FROMS uniform

ov
er

he
ad

 (n
or

m
al

iz
ed

)

50 75 100 125 150 175

0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

number of nodes

tim
e

(n
or

m
al

ize
d)

First node death comparison, BMAC

FROMS decr 05
FROMS greedy 01
FROMS greedy 03
FROMS temp
FROMS uniform

50 75 100 125 150 175 200
0.99

1

1.01

1.02

1.03

1.04

1.05

number of nodes

E
T

X
 p

e
r

d
e

liv
e

re
d

 p
a

c
k
e

t

Routing overhead for 2000 secs, BMAC

FROMS decr 05

FROMS greedy 01

FROMS greedy 03

FROMS temp

FROMS uniform

ov
er

he
ad

 (n
or

m
al

iz
ed

)

Figure 14: Evaluation of exploration strategies, mean over 50 different topolo-
gies, 5 runs each; the network consists of (top) 50 nodes, 1 source and 1-5
sinks; (middle) 50 nodes, 1-5 sources and 3 sinks; (bottom) 50-200 nodes, 1
source and 2 sinks. All experiments performed with BMAC.

47

9.3 Cost functions

As we already showed in Section 6.8, Froms can work with nearly any cost
function: hops, location information, remaining energy on the nodes, delay,
etc. An important property of the used cost function is its localized nature, as
Froms allows direct exchange of information only among one-hop neighbors.
The cost function in Froms is used in three places - initialization of route
costs, computation of costs to reach some neighbor and comparison between
routes. All these functions are independent from the rest of Froms and can
be easily exchanged.

In this section we concentrate on two main cost functions: a hop-based
one and a combined hop and remaining energy based one, as already intro-
duced in Section 6.8. Recall that the goal of the first one, hop function, is
to select globally shortest routes to reach all sinks. Instead, the second one,
hop-battery function, favors shorter routes with higher remaining batteries
of the involved nodes, thus spreading the energy expenditure throughout all
nodes of the network. Everything else in the Froms implementation remains
the same: data structures, exploration strategies, feedback, etc.

Figure 15 presents different metrics for two exploration strategies of Froms
with both cost functions. The hop-battery cost functions slightly extends the
network lifetime: however, only by at most 1% (top left graph). This is due
to the nature of the cost function: on one side, it uses nodes more uniformly
and this can be observed in the standard deviations of remaining energies
at the nodes from the top right graph. In fact, the hop-battery cost func-
tions decreases the standard deviation of the remaining energies by 10-15%.
However, at the same time Froms is forced to use longer routes and the
routing overhead increases (bottom left graph). These two effects combine
into a slightly increased lifetime and slightly decreased spent energy, but the
difference to the hop-based cost metric is only insignificant.

Our previous study in a less realistic simulation environment (MATLAB)
in [13] showed different results. In that study we achieved a significantly
longer network lifetime (by nearly 80%) because the nodes in the network
were used more uniformly for routing. However, in a more realistic wireless
simulation with a real implementation of a MAC protocol, overhearing of
packets among neighbors cannot be avoided and spends a lot of energy. Even
when switching to alternative routes with higher batteries, the hop-battery
cost function selects routes near to the last used ones, thus further draining
the batteries of the nodes. An extreme example are the direct neighbors

48

0 1 2 3 4 5 6
0.995

1

1.005

1.01

1.015

number of sinks

tim
e

(n
or

m
al

ize
d)

First node death comparison, LMAC

FROMS decr 0.5
FROMS decr 0.5 battery
FROMS greedy 0.1
FROMS greedy 0.1 battery

0 1 2 3 4 5 6
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

number of sinks

pe
rc

en
t (

no
rm

al
ize

d)

Standard deviation of the mean energy at first node death, LMAC

FROMS decr 0.5
FROMS decr 0.5 battery
FROMS greedy 0.1
FROMS greedy 0.1 battery

0 1 2 3 4 5 6
0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

number of sinks

E
T

X
 p

e
r

d
e

liv
e

re
d

 p
a

c
k
e

t
[n

o
rm

a
liz

e
d

]

Routing communication overhead, LMAC

FROMS decr 0.5

FROMS decr 0.5 battery

FROMS greedy 0.1

FROMS greedy 0.1 battery

ov
er

he
ad

 p
er

 d
el

iv
er

ed
 p

ac
ke

t (
no

rm
al

iz
ed

)

0 1 2 3 4 5 6
0.995

0.996

0.997

0.998

0.999

1

1.001

number of sinks

m
A

 (
n

o
rm

a
liz

e
d

)

Total energy spent [mA] after 2000 secs, LMAC

FROMS decr 0.5

FROMS decr 0.5 battery

FROMS greedy 0.1

FROMS greedy 0.1 battery

sp
en

t e
ne

rg
y

(n
or

m
al

iz
ed

)

Total energy spent for 2000 secs, LMAC

Figure 15: Comparison for two different exploration strategies of Froms
with hop-based cost and hop-battery based cost. All experiments performed
with LMAC.

of the source: whatever route is taken to the sinks, the neighbors of the
source always overhear the packets and drain their batteries. In fact, we
discovered that usually either the source itself, neighbors of the source, or
direct neighbors of the sinks are the first to die.

However, battery-hop cost functions are a good solution when the data
delivery task to the sinks is short. In such cases, the cost function is able
to spread the usage of the nodes more uniformly, thus avoiding building
low-battery bottlenecks in the network.

49

10 Comparative evaluation of FROMS in sim-

ulation

We compare the performance of Froms against three other state-of-the-
art routing protocols: multicast Directed Diffusion (mdd), unicast Directed
Diffusion (udd) and Msteam. We explore all of the routing protocols in
terms of their routing overhead, network lifetime, standard deviation of the
remaining energy on the nodes, and total spent energy in various network
scenarios, including mobile sinks and node failures. We use the simulation
environment as described in Section 7.

10.1 Multi-source multi-sink routing

In this section we make an extensive scalability analysis and comparison
between Froms, Msteam, mdd and udd, as outlined in Section 7. Similar
to the stand-alone evaluation of Froms in the previous Section 9 we fix all
network parameters except for one and give mean results over 50 different
random connected topologies with 5 random runs each. Figure 16 presents
the obtained results for different number of sinks (top), number of sources
(middle) and number of nodes (bottom) while using BMAC as MAC layer
protocol. The achieved results with LMAC were very similar and graphs
are omitted. The first point of Froms (e.g. one sink, one source or 50
nodes) is used as the point of normalization. Unlike the experiments for the
stand-alone evaluation of Froms in Section 9, here we are interested in the
scalability analysis and comparison of all routing protocols. Thus, we need
to use only a single point for normalizing the results and not a full line.

Coming back to Figure 16, with increasing number of sinks, all protocols
spend more energy. However, Froms achieves the least energy expenditure
compared to the other protocols. This is due to two reasons: its ability to
find optimal multicast routes and the limited use of broadcast sink announce-
ments. The lower energy expenditure of Froms compared to mdd are also
due to these reasons. However, it is interesting to note that Msteam (both
variations) reaches energy spendings well over mdd and Froms. In fact,
Msteam-const (where the cost of sending a packet between two nodes is
considered to be constant) performs much better than the original Msteam
protocol. This is due to the fixed transmission power of the simulated nodes
(which is often also the case in real hardware). The original Msteam proto-

50

0 1 2 3 4 5 6
1

1.05

1.1

1.15

1.2

1.25

number of sinks

m
A

 (
n

o
rm

a
liz

e
d

)

Total energy spent [mA] after 2000 secs, BMAC

FROMS decr 05

mDD

MSTEAM

MSTEAM const

uDD

sp
en

t e
ne

rg
y

(n
or

m
al

iz
ed

)

Total energy spent for 2000 secs, BMAC

0 1 2 3 4 5 6
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

number of sinks

p
e

rc
e

n
t

(n
o

rm
a

liz
e

d
)

Standard deviation of the mean energy after 2000 secs, BMAC

FROMS decr 05

mDD

MSTEAM

MSTEAM const

uDD

st
an

da
rd

 d
ev

ia
tio

n
(n

or
m

al
iz

ed
)

0 1 2 3 4 5 6
1

1.05

1.1

1.15

1.2

1.25

1.3

number of sources

m
A

 (
n

o
rm

a
liz

e
d

)

Total energy spent [mA] after 2000 secs, BMAC

FROMS decr 05

mDD

MSTEAM

MSTEAM const

uDD

sp
en

t e
ne

rg
y

(n
or

m
al

iz
ed

)

Total energy spent for 2000 secs, BMAC

0 1 2 3 4 5 6
1

1.5

2

2.5

3

3.5

4

4.5

number of sources

p
e

rc
e

n
t

(n
o

rm
a

liz
e

d
)

Standard deviation of the mean energy after 2000 secs, BMAC

FROMS decr 05

mDD

MSTEAM

MSTEAM const

uDD

st
an

da
rd

 d
ev

ia
tio

n
(n

or
m

al
iz

ed
)

50 75 100 125 150 175 200
0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

number of nodes

m
A

 (
n

o
rm

a
liz

e
d

)

Total energy spent [mA] after 2000 secs per node, BMAC

FROMS decr 05

mDD

MSTEAM

MSTEAM const

uDD

sp
en

t e
ne

rg
y

(n
or

m
al

iz
ed

)

Total energy spent for 2000 secs, BMAC

50 75 100 125 150 175 200
0.5

1

1.5

2

2.5

3

number of nodes

p
e

rc
e

n
t

(n
o

rm
a

liz
e

d
)

Standard deviation of the mean energy after 2000 secs, BMAC

FROMS decr 05

mDD

MSTEAM

MSTEAM const

uDD

st
an

da
rd

 d
ev

ia
tio

n
(n

or
m

al
iz

ed
)

Figure 16: Evaluation of routing protocols in terms of total spent energy
and standard deviation of remaining energy after the first 2000 seconds, 50
different topologies, 5 runs each; the network consists of (top) 50 nodes, 1
source and 1-5 sinks; (middle) 50 nodes, 1-5 sources and 3 sinks and (bottom)
50-200 nodes, 1 source and 3 sinks. All experiments performed with BMAC.

51

col uses a special cost function, which increases the cost of sending a packet
with increasing distance between the nodes. This cost function is based on
geographic distance rather than taken from real experimental data and thus
forces the protocol to take more, shorter hops instead of less long hops.

Froms clearly outperforms any of the protocols in this comparative anal-
ysis in terms of energy expenditure, but especially the geographic-based pro-
tocol Msteam. The reason for this is the so-called face routing in geo-
graphic protocols, which handles void areas (nodes with no progress against
the sinks). In these cases, the packet is sent back and follows a predefined
route over a ”face” until reaching again a node with some positive progress
towards the sinks. However, this face route is possibly very long. Second,
and more importantly, the exact same route will be taken for each packet,
including the sending back of the packet. This incurs excessive and unneeded
routing overhead, where reinforcement learning will avoid the repetitive send-
ing to void nodes and back.

The same observations can also be made for varying number of sources
in Figure 16 (middle). In contrast, Figure 16 (bottom) shows the good
scalability of all protocols when varying the number of nodes (the density of
the network is constant). This is due to the localized nature of all protocols,
which are independent of the size of the network. The comparative analysis,
therefore, shows exactly the same trend as before. We have observed the
same order of the protocols’ performance also in terms of first node death
and routing overhead per packet (graphs omitted for space considerations).

In summary, Froms achieves between 10 and 22% longer network life-
times in terms of first node death, around 2 times less routing overhead,
between 5 and 15 % less spent energy and 2 to 3 times lower standard devia-
tion of the remaining energies against the other compared routing protocols.
The second best protocol in terms of these metrics is mdd. Next comes the
constant-cost variation Msteam-const, then udd and then the original
Msteam protocol.

Last, we present a comparison of all routing protocols over BMAC and
LMAC, see Figure 17. This comparison is not intended as an evaluation of
the MAC protocols in use. Its goal is rather to show the importance of cross-
layer design between routing and MAC protocols. In fact, LMAC achieves
longer network lifetime (by 20-25%) and lower energy expenditure (by 20-
25%) against BMAC in the network scenarios which we explored. Thus,
in our scenarios LMAC is the better choice. However, this evaluation will
probably change with different data rates in the network and another choice

52

0 1 2 3 4 5 6
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of sinks

tim
e

(n
or

m
al

ize
d)

First node death comparison

FROMS decr 0.5 LMAC
FROMS decr 0.5 BMAC
mDD LMAC
mDD BMAC
MSTEAM LMAC
MSTEAM BMAC
uDD LMAC
uDD BMAC

0 1 2 3 4 5 6

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

number of sinks

m
A

 (
n

o
rm

a
liz

e
d

)

Total energy spent [mA] after 2000 secs

sp
en

t e
ne

rg
y

(n
or

m
al

iz
ed

)

Total energy spent for 2000 secs, BMAC

Figure 17: Joint comparison of routing protocols with LMAC and BMAC.

2 3 5 7 10
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

number of failed nodes

m
A

 (
n

o
rm

a
liz

e
d

)

Total energy spent [mA] for 2000 secs, BMAC

FROMS decr 05

FROMS greedy 01

mDD

MSTEAM const

uDD

sp
en

t e
ne

rg
y

(n
or

m
al

iz
ed

)

Total energy spent for 2000 secs, BMAC Total energy spent for 2000 secs, BMAC

2 3 5 7 10
0.75

0.8

0.85

0.9

0.95

1

number of failed nodes

p
e

rc
e

n
t

(n
o

rm
a

liz
e

d
)

Delivery rate for 2000 secs, BMAC

FROMS decr 05

FROMS greedy 01

mDD

MSTEAM const

uDD

de
liv

er
y

ra
te

 (n
or

m
al

iz
ed

)

Figure 18: Comparison of delivery rate and spent energy for different routing
protocols with varying number of failed nodes in the network.

of a MAC protocol might be necessary.

10.2 Recovery after failure

An important feature of Froms is its ability to recover quickly after node
failures. The protocol keeps track of which neighbors are responding and
which are not, as explained in Section 10. In case some neighbor is not
reachable any more, Froms switches directly to the next best route. The
new costs are propagated as feedback through the network and learned at
all affected nodes. In this section we compare the performance of the four
routing protocols in various node failure scenarios.

We have designed a failure experiment where all but a small set of nodes

53

are given full battery levels. The small set of nodes is given only one third
of the usual battery level and are thus expected to die quickly one after
another. We consider this scenario more realistic compared to a controlled
killing of nodes at some predefined time, since in real deployments nodes do
not die simultaneously. The results of the experiment in terms of delivery
rate achieved and total spent energy are given in Figure 18 for a set size
of failed nodes between 2 and 10 (approximately 4 − 20% of all nodes).
Each point represents a mean over 50 different topologies, with 30 different
random sets of failed nodes. Note that results are gathered only for connected
topologies. In case failing of nodes actually disconnected the topology, the
scenario was ignored. The achieved standard deviation of the experiments is
around 2.3− 3%.

Froms achieves the highest delivery rate and the least energy spent.
This is mainly due to the availability of alternative routes at each node
and the feedback, which quickly propagates through the network, not only
recovering routes but recovering the best ones. Similarly, mdd also monitors
the neighborhood through the Froms node failure detection module, and
has alternative routes at the nodes. Its achieved delivery rate is 2-5% less
than the one for Froms, due to the learning behavior of Froms. On the
other side, Msteam (we tested here only the better performing constant cost
variation of Msteam) uses much longer routes (see again Section 10), which
incur more packet loss. Additionally, the neighborhood failure detection does
not work as efficiently as for Froms and mdd because Msteam uses exactly
the same route over and over again. Thus, in the case of failures of some
nodes on a route, it will still be used until the failure detection module deletes
the neighbor. Only then will an alternative be used, which might again have
failed. In contrast, mdd and Froms use same-cost alternative routes in a
round-robin manner and thus spread the risk of taking a failed route. For
udd the scenario becomes even worse, since it relies on a single route which
needs to be updated by sink announcements.

In terms of energy expenditure, Froms ε-greedy performs the best, be-
cause of its continuous exploration. Instead of exploring only on demand,
ε-greedy keeps track of all possible routes and updates their costs proactively.
Thus, when a failure is detected, not only an alternative route is available,
but its quality is up-to-date and the best possible route can be taken. Addi-
tional exploration and taking of non-optimal routes is avoided, delivery rate
is increased because of shorter routes (Figure 18 right), and spent energy is
minimized (Figure 18 left).

54

1 2 3
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

number of mobile sinks

m
A

 (
n

o
rm

a
liz

e
d

)
Total energy spent [mA] for 2000 secs, 3 sinks in the network

Total energy spent for 2000 secs, 3 sinks, BMAC
sp

en
t e

ne
rg

y
(n

or
m

al
iz

ed
)

Total energy spent for 2000 secs, 3 sinks, BMAC

1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of mobile sinks

p
e

rc
e

n
t

(n
o

rm
a

liz
e

d
)

 Delivery rate for 2000 secs, 3 sinks in the network

uDD, 100

uDD, 50

FROMS decr 0.5, 100

FROMS greedy 0.1, 100

mDD, 50

mDD, 100

MSTEAM const, 100

MSTEAM const, 50

de
liv

er
y

ra
te

 (n
or

m
al

iz
ed

)

Figure 19: Evaluation of all routing protocols with various number of mobile
sinks in the network.

In summary, keeping alternative routes, using shortest possible routes,
and keeping track of the real length of all available routes (not only of the
shortest ones), is a good strategy to be able to recover quickly after failures.

10.3 Sinks mobility

For testing the performance of the routing protocols under scenarios with sink
mobility, we designed two different experiments: one with different numbers
of mobile sinks, and a second with different velocities of the mobile sinks.
The experiments for both of them were conducted over 50 random topologies,
with 10 random runs on each. We achieved a standard deviation of the results
of 1.6− 1.9%.

The results from the first experiment are presented in Figure 19. Here,
we used a network size of 50 nodes, with 3 sinks and 1 source. We varied
the number of mobile sinks from 1 to 3, leaving the rest of them static. The
velocity of the mobile sinks is constant and is set to 1m/s. We varied the sink
announcement periods for mdd, udd, and Msteam-const. The assumption
is that refreshing the routes on the nodes more often would lead to better
delivery rate and shorter routes in case of mobile sinks. This can be seen
for all protocols in Figure 19 (right). In fact, the delivery rate compared to
longer sink announcement periods increases slightly. However, this happens
only at the cost of increasing data traffic and thus higher energy expenditure.
Figure 19 (left) shows that energy expenditure increases non-proportionally
to the achieved gain in delivery rate, and is thus not worth it.

55

0.5 1 2 3 4 5

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

velocity of mobile sink [m/sec]

m
A

 (
n

o
rm

a
liz

e
d

)
Total energy spent [mA] for 2000 secs, 3 sinks in the network

FROMS decr 0.5, 100

FROMS greedy 0.1, 100

mDD, 100

MSTEAM const, 100

uDD, 100

Total energy spent for 2000 secs, 3 sinks, BMAC
sp

en
t e

ne
rg

y
(n

or
m

al
iz

ed
)

Total energy spent for 2000 secs, 3 sinks, BMAC

0.5 1 2 3 4 5

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

velocity of mobile sink [m/sec]

p
e

rc
e

n
t

(n
o

rm
a

liz
e

d
)

Delivery rate for 2000 secs, 3 sinks in the network

FROMS decr 0.5, 100

FROMS greedy 0.1, 100

mDD, 100

MSTEAM const, 100

uDD, 100

de
liv

er
y

ra
te

 (n
or

m
al

iz
ed

)

Figure 20: Evaluation of all routing protocols with various velocities of the
mobile sinks in the network.

In terms of energy expenditure (Figure 19 left), all protocols scale well
with increasing number of mobile sinks. The reason for this is simple: the
mobility of the sinks does not invoke any additional mechanisms, such as
re-transmissions, which might influence the energy expenditure. However, it
can be clearly seen that for all protocols the delivery rate drops with multiple
mobile sinks (Figure 19 right). This is because the mobility affects the quality
of the used links and some links disappear.

Comparing the routing protocols, Froms has the least energy expendi-
ture of all of them and still achieves the best delivery rates. This is again
due to several factors: there are no regular retransmissions of sink announce-
ments, data traffic is routed along shorter paths, and the learning mecha-
nism keeps the routes up to date. As in our previous experiments, mdd and
Msteam-const perform similarly well, while udd spends the most energy
and achieves the lowest delivery rate.

In our second experiment presented in Figure 20 we vary the velocity
of the mobile sink. One sink is mobile and its velocity is 0.5m/s to 5m/s,
which corresponds to slow human walking (2km/h) through slow car driving
(20km/h).

In terms of energy expenditure (Figure 20), the behavior of the routing
protocols is the same as in the previous experiment. Froms has a signifi-
cantly lower energy expenditure than the others, followed by mdd, Msteam-
const, and finally udd. The reasons are the same as before.

The trend of the delivery rate in case of higher velocities is also as ex-
pected. It drops with higher velocities, less for Froms and slightly more

56

for the other protocols. The difference comes from the learning mechanism
of Froms, which not only substitutes the sink announcement re-broadcasts,
but enables faster recovery of routes.

In summary, these experiments show clearly the innate ability of Froms
and its learning algorithm to quickly recover routes in case of mobile sinks,
even for a moderate velocity of 20km/h. Compared to all the other routing
protocols, it spends significantly less energy, incurs less data traffic, and
achieves considerably higher delivery rates.

11 Future directions and open issues

Current routing protocols, including Froms, consider route characteristics
based on the properties of the nodes involved in routing, such as the number
of hops, remaining battery levels etc. However, during our work on Froms we
learned that the properties of the neighboring nodes are equally important:
e.g., a node which is a neighbor of two independent routes drains its battery
twice as quickly as the forwarding nodes because of message overhearing from
both routes. In the future we plan to incorporate this observation into our
model and spread the battery expenditure among all nodes, whether they
are involved in routing or not.

Additionally, we plan to design and implement a multicast MAC protocol,
as briefly discussed in Section 6. This will enable us to compare the gain
from delivering rewards to all overhearing nodes against the saved energy
from avoiding overhearing.

This paper presented two important contributions. First, it introduced
and evaluated Froms, a highly flexible and robust multicast routing proto-
col. The results achieved under various environments and network scenarios
clearly demonstrate its outstanding performance compared to three other
state of the art routing protocols. However, even more importantly, this pa-
per demonstrated the applicability and the potential of machine learning for
solving hard problems in WSNs. We showed that learning can be efficiently
implemented on real WSN hardware, that it is fully distributed and that it
achieves better results in uncertain and unreliable environments compared to
any traditional routing protocols. Encouraged by these results and the ex-
perience gathered with Froms, we plan to apply reinforcement learning and
other machine learning techniques to other WSN problems. We will explore
their potential for clustering, neighborhood management, medium access and

57

data modeling.

References

[1] J. M. Kahn, R. H. Katz, K. S. J. Pister, Next century challenges: mo-
bile networking for “Smart Dust”, in: Proceedings of the 5th annual
ACM/IEEE international conference on Mobile computing and network-
ing (MobiCom), Seattle, WA, USA, 1999, pp. 271–278.

[2] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees,
M. Welsh, Deploying a wireless sensor network on an active volcano,
IEEE Internet Computing 10 (2) (2006) 18–25.

[3] K. Martinez, P. Padhy, A. Riddoch, R. Ong, J. Hart, Glacial Envi-
ronment Monitoring using Sensor Networks, in: Proceedings of the
1st Workshop on Real-World Wireless Sensor Networks (REALWSN),
Stockholm, Sweden, 2005, p. 5pp.

[4] K. Langendoen, A. Baggio, O. Visser, Murphy loves potatoes: experi-
ences from a pilot sensor network deployment in precision agriculture, in:
Proceedings of the 20th International Symposium on Parallel and Dis-
tributed Processing Symposium (IPDPS), Rhodes Island, Greece, 2006,
p. 8pp.

[5] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless
sensor networks: a survey, Computer Networks 38 (4) (2002) 393–422.

[6] E. Cayirci, T. Coplu, SENDROM: sensor networks for disaster relief
operations management, Wireless Networks 13 (3) (2007) 409–423.

[7] I. F. Akyildiz, O. A. Akan, C. Chen, J. Fang, W. Su, Interplan-
etary internet: state-of-the-art and research challenges, Computer
Networks 43 (2) (2003) 75–112. doi:http://dx.doi.org/10.1016/S1389-
1286(03)00345-1.

[8] B. Malakooti, H. Kim, K. Bhasin, Human & robotics technology space
exploration communication scenarios: Characteristics, challenges & sce-
narios for developing intelligent internet protocols, in: Proceedings of
the 2nd IEEE International Conference on Space Mission Challenges

58

for Information Technology (SMC-IT), Pasadena, CA, USA, 2006, pp.
322–329.

[9] B. Raman, K. Chebrolu, Censor networks: A critique of “sensor net-
works” from a systems perspective, ACM SIGCOMM Computer Com-
munication Review 38 (3) (2008) 75 – 78.

[10] H. Frey, F. Ingelrest, D. Simplot-Ryl, Localized minimum spanning tree
based multicast routing with energy-efficient guaranteed delivery in ad
hoc and sensor networks, in: Proceedings of the 9th IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks
(WOWMOM), Newport Beach, CA, USA, 2008, pp. 1–8.

[11] F. Silva, J. Heidemann, R. Govindan, D. Estrin, Frontiers in Distributed
Sensor Networks, CRC Press, Inc., 2003, Ch. Directed Diffusion, p. 25pp.

[12] A. Förster, A. L. Murphy, FROMS: Feedback routing for optimizing
multiple sinks in WSN with reinforcement learning, in: Proceedings 3rd
International Conference on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP), Melbourne, Australia, 2007, pp. 371–
376.

[13] A. Förster, A. L. Murphy, Balancing Energy Expenditure in WSNs
through Reinforcement Learning: A Study, in: Proceedings of the
1st International Workshop on Energy in Wireless Sensor Networks
(WEWSN), Santorini Island, Greece, 2008, p. 7pp.

[14] G. Wittenburg, K. Terfloth, F. López Villafuerte, T. Naumowicz, H. Rit-
ter, J. Schiller, Fence monitoring – experimental evaluation of a use case
for wireless sensor networks, in: Proceedings of the 4th European Con-
ference on Wireless Sensor Networks (EWSN), Delft, The Netherlands,
2007, pp. 163–178.

[15] S. R. Madden, M. J. Franklin, J. M. Hellerstein, W. Hong, TinyDB: an
acquisitional query processing system for sensor networks, ACM Trans-
actions on Database Systems 30 (1) (2005) 122–173.

[16] G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vetterli, The hitchhiker’s
guide to successful wireless sensor network deployments, in: Proceed-
ings of the 6th ACM conference on Embedded network sensor systems
(SenSys), New York, NY, USA, 2008, pp. 43–56.

59

[17] E. A. Basha, S. Ravela, D. Rus, Model-based monitoring for early warn-
ing flood detection, in: Proceedings of the 6th ACM conference on Em-
bedded network sensor systems (SenSys), New York, NY, USA, 2008,
pp. 295–308.

[18] J. McCulloch, P. McCarthy, S. M. Guru, W. Peng, D. Hugo, A. Terhorst,
Wireless sensor network deployment for water use efficiency in irriga-
tion, in: Proceedings of the Workshop on Real-world Wireless Sensor
Networks (REALWSN), Glasgow, Scotland, 2008, pp. 46–50.

[19] M. Ali, U. Saif, A. Dunkels, T. Voigt, K. Römer, K. Langendoen, J. Po-
lastre, Z. Uzmi, Medium access control issues in sensor networks, SIG-
COMM Computation and Communication Review 36 (2) (2006) 33–36.

[20] K. Langendoen, Medium access control in wireless sensor networks, in:
H. Wu, Y. Pan (Eds.), Medium Access Control in Wireless Networks,
Volume II: Practice and Standards, Nova Science Publishers, Inc., 2007,
p. 22pp.

[21] A. Woo, T. Tong, D. Culler, Taming the underlying challenges of reliable
multihop routing in sensor networks, in: Proceedings of the 1st interna-
tional conference on Embedded networked sensor systems (SenSys), Los
Angeles, CA, USA, 2003, pp. 14–27.

[22] C. E. Perkins, E. M. Royer, Ad-hoc on-demand distance vector rout-
ing, in: Proceedings of the 2nd IEEE Workshop on Mobile Computer
Systems and Applications (WMCSA), New Orleans, USA, 1999, pp.
90–100.

[23] L. Ji, M. S. Corson, A lightweight adaptive multicast algorithm, in: Pro-
ceedings of the IEEE Global Telecommunications Conference (GLOBE-
COM), Vol. 2, Sydney, Australia, 1998, pp. 1036–1042.

[24] J. G. Jetcheva, D. B. Johnson, Adaptive demand-driven multicast rout-
ing in multi-hop wireless ad hoc networks, in: Proceedings of the 2nd
ACM International Symposium on Mobile Ad Hoc Networking & Com-
puting (MobHoc), Long Beach, CA, USA, 2001, pp. 33–44.

[25] S. J. Lee, W. Su, M. Gerla, On-demand multicast routing protocol in
multihop wireless mobile networks, Mobile Networks and Applications
7 (6) (2002) 441–453.

60

[26] R. Vaishampayan, J. J. Garcia-Luna-Aceves, Efficient and robust multi-
cast routing in mobile ad hoc networks, in: Proceedings of the IEEE In-
ternational Conference on Mobile Ad-hoc and Sensor Systems (MASS),
Fort Lauderdale, FL, USA, 2004, pp. 304–313.

[27] B.-R. Chen, K.-K. Muniswamy-Reddy, M. Welsh, Ad-hoc multicast
routing on resource-limited sensor nodes, in: Proceedings of the 2nd
International Workshop on Multi-hop ad hoc networks: from theory to
reality (REALMAN), Florence, Italy, 2006, pp. 87–94.

[28] G. Di Caro, F. Ducatelle, L. Gambardella, AntHocNet: an adaptive
nature-inspired algorithm for routing in mobile ad hoc networks, Euro-
pean Transactions on Telecommunications 16 (2005) 443–455.

[29] B. Karp, H. T. Kung, GPSR: greedy perimeter stateless routing for wire-
less networks, in: Proceedings of the 6th annual international conference
on Mobile computing and networking (MobiCom), Boston, MA, USA,
2000, pp. 243–254.

[30] J. A. Sanchez, P. M. Ruiz, I. Stojmenovic, Energy-efficient geographic
multicast routing for sensor and actuator networks, Computer Commu-
nications 30 (13) (2007) 2519–2531.

[31] M. Zamalloa, K. Seada, B. Krishnamachari, A. Helmy, Efficient geo-
graphic routing over lossy links in wireless sensor networks, ACM Trans-
actions on Sensor Networks 4 (3) (2008) 1–33.

[32] D. Braginsky, D. Estrin, Rumor routing algorithm for sensor networks,
in: Proceedings of the 1st Workshop on Sensor Networks and Applica-
tions (WSNA), Atlanta, GA, USA, 2002, pp. 1–12.

[33] Z. Li, H. Shi, Design of gradient and node remaining energy constrained
directed diffusion routing for wsn, in: Proceedings of the International
Conference on Wireless Communications, Networking and Mobile Com-
puting (IWCMC), Honolulu, Hawaii, USA, 2007, pp. 2600–2603.

[34] Y. Chen, S. Ann, Y. Lin, Ve-mobicast: A variant-egg-based mobicast
routing protocol for sensornets, in: Proceedings of the IEEE Interna-
tional Conference on Communications (ICC), Vol. 5, Seoul, Korea, 2005,
pp. 3020–3024.

61

[35] H. Luo, F. Ye, J. Cheng, S. Lu, L. Zhang, TTDD: Two-tier data dis-
semination in large-scale wireless sensor networks, Wireless Networks
11 (1-2) (2005) 161–175.

[36] H. Kim, T. Abdelzaher, W. Kwon, Minimum-energy asynchronous dis-
semination to mobile sinks in wireless sensor networks, in: Proceedings
of the 1st International Conference on Embedded Networked Sensor Sys-
tems (SenSys), Los Angeles, CA, USA, 2003, pp. 193–204.

[37] H. Kim, T. Abdelzaher, W. Kwon, Dynamic delay-constrained
minimum-energy dissemination in wireless sensor networks, Transac-
tions on Embedded Computing Systems 4 (3) (2005) 679–706.

[38] E. B. Hamida, G. Chelius, Analytical evaluation of virtual infrastruc-
tures for data dissemination in wireless sensor networks with mobile
sink, in: Proceedings of the First ACM workshop on Sensor and actor
networks (SANET), Montreal, Canada, 2007, pp. 3–10.

[39] J. Predd, S. Kulkarni, H. Poor, Distributed learning in wireless sensor
networks, IEEE Signal Processing Magazine 23 (4) (2006) 56–69.

[40] M. Di, E. Joo, A survey of machine learning in wireless sensor networks,
in: Proceedings of the 6th International Conference on Information,
Communications and Signal Processing (ICICS), Singapore, 2007, pp.
1–5.

[41] A. Förster, Machine learning techniques applied to wireless ad-hoc net-
works: Guide and survey, in: Proceedings of the 3rd International Con-
ference on Intelligent Sensors, Sensor Networks and Information Pro-
cessing (ISSNIP), Melbourne, Australia, 2007, pp. 365–370.

[42] R. Arroyo-Valles, R. Alaiz-Rodrigues, A. Guerrero-Curieses, J. Cid-
Suiero, Q-probabilistic routing in wireless sensor networks, in: Proceed-
ings of the 3rd International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP), Melbourne, Australia,
2007, pp. 1–6.

[43] J. A. Boyan, M. L. Littman, Packet routing in dynamically changing
networks: A reinforcement learning approach, Advances in Neural In-
formation Processing Systems 6 (1994) 671–678.

62

[44] P. Beyens, M. Peeters, K. Steenhaut, A. Nowe, Routing with compres-
sion in wireless sensor networks: A Q-learning approach, in: Proceedings
of the 5th European Workshop on Adaptive Agents and Multi-Agent
Systems (AAMAS), Paris, France, 2005, p. 12pp.

[45] H. J. Prömel, A. Steger, The Steiner Tree Problem, Vieweg, 2002.

[46] C. Watkins, Learning from delayed rewards, Ph.D. thesis, Cambridge
University, Cambridge, England (1989).

[47] U. Brandes, T. Erlebach, Network Analysis - Methodological Founda-
tions, Springer-Verlag, Berlin, Germany, 2005.

[48] A. Kuntz, F. Schmidt-Eisenlohr, O. Graute, H. Hartenstein, M. Zit-
terbart, Introducing Probabilistic Radio Propagation Models in OM-
NeT++ Mobility Framework and Cross Validation Check with NS-2,
in: Proceedings of the 1st International Workshop on OMNeT++, Mar-
seille, France, 2008, p. 7pp.

[49] J. Polastre, J. Hill, D. Culler, Versatile low power media access for wire-
less sensor networks, in: Proceedings of the the 2nd ACM Conference on
Embedded Networked Sensor Systems (SenSys), Baltimore, MD, USA,
2004, pp. 95–107.

[50] L. van Hoesel, P. Havinga, A lightweight medium access protocol
(LMAC) for wireless sensor networks, in: Proceedings of the 1st In-
ternational Conference on Networked Sensing Systems (INSS), Tokyo,
Japan, 2004, pp. 946–953.

[51] S. Inc., http://www.scatterweb.de/.

[52] K. Zawadzki, A. Förster, Simulating routing protocols for wireless sensor
networks, bachelor thesis at the University of Lugano (2008).

[53] A. Förster, A. L. Murphy, J. Schiller, K. Terfloth, An Efficient Im-
plementation of Reinforcement Learning Based Routing on Real WSN
Hardware, Proceedings of the 4th IEEE International Conference on
Wireless and Mobile Computing, Networking and Communications
(WiMOB).

63

