
Università
della
Svizzera
italiana

USI Technical Report Series in Informatics

Randomized incremental construction of the
Hausdorff Voronoi diagram of non-crossing clusters
Panagiotis Cheilaris1, Elena Khramtcova1, Evanthia Papadopoulou1

1 Faculty of Informatics, Università della Svizzera italiana, Switzerland

Abstract

The Hausdorff Voronoi diagram of a set of clusters of points in the plane is a generaliz-
ation of the classic Voronoi diagram, where distance between a point t and a cluster P
is measured as the maximum distance, or equivalently the Hausdorff distance between
t and P . The size of the diagram for non-crossing clusters is O(n), where n is the total
number of points in all clusters.
In this paper we present algorithms for efficiently computing the Hausdorff Voronoi
diagram of non-crossing point clusters. Our algorithms are incremental and use linear
space. If the clusters of points are inserted in a random order, then our best complex-
ity algorithm takes expected time O(n log2 n (log log n)2) and worst-case space O(n) to
construct the diagram. We also provide a simpler-to-implement algorithm, based on
a randomized hierarchical point-location data-structure (the Voronoi hierarchy) that
takes expected time O(n log3 n) and expected space O(n). Previous (deterministic) al-
gorithms in the Euclidean metric either require time O(n log4 n) and O(n log2 n) space,
or have linear space complexity, but result in at least quadratic time-complexity bounds
in the worst case. In order to achieve our bounds, we augment our data structures with
the ability to efficiently handle non-standard characteristics of generalized Voronoi dia-
grams, such as sites of non-constant complexity, sites that are not enclosed in their
Voronoi regions, and empty Voronoi regions. To the best of our knowledge these issues
have not been addressed simultaneously by randomized incremental constructions for
Voronoi diagrams.
The Hausdorff Voronoi diagram finds direct application in VLSI Critical Area Analysis
for computing the probability of fault in a VLSI layout due to random manufacturing
defects.

Report Info

Published
December 2012

Number
USI-INF-TR-2012-3

Institution
Faculty of Informatics
Università della Svizzera italiana
Lugano, Switzerland

Online Access
www.inf.usi.ch/techreports

1 Introduction

Given a set S of sites (for example, points) contained in some space, the Voronoi region of each site s ∈ S is
the geometric locus of points in the space that are closer to s than to any other site. In the classic Voronoi
diagram, each site is a point, and closeness is measured according to the Euclidean distance. In this work, we
investigate efficient algorithms for constructing the Hausdorff Voronoi diagram. The containing space is R2,
each site is a cluster of points (i.e., a set of points), and closeness of a point t ∈ R2 to a cluster P of points is
measured by the farthest distance d f(t , P) =maxp∈P d (t , p), where d is the usual Euclidean distance between
two points. This farthest distance equals the Hausdorff distance between t and cluster P , hence the name of
the diagram.

The main motivation for investigating Hausdorff Voronoi diagrams comes from Very Large Scale Integra-
tion (VLSI) circuit design. The Hausdorff Voronoi diagram can be used to estimate efficiently the critical area
of a chip design for various open faults [21, 22, 23]. Critical area is a measure reflecting the sensitivity of a

1

http://www.inf.usi.ch/techreports/

VLSI design to random defects during manufacturing.

1.1 Previous work

We denote by n the total number of points in all clusters. We assume that no two different clusters have a
common point.

Hausdorff Voronoi diagrams were first considered in [11], under the name “cluster Voronoi diagram”. For
arbitrary clusters, the authors proved that the combinatorial complexity of the diagram is O(n 2α(n)) and also
provided an algorithm of the same time complexity, where α(n) is the inverse Ackermann function. They also
proved that when the convex hulls of the clusters are disjoint, the combinatorial complexity of the diagram is
linear. In [24] a condition weaker than disjointness of convex hulls was proved to be enough to imply linear
combinatorial complexity of the Hausdorff Voronoi diagram. First, we need some definitions. We denote by
conv P the convex hull of cluster P and by CH(P) the sequence of points of P on the boundary of the convex
hull, say in counterclockwise order.

Definition 1.1. We say that two clusters P and Q are non-crossing if the convex hull of P ∪Q admits at most
two supporting segments with one endpoint in P and one endpoint in Q .

conv P convQ

Figure 1: Disjoint convex hull, non-crossing, and crossing clusters

See figure 1, where supporting segments are shown with dashed lines. In [24], it was shown that the Haus-
dorff Voronoi diagram of a family of non-crossing clusters has linear complexity. For non-crossing clusters,
the Hausdorff Voronoi diagram is an instance of abstract Voronoi diagrams [17] (see e.g., [1, 24]). Thus, it can
be computed in expected O(b n log n) time using the randomized incremental framework of [18] for abstract
Voronoi diagrams, where b is the time it takes to construct the bisector between two clusters (see also [8, 20]).
We remark that if there are clusters of linear size, then b =O(n) and therefore this approach is interesting for
clusters of only small size.

In [24], it was also shown that the combinatorial complexity of the Hausdorff Voronoi diagram is O(n+m),
where m is number of supporting segments between pairs of crossing clusters, and this result is tight. In
the worst case, m is O(n 2). Plane sweep and divide and conquer algorithms for constructing the Hausdorff
Voronoi diagram of arbitrary clusters were presented in [22, 24]. Both algorithms have a K log n term in their
time complexity, where K is a parameter reflecting the number of pairs of clusters such that one is contained
in a specially defined enclosing circle of the other, e.g., the minimum enclosing circle in [24]. However, K can
beω(n) (superlinear) even in the case of non-crossing clusters.

A recent advancement in the time complexity of constructing the Hausdorff Voronoi diagram of non-
crossing clusters was achieved in [9]. The authors presented a parallel algorithm, which solves the problem
in O(p−1n log4 n) time, where p is the number of available processors. Their parallel algorithm implies a
divide and conquer sequential algorithm of time complexity O(n log4 n) and space complexity O(n log2 n).

Note that the Hausdorff Voronoi diagram is a min-max diagram: Every point t in the plane is assigned to
the region of the closest cluster with respect to the farthest distance. The “dual”, i.e., the max-min diagram,
has also been studied [14, 2, 7]. In [7] each cluster is a simple polygon (or a polygonal site in general) and the
authors provide an O(n log3 n) time divide and conquer algorithm for constructing the max-min diagram of
disjoint simple polygons, where n is the total description complexity of the polygons.

1.2 Our contribution

We propose a randomized incremental approach to build the Hausdorff Voronoi diagram of a family of non-
crossing clusters. Our algorithm of best complexity takes O(n log2 n (log log n)2) expected time and O(n)
worst-case space to construct the diagram. We also provide a simpler-to-implement algorithm, based on

2

a randomized hierarchical point-location data-structure, called the Voronoi hierarchy, that takes O(n log3 n)
expected time and O(n) expected space.

The incremental construction approach has been used in computing several Voronoi diagrams; see, e.g.,
[6]. In short, sites are inserted one by one and the Voronoi diagram is updated at every insertion. The in-
cremental approach is inherently dynamic and it is appropriate for interactive applications where sites are
inserted in succession by a user and the diagram is built incrementally. If coupled with a randomization of
the insertion order of the sites, this randomized incremental construction has usually expected time com-
plexity comparable to that of deterministic algorithms. However, the randomized incremental construction
of abstract Voronoi diagrams [18] cannot be directly applied here as clusters have no restriction in size and
thus the computation of a bisector can be costly resulting in a high complexity algorithm.

The main technical challenge when using the incremental approach is to find fast some point t ∈R2 that
is closer to the new cluster than to any of the already inserted clusters. In the Hausdorff Voronoi diagram, this
is made difficult by the following facts: (a) the region of the new cluster might not contain any of the points of
the clusters, (b) the region of the new cluster might be empty or make an existing region empty, and (c) sites
have non-constant complexity and thus the computation of a bisector or answering an in-circle test require
non-constant time.

To overcome these difficulties we exploit several interesting properties of Hausdorff Voronoi diagrams and
we maintain a dynamic point location data structure for the existing diagram, which is also used to perform
simple parametric search queries. Divide and conquer algorithms for the Hausdorff Voronoi diagram [9] and
for the dual (max-min) diagram [7] also resort to some form of parametric search, when merging the solutions
of two subproblems.

Our approach is modular in the sense that it can use any dynamic point location data structure such as
[4, 3]. In particular, if we use the one from [4], then we get an algorithm for constructing the Hausdorff Voronoi
diagram of non-crossing clusters in expected time O(n log2 n (log log n)2). Moreover, our algorithm uses only
linear space in contrast with the algorithm of [9] which takes O(n log4 n) time and uses O(n log2 n) space.
An alternative and simpler-to-implement approach can be derived by augmenting the Voronoi hierarchy of
[15], based on the Delaunay hierarchy of [10]. We augment the Voronoi hierarchy with the ability to efficiently
handle the aforementioned difficulties (a) to (c) and derive an additional more practical algorithm of expected
time complexity O(n log3 n) and expected O(n) space. The augmentation of the Voronoi hierarchy may be of
interest to incremental constructions of other types of generalized Voronoi diagrams.

2 Definitions and Structural properties

Given is a family F = {C1, . . . ,Cm } of non-crossing clusters of points. We assume that no two different clusters
have a common point.

For s ∈C , the open and closed farthest region of s in the farthest Voronoi diagram (FVD) of C are

fregC (s) = {p | ∀s ′ 6= s : d (p , s)> d (p , s ′)} and fregC (s) = {p | ∀s ′ 6= s : d (p , s)≥ d (p , s ′)}.

Definition 2.1. The farthest skeleton of cluster C , denoted by fskel(C), is defined for |C | > 1 as fskel(C) =
R2 \

⋃

s∈C fregC (s) and for |C |= 1 as fskel(C) =C .

For |C |> 1, fskel(C) is a tree corresponding to the graph structure of FVD(C). Apart from its finite vertices,
fskel(C) has also vertices at infinity each of which corresponds to two consecutive points on CH(C). See
figure 2.

For C ∈ F , the open and closed Hausdorff region of C in the Hausdorff Voronoi diagram of F are:

hregF (C) = {p | ∀C ′ 6=C : d f(p ,C)< d f(p ,C ′)} and hregF (C) = {p | ∀C ′ 6=C : d f(p ,C)≤ d f(p ,C ′)}.

For s ∈C and C ∈ F , the open and closed Hausdorff region of s in the Hausdorff Voronoi diagram of F are

hregF (s) = hregF (C)∩ fregC (s) and hregF (s) = hregF (C)∩ fregC (s).

The Hausdorff Voronoi diagram is monotone in the following sense: Adding more clusters to a diagram
can only shrink the region of an existing cluster or of a point in it.

The boundary of the Hausdorff region of a point s ∈ C has structure as shown in figure 3a. It consists
of two chains: (1) the farthest boundary of s , which belongs to fskel(C), i.e., bd hregF (s)∩bd fregC (s), and is

3

Figure 2: Farthest Voronoi diagram of four input points (denoted by crosses) and its vertices. Filled disk marks denote
finite vertices. Unfilled circle marks denote infinite vertices and are on the boundary of a closed curve (shown dashed)
which surrounds the finite vertices of the diagram.

s ∈ C

p1

p2 p3

q1

q2

v

y

Figure 3: (a) The Hausdorff region of a point s (shown with an unfilled circle mark) of a cluster C . The Hausdorff boundary
of s is shown with a heavy line and its farthest boundary with a dashed line. The pure vertices on the boundary of the
region are shown with black disk marks. The C -mixed vertices are shown with black square marks. The other mixed
vertices are shown with unfilled square marks. The vertices of FVD(C) on the farthest boundary of s are shown with
crossmarks. (b) For cluster P = {p1, p2, p3}, vertex v of fskel(P) is closer to cluster Q = {q1,q2} than to cluster P . Only one
of the three subtrees of fskel(P) that start at v , namely the one denoted with the thick line, might contain points which
are closer to P than to Q .

4

internal to hregF (C); (2) the Hausdorff boundary of s , i.e., bd hregF (s) ∩ bd hregF (C). Neither chain can be
empty if hregF (C) 6= ; and |C |> 1.

There are three types of vertices on the boundary of hregF (s) [24] (we use the general position assumption
that no four points lie on the same circle). (1) Standard Voronoi vertices, which are equidistant from C and
two other clusters, referred in this paper as pure vertices (using the terminology of [7]). These vertices appear
on the Hausdorff boundary of s . (2) Mixed vertices, that are equidistant to three points of two clusters (C and
another cluster). The mixed vertices that are equidistant to two points of C and one point of another cluster
are called C -mixed vertices; there are exactly two of them on the boundary of hregF (s) and they delimit both
the farthest boundary of s and the Hausdorff boundary of s . (3) Vertices of fskel(C) on the farthest boundary
of s . See also figure 3a.

Line segment ab with a 6= b is a chord of cluster C if a , b ∈ CH(C). Consider cluster C and a point y on
an edge of fskel(C) induced by chord c c ∗. We assume that fskel(C) is arbitrarily rooted and we denote this
rooted tree with T (C). Let yr yk be the edge of fskel(C) containing y oriented so that yr is the parent of yk in
T (C). Let Dy be the closed disk with center y and whose boundary contains c and c ∗. Then, C ⊂ Dy . Point
y partitions fskel(C) into two parts. Let T (y) denote the part containing the descendants of y in the fskel(C),
i.e., the subtree of T (C) that contains segment y yk , and let T∼(y) denote the complement of T (y). Chord c c ∗

partitions Dy in two parts Dr
y and D f

y , where Dr
y is the rear part, containing the portion of convC inducing

T (y), and D f
y is the forward part, enclosing the portion of convC inducing T∼(y).

Definition 2.2. A cluster Q ∈ F is called limiting with respect to chord p p ∗ of cluster P if there exists a closed
disk Dy centered at a point y of fskel(P) such that p and p ∗ are on the boundary of Dy and Dy contains both
P and Q . Cluster Q is also called limiting with respect to point y . Cluster Q is called forward limiting if
Q ⊂D f

y ∪ conv P or rear limiting if Q ⊂Dr
y ∪ conv P .

For example, in figure 3b, cluster Q is forward limiting with respect to chord p2p3 of cluster P , assuming
that T (P) is rooted somewhere on the bold portion of fskel(P). The remainder of this section is a list of prop-
erties of the Hausdorff Voronoi diagram of a family of non-crossing clusters that can be directly derived from
lemma 2 and properties 2 and 3 of [24].

Property 2.1. If hregF (C) 6= ;, then hregF (C)∩fskel(C) consists of exactly one non-empty connected component.

Property 2.2. Consider a point v of fskel(P) such that v /∈ hregF (P). Let Q be a cluster, which is closer to v than
P. Then, only one of the subtrees of fskel(P)which start at v , might contain points which are closer to P than to
Q (see figure 3b). In particular, if Q is forward (resp. rear) limiting with respect to v then the entire T (y) (resp.
T∼(y)) is closer to Q than to P.

Property 2.3. Let u v be an edge of fskel(P), which is part of the bisector between s and t in CH(P). If both u
and v are closer to Q than to P then hregF (P) cannot intersect u v .

A necessary and sufficient condition for an empty Voronoi region is given in [24]:

Property 2.4. Region hregF (P) = ; if and only if either there is a cluster Q ⊂ conv P, or there exist a pair of
clusters {Q , R} such that Q is rear limiting and R is forward limiting with respect to the same point v of fskel(P).
Pair {Q , R} is called a killing pair for P.

3 General incremental construction algorithm

Given is a family F of m non-crossing point clusters in the plane. The following is a high-level description of
an incremental construction of HVD(F). We defer discussion on the point location data structures that are
used and parametric search to section 5.

We fix a specific order of the m clusters, say C1, C2, . . . , Cm . Later, we will prove that a random permutation
implies expected efficient construction of the diagram. We denote by Fi the family consisting of the first
i clusters according to the aforementioned order. The incremental approach [6] constructs successively the
Hausdorff Voronoi diagram of families F1, F2, . . . , Fm . Since F = Fm , at the end, we have the Hausdorff Voronoi
diagram of F , HVD(F).

For each new cluster C i that is considered during the incremental construction, we build the farthest
Voronoi diagram of C i , FVD(C i), which has complexity linear in |C i | and can be built in O(|C i | log|C i |) time.
We also build a (static) point location data structure for FVD(C i)within the same time and space [12, 27].

5

What remains is to describe the computation of HVD(Fi+1), given HVD(Fi) and FVD(C i+1). We first try to
find a point t ∈ R2 which is closer to C i+1 than to any cluster in Fi . In order to find this point fast, we rely
on point location data structures for HVD(Fi) and possibly on parametric search. If such a point t exists,
we update the existing diagram HVD(Fi) by starting at t and carefully growing the Hausdorff region of C i+1

around t , in order to get HVD(Fi+1).
We first describe how to find at least one point t , which is closer to C i+1 than to any cluster in Fi . Of

course, it is also possible that there is no such point and thus we conclude that hregFi+1
(C i+1) = ;. If C i+1 = {c},

then t = c . Otherwise (when |C i | > 1), searching for t just in fskel(C i+1) (instead of in R2) is sufficient (see
property 2.1). We propose to search for t as follows. For every vertex w of fskel(C i+1):

• using point location in HVD(Fi), find the nearest to w cluster in Fi ; call this cluster C w ;

• if d f(w ,C i+1) < d f(w ,C w), then w is the point we are looking for, i.e., t = w , and we do not have to
consider the remaining vertices of fskel(C i+1). Else it may be possible to eliminate from further consid-
eration an entire subtree of fskel(C i+1) incident to v , according to property 2.2.

If there is no vertex w of fskel(C i+1) with d f(w ,C i+1) < d f(w ,C w), then no vertex of fskel(C i+1) belongs to
hregFi+1

(C i+1). However, we have not yet excluded the possibility that hregFi+1
(C i+1) intersects the interior of

an edge of fskel(C i+1) (it can be at most one edge, because of property 2.1). See figures 4, 5, and 6.
For any remaining edge u v of fskel(C i+1), we proceed as follows. Remember that we have already com-

puted C u and C v such that u ∈ hregFi
(C u) and v ∈ hregFi

(C v). It also holds that d f(u ,C u) < d f(u ,C i+1)
and d f(v,C v) < d f(v,C i+1). If C u = C v , then, by property 2.3, hregFi+1

(C i+1) can not intersect the interior
of u v . If C u 6= C v , we do two additional point locations: (a) of u in FVD(C v) and (b) of v in FVD(C u). By
property 2.3, if d f(u ,C i+1) ≥ d f(u ,C v) or d f(v,C i+1) ≥ d f(v,C u), then hregFi+1

(C i+1) can not intersect the in-
terior of u v . Therefore, hregFi+1

(C i+1) might intersect the interior of u v only if d f(u ,C i+1) < d f(u ,C v) and
d f(v,C i+1)< d f(v,C u). We summarize as follows.

Definition 3.1. Edge u v is a candidate edge if it satisfies the following predicate:

cand(u v) = u ∈ hregFi
(C u)∧v ∈ hregFi

(C v)∧C u 6=C v ∧

d f(u ,C u)< d f(u ,C i+1)< d f(u ,C v)∧
d f(v,C v)< d f(v,C i+1)< d f(v,C u)

If there is no candidate edge, then we can conclude that hregFi+1
(C i+1) = ;. If there is a candidate edge,

then we have to resort to parametric search to decide whether hregFi+1
(C i+1) is empty or not and still find a

point t in this region in the latter case. We defer this discussion to section 5.
In case we find a point t ∈R2 such that t ∈ hregFi+1

(C i+1), we grow the region of the new cluster around t
and update diagram HVD(Fi) to get diagram HVD(Fi+1). The technical details are given in the following.

3.1 A refinement of the diagram

We have already mentioned that the combinatorial complexity of the Hausdorff Voronoi diagram of non-
crossing clusters is linear in the total number of points in the clusters [22]. This diagram HVD(F) is stored as
a planar subdivision in a doubly connected edge list [5]. It will be beneficial to have a refinement of HVD(F)
in which each face f has either constant complexity or if the face has higher complexity, then the work per-
formed when updating f (during the insertion of a new cluster) is proportional only to the deleted vertices
and edges of the face f . To achieve this, we add some segments to the diagram.

We follow the visibility decomposition method of [24]. For every c ∈ C , define the set Vc to contain all
vertices of the diagram on the Hausdorff boundary of c . For every point x ∈ Vc , we add to the diagram the
segment resulting from intersecting hregF (c) with the ray −→c x , starting at c and having direction from c to x .
Such additional segments are shown in figure 7. We remark that these additional segments might create new
vertices on the farthest boundary of c .

It is not difficult to prove that the refined HVD(F) diagram has also combinatorial complexity linear in
∑

C∈F |C |, relying on methods of [22]. We denote this refinement of HVD(F) by HVD∗(F).
A face of the refined diagram HVD∗(F) which belongs to hregF (c) with c ∈C consists of a segment which

is part of the Hausdorff boundary of c , one or two visibility decomposition segments and a linear chain which
is a portion of the farthest boundary of c , like in figure 8. Observe that each face of HVD∗(F) is convex.

We call this chain the fskel-chain of the given face. We remark that the size of this chain need not be
bounded by a constant, and that it can even be of linear complexity.

6

p1 p2 r1 r2

p′1 p′2

q1

q2

Figure 4: Hausdorff diagram of four two-point clusters P = {p1, p2}, P ′ = {p ′1, p ′2}, Q = {q1,q2}, R = {r1, r2}.

p1 p2 r1 r2

p′1 p′2

q1

q2

s1

s2

w1 w2

Figure 5: Insertion of a new cluster S = {s1, s2}, with w1 and w2 being infinite vertices of fskel(S). Edge w1w2 is a candidate
edge, because P is closer to w1 than S and Q is closer to w2 than S. Minimum “disks” with “centers” at w1 and w2 that
contain P and Q , respectively, are shown (these “disks” are halfplanes).

p1 p2 r1 r2

p′1 p′2

q1

q2

s1

s2

Figure 6: The diagram after the insertion of S. The deleted part is shown in dotted gray lines. We have not refined the
region of S by its farthest Voronoi diagram, in order to have a cleaner figure.

7

Figure 7: Visibility decomposition of a Hausdorff region of a point

Figure 8: A face of the refined Hausdorff Voronoi diagram

3.2 Computing vertices of fskel(C i+1) closest to C i+1

To get back to our updating process, first we compute which vertices of fskel(C i+1) are in hregFi+1
(C i+1). When

C i+1 consists of a single point, the answer is trivially this single point, so from now on we are concerned with
the case |C i+1| > 1. For every vertex v ∈ fskel(C i+1), we do a point location of v in HVD∗(Fi) and we check
whether v is closer to C i+1 or another cluster C ∈ Fi .

Therefore, we have computed a subset of vertices of fskel(C i+1) which are closer to C i+1 than any other
cluster C ∈ Fi . Remember that we also have a point t ∈ hregFi+1

(C i+1). If t is not a vertex of fskel(C i+1), we also
add it to this computed set. By property 2.1, these vertices are contained in a subtree of fskel(C i+1).

3.3 Edges of fskel(C i+1) through which bd(hregFi+1
(C i+1)) passes

Moreover, for |C i+1| > 1, we can compute a subset of edges of fskel(C i+1) with the following property: each
edge v u in the subset has v closer to C i+1 than some C ∈ Fi and u not closer to C i+1 than some C ∈ Fi . We
refer to these edges as switch edges.

We can also easily compute the cyclic order in which the switch edges appear along a traversal of the
boundary, say in a counter-clockwise fashion (i.e., a traversal that leaves hregFi+1

(C i+1) to the left of its bound-
ary) as follows: We follow successively the half-edges of the doubly connected edge list representation of
fskel(C i+1) and record the order in which we encounter the switch edges.

Say this cyclic order is e0, e1, . . . , eκ−1. Then, bd(hregFi+1
(C i+1)) consists of κ curves, each one connecting

two points in consecutive edges in the above cyclic order. These points correspond to mixed vertices in
HVD(Fi+1) (see [22]).

3.4 Computing the intersection of e0 with bd(hregFi+1
(C i+1))

We next try to find a point on bd(hregFi+1
(C i+1)). We will find such a point p0 on switch edge e0. This p0 is a

mixed vertex of HVD(Fi+1).
For switch edge e0 = u v , with u ∈ hregFi+1

(C i+1) and v /∈ hregFi+1
(C i+1), the method we use is as follows:

We trace the movement of a point y on e0 starting from u and going towards v , until y reaches an element of
HVD∗(Fi) which intersects bd(hregFi+1

(C i+1)). In that case, then we can easily compute point p0 by taking the

8

u

v

y

zv−
v+

Figure 9: Tracing in order to find a point on the boundary

intersection of y v with a bisector between some specific point of C i+1 and another specific point of a cluster
in Fi .

This tracing is done by following elements of HVD∗(Fi) along the switch edge e0. In order to bound the
complexity of the algorithm, it is crucial to only visit a number of elements of HVD∗(Fi) on the order of the
number of elements of HVD∗(Fi) that have to be updated (in order to get HVD∗(Fi+1)). This is complicated by
the fact that a face f can have a fskel-chain of non-constant size. When we trace on e0 along such a face f ,
we have to be careful so that the number of neighboring elements of f that we visit are on the order of the
number of updated neighboring elements of f (because of C i+1 insertion).

In particular, assume that y ∈ cl f , and v /∈ cl f . Moreover, y v ∩ f 6= ;. Since f is convex, there is a
single point z of y v which is different from y and lies on the boundary of f (see figure 9). We remark that
z ∈ hregFi+1

(C i+1). We intend to find this point z , without traversing too many edges of the face f that will not
be updated.

We first check if y v intersects any of the edges not on the fskel-chain of f (there are at most three of these
edges). If there is such an intersection, we found our point z . Otherwise, y v must intersect with the fskel-
chain of f . In that case, consider the two extreme vertices v− and v+ of the fskel-chain (see figure 9). Since
z ∈ hregFi+1

(C i+1), because of property 2.1, at least one of v− and v+ is also in hregFi+1
(C i+1). By comparing

distances of v−, v+ from C i+1 and the closest clusters in Fi , we find (at least) one of v− and v+ that is closest
to C i+1 than any cluster in Fi . Say, without loss of generality, that v− is closest to C i+1. Then, by property 2.1,
the part of the fskel-chain from v− to z is closest to C i+1 and has to be updated. Therefore, we can search for
the intersection point z by following the fskel-chain, starting from v− (see figure 9).

We note that when C i+1 = {c}, we can compute a point in bd(hregFi+1
(C i+1)) by shooting any ray from c ,

for example, a vertical ray from c upwards, and tracing along this vertical ray in HVD∗(Fi), starting from c ,
until finding a point in bd(hregFi+1

(C i+1)), as above.

3.5 Computing the boundary of hregFi+1
(C i+1)

From section 3.4, we have a point p0 on the boundary of hregFi+1
(C i+1). We also have the cyclic order of switch

edges e0, e1, . . . , eκ−1, where point p0 ∈ e0.
Then, bd(hregFi+1

(C i+1)) consists of κ polygonal chain curves, each one connecting two points in consec-
utive edges in the above cyclic order. Let p0, p1, . . . , pκ−1, be these points. We start from p0 and we trace
bd(hregFi+1

(C i+1)), so that hregFi+1
(C i+1) lies to the left of the boundary, until we reach (the yet unknown) p1

on e1. This tracing is similar to the tracing in section 3.4 and it is done by following parts of bisectors in of
HVD∗(Fi).

In particular, the boundary of hregFi+1
(C i+1) at p0 consists of a bisector between a point of C i+1 and a

point in another cluster that can be determined by the face f where p0 belongs in HVD∗(Fi). We consider
the directed halfline h along this bisector starting from p0 and having hregFi+1

(C i+1) to its left side. If the
intersection point of h with e1 is contained in cl f , then we have found p1. Otherwise, we have to continue
with the next face of HVD∗(Fi) along halfline h. Again, in order to bound the complexity of the algorithm, it
is crucial to only visit a number of elements of HVD∗(Fi) on the order of the number of elements that have to
be updated in HVD∗(Fi) (in order to get HVD∗(Fi+1)). This means that if we are currently in a face of HVD∗(Fi),

9

h

v+

Figure 10: Tracing on the boundary

we find the intersection of h with the boundary of the face by first checking the (at most three) edges not on
the fskel-chain. If these checks are unsuccessful and only then, we start looking for the intersection point on
the fskel-chain, starting from the extreme vertex v+, which is to the left side of h and it is guaranteed to be in
hregFi+1

(C i+1) (again property 2.1 is relevant); see figure 10.
As we move along different faces, we might have to use a different halfline h, having the direction of the

relevant bisector in the current face of HVD∗(Fi).
After tracing the portion of bd(hregFi+1

(C i+1)) between p0 and p1, we reach point p1. We continue and
trace the remaining κ−1 portions until we get back to p0, having traced completely bd(hregFi+1

(C i+1)).

3.6 Updating the diagram

Now that we have computed bd(hregFi+1
(C i+1)), the boundary of the region of the new cluster, we superim-

pose it on the existing diagram of HVD∗(Fi). Some edges of HVD∗(Fi) will have to be subdivided by some
vertices on this boundary. Each such subdivision operation corresponds to a deletion operation of an edge
and two insertion operations (of the two edges into which the original edge is subdivided).

Then, we delete everything from HVD∗(Fi) that is in the interior of the new cluster’s region hregFi+1
(C i+1).

This is done by choosing an element of HVD∗(Fi) inside hregFi+1
(C i+1) and deleting everything in a graph

traversal of the diagram from there, until we reach elements of bd(hregFi+1
(C i+1)).

Then, we add hregFi+1
(C i+1)∩fskel(C i+1) to the diagram, so that the Hausdorff region of C i+1 is partitioned

by the Hausdorff regions of its constituent points. Finally, we also add to the diagram the visibility decom-
position segments that refine the Hausdorff regions of each point in order to get the full HVD∗(Fi+1) (see
section 3.1).

It is crucial that during the above process we also update the point location data structure, so that at the
end we have both a valid diagram for HVD∗(Fi+1) and a point location data structure on it. We discuss relevant
details in section 5.

We note again that, with some care, the amount of elements of the arrangement of HVD∗(Fi) that we visit
is of the order of the number of changes that have to be done in HVD∗(Fi), in order to get HVD∗(Fi+1).

4 Complexity analysis

It is evident that the running time of our algorithm depends on the number of update operations (insertions
and deletions) during the incremental construction of the diagram. In the worst case, this number can be
Ω(n 2). However, when clusters are inserted in a uniformly random order, the expected number is linear. Our
bound is independent of the individual cluster sizes. The possible non-uniformity of cluster size requires
some care when applying the Clarkson-Shor technique [8, 28] in order to prove the bound. The technical
details of the proof are in section 4.1. We use this result to bound the overall complexity of the algorithm in
section 4.2.

10

4.1 Expected number of operations

We will associate the operations with features of the diagrams. Each feature (vertex, edge, face) of the diagram
that appears during the incremental algorithm has been inserted by an operation. If a feature is deleted, then
it can not be inserted again in the future, because of the monotonicity of the Hausdorff Voronoi diagram. As
a result, the number of deletion operations is bounded by the number of insertion operations.

So, we intend to prove that the expected number of features that appear during the construction of the
diagram is O(n). To that end, we can ignore features associated only with the farthest Voronoi diagrams of
each cluster, because even their total worst case combinatorial complexity is O(n).

4.1.1 Configurations

We define some notions that are related with some features of the diagram. We follow the terminology of
[22, 28].

Definition 4.1. A configuration is a triple of points (p ,q , r) such that p , q , r lie on the boundary of a disk D and
q is contained in the interior of the counterclockwise arc from p to r . We call D the disk of the configuration,
its center the center of the configuration, and the counterclockwise arc p r the arc of the configuration.

Given is a family F of clusters.

Definition 4.2. A configuration is pure if its three points belong to three different clusters of F and no other
point of these three clusters belongs to the arc of the configuration.

Definition 4.3. A configuration is mixed if its three points belong to two different clusters of F and no other
point of these two clusters belongs to the arc of the configuration.

From now on, configurations of our interest will be either pure or mixed. Therefore, each configuration is
either associated with three (a pure one) or two (a mixed one) clusters.

Definition 4.4. A cluster C is in conflict with a configuration if (a) C does not contain any of the points in the
configuration and (b) C is contained in the union of the interior of the disk of the configuration and the arc
of the configuration.

Remark 4.1. A cluster can be in conflict with a configuration only if it is different from the clusters associated
with the configuration.

Definition 4.5. The weight of a configuration is the number of clusters in conflict with it.

Lemma 4.1. The number of zero weight configurations of F is of the same order as the combinatorial complex-
ity of the Hausdorff Voronoi diagram of F .

Proof. Each zero weight configuration is associated with a vertex of the Hausdorff Voronoi diagram. Indeed
the center of this configuration is at the vertex and the disk of the configuration contains the clusters asso-
ciated with the configuration. Consider a vertex v of the Hausdorff Voronoi diagram. The degree of v in the
arrangement equals the number of configurations with center v plus the number of some features that are
associated just with farthest Voronoi diagrams (that we have claimed before that we can ignore). As a result,
zero weight configurations estimate well the combinatorial complexity of the Hausdorff Voronoi diagram.

4.1.2 Configurations of weight at most k

Let K pure
0 (F), K pure

k (F), K pure
≤k (F) denote the sets of pure configurations of zero weight, weight equal to k , and

weight at most k , of a family F of non-crossing clusters, respectively. Let N pure
0 (F), N pure

k (F), N pure
≤k (F) denote

the cardinality of the aforementioned sets, respectively. Define analogously the sets of mixed configurations
K mix

0 (F), K mix
k (F), K mix

≤k (F) and their cardinalities N mix
0 (F), N mix

k (F), N mix
≤k (F), respectively.

By results of [22] and the discussion in section 4.1.1, we know that both N pure
0 (F) and N mix

0 (F) are

O
�

∑

C∈F

|C |
�

=O(n).

We are ready to estimate an upper bound on configurations of weight at most k . We use the Clarkson-Shor
technique [8] and in particular the following version that we adapt from [28].

11

Theorem 4.1.

N �≤k (F)≤
E[N �0 (Rp)]
p d (1−p k)

,

for k > 0 and p ∈ (0, k−1), where � ∈ {pure, mix}, Rp is a random sample of clusters from family F , where
each cluster is chosen independently with probability p , and d is the number of clusters associated with each
configuration (d = 3 for pure configurations and d = 2 for mixed configurations).

If
∑

C∈F |C |= n , then E[N pure
0 (Rp)] =O(p n) and E[N mix

0 (Rp)] =O(p n). By choosing the appropriate values
for p to minimize the upper bound, we obtain:

N pure
≤k (F)≤ c pure ·nk 2 and N mix

≤k (F) =≤ c mix ·nk , (1)

for k > 0 and some constants c pure and c mix.

4.1.3 Appearance of a feature

Consider a configuration c of weight k in family F with m clusters. Assume the Hausdorff Voronoi diagram
of F is constructed with the incremental algorithm and the clusters are inserted according to permutation
π. Our analysis has some similarities with that of [13]. The feature corresponding to c appears at some stage
of the incremental algorithm if and only if the clusters associated with c occur in π before the k clusters that
conflict with configuration c . This event happens with probability

Pr[pure c feature appears] =
3!k !

(k +3)!
=

6

(k +1)(k +2)(k +3)

for pure configurations and with probability

Pr[mixed c feature appears] =
2!k !

(k +2)!
=

2

(k +1)(k +2)

for mixed configurations.
The expected number of appearances of features corresponding to a pure configuration is therefore:

m−3
∑

k=0

∑

c∈K pure
k (F)

Pr[pure c feature appears] =
m−3
∑

k=0

∑

c∈K pure
k (F)

6

(k +1)(k +2)(k +3)

= 6
m−3
∑

k=0

N pure
k (F)

(k +1)(k +2)(k +3)

=N pure
0 (F)+6

m−3
∑

k=1

N pure
≤k (F)−N pure

≤k−1(F)

(k +1)(k +2)(k +3)

=
3

4
N pure

0 (F)+18
m−4
∑

k=1

N pure
≤k (F)

(k +1)(k +2)(k +3)(k +4)
+

N pure
≤m−3(F)

(m −2)(m −1)m

≤
3

4
N pure

0 (F)+18
m−4
∑

k=1

c pure ·nk 2

(k +1)(k +2)(k +3)(k +4)
+

c pure ·n (m −3)2

(m −2)(m −1)m

≤
3

4
N pure

0 (F)+18 · c pure ·n
m−4
∑

k=1

1

k 2
+

c pure ·n
m

=O(n)

Similarly, the expected number of appearances of features corresponding to a mixed configuration is:

m−2
∑

k=0

∑

c∈K mix
k (F)

Pr[mixed c feature appears] =
m−2
∑

k=0

∑

c∈K mix
k (F)

2

(k +1)(k +2)

= 2
m−2
∑

k=0

N mix
k (F)

(k +1)(k +2)

12

=N mix
0 (F)+2

m−2
∑

k=1

N mix
≤k (F)−N mix

≤k−1(F)

(k +1)(k +2)

=
1

2
N mix

0 (F)+4
m−3
∑

k=1

N mix
≤k (F)

(k +1)(k +2)(k +3)
+

N mix
≤m−2(F)

(m −1)m

≤
1

2
N mix

0 (F)+4
m−3
∑

k=1

c mix ·nk

(k +1)(k +2)(k +3)
+

c mix ·n (m −2)
(m −1)m

≤
1

2
N mix

0 (F)+4 · c mix ·n
m−3
∑

k=1

1

k 2
+

c mix ·n
m

=O(n)

Therefore, we have proved the following.

Theorem 4.2. The expected number of features that appear during the incremental construction is O(n).

Corollary 4.1. The expected number of operations is O(n).

4.2 Overall complexity

The total time for the construction of farthest Voronoi diagrams for all clusters is O(n log n). For each cluster
C i , we perform O(|C i |) point location queries and (possibly) one parametric search in the Hausdorff Voronoi
diagram of all previous clusters. Therefore, the total number of point location queries is O(n) and the total
number of parametric searches is bounded by m . Finally, we have the insertions and deletions of features of
the diagram, which are both expected O(n), as corollary 4.1 suggests. We summarize in the following.

Lemma 4.2. The expected time complexity of the randomized algorithm can be bounded by

O(n log n)+O(n)tq(n)+m · tp(n)+O(n)t i(n)+O(n)td(n),

where tq(n), tp(n), t i(n), td(n) are the times for a query, a parametric search, an insertion, and a deletion in a
point location data structure for a planar subdivision of complexity O(n), respectively. The time for insertion
and deletion can be amortized.

In section 5, we will explain how to do a parametric search in a point location data structure in time tp(n) =
(tq(n))2. The point location data structure from [4] has tq(n) = O(log n log log n), t i(n) = O(log n log log n),
td(n) =O(log2 n), whereas the one from [3] has tq(n) =O(log n), t i(n) =O(log1+ε n), td(n) =O(log2+ε n), where
ε > 0 can be chosen by the user of the algorithm. Both data structures use linear space and for both of them
the insertion and deletion times are amortized. Then, from lemma 4.2, we get expected time complexity
O(n log2 n (log log n)2) and O(n log2+ε n), when using the data structures from [4] and [3], respectively. Thus,
our best complexity result is the following.

Theorem 4.3. There is a randomized algorithm that constructs the Hausdorff Voronoi diagram of a family of
non-crossing clusters in linear space and in expected time O(n log2 n (log log n)2).

5 Point location data structures and parametric search

The performance of our randomized incremental algorithm heavily depends on the point location data struc-
ture used. Neither static nor semi-dynamic data structures are useful, because elements (vertices, edges, and
faces) are added and deleted from the diagram during its incremental construction. For dynamic point loca-
tion we consider two possibilities: deterministic data structures [4, 3] and a randomized data structure, called
Voronoi hierarchy [15], inspired from the Delaunay hierarchy of [10].

5.1 Deterministic data structures

Data structures from [4] or [3] are designed for a general planar subdivision and therefore can be used for the
Hausdorff Voronoi diagram without any adaptation. It only remains to clarify parametric search on candidate
edge u v ∈ fskel(C i+1).

13

ParametricSearch(u v):

s1← u ; s2← v

run the point location algorithm, but when a call to the SIDE primitive predicate is reached, instead call the
SimulateSide function below

SimulateSide(L):

x1← SIDE(L, s1); x2← SIDE(L, s2)

if x1 = x2 then
return x1

else if x1 = 0 or x2 = 0 then
return x1+x2

else if x1 6= x2 and x1 6= 0 and x2 6= 0 then
let t be the intersection of L with segment s1s2

find C such that t ∈ hregFi
(C)

if d f(t ,C i+1)< d f(t ,C) then
stop parametric search with result t

else
c1← cand(s1, t); c2← cand(t , s2)
if c1 = c2 then

stop parametric search with result “not found”
else if c1 then

s2← t ; return x1

else if c2 then
s1← t ; return x2

end if
end if

end if

Figure 11: Parametric search

We will rely on the point location algorithm to implement parametric search. It can be verified that that
each geometric predicate that involves query point q in the algorithms of [4, 3] can be written as a finite
function of primitive geometric predicates of the following form: “On which side of a given line L does point
q lie?”, called the SIDE predicate. The parametric search for t ∈ u v is in fact a simulation of a point loca-
tion query for the unknown point t . It is a simplified form of the parametric search of [19] and similar to
the method of [7]. During this simulation, we keep track of a segment s1s2 that (possibly) contains t . Ini-
tially, s1s2 = u v . Whenever, the primitive predicate SIDE is called in the simulation (with some line L as an
argument), we check the SIDE predicate for both endpoints of the segment s1s2. If the answer for both en-
dpoints is the same or at least one of the answers is zero (i.e., one endpoint is on line L), then we know the
answer of the geometric predicate for the possible t and we continue with the simulation. Otherwise s1s2

intersects in its interior line L at one point; call this point w . We find out the Hausdorff region in which w
lies in HVD(Fi) by performing the normal point location query (it costs at most tq(n)). Say w ∈ hregFi

(C w).
If d f(w ,C i+1)< d f(w ,C w), then w is the point we were looking for, so we can stop the parametric search and
return t = w . Otherwise, we compute the predicates cand(s1w) and cand(w s2). If the predicate is true for
exactly one of s1w and w s2, we update s1s2 to the candidate edge among s1w and w s2. Moreover, we know
the answer of the geometric predicate for the unknown t (because t is possibly contained in the interior of
the candidate edge) and we continue with the simulation. Otherwise, we stop the parametric search knowing
that there is no t ∈ hregFi+1

(C i+1). See figure 11 for pseudocode.

Theorem 5.1. The parametric search can be implemented in tp(n) =O((tq(n))2) time.

Proof. The point location query operation has tq(n) elementary steps. Some of them are calls to the side
geometric predicate. In the parametric search, the calls to the side predicate are substituted by simulation
calls. Each simulation call takes time O(tq(n)), because in it we have a constant number of point location
queries.

14

5.2 The Voronoi hierarchy for the Hausdorff Voronoi diagram

Our randomized point location data structure is an augmentation of the Voronoi hierarchy [15, 6]. A ran-
domized hierarchical point location data structure called Delaunay hierarchy [10] was proposed for the in-
cremental construction of the Delaunay triangulation of a set of points. The Delaunay hierarchy is analogous
to a skip list [26] for 2D data and yields an optimal randomized incremental construction of the Delaunay tri-
angulation. A similar point location data structure, called Voronoi hierarchy, is presented in [15]. The current
Voronoi hierarchy does not perform efficiently for sites with empty regions and its performance has not been
analyzed for sites of non-constant complexity. However, empty regions and sites of non-constant complexity
are serious issues that are inherent to the Hausdorff Voronoi diagram. In the following, we define this hier-
archy for a family F of general sites and we explain how we address these issues, by augmenting the Voronoi
hierarchy.

Every level ` of the hierarchy corresponds to a subset F (`) of F and also stores the Voronoi diagram of F (`).
Level 0 corresponds to F itself. A Voronoi hierarchy of height k is then: F = F (0) ⊇ F (1) ⊇ . . . ⊇ F (k). For all
` ∈ {1, . . . , k }, F (`) is a random sample of F (`−1) according to a Bernoulli distribution with parameter β ∈ (0, 1).
It is not difficult to show that the expected height of the hierarchy is O(log m), where m is the number of sites.

Point location in the Voronoi hierarchy works as follows: Starting from the topmost level k , for each level `,
find the site in F (`) which is nearest to the query point q , by performing a walk. Each step of the walk reduces
the distance of q from the current site S by moving to a site, neighboring to S. When continuing to the lower
level `− 1, start from the site that was found in the previous level `. Answer the query with the closest site
found at level 0.

For Hausdorff Voronoi diagrams several complications with the hierarchy arise. In particular, (a) perform-
ing the walk efficiently for sites of non-constant complexity, (b) the need of performing parametric search on
the hierarchy and performing walks for an unknown point along a candidate edge, (c) the existence of empty
Voronoi regions, i.e., some cluster (site) P can have empty region in level `, but non-empty region in level
`+ 1; if such a cluster P is the last cluster visited in level `+ 1 during a walk, we will not know with which
cluster to continue in level `. In the following we augment the hierarchy with the ability to handle these
issues efficiently.

The following results show that the expected length of a walk at level ` is constant, and that the total size
of the hierarchy is O(n).

Lemma 5.1. Let q be a point in R2 and let S(`+1) ∈ F `+1 be the site nearest to q at level `+ 1. The expected
number of sites in F (`), which are strictly closer to q than is S(`+1), is constant.

Proof. The proof is an adaptation of the proof of lemma 9 in [15].
The probability that S(`+1) is the k -th nearest site to q , among all sites in F (`), isβ (1−β)k−1. This is because

the probability that a site among the k − 1 sites, nearest to q in F (`), does not belong in F `+1 is (1−β), the
probability that the k -th nearest site to q in F (`) belongs in F `+1 is β , and all these events are independent.
Therefore, the expected number of sites in F (`), which are strictly closer than S(`+1) to q , is

N` <

|F (`) |
∑

k=1

k (1−β)k−1β <β
∞
∑

k=1

k (1−β)k−1 =
1

β
,

which is constant.

Lemma 5.2. Let S`0,S`1, . . .S`r ∈ F (`) be the sequence of sites visited during a walk at level ` to locate the site in F (`)

nearest to query point q. Let S`+1 ∈ F (`+1) be the site nearest to q at level `+ 1. Assume that either S`+1 = S`0, or
d f(q ,S`0)< d f(q ,S`+1), and d f(q ,S`i)< d (q ,S`i−1), for i ∈ {1, . . . , r }. Then, the expected length of the walk at level
` is constant.

Proof. Distance to q during the walk is monotonically decreasing, and the walk starts either at S`+1 or at a
site strictly closer to q than S`+1 is. Therefore, each of the sites S`1, . . . , S`r is strictly closer to q than S`+1. By
lemma 5.1 the expected number of such sites is constant.

Lemma 5.3. Let the time complexity of one step of the walk be bounded by ts with ts =Ω(log n). Then, a point
location query is answered in expected O(ts log m) time, where m is the number of sites.

Proof. The expected length of the walk at level ` is constant. The expected time spent in level ` is thus O(ts).
Going to an appropriate cluster in the level below takes time O(log n) = O(ts). The expected height of the
hierarchy is O(log m) Thus, the point location query is answered in expected O(ts log m) time.

15

c

v1v2

v3

C0

C1

C2

C3

q

Figure 12: Vertices v1, v2, v3 are pure vertices on the Hausdorff boundary of active point c . Region fregĈ (`) (c) is shown
gray and its boundary is drawn heavy. In this example, for the given q , the neighboring cluster computed is C ′ =C 2.

Lemma 5.4. Let n be the sum of the sizes of all sites in a family of sites F . Assuming that the underlying type of
Voronoi diagram for F is of size O(n), then the expected size of the Voronoi hierarchy for F is also O(n).

Proof. For each site Si ∈ F the expected number of levels where Si appears is 1
1−β . At each level `, the size of

the Voronoi diagram is O(|F `|), where |F `| is the sum of the sizes of all sites in F `. Since sampling is performed
independently, the expected sum of sizes of all sites at all levels of the hierarchy is

N =
m
∑

i=1

1

1−β
size(Si)<

1

1−β

∞
∑

i=1

size(Si) =O(n).

5.2.1 A step in the walk

We now describe how to perform a step of the walk in a level ` of the hierarchy. To perform this step efficiently
we augment the hierarchy with a list of points for each cluster at every level that have non-empty region at the
diagram of that level. We will use the notation hreg(`)... (·) for the Hausdorff region of a cluster or a point at level `

of the hierarchy. Consider a cluster C at some level `with non-empty Hausdorff region hreg(`)F (C) = hregF (`) (C).

Definition 5.1. We say that point c ∈ C is active at level `, if hreg(`)F (c) 6= ;; otherwise c is called inactive at
level `. Denote the subset of active points of cluster C at level ` by Ĉ (`). We call Ĉ (`) the active set of C at level
`. We also define the shorthand notation d (`)f (t ,C) = d f(t ,Ĉ (`)).

The following additional data are stored for each cluster C in each level ` such that C ∈ F (`):

• The active set Ĉ (`) of C at level ` is stored in counterclockwise order of CH(Ĉ (`)) in a balanced binary
tree; CH(Ĉ (`)) is a subsequence of CH(C).

• For each active point c ∈ Ĉ (`), we keep a list of all pure vertices adjacent to hreg(`)F (c) (see figure 12),
sorted in counterclockwise order along the boundary of the region and stored in a balanced binary
tree.

Now, we describe how to perform one step of the walk. Let C be the current cluster visited during the walk
in level `, and q be the query point. We first describe which is the next cluster C ′ in the walk. Let c be a point
of Ĉ (`) such that d (q , c) = d (`)f (q ,C), i.e., among points in Ĉ (`), c is farthest from q (q ∈ fregĈ (`) (c)). Consider

a counterclockwise traversal of the Hausdorff boundary of hreg(`)F (c). If the pure vertices on this Hausdorff

boundary are encountered in the order v1, . . . , v j , then the rays −→c v1, . . . , −→c v j partition fregĈ (`) (c) into j + 1
unbounded regions (see figure 12). If −→cq is just after ray −→c vi or just before ray −−→c vi+1, then set C ′ = C i , where
C 0, . . . , C j , C j+1 are the clusters in the counterclockwise order inducing the Hausdorff boundary of c .

16

b

c1

c2

c3

c4

hreg
(`)
Fi

(Ci+1)

v

Kv

(a)

b

c2

c3

c4c4

hreg
(`)
Fi

(Ci+1)

v
Kv

c1

(b)

Figure 13: For cluster C = {b , c1, . . . , c4} ∈ F (`), point b 6∈ Ĉ (`). Say c1 and c2 lie on the two tangents from b to Ĉ (`). In
subfigure (a), the statement of lemma 5.5 is true and we have v /∈ fregĈ (`)∪{b}(b). In subfigure (b), v ∈ fregĈ (`)∪{b}(b), which
gives a contradiction. Region hregF (`) (C) is shown as a gray area and a minimum enclosing circle centered at v is shown
dotted.

We first describe how to find the farthest from q point c of Ĉ (`). Initially, we find the farthest from q point
b of C . If b is active, we set c = b . Otherwise, b is inactive and in that case we take the (at most) two tangents
from b to convĈ (`), which touch convĈ (`) at points c1, c2 ∈ CH(Ĉ (`)). Finally, we set c to be the farthest from
q among c1 and c2. The tangents can be computed with binary search in CH(Ĉ (`)). The correctness of the
procedure to compute c is proved in the following.

Lemma 5.5. Let C be a cluster at level ` and b an inactive point of cluster C at level `. Then, fregC (b) ⊂
fregĈ (`) (c1)∪ fregĈ (`) (c2), where c1, c2 ∈ Ĉ (`) lie on the two tangents from b to convĈ (`).

Proof. Set C ′ = Ĉ (`) ∪ {b}. Since C ′ ⊆ C , we have fregC (b) ⊆ fregC ′ (b) and thus it is enough to prove that
fregC ′ (b)⊂ fregĈ (`) (c1)∪ fregĈ (`) (c2).

First, it is not difficult to see that c1 and c2 are consecutive points in CH(Ĉ (`)). Assume for the sake of
contradiction that fregC ′ (b)∩ fregĈ (`) (c3) 6= ; for some c3 ∈ Ĉ (`) such that c3 is different from c1 and c2. Since
both fskel(Ĉ (`)) and fskel(C ′) have a tree-like structure and fregC ′ (b) includes elements from at least three
regions of FVD(Ĉ (`)), fregC ′ (b) has to contain at least one vertex v of FVD(Ĉ (`)). Since v ∈ fregC ′ (b), we have

d (v,b) < d (v, c) for every c ∈ Ĉ (`). But v also belongs to fskel(C)∩hreg(`)F (C), which implies d (v, c) > d (v,b)
for some c ∈ Ĉ (`), since b is not active at level `; a contradiction.

As soon as we have c , then C ′ can be computed by binary search of the slope of −→cq in the slopes of −→c v1,
. . . , −→c v j (see figure 12). The balanced binary tree of pure vertices v1, . . . , v j allows as to do it in O(log j) time.
Therefore, computing C ′, given C and q , takes O(log n) time in total.

Let D(x0, R) denote the closed disk with center x0 and radius R . We now argue about correctness of com-
putation of C ′.

Lemma 5.6. Let C ′ be computed from C and q as above and among clusters in F (`), C is not closest to q. Then
d f(q ,C ′)< d (`)f (q ,C)≤ d f(q ,C).

Proof. Let q be furthest from c among points in Ĉ (`) and define the closed disk Dq = D(q , |cq |). Then, Dq ⊇
Ĉ (`). We treat separately the following two cases:

1. Ray −→cq intersects the Hausdorff boundary of c . In that case, segment cq intersects the Hausdorff
boundary of c at a single point x in the interior of segment cq , i.e., |c x | < |cq | (see figure 14). Point
x is equidistant from C and C ′. For the closed disk Dx = D(x , |c x |), we have Dx ⊃ C ′ and Dq ⊃ Dx .
Moreover, the only point on the boundary of Dq which lies also in Dx is c and c /∈ C ′ (because c ∈ C).
Therefore, C ′ is contained in the interior of Dq which implies d f(q ,C ′)< d f(q ,Ĉ (`))≤ d f(q ,C).

17

c

v1
v2

v3

q C ′

x

Dq

Dx

Figure 14: Ray −→cq intersects the Hausdorff boundary of c at point x . Closed disk Dx contains both C and C ′. Moreover,
Dx ⊂Dq .

c

v1v2

v3

q C ′

x

Dq

Dx
Dy

c∗

yK

Figure 15: Ray −→cq does not intersect the Hausdorff boundary of c , but it intersects K , the boundary of fregĈ (`) (c), at a
point y not closest to C among clusters in F (`). The mixed vertex x is closer to y on curve K and is equidistant to C and
C ′. D f

x is depicted in gray.

18

2. Ray −→cq does not intersect the Hausdorff boundary of c . In that case, let K = bd fregĈ (`) (c). Then, K
intersects with segment cq at a single point y and thus |c y | ≤ |cq | (see figure 15). Consider the closed
disk Dy = D(y , |c y |). We have Ĉ (`) ⊂ convĈ (`) ⊂ Dy ⊆ Dq . Moreover, since y lies on the interior of
an edge of FVD(Ĉ (`)), the boundary of Dy contains exactly two points c and c ∗ of Ĉ (`) and all other
points of convĈ (`) are contained in the interior of Dy . Now, walk on K from y until you reach the
Hausdorff boundary of c , say at point x . Then, x is a mixed vertex of C and thus it is equidistant from
c , c ∗, and the neighboring cluster C ′. Consider the closed disk Dx = D(x , |c x |). Cluster C ′ is limiting
w.r.t. chord c c ∗ (see definition 2.2). Assume without loss of generality that C ′ is forward limiting. Then,
C ′ ⊂D f

x∪convĈ (`). Since y is not closest to C among clusters in F (`), we have y ∈ T (x) and D f
x ⊂Dy ⊆Dq

(see figure 15, where D f
x is shown with gray color). Except c and c ∗ every point in D f

x ∪ convĈ (`) is
contained in the interior of Dq . Thus, C ′ (which contains neither c nor c ∗) is contained in the interior
of Dq and this implies d f(q ,C ′)< d f(q ,Ĉ (`))≤ d f(q ,C).

As soon as C ′ is computed from C and q , we compare d f(q ,C ′) and d f(q ,C). If d f(q ,C ′)< d f(q ,C), then we
continue the walk with C ′, otherwise the walk at level ` stops.

Therefore, we have the following.

Lemma 5.7. A step of the walk takes O(log n) time.

Corollary 5.1. A point location query is answered in expected O(log2 n) time.

5.2.2 Parametric search in the Voronoi hierarchy

We now explain how to do parametric search on candidate edge u v ∈ fskel(C i+1). For ` ∈ {0, . . . , k }, let I ` be
the interval of points on u v which are closer to C i+1 than any cluster in F (`)i . (By convention, I k+1 = u v .)
Because of property 2.1, I ` is an open segment (or ray or line) or empty and we have u v = I k+1 ⊇ I k ⊇ I k−1 ⊇
· · · ⊇ I 1 ⊇ I 0. If I ` 6= ;, our algorithm will compute successively the leftmost endpoint u ` of interval I `, i.e., the
endpoint closer to u . If I 0 6= ;, then u 0 is a point on the boundary of the Hausdorff region of C i+1 from which
we can start tracing this region.

The computation of u ` happens entirely in level ` of the hierarchy. From the previous level, we already
have u `+1 and the cluster of F (`+1)

i closest to u `+1. Within level `, the algorithm computes a sequence of points
u `+1 = a 0, a 1, . . . , a r = u `. At all times, we keep track of the cluster in F `i that is closest to each of these points.
We compute a j+1 from a j as follows. Let C a j be the cluster closest to a j . Observe that d f(x ,C i+1) = d (x , c) =
d (x , c ∗), for every x ∈ u v , where c c ∗ is the chord of C i+1 corresponding to u v , and thus the computation of
d f(x ,C i+1) as above takes constant time.

• If d f(a j ,C i+1)≤ d f(a j ,C a j), we set u ` = a j and continue to the next level.

• Else, if d f(v,C a j)≤ d f(v,C i+1), we stop and report that t does not exist, and that hregFi+1
(C i+1) is empty.

• Otherwise, the Hausdorff bisector of C i+1 and C a j crosses the interior of a j v at a single point, a j+1,
for which d (a j+1,C i+1) = d (a j+1,C a j). To determine a j+1 we do a parametric search in FVD(C a j) with
segment a j v . Then, we perform a walk (in level `) from cluster C a j to determine the cluster C a j+1 closest
to a j+1. If C a j+1 =C a j , we set u ` = a j and continue to the next level.

Pseudocode for the parametric search in the Voronoi hierarchy is given in figure 16. Pseudocode for the
parametric search in FVD(C) is given in figure 17 and it is similar to the parametric search in section 5.1.
Correctness of the algorithm is implied by the following: If parametric search stops at level ` with answer
“not found”, then there exist clusters C ′, C ′′ ∈ F (`)i such that hreg{C i+1,C ′,C ′′}(C i+1) = ;. Otherwise, interval
u `+1u ` /∈ hregFi+1

(C i+1).
We now argue about time complexity. We start with the following.

Lemma 5.8. A parametric search query in FVD(C) can be performed in time O(log2|C |).

Proof. The static point location data structure of [16] has size O(|C |), construction time O(|C | log |C |), and
point location query time tq =O(log |C |). Arguing as in section 5.1, the parametric search query can be im-
plemented in O(t 2

q) =O(log2 |C |) time.

Lemma 5.9. The expected number of clusters visited during the parametric search at level ` is constant.

19

ParametricSearchVH(u v):

a ′← u
walk in level k to cluster C a ′ closest to a ′

for `← k downto 0 do:
repeat:

a ← a ′; C a ←C a ′

if d f(a ,C i+1)≤ d f(a ,C a) then
a ′← a

else if d f(v,Ca)≤ d f(v,C i+1) then
stop parametric search with result “not found”

else
a ′← ParametricSearchFVD(C a , a , v)
walk in level ` from cluster C a to C a ′ closest to a ′

end if
until a ′ = a
if ` > 0 then

C a ′ ← cluster of level `−1 linked from C a ′ and closer to a ′

end if
end for
return a ′

Figure 16: Parametric search in the Voronoi hierarchy

ParametricSearchFVD(C ,x , y):

s1← x ; s2← y

run the point location algorithm FVD(C), but when a call to the SIDE primitive predicate is reached, instead
call the SimulateSide function below

SimulateSide(L):

x1← SIDE(L, s1); x2← SIDE(L, s2)

if x1 = x2 then
return x1

else if x1 = 0 or x2 = 0 then
return x1+x2

else if x1 6= x2 and x1 6= 0 and x2 6= 0 then
let z be the intersection of L with segment s1s2

find p ∈C such that z ∈ fregp (C)
if d f(z ,C i+1) = d (z , p) then

stop ParametricSearchFVD and return point z
else if d f(z ,C i+1)< d (z , p) then

s1← t ; return x2

else if d f(z ,C i+1)> d (z , p) then
s2← t ; return x1

end if
end if

Figure 17: Parametric search in the farthest Voronoi diagram FVD(C)

20

Proof. The procedure of parametric search in a candidate edge u v at level ` consists of a successive search
for points u `+1 = a 0, a 1, . . . , a r = u ` as described before. For each such point a j , a walk from C a j−1 to C a j is
performed. We first claim that the expected length r of the sequence a 0, a 1, . . . , a r is constant.

Each point a j , for j ∈ {1, . . . , r }, is by construction equidistant from C i+1 and C a j−1 . Cluster C a j−1 must be
enclosed in disk Da j , centered at a j and with radius d f(a j ,C i+1). Furthermore, since d f(v,C a j−1)> d f(v,C i+1),
C a j−1 must be enclosed in Dr

a j
∪convC i+1 (assuming that u is an ancestor of v in a rooted tree, corresponding

to fskel(C i+1)). In other words, C a j−1 is a rear limiting cluster with respect to c c ∗. By lemma 1 from [22],
C a j−1 ⊂Da 0 . Note, that C a r =C a r−1 . Thus, C a j ⊂Da 0 for all j ∈ {0, . . . , r }.

Let C `+1 ∈ F (`+1)
i be the cluster nearest to a 0 = u `+1 in level `+ 1. By lemma 5.1, the expected number of

clusters in F (`)i that are enclosed in Da 0 is constant. Since all C a j , for j ∈ {0, . . . , r }, are enclosed in disk Da 0 , r
is expected to be constant.

Now, note that for each j ∈ {1, . . . , r }, d f(a j ,C a j−1) = d f(a j ,C i+1), and a j is closer to C i+1 than to any cluster

in F (`+1)
i . Therefore, by lemma 5.2, the expected length of the walk from C a j−1 to C a j is constant.
To summarize, during the parametric search at level ` an expected constant number of walks is per-

formed, of expected constant length each. Thus, the claim follows.

Finally, we prove expected O(log3 n) time for the parametric search operation in the Voronoi hierarchy:

Lemma 5.10. A parametric search query in the Voronoi hierarchy takes expected time O(log3 n).

Proof. The expected number of levels in the hierarchy is O(log n). In each level we visit an expected con-
stant number of clusters (lemma 5.9). For each cluster C that we visit we make a parametric search in time
O(log2|C |) (lemma 5.8) and we compute its neighboring cluster in time ts =O(log n). Therefore, the paramet-
ric search query in the Voronoi hierarchy takes expected time O(log3 n).

5.2.3 Updating the hierarchy when a cluster disappears

During the incremental construction of the Hausdorff Voronoi diagram, it can happen that the initially non-
empty region of a cluster P becomes empty because of the insertion of subsequent clusters. We describe how
to update the hierarchy when an initially non-empty region of a cluster P becomes empty.

Definition 5.2. We say that a cluster P ∈ Fi disappears at level ` as a result of insertion of cluster C i+1 if
hreg(`)Fi

(P) 6= ; and hreg(`)Fi+1
(P) = ;.

Cluster P can disappear from many levels where it appeared because of the insertion of C i+1, but not
necessarily all of them.

Definition 5.3. We say that a cluster P ∈ Fi is critical at level `+1 if it disappears at level ` but not at level `+1.

Obviously, either a disappearing cluster is critical at a single level or it is not critical (it disappears from all
levels where it appeared). We must pay special attention to a cluster P as soon as it becomes critical at level
`+ 1, because P is an obstacle to correct point location. Indeed, for query point q ∈ hreg(`+1)

Fi+1
(P), we do not

know in which cluster to continue the point location in level `. One straightforward way to fix the problem
would be to remove criticality by erasing P from all levels, like in [15], but we can not afford to do it in the case
of Hausdorff Voronoi diagrams, because it is computationally expensive. Instead, we resort to linking cluster
P at level `+1 to at most two other clusters C ′, C ′′ in level `with the following property: Every q ∈ hreg(`+1)

Fi+1
(P)

is closer to at least one of C ′, C ′′ than P . By property 2.4, such C ′ and C ′′ are guaranteed to exist in a family of
non-crossing clusters and we explain how to find them in the following.

Suppose P is critical at level `+1, (i.e., hreg(`+1)
Fi+1
(P) 6= ;, but hreg(`)Fi+1

(P) = ;). While inserting C i+1 at level `
we temporarily keep track of the list V of all the (deleted) P-mixed vertices at level `.

At level `+ 1, for every P-mixed vertex v of hreg(`+1)
Fi+1
(P), we check if v is closer to C i+1 or to P (this can be

done in O(log n) time per vertex). If d f(v,C i+1) ≥ d f(v, P), then we automatically know the point c ∈ C i+1 for
which d f(v,C i+1) = d (v, c). Point c /∈ conv P and it will be useful at level `. The linking is performed as follows.

1. If all P-mixed vertices of hreg(`+1)
Fi+1
(P) are closer to C i+1 than to P , we link only to C i+1.

2. Else we identify cluster K at level ` such that {K ,C i+1} is a killing pair for P .

If C i+1 is a cluster at level `+ 1 (in this case all P-mixed vertices must be closer to P) we link only to
cluster K .

Otherwise, we link to both C i+1 and K .

21

AllCloserToNew← TRUE
for each v in the set of P-mixed vertices of hreg(`+1)

Fi+1
(P) do:

result← d f(v,C i+1)−d f(v, P)
if result> 0 then

AllCloserToNew← FALSE
let c ∈C i+1 be such that d f(v,C i+1) = d (v, c)
break out of for loop

end if
end for
if AllCloserToNew then

link P at level `+1 only to C i+1

else
K ←ComputeKinLevelBelow(c)
if C i+1 ∈ F (`+1)

i+1 then
link P at level `+1 only to K

else
link P at level `+1 to both C i+1 and K

end if
end if

Figure 18: Linking critical cluster P at level `+1

Pseudocode for the linking procedure is given in figure 18.
We determine cluster K of the killing pair using the list V of the P-mixed vertices of level `, and the point

c ∈ C i+1, c /∈ conv P , that was computed at level `+ 1. Each such vertex v ∈ V is equidistant from points p ,
p ∗ ∈ P , and q ∈Q , for some Q ∈ F (`)i . We simply check whether c and q are on different sides of the chord
p p ∗. If yes, then we set K =Q and we stop. Note that in this case Q and C i+1 are limiting clusters for p p ∗

of opposite type (one rear and one forward limiting) and they form a killing pair for P (see definition 2.2 and
property 2.4). It remains to argue about correctness of the linking.

Lemma 5.11. If P at level `+ 1 is linked only to C i+1 (case 1), then all points of hreg(`+1)
Fi+1
(P) are closer to C i+1

than P.

Proof. In this case, all P-mixed vertices of hreg(`+1)
Fi+1
(P) are closer to C i+1 than P . Then, by property 2.2, no

portion of fskel(P) in hreg(`+1)
Fi+1
(P) can be closer to P than C i+1. This implies that no point in hreg(`+1)

Fi+1
(P) can

be closer to P than C i+1.

Lemma 5.12. If P at level `+1 is linked to cluster K (case 2), then K is a unique cluster at level ` that constitutes
together with C i+1 a killing pair of P.

Proof. Let u be a P-mixed vertex of hreg(`+1)
Fi+1
(P) closer to P than C i+1, which reveals a point c ∈C i+1 for which

c /∈ conv(P). Since we are in case 2, at least one such mixed vertex exists. By property 2.2, the portion of
fskel(P) in hreg(`)Fi

(P) is a connected subtree that can be regarded without loss of generality as a descendant of

u in T (P). Then, C i+1 is a forward limiting cluster for any P-mixed vertex v of hreg(`+1)
Fi+1
(P), that is, C i+1 ⊂Dv

and in particular, C i+1 ⊂D f
y ∪conv P ; thus, c ∈D f

v . Let w be the first P-mixed vertex of hreg(`)Fi
(P) encountered

as we traverse fskel(P) from u to its portion enclosed in hreg(`+1)
Fi+1
(P). Let Q be the cluster inducing w and let q

be the point in Q for which d (w ,q) = d f(w ,Q). By definition of w , cluster Q must be rear limiting with respect
to w and thus q ∈ Dr

w . Thus, {Q ,C i+1} is a killing pair for P and q , c lie at opposite sides of the chord of P

inducing w . It is easy to see (see lemma 2 of [22]) that all other mixed vertices vi of hreg(`)Fi
(P), where vi 6= r ,

must be induced by clusters Qi that are forward limiting with respect to vi . Thus, any point qi , inducing a
P-mixed vertex vi , considered during our algorithm, other than q , must lie on the same side of Dvi as c . Thus,
our algorithm correctly sets K =Q . Furthermore, there is no other cluster on level ` that can form a killing
pair with C i+1 for P .

Corollary 5.2. In case 2 of the linking algorithm, all points of hreg(`+1)
Fi+1
(P) are closer to either C i+1 or K than P.

If in addition C i+1 ∈ F (`+1)
i+1 , then all points of hreg(`+1)

Fi+1
(P) are closer to K than P.

22

5.2.4 Complexity analysis for the Voronoi hierarchy

The remaining details of the complexity analysis for constructing HVD(F) with the help of the Voronoi hier-
archy are given here.

We first argue about structural changes during the incremental construction in all Hausdorff Voronoi
diagrams which are maintained (one per level) within the hierarchy. Recall from section 4, that the expected
number of structural changes is proportional to the expected number of appearing features, where features
correspond to pure and mixed configurations (see definitions 4.2 and 4.3).

Lemma 5.13. The expected number of features that appear at any level of the Hausdorff Voronoi hierarchy
during the incremental construction is O(n).

Proof. The expected total number of points in F (`) isβ `n . Using theorem 4.2, the expected number of features
that appear during the incremental construction of HVD(F (`)) at level ` is O(β `n). Therefore, the expected
number of features that appear at any level is

∑∞
`=0 O(β `n) =O(n).

We now argue about space complexity. The expected total sizes of the diagrams are O(n) at any time (this
is a consequence of lemma 5.13). We augment each level ` of the Voronoi hierarchy with lists of active points,
one for each cluster C with non-empty region at level `. For each point c in such a list we store a list of all
pure vertices, adjacent to its region hregF (`)i

(c). Each region has a link to one or two clusters in the level below.

Therefore, the expected space taken by the hierarchy at any time is equal to the O(n).
We remark that the two additional data structures (namely, the lists of active points for each cluster, and

the list of pure vertices for each active point) need to be updated if and only if the region of the corresponding
cluster or active point changes. Since the overall expected number of such feature changes is linear and
modification of each data structure takes O(log n) time, the overall expected time needed for maintenance
of these additional data structures during the construction algorithm is O(n log n). We also do some work
on the P-mixed vertices of a critical cluster P at level `+ 1, but this happens only one time during the whole
incremental construction. We have at most O(n) point locations each of which takes time O(log2 n). We also
have at most m parametric searches which take time O(log3 n) each. All these imply the following.

Theorem 5.2. The Hausdorff Voronoi diagram of non-crossing clusters can be constructed in O(n log3 n) ex-
pected time and O(n) expected space, using the Voronoi hierarchy.

6 Discussion and open problems

We have provided improved complexity algorithms for constructing the Hausdorff Voronoi diagram of a fam-
ily of non-crossing clusters of points. In future work we will also investigate families of arbitrary point clusters
(i.e., possibly crossing). The complexity of the diagram in this case can vary from linear to quadratic and
therefore an output-sensitive algorithm is most desirable. The randomized incremental construction in this
case will have to be augmented with the ability to handle disconnected Voronoi regions. There is still a gap
in the complexity of constructing the Hausdorff Voronoi diagram between our best O(n log2 n (log log n)2) ex-
pected time algorithm and the trivial Ω(n log n) time lower bound. An open problem is to close this gap. It
is interesting that for the L∞ metric, an O(n log n) time algorithm is known [25]. Another direction for re-
search is the study the problem for clusters of other shapes, such as segments or convex polygons. Finally,
it would be interesting to apply our incremental approach to the farthest polygon Voronoi diagram, as this
could possibly improve on the best known O(n log3 n) algorithm of [7].

Acknowledgment

Supported in part by the Swiss National Science Foundation grant 134355, under the auspices of the ESF
EUROCORES program EuroGIGA/VORONOI.

References

[1] Manuel Abellanas, Gregorio Hernandez, Rolf Klein, Victor Neumann-Lara, and Jorge Urrutia. A combinatorial prop-
erty of convex sets. Discrete and Computational Geometry, 17(3):307–318, 1997.

[2] Manuel Abellanas, Ferran Hurtado, Christian Icking, Rolf Klein, Elmar Langetepe, Lihong Ma, Belén Palop, and Vera
Sacristán. The farthest color Voronoi diagram and related problems. In Proceedings of the 17th European Workshop
on Computational Geometry (EWCG), pages 113–116, 2001.

23

[3] Lars Arge, Gerth Stolting Brodal, and Loukas Georgiadis. Improved dynamic planar point location. In Proceedings of
the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 305–314, 2006.

[4] Hanna Baumgarten, Hermann Jung, and Kurt Mehlhorn. Dynamic point location in general subdivisions. In Pro-
ceedings of the 3rd annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 250–258, 1992.

[5] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational Geometry. Algorithms and
Applications. Springer-Verlag, 3rd edition, 2008.

[6] Jean-Daniel Boissonnat, Camille Wormser, and Mariette Yvinec. Curved Voronoi diagrams. In Jean-Daniel Bois-
sonnat and Monique Teillaud, editors, Effective Computational Geometry for Curves and Surfaces, pages 67–116.
Springer Berlin Heidelberg, 2006.

[7] Otfried Cheong, Hazel Everett, Marc Glisse, Joachim Gudmundsson, Samuel Hornus, Sylvain Lazard, Mira Lee, and
Hyeon-Suk Na. Farthest-polygon Voronoi diagrams. Computational Geometry, 44(4):234–247, 2011.

[8] Kenneth Clarkson and Peter Shor. Applications of random sampling in computational geometry, II. Discrete and
Computational Geometry, 4:387–421, 1989.

[9] Frank Dehne, Anil Maheshwari, and Ryan Taylor. A coarse grained parallel algorithm for Hausdorff Voronoi dia-
grams. In Proceedings of the International Conference on Parallel Processing (ICPP), pages 497–504, 2006.

[10] Olivier Devillers. The Delaunay Hierarchy. International Journal of Foundations of Computer Science, 13:163–180,
2002.

[11] Herbert Edelsbrunner, Leonidas J. Guibas, and Micha Sharir. The upper envelope of piecewise linear functions:
algorithms and applications. Discrete and Computational Geometry, 4:311–336, 1989.

[12] Herbert Edelsbrunner, Leonidas J. Guibas, and Jorge Stolfi. Optimal point location in a monotone subdivision. SIAM
Journal on Computing, 15(2):317–340, 1986.

[13] Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir. Randomized incremental construction of Delaunay and
Voronoi diagrams. Algorithmica, 7:381–413, 1992.

[14] Daniel P. Huttenlocher, Klara Kedem, and Micha Sharir. The upper envelope of Voronoi surfaces and its applications.
Discrete and Computational Geometry, 9:267–291, 1993.

[15] Menelaos Karavelas and Mariette Yvinec. The Voronoi diagram of convex objects in the plane. Technical report
RR-5023, INRIA, 2003.

[16] David Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing, 12(1):28–35, 1983.

[17] Rolf Klein. Concrete and abstract Voronoi diagrams, volume 400 of Lecture Notes in Computer Science. Springer, 1989.

[18] Rolf Klein, Kurt Mehlhorn, and Stefan Meiser. Randomized incremental construction of abstract Voronoi diagrams.
Computational Geometry, 3(3):157–184, 1993.

[19] Nimrod Megiddo. Applying parallel computation algorithms in the design of serial algorithms. Journal of the ACM,
30(4):852–865, 1983.

[20] Ketan Mulmuley. Computational Geometry: An introduction through randomized algorithms. Prentice Hall, 1993.

[21] Evanthia Papadopoulou. Critical area computation for missing material defects in VLSI circuits. IEEE Transactions
on CAD of Integrated Circuits and Systems, 20(5):583–597, 2001.

[22] Evanthia Papadopoulou. The Hausdorff Voronoi diagram of point clusters in the plane. Algorithmica, 40(2):63–82,
2004.

[23] Evanthia Papadopoulou. Net-aware critical area extraction for opens in VLSI circuits via higher-order Voronoi dia-
grams. IEEE Transactions on CAD of Integrated Circuits and Systems, 30(5):704–716, 2011.

[24] Evanthia Papadopoulou and D. T. Lee. The Hausdorff Voronoi diagram of polygonal objects: a divide and conquer
approach. International Journal of Computational Geometry and Applications, 14(6):421–452, 2004.

[25] Evanthia Papadopoulou and Jinhui Xu. The L∞ Hausdorff Voronoi diagram revisited. In Proceedings of the 8th
International Symposium on Voronoi Diagrams in Science and Engineering (ISVD), pages 67–74, 2011.

[26] William Pugh. Skip lists: a probabilistic alternative to balanced trees. Commun. ACM, 33(6):668–676, 1990.

[27] Neil Sarnak and Robert Endre Tarjan. Planar point location using persistent search trees. Communications of the
ACM, 29(7):669–679, 1986.

[28] Micha Sharir. The Clarkson-Shor technique revisited and extended. Combinatorics, Probability and Computing,
12(2):191–201, 2003.

24

	Introduction
	Previous work
	Our contribution

	Definitions and Structural properties
	General incremental construction algorithm
	A refinement of the diagram
	Computing vertices of fskel(Ci+1) closest to Ci+1
	Edges of fskel(Ci+1) through which `39`42`"613A``45`47`"603Abd(hregFi+1(Ci+1)) passes
	Computing the intersection of e0 with `39`42`"613A``45`47`"603Abd(hregFi+1(Ci+1))
	Computing the boundary of hregFi+1(Ci+1)
	Updating the diagram

	Complexity analysis
	Expected number of operations
	Configurations
	Configurations of weight at most k
	Appearance of a feature

	Overall complexity

	Point location data structures and parametric search
	Deterministic data structures
	The Voronoi hierarchy for the Hausdorff Voronoi diagram
	A step in the walk
	Parametric search in the Voronoi hierarchy
	Updating the hierarchy when a cluster disappears
	Complexity analysis for the Voronoi hierarchy

	Discussion and open problems

