
Università
della
Svizzera
italiana

USI Technical Report Series in Informatics

Scalable Routing for
Tag-Based Information-Centric Networking
Michele Papalini1, Koorosh Khazaei1, Antonio Carzaniga1, Alexander L. Wolf2

1 Faculty of Informatics, Università della Svizzera italiana, Switzerland
2 Department of Computing, Imperial College London, United Kingdom

Abstract

Routing in information-centric networking remains an open problem. The main is-
sue is scalability. Traditional IP routing can be used with name prefixes, but it is be-
lieved that the number of prefixes will grow too large. A related problem is the use of
per-packet in-network state (to cut loops and return data to consumers). We develop
a routing scheme that solves these problems. The service model of our information-
centric network supports information pull and push using tag sets as information de-
scriptors. Within this service model, we propose a routing scheme that supports for-
warding along multiple loop-free paths, aggregates addresses for scalability, does not
require per-packet network state, and leads to near-optimal paths on average. We eval-
uate the scalability of our routing scheme, both in terms of memory and computational
complexity, on the full Internet AS-level topology and on the internal networks of rep-
resentative ASes using realistic distributions of content and users extrapolated from
traces of popular applications. For example, a population of 500 million users requires
a routing information base of 3.8GB with an almost flat growth and, in this case, a rout-
ing update (one content descriptor) can be processed in less than 5ms on commodity
hardware. We conclude that information-centric networking is feasible, even with (or
perhaps thanks to) addresses consisting of expressive content descriptors.

Report Info

Published
February 2014

Number
USI-INF-TR-2014-01

Institution
Faculty of Informatics
Università della Svizzera italiana
Lugano, Switzerland

Online Access
www.inf.usi.ch/techreports

1 Introduction

Information-centric networking (ICN) is founded on the notion that a primary purpose of modern commu-
nication networks is to provide access to information and, therefore, should support addressing schemes
based on information rather than on host location. This notion has been developed in two historically sep-
arate streams, one examining a “pull” service [10, 12, 15] and the other a “push” service [3]. Variations and
combinations of these service models have also been studied quite extensively in recent years, including
within high-profile projects (e.g., CCN/NDN, DONA, SAIL). However, a fundamental problem remains open:
there is yet no demonstrably scalable scheme that supports true content-based routing, that is, content-based
packet switching with multiple sources/destinations (multihoming), as opposed to a per-flow/object lookup
followed by a traditional host-based data transfer. In fact, largely because of this gap, the validity and utility
of the whole ICN approach has been called into question [9]. In this paper we present a routing scheme that
combines support for both push and pull ICN, and demonstrate its scalability through an extensive set of
experiments derived from Internet-scale data sets.

The primary approach to routing and forwarding in ICN (as typified by CCN/NDN [12], but also in the

1

http://www.inf.usi.ch/techreports/

earlier work on TRIAD [10]) is to adapt IP routing to use name prefixes instead of IP prefixes. While this
approach has the great advantage of reusing much of the network infrastructure, it also has fundamental lim-
itations. First, being based on IP unicast routing, it can not reliably support multiple sources or destinations
for the same information. A router may list multiple next-hops for the same prefix, but the routing scheme
provides no indication of how to forward consistently across routers so as to follow one path to a destination
(or multiple paths to multiple destinations). Moreover, multiple next-hops may lead to loops. In fact, the
main approach is not to avoid but merely to detect loops, tracing each packet throughout the network with
per-packet state, thereby increasing the overall cost of forwarding. For analogous reasons, IP routing/for-
warding can not directly support “push” communication, especially with content-based addresses. And, here
again most crucially, the already vast and growing content space is believed to pose a fundamental scalability
limitation to traditional routing.

IP multicast routing supports push communication along multiple loop-free paths. IP multicast parti-
tions the information space into groups and is most effective when many consumers are interested in all the
information produced by relatively few producers. However, the complex and highly dynamic flows one can
envision for an information-centric network are not amenable to an effective partitioning scheme. Such flows
would require a fine-grained partitioning, which would allow applications to accurately select information of
interest, but that would also use too many groups, each with only a few if any stable members. This prob-
lem, which is known as the channelization problem [13], severely limits the applicability of IP multicast as a
substrate for ICN routing. Futhermore, this problem is inherent in the service model of IP multicast, and is
therefore independent of any aggregation of multicast addresses [23].

We propose a different approach to routing, one based on trees in which edges are annotated with content
descriptors. The routing scheme we propose easily supports both publish/subscribe (“push”) and request/re-
ply (“pull”) ICN. While the routing scheme is almost completely independent of the addressing scheme, and
in particular could work with content names, we develop it with addresses consisting of content descriptors
and in particular tag sets. Tag sets are strictly more expressive than name prefixes and yet admit to an intu-
itive and effective aggregation that is fundamentally superior to the aggregation of name prefixes. The scheme
also supports loop-free paths to multiple destinations, meaning that both communication primitives can be
dynamically assigned an arbitrary fan out, from anycast (forward to any one of many destinations) to m-
anycast (any m destinations) or multicast (all destinations). Last, but not least, the scheme does not use any
per-packet state within the network, unlike previous designs.

A single tree may not use the most direct paths and may be more vulnerable to congestion and network
partitioning. We therefore propose to use multiple trees, so as to reduce path lenghts on average, reduce
congestion, and improve reliability. We develop a hierarchical multi-tree routing scheme that allows for the
creation of sets of trees with specific properties at different levels (e.g., shortest-paths trees within an AS along
with policy-specific inter-AS trees).

In principle, however, multiple trees also require larger routing tables, which leads us back to the funda-
mental question of scalability. We address the issue of scalability through the aggressive aggregation of con-
tent descriptors. Beyond the natural aggregation of tag sets, we develop a routing table based on PATRICIA
tries that aggregate content descriptors across all trees. We also develop the necessary algorithms to maintain
such routing tables incrementally, which is essential in the presence of dynamic user-defined addresses.

We evaluate the memory complexity of the routing scheme and its implementation at the global network
scale. We emulate the scheme over the full AS-level topology of the current Internet and within a number of
representative ASes. In order to test the scheme under realistic current and potential future application de-
mands, we extrapolate from traces of some characteristic content-driven applications. These extrapolations
give us various workloads of content descriptors that correspond to several hundred million users. We then
use such workloads to assess the concrete memory requirements of the scheme on routers at the local and
global, inter-AS level.

Our analysis shows that content descriptors indeed aggregate very effectively, and therefore that the rout-
ing information base remains contained in size even with a growing population of users and, therefore, with
more and more content descriptors. For example, for a number of representative applications, a population
of 500 million users using a total of nearly 10 billion content descriptors would require a routing information
base of 3.8GB with an almost flat growth enabled by effective aggregation. We also show that this same aggre-
gated routing information can be updated dynamically at a reasonably high frequency (over 200 updates per
second) even on inexpensive, commodity PC hardware.

2

2 Network Architecture

We begin by describing the service model, addressing scheme, and overall architecture of our information-
centric network. The service model is not novel per se, but is a significant superset of other related models [2,
12, 15]. We review this model here for clarity and completeness.

We propose a network characterized by two types of communication services: a request/reply (“pull”)
service and a publish/subscribe (“push”) service. Both services in essence transmit information of interest
from producers to consumers, and both use content descriptors (detailed below) to identify what information
is offered by which producer and what information is of interest to which consumer.

The request/reply service consists of three primitive network functions:

Offer: A producer registers one or more descriptors that identify the data that the producer is willing and
able to provide.

Request: A consumer requests a data packet by issuing a request packet carrying a descriptor that specifies
the requested data packet. The network then delivers the request packet to one or more producers that
are willing and able to satisfy the consumer’s request.

Reply: A producer (or a caching router) responds to a request packet by returning a data packet (i.e., the
content) carrying a descriptor that identifies the data.

The descriptors registered by producers express a standing commitment of those producers to satisfy some
specific consumer interests, and are therefore used by the network to route request packets. On the other
hand, requests express a single, one-time interest that is satisfied and thereby canceled by a single reply
packet.

The publish/subscribe service consists of two primitive functions:

Subscription: A consumer registers one or more descriptors that specify the data that the consumer wishes
to receive.

Notification: A producer publishes a data packet carrying a descriptor that identifies the data.

Here the descriptors registered by consumers represent continuing interests in specific published data and,
therefore, are used to route published data packets towards interested consumers.

Notice that the two service models are almost symmetric in the way they use descriptors to attract data.
To avoid ambiguities in the use of descriptors, we refer to their roles in the five primitives, respectively, as
producer offer, consumer request, producer data reply, consumer subscription, and producer notification; we
avoid the term “interest” to avoid confusion between immediate interests (requests) and continuing interests
(subscriptions).

producer request/reply consumer
offer:
{networking, paper}

request: (matching)
{networking, paper, routing}

reply: (matching)
{networking, paper, PDF, routing, trees, scalability}
data. . .

consumer publish/subscribe producer
subscription:
{lugano, social, vegetarian}

notification: (matching)
{lugano, social, dinner, asian, vegetarian}
data. . .

Figure 1: Tag-Based Content Descriptors

Thus descriptors play a central role analogous to IP prefixes. The semantics of descriptors define the se-
mantics of the network service, and in particular they define how data replies match requests, how offers

3

match requests (and, therefore, how offers describe the data available from a producer), and how notifica-
tions match subscriptions. As discussed so far, descriptors are abstract and generic. Indeed, much of what
we propose is conceptually independent of their specific form and semantics. However, in order to develop a
concrete service and a corresponding concrete routing scheme, we must define descriptors. For this purpose
we adopt “tags” (see Figure 1).

A descriptor consists of a set of string tags, with the matching relations corresponding to the intuitive
subset relations between sets of tags. Specifically, a descriptor D in a data reply would match a descriptor R
in a request when the reply contains all the tags of the request, that is, when D ⊇ R. Consistently, a descriptor
R in a request would match a descriptor O in an offer when the request contains all the tags of the offer, and
thus R ⊇ O. Also consistently, a descriptor N in a notification would match a descriptor S in a subscription
when the notification contains all the tags of the subscription, and thus N ⊇ S.

Notice that tag sets are strictly more expressive than name prefixes. A name prefix can be represented as
a single tag set. For example, /org/gnu/software/ can be written as tag set {1:org, 2:gnu, 3:software}, and would
match descriptor {1:org, 2:gnu, 3:software, 4:emacs}. Conversely, the semantics of a tag set would require an
exponential number of prefixes (all permutations).

network

register(predicate)

〈notification: descriptor,data〉

〈request: descriptor〉

〈reply: descriptor,data〉

FIBs

a set of descriptors
offers + subscriptions

O1,O2,O3, . . .
S1,S2,S3, . . .

Figure 2: High-Level Network Architecture

The commonalities of the request/reply service and the publish/subscribe service suggest a network ar-
chitecture in which both services share a unified FIB, as illustrated in Figure 2. Notice that for the request/re-
ply service the FIB directs requests toward hosts that are willing and able to satisfy them (with corresponding
data replies), while for the publish/subscribe service the FIB directs notifications toward hosts that are will-
ing to receive them. So, both forms of communication allow hosts to declare which messages they intend
to receive—requests and notifications, respectively—and their difference is simply the source of the routing
information—producers in the request/reply service, and consumers in the publish/subscribe service.

In terms of data traffic, the difference between the two primitives is a bit more involved. Both requests
and notifications are forwarded along paths toward matching descriptors. However, a request is ideally an
anycast packet, while notifications are multicast. Also, a request is expected to generate a corresponding
reply, while a notification is a one-way message. Furthermore, the caching semantics are different. A request
that can be satisfied by cached content will not be forwarded downstream toward the original producer node,
while a notification must be forwarded all the way to interested consumers (although notifications might also
be cached for reliability purposes).

In summary, the network layer is configured through the registration of descriptors that define a descriptor-
matching predicate analogous to a host address. All predicates feed into the forwarding information base,
which is then used to transmit one-way notifications (“push”) and requests that expect a reply (“pull”).

3 Routing Scheme

We propose a routing scheme based on multiple trees. At the core of the scheme is simple routing on a
tree cover. We enhance this basic scheme to use multiple trees within the same routing domain and over
a hierarchy of domains (intra- and inter-AS). We start by describing the scheme on a single tree, elaborate
on how descriptors are represented, and develop the scheme for multiple trees. We then discuss forwarding

4

over multiple trees, the structure of routing tables, and how to efficiently represent and maintain the routing
information base.

3.1 ICN Routing on One Tree

Consider a network spanned by a tree T . For now consider a router-level network. T is identified within each
notification and request packet so that each router v can determine the set adjT

v of its neighbors that are also
adjacent to v in T . This can be done by adding an identifier for T in the packet and storing the adjacency set
adjT

v at each router v .
The forwarding information base (FIB) of router v associates each neighbor w in adjT

v with the union PT,w

of the predicates registered by all the hosts reachable through neighbor w on T (including w). An example is
shown in Figure 3.

a b c

d e f g h

i j k

router b:
(FIB)

tree T ,next-hop w → predicate PT,w
T1,c 7→ pc ∨pg ∨ph
T1, f 7→ p f ∨p j ∨pk
T1,e 7→ pa ∨pd ∨pe ∨pi
T2,c 7→ pc ∨ph
T2,e 7→ pa ∨pd ∨pe ∨p f ∨pg ∨pi ∨p j ∨pk

trees
T1
T2

Figure 3: Multi-Tree Routing Scheme

With a FIB representing PT,w for each adjacent router w in adjT
v , forwarding proceeds as follows: Router

v forwards a notification with descriptor N received from neighbor u to all neighbors w 6= u in adjT
v whose

associated predicate PT,w matches N . (A predicate P matches a descriptor X if any one of the descriptors
in P matches X .) Similarly, router v forwards a request with descriptor R received from neighbor u to one
neighbor w 6= u in adjT

v whose associated predicate PT,w matches R.

3.1.1 Fan-Out Limit: From Anycast to Multicast

A tree is an ideal structure to reach multiple destinations. Thus the basic scheme can be readily used with a
given fan-out. Notifications and requests may specify a fan-out limit k. A limit of k = 1, which is the default
for requests, corresponds to an anycast delivery, meaning that the request (or the notification) is forwarded
to one of the neighbors with associated matching predicates. And since the forwarding is within a tree, this
router-local choice is guaranteed to induce a single forwarding path to a single destination. A limit k =∞,
which is the default for notifications, corresponds to a full multicast in which the notification (or the request)
is forwarded to all matching next-hops, and therefore to all hosts with matching predicates. And again since
the forwarding domain is a tree, the combination of all forwarding paths will still be loop-free. A finite limit
grater than one (1 < k <∞) requires only minimal additional local processing: the router selects k matching
neighbors and then partitions the fan-out limit k over the selected neighbors.

3.1.2 Replies and Label-Based Unicast

The mainstream approach to route replies back to the requesting host is to leave a trail of pointers along the
forwarding path of each request, so that the reply can follow the same path backwards, thereby also removing
the trail of pointers [12]. The trail of pointers is also essential in this approach to cut loops while forwarding
requests.

5

Instead, the tree structure admits to an efficient forwarding of requests and replies without any kind of
per-packet state. The loop-free structure of a tree avoids loops by construction, so the only remaining prob-
lem is to route replies back to the requesting node. This can be done using a routing scheme for trees devel-
oped by Thorup and Zwick [24]. Each node in the tree can be assigned a short label such that, given the label
of the requesting host plus its own label, a router can very efficiently forward a reply back to the requesting
host along the same path of the request (the only path, on T). These labels, which we refer to as TZ-labels,
are (1+o(1)) log2 n-bit long for a network of n nodes, where the vanishing constant o(1) depends on a par-
ticular encoding of the labels. Concretely, we use a fast and practical version of the scheme that needs only
at most 3.4log2 n bits, which for the network of our experiments amounts to 54 bits, although in practice we
observed that 46-bits TZ-labels are sufficient for every tree we used to cover the Internet at the AS-level. We
use TZ-labels to forward data replies as well as other unicast packets as discussed below in Section 3.3.1.

A tree can be labeled with a two-step distributed algorithm. In the first step, a converge-cast algorithm
calculates the size of descendants of each node on the tree, while the second step consists of a DFS numbering
of nodes on the tree. The first step can also be combined with the algorithm that constructs the tree.

3.2 Descriptors and Aggregation

Conceptually, at the application level a descriptor is a set of tags. Concretely, we represent descriptors as
Bloom filters, and we develop our routing scheme around this representation. So, packets as well as routing
messages carry Bloom filters. Matching two descriptors amounts to checking the inclusion relation (bitwise)
between two Bloom filters, while matching a descriptor against a predicate (i.e., a set of descriptors) amounts
to finding one or more Bloom filters in the predicate that are subsets (bitwise) of the input Bloom filter.

In order to choose good Bloom filter parameters, which must be global properties of the routing scheme,
we conservatively estimate that tag sets would most likely have no more than 15 tags. We therefore use Bloom
filters with k = 7 hash functions and m = 192 bits, which ensures that a subset test S1 ⊆ S2 would be accurate

up to a false-positive probability of
(
1−e−k|S2|/m

)k|S1\S2|. For example, for a descriptor of |S2| = 10 tags, a test
S1 ⊆ S2 with another descriptor S1 that differs by |S1 \S2| = 3 tags would evaluate to true (a false positive, since
|S1 \ S2| > 0) with probability 10−11.

Content descriptors aggregate in a way that is analogous to IP prefixes. Given the semantics of tag-based
descriptors, a descriptor X subsumes all other descriptors Y that contain X . For example, any descriptor
matching {networking,conference} would also match its subset {networking}, so a router might combine the
two by storing only the more general tag set {networking}.

This subsumption between tag sets applies directly to their representations as Bloom filters, as exempli-
fied by the tables of Figure 4. The tables represent the per-tree maps that associate predicates with tree edges
for router b in Figure 3, given a set of sample content descriptors. (For simplicity all predicates except p j and
pk consist of a single descriptor, and descriptors are reduced to 8-bit Bloom filters.) The long table represents
the full predicates, while the short table represents the aggregated predicates.

3.3 Using Multiple Trees

Routing on a tree has two disadvantages. First, paths might be “stretched”, meaning the distance between two
nodes on the tree might be longer than on the full graph. Second, traffic would flow only on the tree, thereby
reducing the overall network throughput.

It is well known that these sorts of problems can be alleviated by using multiple trees, each with their own
forwarding state. In the case of ICN, a notification or request is committed to, and thereafter routed using,
one of those trees. So, the forwarding process with multiple trees is identical to that over a single tree for
an individual request or notification, but traffic is more evenly distributed and path lengths shortened on
average. However, two aspects of the multiple tree scheme are non-trivial: how to combine multiple trees at
different levels in hierarchical routing, and how to build and then select trees.

3.3.1 Hierarchical Multi-Tree Routing

There can be multiple trees at different levels in the network (e.g., intra- and inter-AS) and they can be used in
a hierarchical routing scheme. We describe the case of two levels, although the two-level hierarchy generalizes
to more levels. The scheme is defined by global trees that span the AS-level network, and by local trees that
span the internal network of each AS. Conceptually, each tree has a separate FIB, although below we discuss
ways to aggregate predicates across trees. The FIB of a global tree contains the aggregate predicates of all the

6

T P T
v : w → PT,w

T1 c → 00100101 (pc)
01010000 (pg)
01000001 (ph)

f → 00101101 (p f)
00100100
01010000

}
(p j)

01100100
10011000

}
(pk)

e → 00010000 (pa)
10000101 (pd)
00010101 (pe)
10110000 (pi)

T2 c → 00100101 (pc)
01000001 (ph)

e → 00010000 (pa)
10000101 (pd)
00101101 (p f)
01010000 (pg)
00100100
01010000

}
(p j)

01100100
10011000

}
(pk)

T P T
v : w → PT,w

T1 c → 00100101
01010000
01000001

f → 00100100
01010000
10011000

e → 00010000
10000101

T2 c → 00100101
01000001

e → 00010000
10000101
00100100

Figure 4: Aggregation of Descriptors on a Per-Interface Basis

ASes. The FIB of a local tree contains the predicates of each internal host, possibly aggregated at the subnet
level. An interior router needs to know only the local trees of its AS plus the TZ-labels of at least one gateway
router on each local tree. A gateway router needs to know the local trees, the global trees, and the exterior
connectivity of all the gateway routers of its AS, including their TZ-labels on the local trees.

With this information, forwarding proceeds as follows. A request or notification is first assigned to a local
tree by its access router, and on that tree it is forwarded based on its content descriptor and fan-out limit as
explained in Section 3.1. In addition to that, the request or notification is sent to one gateway router using the
TZ-label of that gateway as described in Section 3.1.2. When a request or notification reaches a gateway for
the first time (from a local tree) the gateway assigns it to a global tree, and then proceeds to forward it on that
tree based on its content descriptor. On its global tree, a request or notification reaching a gateway router (or
starting from that gateway) may have to cross the AS of that gateway to reach other gateways connected to the
next-hop neighbor ASes (on the global tree). This again is done on a local tree based on the TZ-labels of those
gateways. And if the request or notification is entering that AS for the first time, then the local forwarding also
applies based on the content descriptor.

3.3.2 Choosing Trees

The key to increasing throughput and reducing path lengths is in the choice of trees: first, the routing process
must produce a good set of trees; second, when a request or a notification enters a routing domain (local
or global) the access or gateway router must assign the request or notification to a tree within that routing
domain. The choice of trees, in the way they are built and they are assigned by routers, could also be used to
implement various routing strategies and policies.

The problem of covering a network with trees so as to achieve specific design objectives has been studied
extensively from a theoretical perspective. For example, Räcke recently formulated a method to cover a net-
work with trees (overlay trees in this case) to achieve the theoretically minimal congestion under unknown
traffic [18]. However, such results do not seem to have an immediate practical applicability. For example,
Räcke’s algorithms produces a very high number of trees, in the order of the number of edges in the network.
Also, the algorithm itself is centralized and quite complex, and therefore may be usable for local trees but
probably not for global trees.

Our approach to building and selecting trees is therefore based on heuristics. So far we studied two such
heuristics for global trees, which are arguably the most crucial, and one for local trees. At the global level, the

7

two heuristics are intended to minimize latency alone, and latency together with congestion, respectively.

Latency Only (L): We choose a small number of root ASes and then build a shortest-paths (Dijkstra) tree for
each root AS. This heuristic is intended to privilege latency over any other routing objective. For the
purpose of the analysis presented in this paper we use a uniform-random choice over all ASes, which
should give more conservative results. In practice, root ASes can be chosen in a number of ways using
a distributed leader-election algorithm, perhaps favoring higher-tier ASes. Another and perhaps better
way to select root ASes is to do it off-line through a global administrative body, in a similar way that the
top-level DNS servers and structures are set up.

Latency and Congestion (LC): We start with a first shortest-paths tree rooted at the AS with the lowest ec-
centricity, which represents the center of the network. Then we increase the cost of each link used by
the tree, and proceed iteratively with another tree. The weight increase is by a fixed amount and there-
fore linear in the number of trees. At each iteration we select a new shortest-paths tree rooted at the AS
with the lowest eccentricity. Notice that the root may be the same as in previous iterations. However,
the new tree is computed with the current adjusted link weights, and therefore is likely to differ from all
previous trees. These trees can be constructed using a slightly modified version of the fast distributed
algorithm of Almeida et al. [1] that computes the eccentricity ecc(v) of node v in diameter(G)+ecc(v)+2
rounds.

At the global level, trees are heavy in terms of memory because they store the aggregated predicates of
the whole network. Therefore, we compute a relatively small number of global trees. Also, at the global level
we assume a mostly decentralized routing, and therefore we use shortest-paths trees that can be computed
efficiently in a completely decentralized manner. Conversely, at the local level, trees are lighter and can be
computed in a centralized manner. Since latency is even more crucial at the local level, the heuristic we use
for local trees is also based on shortest-paths trees:

Minimal Latency: We build shortest-paths trees rooted at every router within an AS.

To assign trees dynamically, routers select trees uniformly at random at the global level, while at the local
level they always choose their own shortest path tree so as to obtain latency-optimal routes. In Section 4 we
evaluate our scheme under these heuristics.

3.4 Forwarding

The design of a routing scheme and the choice of a specific ICN service model must be amenable to effi-
cient forwarding. Therefore, even though this paper focuses on routing, we now briefly discuss forwarding,
presenting some preliminary experimental results.

The routing scheme uses two types of forwarding decisions: a per-tree, label-based forwarding deci-
sion using TZ-labels (Section 3.1.2) and a per-tree, content-based forwarding decision (Section 3.1). Label-
based decisions are essentially stateless and extremely efficient (literally, a dozen machine-level instructions).
Therefore, we focus on content-based decisions. This form of content-based forwarding amounts to a subset
check: forward to interface i if there is a subset of the packet descriptors among the descriptors associated
with interface i on the tree on which the packet is forwarded.

Unfortunately, this subset check, which is also known as the partial matching problem, poses a trade-
off between space and time complexity [5], and represents the main cost of using the more expressive tag
sets rather than name prefixes. Still, in practice this cost can be reduced significantly by engineering the
forwarding algorithm and the representation of sets of tag sets. In Section 3.6 we describe how we implement
such checks on tries for the purpose of routing. Here we describe a highly parallel GPU-based forwarding
algorithm.

We use a minimalistic linear data structure scanned by a batch forwarding algorithm. The data structure
consists of a vector of Bloom filters, and can easily fit in the memory of a modern GPU (e.g., 12GB on an
NVIDIA Tesla K40) even with the largest forwarding table we used in our experimental analysis. The algorithm
exploits the high parallelism of the GPU architecture by repeating very simple bitwise subset checks on each
Bloom filter. The algorithm also processes forwarding requests in batches so as to exploit the high memory
throughput of the internal registers of the GPU and to reduce the required main memory throughput.

The resulting throughput is around 50000 packets per second with one GPU for the largest forwarding ta-
ble we analyzed, which consists of about 63 million tag sets compressed through aggregation from an initial

8

workload of about 10 billion. Not surprisingly, our very preliminary solution is quite far from the through-
put of core routers. Nevertheless, we see good margins of improvement, and we conclude that tag-based
forwarding is viable.

We reach this conclusion also on the basis of recent positive results obtained for prefix-matching in ICN
using GPUs [25] and general-purpose CPUs [20]. The best throughput reported for GPU-based name lookup
is much closer to the performance of today’s IP routers (millions of packets per second with one GPU [25]).
However, notice that the chosen matching problem is fundamentally different (prefix matching vs. the more
expressive subset matching) and the table sizes are also substantially smaller (100K vs. 63M entries).

3.5 Structure of the Routing Tables

We now describe a concrete implementation of the routing information base (RIB) for the multi-tree routing
scheme. Conceptually, the RIB of a router v stores the following information for each tree T :

• adjT
v is the adjacency list of T at v , meaning the subset of v ’s neighbors adjacent to v on T .

• `T
v is the TZ-label of router v on T used in routing replies and other unicast packets on T (see Sec-

tion 3.1.2).

• P T
v : w → PT,w is a map that associates each neighbor w in adjT

v with a predicate PT,w , where PT,w

consists of a set of content descriptors (see Section 3.1 and, in particular, Figure 3).

Our primary goal is to obtain a compact representation of the RIB that also allows for efficient incremental
updates. adjT

v and `T
v require minimal space and standard data structures, and are also stable with trees. The

P T
v map changes with changing application preferences (content descriptors) and is also by far the heaviest

component of the RIB. We therefore focus on the implementation of P T
v .

3.6 RIB Representation and Maintenance

With only the basic aggregation illustrated by the tables of Figure 4, multiple trees have completely indepen-
dent predicate maps (P T

v). However, trees are likely to share many descriptors, simply because the descriptors
represent offers or subscriptions that must be reachable from all trees. This suggests a representation of the
predicate maps that further compresses the routing information across trees.

To exploit this form of aggregation, we develop a data structure in which routing information is not
grouped by interface or tree but rather by tag set. In practice, the RIB consists of a dictionary of tag sets,
each associated with a set of tree-interface pairs. In particular, we use a PATRICIA trie to index the Bloom
filters representing the tag sets, and we associate each tag set with a table of 16-bit entries representing tree-
interface pairs. At the global level, where the RIB must store a few trees but potentially many interfaces
(neighboring ASes), we allocate 3–4 bits to identify the tree and the rest to identify the interface. At the local
level the allocation is almost reversed, since there can be substantially more trees, but typically also much
fewer interfaces. This data structure is depicted in Figure 5.

PATRICIA tries indexed by Hamming weight

00010000
0 1

01010000

00100100

0

10

01000001

1

10

10011000

00100101

0

0 1

10000101

1

10

T1 → f
T1 → c
T1 → f

T1 → e
T2 → e

T1 → c
T2 → c

T1 → c
T2 → c

T1 → e

T1 → f

Figure 5: Aggregation of Descriptors Across Trees

9

PATRICIA tries have the advantage of requiring a minimal amount of memory, and they also allow for
simple subset/superset checks implemented as tree walks. These checks are the essential building blocks for
the maintenance of the RIB. Notice that such subset/superset checks can be linear in the number of descrip-
tors in the RIB. As discussed above in the context of forwarding, significantly reducing the complexity bounds
for these operations is not straightforward [5]. However, in practice, these algorithms can be engineered to
obtain acceptable performance.

We choose a trie data structure because this structure already allows us to shortcut the search much like
a prefix search: if we are looking for subsets of an input filter f and f contains a zero in a certain position
identified by a node n, then we can skip the whole subtree of filters under n that contain a one in that position.

In addition to that, we group filters by Hamming weight (in smaller tries), as shown in Figure 5. This
has three advantages. First, it allows us to skip entire tries containing filters that have too many elements
to be subsets (or too few to be supersets) of the input filter. Second, it allows us to walk through each trie
with a known limit for the number of times we have to split the walk down both the zero- and one-path. For
example, if the input filter has three ones and we are looking for subsets in a trie containing filters with two
ones, we know that we have to split our search at most once. Third, since tries are independent from each
other, subset/superset operations on different tries can proceed in parallel and accelerated using appropriate
hardware.

void apply_delta (map<int,delta> & result, delta update, int ifx, int tree) {
for (filter f : update.removals)

remove_filter(result, f, ifx, tree);
for (filter f : update.additions)

add_filter(result, f, ifx, tree);
}

void add_filter (map<int,delta> & result, filter f, int ifx, int tree) {
if (!exists_subset_of(f, ifx, tree)) {

add(f, ifx, tree);
remove_supersets_of(f, ifx, tree);
for (int i : interfaces[tree])

if (i != ifx && no_subsets_on_other_ifx(f, i, tree))
result[i].additions.add(f);

}
}

void remove_filter (map<int,delta> & result, filter f, int ifx, int tree) {
if (exists_filter(f, ifx, tree)) {

remove(f, ifx, tree);
for (i : interfaces[tree]) {

if (i != ifx && no_subsets_on_other_ifx(f, i, tree)) {
result[i].removals.add(f);
result[i].additions.add(supersets_of(f, tree));

}
}

}
}

Figure 6: Incremental Update Algorithm

Figure 6 shows the main maintenance algorithm for the routing information. Routing information prop-
agates through update messages. The main update function apply_delta processes an update message re-
ceived from interface ifx that refers to a given tree and that announces a set of additions and removals delta.

The update message may cause the router to update its own routing information base (shown in Figure 7
with tag sets attached to links) and may also trigger other update messages for the same tree (dark arrows).
Such follow-up messages are returned in the result map. A tag set f is added in association with the incoming
interface ifx only if f is not a superset of any existing tag set already associated with ifx. Also, when f is
added, all supersets of f associated with ifx are removed. The router then propagates the addition of f to
each interface i on the tree (other than ifx) when no subset of f is associated with any another interface. As

10

1

+{A}

+{A}

+{A}

+{A}
2

{A}
+{A,B}+{A,B}

3

{A} {A, B}

+{A}

+{A}
4

{A}

{A}

{A, B}−{A}

−{A},+{A,B}

5

{A}

{A, B}

Figure 7: A Sequence of Incremental Updates

an example, see the first three updates depicted in Figure 7.
Removals are similar to additions, except that removing a tag set f may also trigger the addition of super-

sets of f , as exemplified by the last updates depicted in Figure 7 where the removal of the tag set {A} triggers
the addition of tag set {A,B}.

This maintenance algorithm guarantees that routing tables remain minimal, in the sense that tag sets are
aggregated as much as possible on a per-interface basis.

4 Evaluation

We now present the results of an extensive experimental evaluation of our ICN routing scheme. The goal
of this evaluation is twofold. On the one hand we want to assess the effectiveness of the scheme in routing
information over the Internet using trees, specifically the ability of the scheme to obtain minimal paths and
maximal throughput using a small number of trees. On the other hand we want to study the scalability of
the scheme both in terms of the memory requirements posed on routers, and also in terms of the cost of
maintaining routing information for a number of trees and for large numbers of content descriptors.

A crucial difficulty in conducting this analysis is that there is no known deployment of an information-
centric network at the scale we are targeting. Therefore, we must use synthetic workloads. Below, we explain
how we created such workloads.

4.1 Application Workloads

Our objective is to create workloads corresponding to the plausible behavior of applications over a global-
scale information-centric network. To do that, we build models of future applications by extrapolating the
behavior of existing applications (and their users) for which we have significant real traces.

For the purpose of this paper we are only interested in the part of such workloads that are relevant for
routing, namely (1) content descriptors used in offers issued by information producers in “pull” information
flows, and (2) content descriptors used in subscriptions issued by consumers in “push” flows. We consider
four classes of applications: (1) “pushing” generic Web content and blog posts; (2) “pulling” video content;
(3) “pushing” short messages and following short-message publishers; and (4) “pulling” BitTorrent. We now
discuss each class of application and the corresponding network workload.

4.1.1 Active Web

We envision a future information-centric network used to actively distribute Web content. Rather than an-
alyzing traditional Web requests in terms of access to individual servers, we try to understand what users
are interested in, which in turn defines the descriptors used in subscriptions that would populate the rout-
ing tables. Since we could not gain access to comprehensive per-user Web-access logs, we instead infer user
interests by analyzing the content that users bookmark. We use the bookmark collection of the Delicious
website,1 which contains the public bookmarks of about 950,000 users retrieved between December 2007
and April 2008 [26]. The data set contains about 132 million bookmarks and 420 million tag assignments
posted between September 2003 and December 2007. We assume that users are interested in the content
they bookmark, and that they describe the content with the tags they assign. Therefore, we derive plausible
subscriptions from user tag sets. We slightly clean the data by applying a simple language-based summariza-
tion using stemming and removing duplicate tags. In total we derive 123,248,896 subscriptions for 922,651
users.

1http://delicious.com

11

http://delicious.com

We also analyze data collected from blogs. In particular, we study the Blog06 collection from the Text
Retrieval Conference (TREC),2 which contains 3,215,171 blog posts from 100,649 unique blogs. We use the
latent Dirichlet allocation (LDA) algorithm to extract 400 topics that cover these blog posts. We then assume
that an author has an active interest in a specific topic if they write more than two relevant posts on that topic,
and consider a post to be relevant only if the probability of the post being classified under that topic is more
than 20%. For each topic, we select the 10 most relevant tags and use them as a descriptor of the blogger’s
interests. Ignoring irrelevant posts and users with no significant interest in any topic, we identify 59,185 blogs
with 178,189 relevant posts from which we could derive subscriptions.

4.1.2 Video Content

A future information-centric network will facilitate decentralized distribution of video content. In order to
determine which content could be offered by users, which in turn determines the descriptors used in offers,
we analyze data from YouTube. Uploaders of a YouTube video can assign keywords to their videos to allow
viewers to find those videos with keyword searches. These keywords were publicly visible until three years
ago. In particular, we analyze a data set derived from 10,351 videos published by 782 uploaders in the “Poli-
tics” category.3

4.1.3 Social Messaging

We analyze two different aspects of a Twitter data set to generate workloads for a plausible future messaging
service. We take into account the structure of the social graph of followers as well as the content of tweets.
We assume that followers are generally interested in the messages posted by the authors they follow. We
therefore derive plausible subscriptions issued by the followers. We use a graph of 41.7 million Twitter users
and 1.47 billion follower relations. For the content we use a collection of 16 million tweets recorded during
two weeks in 2011, corresponding to 1% of the total tweets during that period. This dataset was provided
again by the TREC conference (2011-2012). A Twitter user can attach a number of “hashtags” to each tweet
so that other users can issue searches by hashtag. A user can also include links to other content on the Web.
Out of the 16 million tweets, we consider those that have both hashtags and links. We collect the hashtags
assigned to each link as a descriptor for that link, and then we use these descriptors as the subscriptions for
the users who tweeted that link. In total we collect 446,370 subscriptions for 349,753 users.

4.1.4 BitTorrent

BitTorrent constitutes a considerable portion of the traffic of the Internet today. Therefore, it is important to
analyze how users describe and access BitTorrent data. We use a dataset of 9,669,035 queries collected over a
period of 3 months from kickasstorrents.com by the Computer Networking Research Laboratory of Colorado
State University. This dataset contains 1,353,662 unique tags.4

4.1.5 General Data Normalization

Some datasets are characterized by large sets of tags (e.g., Delicious). However, when those sets are used
to express interests in subscriptions, the specificity of those sets might be excessive, meaning that those de-
scriptors are very unlikely to match any published data. Therefore, in order to normalize those descriptors, we
always include at least 5 tags, and then for those descriptors with more tags, we add up to 10 of the remaining
tags by selecting them with exponentially decreasing probabilities.

4.1.6 Data Amplification

The extrapolated workloads suffer from two limitations: they are small for the kind of experiments we want
to conduct, and they are biased due to the fact that the English language is disproportionately represented in
the application traces.

In order to compensate for language bias, but also to expand the size of the workload, we consider other
languages that have a meaningful influence on Internet traffic, and we extend the data to include them. We

2http://ir.dcs.gla.ac.uk/test_collections/blog06info.html
3http://www.infochimps.com/datasets/11000-youtube-videos
4http://www.cnrl.colostate.edu/Projects/CP2P/BTData/

12

kickasstorrents.com
http://ir.dcs.gla.ac.uk/test_collections/blog06info.html

consider the 25 most-spoken languages in the world and amplify all of the datasets according to the distribu-
tion of the number of native speakers of those languages.

We do not want to lose the semantic correlations between tags in the datasets, therefore we derive new
tags for each artificial language-specific dataset by adding a prefix indicating the corresponding language.
For example, if the English data set contains the tag “Journalist”, we amplify that dataset by creating a dataset
for Japanese where we insert the tag “Japanese_Journalist”.

To further expand the workload and also to avoid creating exact replicas of the original dataset, we cre-
ate additional descriptors using synonyms. We assume that at most two tags in every descriptor might be
replaced by synonyms, and we choose to replace one, two, or none with equal probability. We also assume
that each tag has two synonyms and with equal probability we choose one among them. (We use artificial
synonyms.) As an example, the tag “Japanese_Journalist” might be replaced by “sy1_Japanese_Journalist” in
some sets.

4.1.7 Assigning Interests to Users

We distribute populations of between 50 and 500 million users in total over the various ASes, assigning the
users to ASes according to the estimated population of real users for each autonomous system. We then
elect among them the users that use each class of application, with an estimated probability derived from
the current user population for each of the applications. In order to calculate these probabilities, we use the
estimated number of users of each service over the total number of Internet users. For YouTube, the number
of unique uploaders is estimated to be 10% of the user population [7]. With the current 800 million users, this
yields 87.2 million uploaders. In the case of blogs, NM Incite5 estimates that there were 181 million blogs at
the end of 2011. With no data on the number of blog readers, we used the total number of blogs as the number
of users of this service. In case of Twitter data, Semiocast6 estimates the number of users exceeds 500 million
as of June 2012. In January 2012, BitTorrent.com announced that the number of monthly active users reached
150 million.7 To complete our population figures, we assume that browsing the Web is extremely common,
but conservatively assume that 50% of our total user population engages in this activity.

4.2 Effectiveness with k Trees

Here we consider the topological aspects of routing, and more specifically we evaluate the ability of our
scheme to use the underlying network effectively. We use two measures of cost:

Stretch: the factor by which the distance between two nodes is extended by the routing scheme. Since our
scheme routes each packet on a tree, this is the ratio between the distance on the tree and the distance
on the full graph. Given a set of k trees, the stretch for the path between two nodes is the expected
stretch given the choice of trees, which, given our uniform choice of trees, is simply the average stretch.

Congestion: the factor by which the usage of a link would grow using the routing scheme as compared to
an optimal usage of the full network graph. The optimal usage here refers to the link usage with a
distribution of traffic that achieves the best possible throughput. In practice, for each tree T , given a
link (u, v) in T , we compute the cut defined by that link on T , meaning the partition of the nodes that
are on the two sides of the link on T . We then compute the number of links that cross that cut on the
original graph, which is the total capacity of the network over that cut. Thus we assume that, for the
portion of traffic routed on T (1/k of the total traffic for k trees), the link (u, v) would need to carry the
traffic that could instead go over all the links that cross the cut. So, for a cut of size sT,u,v on a tree T out
of k trees, link (u, v) is given a congestion of sT,u,v /k, and the total congestion of that link is the sum of
its congestion for all the k trees.

We conduct our analysis on the Internet AS-level topology consisting of a graph of 42113 nodes and
118040 edges.8 In Figure 8 we show the expected stretch for various sets of global (AS-level) trees. We generate
sets of 2, 4, 8, 16, and 32 trees using the two heuristics discussed in Section 3.3.2. The label “L” in the plots
refers to the latency-only heuristic while “LC” refers to the latency-and-congestion heuristic.

5http://www.nielsen.com/us/en/newswire/2012/buzz-in-the-blogosphere-millions-more-bloggers-and-blog-readers.html
6http://semiocast.com/publications/2012_07_30_Twitter_reaches_half_a_billion_accounts_140m_in_the_US
7http://www.bittorrent.com/intl/es/company/about/ces_2012_150m_users
8http://irl.cs.ucla.edu/topology/ (retrieved 29/06/2012)

13

http://www.nielsen.com/us/en/newswire/2012/buzz-in-the-blogosphere-millions-more-bloggers-and-blog-readers.html
http://semiocast.com/publications/2012_07_30_Twitter_reaches_half_a_billion_accounts_140m_in_the_US
http://www.bittorrent.com/intl/es/company/about/ces_2012_150m_users
http://irl.cs.ucla.edu/topology/

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

2 4 8 16 32
St

re
tc

h
Number of Trees

min,1%,50%,99%,max L
LC

Figure 8: Path Stretch

For LC we simulate the routing scheme on only one set of trees, because LC is a deterministic algorithm.
For L trees, which are generated with a randomized algorithm, we plot the aggregated results obtained for 10
different sets. Each box plot in the chart shows the minimum, the 1-percentile, the median, the 99-percentile,
and the maximum. The plot clearly shows that, as anticipated, the maximum expected stretch decreases
with more trees. The plot also shows that more trees lead to a minimal increase of the median (expected)
stretch. Despite the growth, we can see that the stretch remains quite low, and even in the case of 32 trees
the median remains under 2 and the 99-percentile is under 3. We also note that the maximum stretch is quite
low, considering also that at most 1% of the paths may experience those levels of stretch.

The plot also shows a clear difference between the two heuristics, with the scheme achieving better results
with the latency-only heuristic than with the latency-and-congestion heuristic.

Our experimental analysis is consistent with another study on the approximability of the AS-level topol-
ogy with trees. Krioukov et al. [16] studied two compact routing schemes that have a theoretical expected
stretch of 3 [24, 6], and found that in practice, on the AS-level topology, their average stretch is close to 1.
Notice, however, that the two schemes require O(n1/2log1/2n) and O(n2/3log4/3n) trees, respectively, while
we also achieve an average stretch very close to 1, but with significantly smaller sets of trees.

 0

 10

 20

 30

 40

 50

2 4 8 16 32

C
on

ge
st

io
n

Number of Trees

1%,5%,50%,95%,99% L
LC

Figure 9: Link Congestion

Figure 9 shows the congestion for the same set of trees of Figure 8. In this plot each bar shows the 1-
percentile, 25-percentile, median, 75-percentile, and 99-percentile of the distribution. The salient result is
that most links experience no congestion penalty at all, with a congestion factor of 1. We can also see that for
both heuristics, extreme levels of congestion are reduced when using more trees. Notice that the congestion
factor is a very conservative cost measure, since it uses the globally optimal allocation of flow for all network
cuts as a baseline. As expected, the median congestion factors for the latency-only heuristic are higher as
compared with the latency-and-congestion heuristic.

The analysis of stretch and congestion shows that different tree-building strategies may be used to achieve
different design goals. More importantly, the general conclusion we can draw from this analysis is that even
small sets of trees can cover the Internet at the AS-level topology quite well, with only minimal cost in terms

14

of path length and congestion.

4.3 Scalability: Memory and Maintenance

Now we look at the memory requirements of our ICN routing scheme. In figures 10 and 11 we show the
total memory requirements of particular routers in the network. This analysis is based on simulations of the
routing scheme with 8 trees and under a workload generated for 50 million users spread over the ASes.

 0

 1

 2

 3

 4

 5

Telstra
AS1221

Sprint
AS1239

Verio
AS2914

Tiscali
AS3257

Level3
AS3356

ATT
AS7018

R
eq

ui
re

d
M

em
or

y
[G

B
]

 L
 LC

Figure 10: RIB Sizes for Global Inter-AS Trees

In Figure 10 we show the memory used by the RIBs of the gateway routers of different ASes. Since we do
not know the exact connectivity between the ASes at the level of their gateway routers, we cannot determine
how many trees are handled by each router. We therefore simulate all the possible cases. In particular, we
simulate the pessimistic cases in which a router must hold information for all possible subsets of the 8 trees,
and we show a distribution of the memory requirement for every case. The plot shows the minimum, the
average and the maximum amount of memory needed to store the routing information related to 1 up to 8
trees. We show the data for two set of trees labeled “L” and “LC”, as above.

The most important result is that the most demanding case, which is Level3 with the L heuristic, is less
then 3.6GB of memory. The high variation is due to the different degree and location of the ASes on different
trees. Usually an AS with many neighbors experiences less compression. Notice, however, that the absolute
values are relatively low, and furthermore that the maximum values are less than twice the minimum in the
worst case, which is well below 8 times the minimum. This indicates that aggregation is indeed effective
across trees, since otherwise the maximum values, which are obtained for the full combination of 8 trees,
would be 8 times the minimum values, which correspond to the combinations of 1 tree.

 0

 1

 2

 3

 4

 5

Telstra
AS1221

Sprint
AS1239

Verio
AS2914

Tiscali
AS3257

Level3
AS3356

ATT
AS7018

R
eq

ui
re

d
M

em
or

y
[G

B
]

N:355
E:700

 N:547
E:1600

N:1018
E:2300

N:276
E:400

 N:624
E:5300

 N:733
E:2300

Figure 11: RIB Sizes for Local Intra-AS Trees

For each AS we also analyze the memory requirements at the intra-AS level. We use the internal AS topolo-
gies available from the Rocketfuel project [21]. The data are presented in Figure 11. The “N” and “E” labels in
the graph represent the number of nodes and edges in each AS, respectively. We plot the minimum, average,
and maximum sizes of the RIBs used to store local trees. Recall that for the local (intra-AS) trees we store all

15

the shortest-paths rooted at every node. The number of users inside each AS depends on the distribution of
the 50 million over the AS-level topology. Considering the largest results, namely Level3 and AT&T on the right
side of the plot, we can see that even using a large number of trees (both have hundreds of routers) we still
obtain good levels of aggregation and good results in absolute terms, with a maximum memory requirements
of less than 4GB.

 1.8
 2

 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4

 50 100 150 200 250 300 350 400 450 500

R
eq

ui
re

d
M

em
or

y
[G

B
]

Users [Millions]

Figure 12: Scalability of the Memory Requirements (One Tree on AS 3257)

The results discussed so far are limited to a number of users that is relatively low compared to the current
population of Internet users. Therefore, in order to prove the scalability of our routing scheme, we focus on
a particular node (AS 3257) and only on one tree, and study the memory requirements under a workload
of almost 10 billion content descriptors corresponding to 500 million users. Figure 12 shows the memory
required on a gateway router for larger and larger user populations. We can see that the growth of the memory
requirements is high at the beginning but then it start to grow less and less, reaching 3.8GB for 500 million
users. This is due to the aggregation of tags. This means that even with higher numbers of users, the memory
required to store all the routing information is likely to remain practically constant, since most of the new
descriptors will be aggregated at no additional cost in the table. Notice that even assuming a constant growth
after 350 million users, we would still be able to store the routing information for 2.5 billion users in less than
8GB. An important result of this analysis is that the aggregation scheme we propose is extremely effective:
out of a workload of almost 10 billion tag sets, we only need to store 63.6 million of them. In this simulation
we used one tree, but we can also speculate that this value would remain small across multiple trees, as
demonstrated by the analysis of Figure 10.

 0

 100

 200

 300

 400

 500

 100 200 300 400 500

U
pd

at
e

Ti
m

e
[m

s]

Users [Millions]

20 filters
40 filters
60 filters

Figure 13: Scalability of the Maintenance Times

In Figure 13 we show the time we need to update the RIB using the algorithm described in Section 3.6.
We run this simulation on an Intel Xeon with two quad core 2.53GHz CPUs and 16GB of RAM. In this analysis
we start from the RIBs computed for the experiment of Figure 12 and then apply update packets of size 20,
40, and 60 filters. The plots show the median and the standard deviation of the update time computed over
1000 updates. The data points on the three lines are for the same table sizes (X-axis) but they are slightly
shifted to avoid overlapping the standard deviation bars. The main result is that update times exhibit an

16

almost flat growth with the size of the RIB. On the other hand, the plots clearly show that the update time
increases linearly with the size of the update packet. In particular, on average we need around 5ms per filter,
which means that although we are running the algorithm on a commodity PC, we can still handle around 200
updates per second even on large RIBs.

5 Related Work

Communication in our model of ICN is to some extent similar to IP multicast, simply because one packet
can be implicitly addressed to several destinations. However, beyond that, the two addressing models are
radically different. IP multicast creates a partition of the information space into groups, so that one packet
is associated with exactly one group of destinations. By contrast, tag sets can express many more relations
between packets and destinations, and mapping those relations onto a multicast partition is fundamentally
inefficient [13]. This fundamental inefficiency is not solved by multicast address aggregation. For example,
Thaler and Handley [23] propose an interface-centric implementation model applicable to shared-tree pro-
tocols that allows some aggregation. However, in the absence of careful address allocation, forwarding state
remains fundamentally linear in the number of active groups, and can therefore impose non-trivial costs [19].

Still, almost all multicast routing schemes are based on trees. In particular, a few schemes suggest the use
of more than one independent multicast tree for each multicast group [14, 27]. The idea is to use multiple core
trees to reduce delay and avoid congestion. In this case there are two design choices. Senders-To-All means
that members join one of the cores but senders send to all cores. The opposite is Members-To-All where
senders transmit to one core but members join all cores. Either way, this duplication in the use of network
resources is once again a scalability limitation. These same considerations on the inherent limitations of the
multicast model and its implementations apply to application-level multicast systems, whether they use a
single tree [22] or multiple trees per group [4].

Turning now to the specific context of ICN, we note that there is surprisingly little work on this crucial
aspect of network design.

The NDN project proposes NLSR [11], a link-state routing protocol for NDN. However, NLSR does not
really embody a specific routing scheme. Instead, NLSR is a traditional link-state protocol that uses NDN
itself to transport routing information, but ultimately provides a traditional unicast routing scheme.

Eum et al. [8] try to address the content in the caches at the routing level. They advertise the cache content
locally in order to attract interest related to that content. Although they try to flood the advertisements only
locally, this may generate a huge amount of traffic in the case of frequent cache updates. This may also cause
some delay in the FIB updates, leading to reachability problems.

Another interesting work is presented by Papadopoulos et al. [17] who developed two greedy forwarding
algorithms in a hyperbolic space. This seems to be a promising approach for routing in ICN, in particular
with NDN naming. However, in order to work well in practice, the name space must be hyperbolic, and right
now there is no evidence that that is the case. Another problem with this scheme is the relation between the
name space and the network topology, meaning how names are distributed over the network. In fact, if names
do not follow the same distribution (within the hyperbolic space) then paths can be stretched significantly.
Finally, it is not clear how to compute the hyperbolic coordinates of routers and content using only local
information.

6 Conclusions and Future Work

In this paper we addressed the fundamental problem of routing in an information-centric network, and in
particular the essential question of the scalability of routing state. We propose a concrete scheme based on
trees that supports a rich service model. Our experimental evaluation confirms two main intuitions: first, that
the Internet can be approximated quite effectively with trees and, second, that tag-based content descriptors,
which are more expressive than name prefixes, also aggregate better than name prefixes.

One of the most crucial open questions regarding routing is whether a multi-tree scheme, and in par-
ticular one that uses a few trees at the global level, can effectively support routing policies. Another crucial
problem that we only touched upon is tag-based forwarding. We will continue to work on highly parallel
forwarding algorithms capable of processing forwarding tables of hundreds of millions of tag sets. More gen-
erally, the partial matching problem is a fundamental recurring problem in tag-based routing. We will revisit
this problem from a theoretical perspective and from an engineering perspective, perhaps exploring combi-
nations of hardware and software solutions.

17

References

[1] P. S. Almeida, C. Baquero, and A. Cunha. Fast distributed computation of distances in networks. In CDC, 2012.

[2] A. Carzaniga, M. Papalini, and A. L. Wolf. Content-based publish/subscribe networking and information-centric
networking. In Proceedings of the ACM SIGCOMM Workshop on Information-Centric Networking (ICN-2011), Aug.
2011.

[3] A. Carzaniga and A. L. Wolf. Forwarding in a content-based network. In Proc. of ACM SIGCOMM, Aug. 2003.

[4] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Splitstream: High-bandwidth multicast
in cooperative environments. In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles,
SOSP ’03, 2003.

[5] M. Charikar, P. Indyk, and R. Panigrahy. New algorithms for subset query, partial match, orthogonal range searching,
and related problems. In Proceedings of the 29th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2002), 2002.

[6] L. J. Cowen. Compact routing with minimum stretch. In Proceedings of the Tenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’99, pages 255–260, Philadelphia, PA, USA, 1999. Society for Industrial and Applied
Mathematics.

[7] Y. Ding, Y. Du, Y. Hu, Z. Liu, L. Wang, K. Ross, and A. Ghose. Broadcast yourself: Understanding YouTube uploaders.
In Proceedings of the Internet Measurement Conference, 2011.

[8] S. Eum, K. Nakauchi, M. Murata, Y. Shoji, and N. Nishinaga. Catt: potential based routing with content caching for
icn. In Proceedings of the second edition of the ICN workshop on Information-centric networking, ICN ’12, 2012.

[9] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J. Wilcox. Information-centric networking: Seeing the
forest for the trees. In Proceedings of the 10th ACM Workshop on Hot Topics in Networks, HotNets-X, Nov. 2011.

[10] M. Gitter and D. R. Cheriton. An architecture for content routing support in the Internet. In 3rd USENIX Symposium
on Internet Technologies and Systems, Mar. 2001.

[11] A. K. M. M. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang. Nisr: named-data link state routing
protocol. In Proceedings of the 3rd ACM SIGCOMM workshop on Information-centric networking, ICN ’13, 2013.

[12] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. Braynard. Networking named content.
In Proceedings of the 5th International Conference on Emerging Networking Experiments and Technologies (CoNEXT),
2009.

[13] P. Ji, Z. Ge, J. Kurose, and D. Towsley. Matchmaker: Signaling for dynamic publish/subscribe applications. In 11th
IEEE International Conference on Network Protocols (ICNP ’03), Nov. 2003.

[14] W. Jia, W. Tu, W. Zhao, and G. Xu. Multi-shared-trees based multicast routing control protocol using anycast selec-
tion. Parallel Algorithms Appl., 20(1), 2005.

[15] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and I. Stoica. A data-oriented (and
beyond) network architecture. In Proceedings of the 2007 conference on Applications, technologies, architectures, and
protocols for computer communications, SIGCOMM ’07, 2007.

[16] D. Krioukov, k. c. claffy, K. Fall, and A. Brady. On compact routing for the internet. SIGCOMM Comput. Commun.
Rev., 37(3):41–52, July 2007.

[17] F. Papadopoulos, D. Krioukov, M. Boguñá, and A. Vahdat. Greedy forwarding in dynamic scale-free networks em-
bedded in hyperbolic metric spaces. In Proceedings of the 29th conference on Information communications, INFO-
COM’10, 2010.

[18] H. Räcke. Optimal hierarchical decompositions for congestion minimization in networks. In Proceedings of the 40th
annual ACM symposium on Theory of computing (STOC’08), 2008.

[19] S. Ratnasamy, A. Ermolinskiy, and S. Shenker. Revisiting ip multicast. SIGCOMM Comput. Commun. Rev., 36(4), Aug.
2006.

[20] W. So, A. Narayanan, and D. Oran. Named data networking on a router: Fast and dos-resistant forwarding with hash
tables. In Proceedings of the Ninth ACM/IEEE Symposium on Architectures for Networking and Communications
Systems, ANCS ’13, Oct. 2013.

[21] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring isp topologies with rocketfuel. IEEE/ACM Trans.
Netw., 12(1), Feb. 2004.

[22] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet indirection infrastructure. IEEE/ACM Trans. Netw.,
12(2), Apr. 2004.

[23] D. G. Thaler and M. Handley. On the aggregatability of multicast forwarding state. In INFOCOM 2000. Nineteenth
Annual Joint Conference of the IEEE Computer and Communications Societies., Mar. 2000.

[24] M. Thorup and U. Zwick. Compact routing schemes. In Proc. of the thirteenth annual ACM symposium on Parallel
algorithms and architectures, SPAA ’01, 2001.

18

[25] Y. Wang, Y. Zu, T. Zhang, K. Peng, Q. Dong, B. Liu, W. Meng, H. Dai, X. Tian, Z. Xu, H. Wu, and D. Yang. Wire speed
name lookup: A gpu-based approach. In 10th USENIX Symposium on Networked Systems Design and Implementa-
tion, Apr. 2013.

[26] R. Wetzker, C. Zimmermann, and C. Bauckhage. Analyzing social bookmarking systems: A del.icio.us cookbook. In
Proceedings of the ECAI Workshop on Mining Social Data, July 2008.

[27] D. Zappala, A. Fabbri, and V. M. Lo. An evaluation of shared multicast trees with multiple cores. Telecommunication
Systems, 19(3-4), 2002.

19

	Introduction
	Network Architecture
	Routing Scheme
	ICN Routing on One Tree
	Fan-Out Limit: From Anycast to Multicast
	Replies and Label-Based Unicast

	Descriptors and Aggregation
	Using Multiple Trees
	Hierarchical Multi-Tree Routing
	Choosing Trees

	Forwarding
	Structure of the Routing Tables
	RIB Representation and Maintenance

	Evaluation
	Application Workloads
	Active Web
	Video Content
	Social Messaging
	BitTorrent
	General Data Normalization
	Data Amplification
	Assigning Interests to Users

	Effectiveness with k Trees
	Scalability: Memory and Maintenance

	Related Work
	Conclusions and Future Work

