
Università
della 
Svizzera
italiana

USI Technical Report Series in Informatics

Exploring Compression in Edge Shape Space
Stefano Marras1, Kai Hormann1

1 Faculty of Informatics, Università della Svizzera italiana, Switzerland

Abstract

It often happens that the 3D representation of a scene or a shape exhibits some static or
dynamic content and thus requires to store a large amount of geometric information.
A number of techniques to reduce the size of such data have been proposed and most
techniques are able to greatly reduce the amount of data by detecting the spatial and
temporal relationship between the coordinates of nearby vertices. In this work we
present an overview of compression techniques in edge space. We exploit redundancy
in this space and propose different methods to encode and compress dynamic geo-
metric data in terms of edges. Our results show that this shape space does not appear
to be the best choice for compression, and we discuss the issues and provide some
explanation for the poor performance.

Report Info

Published
October 2015

Number
USI-INF-TR-2015-4

Institution
Faculty of Informatics
Università della Svizzera italiana
Lugano, Switzerland

Online Access
www.inf.usi.ch/techreports

1 Introduction

Three-dimensional objects are widely used in a large number of fields and applications, from videogames to
computer-aided design and manufacturing, scientific visualization, and entertainment. In most cases, it is
sufficient to work on a single static shape, but in several applications the shape is characterized by a motion
or deformation over time. The deformation may affect both the connectivity of the shape, which can change
over time, and the geometry of the shape, that is, the vertices of the shape change their positions over time.
Consequently, when dealing with a deforming dynamic shape, we have to take into account the connectivity
information, the geometric information, and the temporal dimension in order to correctly store, visualize,
and manipulate the whole animated sequence.

High quality models may consist of millions of triangles, which requires a huge amount of data to be
stored, and may limit possible applications, such as transmission and visualization on low-capability devices.
The solution for this problem is to design and apply compression techniques, exploiting the redundancy
in the original geometric information and reducing the amount of data to be stored. The so-called lossless
compression techniques are able to recover the original data without losing any information. However,
a certain amount of distortion in the information is sometimes acceptable, therefore there is also a large
number of lossy compression techniques that find a reasonable tradeoff between stored data and the loss of
information.

In this work, we concentrate on lossy compression of both static and dynamic shapes. Particularly,
instead of focussing on compression in the commonly used vertex space, we turn our attention to the edge
space to find the redundancy that may lead to a reduced compression rate.

The rest of the paper is structured as follows. We first recall common techniques for static and dynamic
mesh compression in Section 2.1 and give an overview of alternative spaces for mesh representations in
Section 2.2. We then describe the motivation behind our approach in Section 3. In Section 4 we present
different approaches for compression in the space of edge coordinates, point out their weaknesses and
advantages, and evaluate the results, which turn out to be unsatisfactory. We therefore discuss the limitations
of this approach in detail in Section 5.

1

http://www.inf.usi.ch/techreports/


2 Related work

2.1 Mesh compression

One of the main concepts in the field of compression is Shannon’s entropy, which expresses the amount of
information contained in a set of discrete symbols. It also provides a rough estimate of the average number
of bits per element needed by the encoder to store the data. Given a random discrete variable X with possible
values x1, . . . , xn , its entropy H (X ) is computed as

H (X ) =−
n
∑

i=1

P (xi ) log2(P (xi )),

where P (xi ) is the probability of X to be equal to xi . A low entropy implies that x does not contain much
information and may be predicted and efficiently encoded. The challenge in data compression is to explore
the data space in order to find the redundancy that allows to reduce the entropy and achieve a lower data
rate.

Mesh compression aims at reducing the amount of space needed to store or transmit a static or dynamic
shape. In case of a single static mesh, we have to compress information about the connectivity and the
geometry. Usually, both parts are encoded and transmitted separately. Connectivity is usually encoded by
performing a smart traversal of the mesh on the encoder side and recording some information such as vertex
valence or edge traversal order. The decoder receives the information and recovers the exact connectivity of
the mesh. A number of different techniques have been proposed over the years, from Edge-breaker [22] to
valence-driven encoding [2]. We refer the reader to [20] for a detailed survey.

Geometry compression, on the other hand, is usually carried out separately. In most cases, efficient
compression of geometric data relies on prediction and correction. First, the encoder attempts to predict the
next value that is going to be encoded with the highest possible precision, usually exploiting the already
encoded data. It then measures the error in the prediction and quantizes, encodes, and sends only the
corrections to the decoder. The decoder performs the prediction in the same way as the encoder and adjusts
the prediction using the correction provided by the encoder. The better the prediction, the smaller the
error, which leads to a lower entropy and an efficient compression. Several prediction schemes have been
proposed. Probably the most used geometry compression technique is the parallelogram predictor [28],
but also other techniques such as Laplacian compression [24] or octree-based compression [21] are often
employed.

In case of dynamic shapes, we also have to encode the temporal information, that is, how the geometry
changes over time. In the common setup, the connectivity of the deforming shape is fixed, while its geometry
varies in time. An animated sequence of deforming shapes is represented as a set of M poses (or frames) of
the input shape. In principle, to compress the sequence, we can simply apply one of the common techniques
for static mesh compression and encode each frame separately. However, the temporal coherence of the
sequence can be exploited to improve the prediction of the subsequent frames, further reducing data entropy.

In the following, we assume that the fixed connectivity of all poses is compressed once, using one of the
techniques for static mesh compression, and we focus on the encoding of the time-varying geometry. The
geometric information can be compressed in different ways. Most techniques rely on the principle that close
vertices are characterized by the same rigid motion over time. One can take advantage of this relationship to
develop a predictor and encode the sequence. The MPEG-4 Animation Framework eXtension AFX [5, 10]
predicts the position of a vertex v in frame k as a combination of the positions of its neighbours in frame
k and the positions of both v and its neighbours in frame k −1. These techniques may be coupled with a
segmentation that clusters the vertices characterized by similar trajectories [16], or using a spatial partitioning
structure to cluster the vertices of the shape, carrying out the predictions on a per-cell basis [40, 41, 18, 19].

So far, the compression techniques based on principal component analysis (PCA) provide the best trade-
off between compression rates and distortion in the reconstructed sequence. The first PCA-based approach,
proposed by Alexa and Müller [1], which was later revised and extended in [11, 14], uses PCA to find a set of
key frames which serve as a basis for the whole sequence. The other frames are then expressed as weighted
linear combination of these key frames. Each key frame has the same size as the sequence frames. Even
though storing only a few key frames plus the coefficients of the other frames significantly reduces the bit
rate, further improvements are possible.

For example, the PCA technique may be combined with clustering methods [23, 3] or multi-resolution
techniques [25]. The best way to achieve optimal compression rates is the Coddyac algorithm, proposed

2



by Váša and Skala in [33]. It applies PCA to the trajectories of the vertices to find a number of basis vectors
and uses them to encode each frame of the sequence. The experiments show that these vectors belong to a
space that has a much lower dimensionality than the vectors computed by Alexa and Müller [1]. The same
technique is revised and improved in [35, 34] and used in combination with a purely combinatorial Laplace
operator in [31] and with a geometric Laplace operator in [30].

2.2 Differential shape spaces

In the common setup, a three-dimensional shape is represented by the spatial positions of its vertices.
We refer to that representation as the vertex shape space Sv whose dimension is 3V with V equal to the
number of vertices. We can think of a shape as a point inR3V . Assuming fixed connectivity, a sequence of
different poses of the same shape is simply a curve in R3V which connects the points in the temporal order
corresponding to the poses. However, performing tasks like interpolation between two or more poses in
Sv is usually an unreliable process, resulting in artefacts on the interpolated shape. To overcome this issue,
other shape spaces have been proposed.

Sumner and Popović [27] propose an alternative shape space based on the deformation gradient. Each
face of the mesh is characterized in terms of a linear transformation with respect to a reference triangle.
Since the translational part of the transformation is omitted, the representation of a mesh in this shape
space S f is invariant under translations and the space dimension is 9F , where F is the number of faces. In
order to recover the geometry of the vertices, a projection operator Pf is defined. It requires to solve a sparse
linear system that can bre pre-factorized to speed up the computation. However, Kircher and Garland [13]
observe that when combining deformation gradients, faces rotate along the shortest path in the embedding
space, so interpolation between two or more poses can give unnatural, non-smooth deformations. Similar
approaches, which are not affected by these artefacts, are presented in [15, 12, 4].

Winkler et al. [39] introduce the edge shape space Se , in which a mesh is represented in terms of edge
coordinates. For each edge ei j of the mesh, connecting vertices vi and v j , we store its length li j and the
dihedral angle θi j between the adjacent faces. Since this representation is invariant with respect to both
translation and rotation, we need to add six more values to correctly place the mesh inR3. As a consequence,
the dimension of the mesh representation in Se is 2E +6 with E the number of edges, which means that
the size of the representation is approximately twice as big as the standard representation. To pass from
the representation in Se to the equivalent representation in Sv , we must solve a non-linear optimization
problem, which can be tackled in a hierarchical fashion [39] or by employing a non-linear global minim-
ization approach [6]. This space has proven to be particularly suitable for performing mesh interpolation
or deformation in a natural and physically plausible way. Interpolation and deformation are performed in
terms of edge lengths and dihedral angles, and the resulting shape in Se is projected back to Sv . In the rest
of the paper, we refer to this representation as ELDA (edge length, dihedral angle).

Marras et al. [17] propose a hybrid approach that combines vertex and edge shape spaces. They first
classify the parts of a shape as rigid or deforming and then describe the rigid parts by their vertex coordinates
and the deforming parts in terms of edge coordinates. This representation is suitable for a large number of
articulated shapes and requires to store approximately 4V +6 elements per mesh.

3 Motivation

As already stated, static and dynamic shapes in three-dimensional space are usually represented by their
spatial coordinates. Hence, the vertex space is the common choice for compression of geometric data,
despite the fact that vertex coordinates do not immediately exhibit significant redundancy. However, as
seen in the literature, it is not difficult to find redundancy in the vertex behaviour and develop efficient and
precise spatial and temporal predictors. Most of the spatial predictors rely on spatial coherence and are
able to predict the position of a vertex from the positions of its neighbours with reasonable precision, while
temporal predictors usually exploit temporal coherence by investigating vertex trajectories to understand
how the shape deforms and predicting the position of a vertex in the next frames.

However, as described in Section 2.2, there are a number of applications where the vertex representation
may not be the best choice, such as interpolation and deformation, and alternative representations have been
proposed. It seems reasonable to assume that the spatial and temporal coherence of the vertex representation
may be characteristic in other spaces as well. For example, instead of exploiting spatial redundancy to predict

3



Figure 1: Five frames of the Dance sequence. The mesh is characterized by static connectivity and dynamic geometry.

the position of a vertex, one could predict the length of the edges that connect a face to an adjacent vertex
using the same spatial coherence.

Relying on the same assumption as before, we propose to shift the focus and work in a different space.
When dealing with dynamic meshes, focussing on edge coordinates seems to be an even more reasonable
choice. It is well-known that the deformation of a shape can be described in terms of edge stretching
and bending [7], which corresponds to the variation of lengths and dihedral angles, respectively. This is
particularly true for articulated shapes. The deformation between consecutive frames of a sequence is
usually localized in small regions of the shape and consequently only few edges are affected by variation,
while the remaining edges are almost static. On the other hand, the same deformation may cause lots
of vertex coordinates to change. Edge behaviour suggests that there is an even bigger redundancy in the
temporal dimension to exploit for compression purposes.

However, working in edge space presents some major drawbacks. Particularly, the size of the shape
space is approximately twice as big as the common vertex space, which is a significant complication in
compression, where the aim is to save as many bits as possible. Thus, in order to be competitive, the edge
shape space must exhibit an outstanding redundancy, allowing us to massively reduce the entropy of the
edge data. The advantage of working in edge space is that a static or dynamic shape can be compressed
in a format which has several nice properties, such as invariance under rotation and translation, and it is
immediately suitable for interpolation and deformation purposes.

Our goal therefore is to present a set of different approaches to perform compression in edge space,
and to give an immediate overview of different ways for tackling the problem by finding and exploiting the
redundancy in this shape space.

4 Compression in edge shape space

Before going into detail, we first describe our setup and introduce the notation that is used in the rest of the
paper.

Our input is a sequence of N poses S = (M1, . . . ,MN ) representing the same shape M at different times
as pictured in Figure 1. Each pose shares the connectivity with the others, so we implicitly know the exact
correspondence between the vertices of different frames and therefore do not need to perform any search
for vertex matching. Each pose is described by a set of V vertices, E edges, and F faces. The connectivity of
M is encoded once using one of the commonly used techniques for static mesh compression, such as the
Edgebreaker [22]. The goal is to encode the original sequence by quantizing and compressing the data of its
poses, such that the decoded sequence Ŝ = (M̂1, . . . ,M̂N ) exhibits the lowest possible distortion. Since we
focus on edge coordinates, we choose to represent each frame of the sequence in terms of edge lengths and
dihedral angles. The whole sequence S is then represented by the two matrices

Sl =









l 1
1 · · · l N

1
l 1

2 · · · l N
2

...
...

...
l 1

E · · · l N
E









, Sθ =









θ 1
1 · · · θN

1
θ 1

2 · · · θN
2

...
...

...
θ 1

E · · · θN
E









. (1)

The matrix Sl contains the lengths of all edges e1, . . . , eE over the sequence, while Sθ contains the associated
dihedral angles. The whole sequence is therefore represented by these two matrices. The i -th rows of Sl and

4



Sθ describe the behaviour of ei over time, while the j -th columns of Sl and Sθ describe the frame M j in Se .
To avoid the ambiguity in spatial positioning, we introduce the matrix

SRT =

�

R 1 · · · R N

T 1 · · · T N

�

,

which contains the rotations and translations needed to place the shape in R3. The total size of this repres-
entation is N × (2E + 6). This is roughly equivalent to N × (6V + 6) and about twice as big as the N × 3V
matrix representing the same sequence in Sv . Note that we refer to the edge connecting two vertices vi and
v j as ei j in the rest of the paper.

Since we observe that lengths, dihedral angles, and rigid transformations appear to be independent from
each other, we treat each matrix separately from the other two. This allows us to handle lengths and angles
independently, possibly applying different compression techniques to Sl and Sθ . Also, since the rotations
and translations are described by only six values per frame, their cost is negligible, so we do not take SRT into
account in the evaluation. We assume to encode SRT at high precision, such that the final positioning of the
shape is precise enough and does not affect the error computation.

The cost of explicitly quantizing and encoding every entry of Sl and Sθ is obviously prohibitive, since
each frame requires twice as much data than compressing the spatial coordinates of the vertices, and the
entropy of theses values is not small enough to allow for an efficient compression. However, we can exploit
both spatial and temporal coherence in the edge coordinates to significantly reduce the amount of data
required to reconstruct the whole sequence. In the following sections we present several approaches and
investigate their key ideas, advantages, and weaknesses.

In a generic compression pipeline, the encoder first analyses the sequence and then quantizes and
encodes the geometry data in some way. Some techniques encode and decode the sequence frame by frame,
while others process the whole sequence as a single entity. After the encoding step, the decoder receives
the data and decodes them, recovering the geometric data of Sl and Sθ , which are usually affected by some
distortion due to the quantization.

In our case, the input data are edge coordinates, so after decoding them we must switch from the
representation in Se to the one in Sv . In our work, we rely on multi-scale geometry interpolation (MSGI),
proposed by Winkler et al. [39], which provides a reasonably fast way to project from Se into Sv . We employ
this technique to pass from the decoded edge coordinates to the corresponding shape in the vertex space.
We also tested the global discrete shell optimization (DSO), proposed by Fröhlich et al. [6], but its high
computational cost, combined with the fact that the results were not significantly different from the ones
achieved by MSGI, persuaded us to focus on MSGI.

Input sequences were taken from Sumner’s data set [27], Vlasic’s data set [38] and the Aim@Shape
repository. Compression rates are measured in bits per vertex [bpv] for static meshes and in bits per frame
per vertex [bpfv] for dynamic shapes. The distortion of the decoded static mesh is measured in terms of the
dihedral angle metric error (DAME) [32], while the error of the decoded sequences is measured in terms of
spatio-temporal edge distortion (STED) [37], which evaluates the distortion in the decoded sequence as a
weighted combination of spatial and temporal distortion in relative vertex positions. When possible, we
employed the original tools implemented by their authors, such as the MSGI reconstruction tool or the STED
measurement. The rest of the tools were implemented as C++ and MatLab routines.

In the rest of the paper, we use the following notation for predicted, quantized and decoded elements.
The prediction of v is denoted by v , ṽ represents the quantized and encoded value, and v̂ represents v after
the decoding process. Note that ṽi and v̂i are different in case of lossy compression, due to the introduced
compression error. A small difference between v and v̂ usually results in a better approximation of the
original data.

4.1 Parallelogram predictors

Traditional compression techniques work on vertex coordinates. In this setup, the compression is carried
out by first predicting the position of the vertex v according to some prediction scheme and then measuring
and encoding only the residual error in the prediction. In case of static compression, the prediction scheme
usually involves a small set of already encoded neighbours v1, . . . , vk , while dynamic compression can also
involve the position of v and its neighbours in the previously encoded frames. Our goal is to develop one or
more prediction schemes to encode the edge coordinates of a mesh by exploiting both spatial and temporal
coherence. To find the redundancy in edge space, we design several edge-oriented predictors, whose goal is

5

http://shapes.aimatshape.net/
http://shapes.aimatshape.net/


Figure 2: The parallelogram predictor is a simple but very efficient scheme that is widely used for both static and
dynamic mesh compression. Due to the geometric nature of the scheme, the extension to predicting edge lengths is
straightforward.

Figure 3: The parallelogram predictor can be extended to include temporal information. The error in the spatial
prediction of vh in frame f (left) is used to correct the prediction of vh in frame f +1 (right). In the same way, the edge
length prediction in frame f +1 can be corrected using the error in the f -th frame. We also assume that θi j does not
vary significantly between consecutive frames and therefore use the angles predicted at f as prediction for f +1.

to predict the length and angle of the edge e according to its neighbours and its behaviour in the sequence.
Mesh connectivity is encoded separately, using one of the standard technique mentioned in Section 2.1.

We initially focus on spatial coherence only, looking for meaningful relationships between locally related
edges. We thus develop a spatial predictor that mimics the parallelogram predictor [28]. In the original
prediction scheme (see Figure 2), the position of vh is predicted as the fourth vertex of a parallelogram having
the already decoded neighbours vi , v j and vk as other vertices and only the residual error is then quantized
and encoded as

ṽh = vh − (vi + v j − vk ).

This technique takes advantage of the local smoothness of the surface and has been largely employed and
revised over the years, proving to be a reasonable choice in most cases. In fact, the predictor drastically
reduces the entropy of vertex coordinates and provides a nice and efficient way to reduce the bit rate of
the encoded mesh. Following the same principle and maintaining the notation of Figure 2, we can easily
adapt the predictor to guess the length of the edges ei h and e j h from the opposite edges in the parallelogram,
encoding only the residual errors for both edges as

l̃i h = li h − l j k , l̃ j h = l j h − li k .

However, the parallelogram predictor does not allow to make any assumption about the dihedral angles.
The only possible prediction is that θi j should be equal to zero, since the parallelogram lies on a plane. This
prediction, however, does not affect the entropy of the original data and is therefore useless.

The parallelogram predictor is a purely spatial predictor, but it can be extended to take into account
the temporal information [9, 5, 16], assuming that the motion of the mesh is locally rigid. The rationale is
that the prediction error remains almost constant over time. Therefore the correction encoded for frame
f can be employed to correct the prediction of the vertex positions in frame f + 1 (see Figure 3) and to
further reduce the entropy of the data. This predictor is sometimes referred to as the extended parallelogram

predictor. In frame f , the vertex v f
h is predicted using spatial information, with the residual error v f

h − ṽ f
h .

6



vertex space Sv edge space Se

size HV HṼ d (V , V̂ ) time size HE HẼ d (E , Ê ) time
Cow 3×2902 11.78 8.24 0.15 7 2×8700 10.66 10.91 0.15 890

Homer 3×5103 12.38 8.17 0.15 16 2×15303 10.82 10.72 0.15 1132
Horse 3×8431 12.91 7.44 0.08 23 2×25287 11.14 10.65 0.08 1477
Hippo 3×22260 11.48 6.56 0.08 40 2×66774 11.61 12.03 0.08 4089

Elephant 3×42321 14.14 6.39 0.02 74 2×126957 10.71 9.52 0.02 7672
Leaning 3×59727 14.84 7.60 0.09 108 2×179175 10.74 10.01 0.09 9701

Max-Planck 3×99636 13.78 7.47 0.07 190 2×298655 12.02 12.02 0.07 16782

Table 1: Comparison of static mesh compression with parallelogram prediction in vertex and edge space. In all examples
the quantization deltas are chosen so that the DAME errors between the original and the reconstructed meshes are
similar. While the parallelogram predictor significantly reduces the entropy in vertex space from HV to HṼ , the entropy
reduction in edge space is negligible. The table further reports the sizes of the meshes in vertex and edge space and the
times for decoding each mesh in milliseconds.

Figure 4: Rate-distortion plots for compression with parallelogram prediction in vertex and edge space, for the Homer
(left) and the Elephant (right) static meshes.

When predicting the position of vh in frame f +1, the spatial prediction in enhanced by the residual error of
frame f . The encoder compresses only the error with respect to this prediction,

ṽ f +1
h = v f +1

h −
�

v f +1
i + v f +1

j − v f +1
k + (v f

h − v f
i − v f

j + v f
k )
�

.

As done for static meshes, we revise the edge-oriented parallelogram predictor to include also the temporal
information. The revised predictor corrects the prediction of the edge lengths similarly to the vertex-based
predictor as

l̃ f +1
i h = l f +1

i h −
�

l f +1
j k + (l f

i h − l f
j k )
�

,

l̃ f +1
j h = l f +1

j h −
�

l f +1
i k + (l f

j h − l f
i k )
�

.

Following the hypothesis of local rigidness of motion, as done by Stefanoski et al. [26], we plug the tem-
poral information into the predictor by assuming that dihedral angles do not change significantly between
consecutive frames,

θ̃
f +1

i j = θ f +1
i j −θ f

i j .

For each frame of the sequence, we encode the edge coordinates of a starting reference triangle plus the
correction values for all other edges. We can therefore recover the whole set of edge lengths and dihedral
angles by traversing the mesh. The final mesh is reconstructed using MSGI, which provides a mesh whose
edge coordinates are as close as possible to the decoded values. For encoding the next frame we use length
and angles of the reconstructed mesh, which may be different from the decoded data.

Table 1 presents a comparison between the impact of the spatial predictor on data entropy in Sv and Se

for a single static mesh. It is undeniable that the parallelogram predictor significantly reduces the entropy of
vertex coordinates by 30–50%, while it does not have the same impact on edge coordinates. In this case the
entropy is only marginally affected and, in some cases, not even reduced. Two examples of the resulting
rate-distortion plots are shown in Figure 4. The parallelogram predictor proves again to be a good choice for

7



frames
vertex space Sv edge space Se

frame size HV HṼ d (V , V̂ ) time frame size HE HẼ d (E , Ê ) time
Cow 204 3×2904 5.13 4.21 0.03 1.86 2×8706 7.66 5.01 0.03 183.2

Dance 201 3×7061 3.58 2.96 0.03 4.18 2×21177 6.41 4.16 0.03 209.2
Humanoid 154 3×7646 3.98 2.06 0.05 4.91 2×22932 9.05 6.09 0.05 161.5

Samba 175 3×9971 5.11 3.45 0.02 5.82 2×29907 8.47 6.08 0.02 262.4
March2 250 3×10002 5.42 3.74 0.02 8.74 2×30000 9.02 6.32 0.02 381.0

Jump 222 3×15830 4.61 3.53 0.01 11.20 2×47490 10.02 6.98 0.01 453.7

Table 2: Comparison of dynamic mesh compression with extended parallelogram prediction in vertex and edge space.
The notation is the same as in Table 1, and the quantization deltas are chosen so that the STED errors between the
original and reconstructed sequences are similar. The time for decoding the data is given in seconds.

RMSE = 0.0044, DAME = 14.35 RMSE = 0.2499, DAME = 22.97

Figure 5: Visual comparison between a mesh recovered from parallelogram prediction in vertex space (left) and in edge
space (right) at similar compression rates. Uniform quantization in vertex space affects each vertex locally, causing
“blocky” artefacts on the surface. Uniform quantization in edge space may have a completely different impact, since the
error introduced in a small region can propagate to the adjacent ones, due to the hierarchical approach of the MSGI. As
a consequence, the mesh reconstructed in edge space may be characterized by a much larger objective and perceived
error.

mesh compression in the common vertex space, but it is not suitable for compression in edge space. The
poor entropy reduction, combined with the size of the representation, do not allow to achieve competitive
results.

In our experiments we developed a number of variations of the basic parallelogram approach, slightly
revising the prediction in order to improve the precision. For example, since the length of one edge may
get up to four different predictions (one for each side of the parallelogram), we designed an approach that
predicts each edge length as the average of all the possible predictions. Another alternative predictor [29]
estimates the interior angles of each face from vertex valences and then uses the interior angles to predict
the lengths of the adjacent edges. However, none of these approaches gave any significant advantage in
terms of entropy reduction.

Table 2 shows the effects of the spatial and temporal predictors for dynamic mesh sequences. In this
case, there is a slight improvement in edge compression: exploiting the temporal coherence results in an
entropy reduction of the edge data by 20–30% on average. However, this is not enough to reach a competitive
compression rate, since the entropy in vertex shape space is still significantly lower. From the experiments, it
seems reasonable to assume that the edge shape space shows a significant redundancy in terms of temporal
information, while it does not seems to be characterized by a significant redundancy in spatial information.

Moreover, there are several issues related to the use of the MSGI to recover the original mesh from edge
coordinates. The decoding step is quite expensive compared to the simple mesh traversal of the parallelogram
predictor. As a consequence, the time required to decode the mesh or mesh sequence is considerably higher
than the decoding time of the standard parallelogram predictor, which is a major drawback. In addition, the
error introduced by uniform quantization affects vertices only locally, while the local error introduced by
uniform quantization in edge space may propagate over the whole surface, as shown in Figure 5, due to the
hierarchical nature of the MSGI approach.

8



Figure 6: The δ-coordinates of vi are computed as the difference between its position and the centre of mass ṽi of its
1-ring neighbours.

4.2 Laplacian encoding

Before putting aside the compression of static meshes in terms of edge coordinates, let us try to adapt
another of the widely used techniques for compression in vertex space. In particular, we focus on high-pass
quantization, proposed by Sorkine et al. [24]. In this scheme, a vertex is predicted as the centre of mass of its
surrounding neighbours. For each vertex vi we therefore compute

δi = vi −
1

di

d
∑

k=1

vik
,

where di is the valence of vi and vik
is the spatial position of the k -th neighbour of vi (see Figure 6). We

then quantize and encode this residual vector, which is also referred to as the delta coordinates of vi . The
computation of delta coordinates can be written in a more compact form as

δ = Lv ,

where v is the V ×3 matrix containing the spatial coordinates of the mesh vertices, δ is the V ×3 matrix of
the δ-coordinates, and L is the combinatorial Laplacian matrix, also known as the Kirchhoff Laplacian with
entries

L i j =











di , if i = j ,

−1, if vi and v j are neighbours,

0, otherwise.

Since L is not invertible, the original positions of the vertices cannot be recovered from δ only. To overcome
this limitation, it is necessary to add one or more anchor points, that is, vertices whose spatial coordinates
are explicitly stored. Having n anchors a1, . . . , an the Laplacian matrix becomes

L ∗ =

�

L
A

�

,

where A is a matrix with one row for each anchor and entries Ai j = 1 if i = j and Ai j = 0 otherwise. The
δ-coordinates are then computed as δ = L ∗v . The entropy of the δ-coordinates is significantly smaller than
the entropy of the spatial vertex coordinates, which makes them suitable for being efficiently quantized and
encoded. From the quantized δ-coordinates δ̃ we get back the vertex positions by solving the minimization
problem

min
v̂
‖L ∗v̂ ‖− δ̃2

,

which can be solved efficiently in the least squares sense, taking advantage of the sparsity of L ∗. The
advantage of this approach is that the local details of the surface and the overall appearance of the shape
are usually preserved, despite the quantization error, therefore reducing the perceived error evenly. This
approach usually outperforms the parallelogram predictor in terms of perceived distortion, as confirmed by
metrics such as the revised KG error [24] or the already mentioned DAME. However, if the number of anchor
points is too small the result may be affected by a large objective error, usually measured as RMSE of vertex
displacement.

9



(a) (b)

(c)

Figure 7: Three different edge prediction stencils. Stencil (a) predicts edge ec as the average of its adjacent edges. In
stencil (b), ec is the average of its supposedly parallel neighbours. Stencil (c) extends (b) by adding other edges to the
scheme, assigning them a weight related to their distance from ec .

The key factor behind the success of this approach is the correlation between delta coordinates and visual
error. The quantization of delta coordinates preserves the high-frequency details of the surface, which are the
perceptually most relevant ones, while losing information only in the unimportant regions. Unfortunately,
there is no such operator as the discrete Laplacian in edge shape space that can be used to predict the
characteristics of an edge from its neighbours. Several edge-based Laplace operators have been proposed [8],
but they are mostly defined in terms of vertex coordinates and interior angles, which makes them unsuitable
for our purposes.

We therefore tried to mimic the general idea of predicting one element as a weighted average of its nearest
neighbours, with the aim of exploiting the redundancy in edge space in a different way. The process requires
to build a matrix similar to L ∗, which allows us to handle the reconstruction process in the same way as in the
original approach by recomputing lengths and angles from the encoded data in the least square sense and
then applying MSGI to get the resulting shape. To define the entries of L we designed a number of different
stencils (see Figure 7) used to predict length and angle of a central edge from the surrounding ones. Each
row of L ∗ is defined accordingly to the selected stencil.

Our first stencil in Figure 7 (a) is inspired by the parallelogram predictor and predicts the central edge
as the simple average of the edges of its incident faces. Unsurprisingly, it fails to reliably correlate the
edges, since there is no fixed pattern in the distribution of edges. It makes sense to use such predictor
only for very regular meshes, but in general, it does not give any benefit in terms of prediction accuracy. A
deeper analysis suggests that, given an edge, the neighbours characterized by similar length and angle are
generally not directly adjacent to it, tending instead to be more or less parallel to it. We plug this information
into the design of our stencils by extending the support of stencils as shown in Figure 7 (b,c). We noticed
that extending the stencils in order to include a larger number of edges does not produce any significant
improvement in the prediction, since the most relevant ones are closer to the central edge. As a consequence,
our stencils usually do not involve more than 10 nearby edges, which helps keeping the computational
cost low. Experimental results support our choice: better predictions are carried out from a small number
of edges, usually 4. Increasing the stencil size to 6 or 12 edges as shown in Figure 7 (b,c) does not affect
significantly the results. Each predictive scheme identifies a subset of edges and assigns a weight to each of
the edge related to its distance from the centre of the stencil: the closer the edge, the higher the weight. We
compute the associated edge δ-coordinates in terms of length and angles as

l̃c = lc −
k
∑

i=1

wi li , θ̃c = θc −
k
∑

i=1

wiθi

where e1, . . . , ek are the k edges of the stencil and w1, . . . , wk the associated weights. We quantize and
encode only the prediction residual in the same way as done in [24]. Notice that all the schemes are purely
combinatorial, in the sense that they depend on the connectivity only, and as a consequence there is no need
to encode any information about the stencil itself. From the edge δ-coordinates plus at least one explicitly
stored anchor edge it is straightforward to recover the whole set of edge coordinates following the approach

10



Figure 8: Rate-distortion plots for the stencils in Figure 7 for the horse mesh (left) with 8k vertices and the hippo mesh
(right) with 22k vertices, compared to the original high-pass quantization. The irregular behaviour of the plots, due to
the instability of the process, and the poor performances in terms of compression rate are clearly visible.

Figure 9: Trajectories of edge lengths (left) and dihedral angles (right) for different edges of the Dance sequence. Some
of the edges are relatively stable over time, while others are characterized by larger deformations. The red line shows an
example of an edge where small deformations in length correspond to large deformations in angles and vice versa for
the blue line.

of [24]. Remember that, in our case, we do not aim to preserve some relevant feature of the shape, since
our stencils are not characterized by the same properties of the discrete Laplace operator. Instead, we are
pursuing the goal of investigating the possible relationships between a small subset of locally close edges
that may result in the reduction of the data entropy without compromising the recovery of the original shape.

Unfortunately, none of the proposed predictive scheme seems to be accurate enough to significantly
reduce the data entropy on a static mesh. Figure 8 presents the rate-distortion plot in the case of encoding a
single static mesh, compared with the results achieved by traditional Laplacian compression. The results
are quite unsatisfactory in terms of tradeoff between rate and distortion. And this is not the only drawback,
since the aforementioned problems (inefficiency and error propagation) still affect this process.

4.3 Trajectory approximation

The poor performance of the spatial predictors in terms of entropy reduction persuaded us to switch our
perspective and to focus on exploiting temporal coherence. As we already pointed out, length and angle of an
edge vary over time. Particularly, the edge length varies as the edge is stretched while the angle varies as the
edge is bent. In principle there is no guarantee that the two deformations are correlated, so one edge may be
stretched without being bent and vice versa. In fact, experimental results show that the correlation coefficient
between the variation in edge length and the variation in dihedral angle between pairs of consecutive frames
is usually close to zero, which means that these two quantities are not linearly correlated.

We therefore pursue our goal by compressing lengths and angles separately. Instead of treating each edge
as a moving point in a 2-dimensional space, we consider each edge as describing two different trajectories
in time, one describing the variation of its length and one for the variation of its angle. Figure 9 shows an

11



example of such a trajectory in both spaces. Referring to (1), the rows of Sl and Sθ represent the trajectories
in the length space and in the angle space respectively. Our aim now is to efficiently encode each edge
trajectory. As mentioned above, we focus on the prediction of the temporal component, without taking into
account the spatial relationship between edges.

As shown in Figure 9, the edges of a mesh can behave quite differently. Some are pretty stable and describe
a smooth trajectory, while others, usually corresponding to the parts of the object where deformation occurs
the most, are characterized by a large and sometimes abrupt deformation. In most cases the significant
deformation is distributed across a small number of frames, so it is reasonable to assume that, knowing the
behaviour of an edge in the last w frames, we can guess how the edge is going to deform in the next frame.
More formally, we predict the behaviour of an edge at frame k from the trajectories described by the edge in
frames k −w , . . . , k −1, where w is the size of the temporal window. As usual, we encode only the error in
the prediction.

To predict the edge at frame k we approximate the trajectories of the last w encoded frames using
polynomial interpolation. Given the edge lengths l k−w

i , . . . , l k−1
i of ei in the w -sized temporal window of

interest, we look for the coefficients a0, . . . , aw−1 of the polynomial

p (x ) = a0+a1 x +a2(x
2) + · · ·+aw−1 x w−1

of degree w −1 that interpolates the prescribed trajectory,

p (t ) = l k−w+t
i , t = 0, . . . , w −1.

For each edge, the set of coefficients can be found by solving a linear system of size w ×w , and we can then
predict l k−w+t

i as p (t ) and encode only the prediction error l k−w+t
i −p (t ). There is no need to encode these

coefficients, since they are computed directly from the previously encoded frames, and the same can be
done during decoding. The procedure is applied in the same way to predict the dihedral angles, possibly
with a different size of the temporal window.

This approach significantly improves the result achieved by the parallelogram predictor, both in terms of
rate and distortion, but it is still affected by several issues. First, it requires to encode the first w −1 frames of
the sequence in a different way, in order to have enough data to predict the w -th frame. Unfortunately, for
small values of w , such as w = 1 or w = 2, the prediction of the trajectories is not accurate enough, since it
gets better only for w = 5 or w = 6. As a consequence, we need to encode the data related to the first 4 or 5
frames with a different approach (for example, using a spatial predictor), introducing an overhead in the
total bit rate. Second, we still have to encode a large number of values, which leads to a huge amount of
data to be compressed. Third, the trajectories of a relevant subset of edges are characterized by peaks and
erratic behaviour, which makes them difficult to predict. At the same time, if their length and angles are
not encoded at reasonable precision, the decoded frame can be affected by a severe deformation error. In
general, despite a significant entropy reduction with respect to the previously described approaches, the bit
rate is still way too high to achieve a competitive result. These limitations will be discussed in more detail in
Section 5.

In an attempt to further reduce the amount of data required to efficiently encode the sequence, we
consider the whole sequence as a single entity and try to approximate the whole trajectory of each edge
by means of high-degree polynomial interpolation. Instead of considering a small temporal window we
consider the global trajectory of the i -th edge l 1

i , . . . , l N
i , and we search for an approximating polynomial pi

of a fixed degree k with k <N , which approximates the trajectory in the least squares sense,

min
pi

N
∑

t=1

‖pi (t )− l t
i ‖

2.

For each edge, the coefficients a i
0, . . . , a i

k of pi can again be found by solving a linear system. We then group
all coefficients into a single matrix

Pl =









a 1
0 a 1

1 . . . a 1
k

a 2
0 a 2

1 . . . a 2
k

...
...

...
...

a E
0 a E

1 . . . a E
k









,

and encode only Pl and the corresponding matrix Pθ for dihedral angles. The overall size of the data is
reduced, since we are not encoding any residual error. To keep the number of coefficients reasonably small
and avoid artefacts due to ill-conditioned high-degree polynomials, we usually do not exceed k =N /4.

12



Figure 10: Approximating the edge length trajectory of the original edge (blue) by a polynomial of degree 50 (red)
captures the overall behaviour, but significant errors are visible.

Figure 11: Rate-distortion plot comparing the edge-based polynomial prediction techniques with two Coddyac-based
approaches [31, 30] for the Dance data set.

However, this approach also has its flaws. First, we explicitly decided not to store any correction value for
the edges, in order to reduce the size of the problem, but there is still a residual error which significantly
affects the reconstruction, since not every trajectory is approximated with sufficient precision (see Figure 10).
Second, the quantization process of the coefficients further affects the error in the reconstruction, due to a
loss of precision in the coefficients. Therefore, the coefficients must be quantized with a reasonable level of
precision, but this inevitably affects the entropy of the matrices, so a tradeoff between precision and number
of coefficients is required to keep the bit rate as small as possible. The results, as shown in Figure 11, are not
very different from the ones achieved by polynomial prediction, but in both cases they are worse than the
results achieved by techniques working in vertex space. Variations of the proposed approaches based on
rational polynomials and discrete cosine approximation did not produce any substantial improvement in
the results.

4.4 Principal Component Analysis

In Section 4.3 we introduced the concept of edge trajectories over time. In the common setup, the concept
of a trajectory is related to the spatial motion characterizing the vertices of the mesh. In that case, the
trajectories have a purely geometric meaning: each of them is in fact a curve inR3 passing through the vertex
positions according to their temporal order. Nearby vertices are usually characterized by similar trajectories,
therefore enforcing both spatial and temporal coherence. As a consequence, the number of significant
trajectories is actually much smaller than the number of vertices.

Following this observation, the Coddyac algorithm [33] reduces the size of the problem by finding a
set of significant base trajectories and then expressing each vertex trajectory as their linear combination.
The key to find the base trajectories is to use principal component analysis (PCA). The original sequence is
represented as a V ×3N matrix, where the i -th row contains the spatial coordinates (xi , yi , zi ) of vi in each
frame f1, . . . , fN . PCA is performed on the matrix in order to decompose the trajectories and to find the h
most relevantR3N row-vectors. Each vector represents a base trajectory of the sequence and is quantized

13



and encoded. To encode the original trajectories of the vertices, each row of the matrix is then decomposed
into a linear combination of the h basis vectors, quantizing and encoding only the coefficients. No residual
is encoded, hence the quality of the decoded sequence depends mainly on the number of basis vectors and
on the quantization level. The number of base trajectories is an input parameter of the process and is usually
estimated experimentally. In principle, more basis vectors result in a better approximation of the trajectories
and a smaller overall error.

Trajectories and coefficients can further benefit from ad-hoc prediction schemes [34, 36, 30] that further
reduce the entropy, achieving a significant gain in terms of compression rate. There are several advantages
to this approach: particularly, the overall number of values to be encoded, whose entropy is reduced by the
predictive scheme, is significantly smaller than with other techniques. This method achieves the best results
so far in terms of both compression rate and perceived distortion.

Inspired by the same principle, we investigated the application of PCA to the concept of edge trajectories.
As done before, we work on length and angles separately. The aim is to exploit the presence of significant
edge trajectories by applying PCA separately to the matrices Sl and Sθ in (1). Selecting hl vectors from Sl and
hθ vectors from Sθ , with hl possibly different from hθ , then results in the submatrices

Bl =









b l 1
1 b l 2

1 . . . b l N
1

b l 1
2 b l 2

2 . . . b l N
2

...
...

...
...

b l 1
hl

b l 2
hl

. . . b l N
hl









,

Bθ =









bθ 1
1 bθ 2

1 . . . bθN
1

bθ 1
2 bθ 2

2 . . . bθN
2

...
...

...
...

bθ 1
hθ

bθ 2
hθ

. . . bθN
hθ









.

To decompose the i -th trajectory from Sl and Sθ , we compute two sets of hl and hθ coefficients

C l
i = Bl









l 1
i

l 2
i
...

l N
i









, C θ
i = Bθ









θ 1
i
θ 2

i
...
θN

i









.

In order to find the coefficients, we multiply each row vector of the original matrix with the basis vectors.
Due to the orthogonality of the basis vectors, this is in fact equivalent to solving the linear systems B T

l C l
i =

[l 1
i , . . . , l N

i ]
T and B T

θ C θ
i = [θ

1
i , . . . ,θN

i ]
T . Each edge is therefore characterized by hl +hθ coefficients. We group

all the coefficients into two matrices Cl and Cθ . Finally, we quantize and encode only Bl , Bθ , Cl and Cθ , for a
total size of (hl +hθ )× (N +E ) data values, which is much smaller than the original size of the problem. As in
Coddyac, no residual is encoded, and the quality of the reconstruction depends only on the number of basis
vectors and on the precision of encoding the basis vectors and the coefficients. The decoder recomputes Sl

from B̃l and C̃l and likewise Sθ from B̃θ and C̃θ and then rebuilds each frame of the sequence using MSGI.
In our experiments we observed that the quality of the results is mostly driven by the precision in the

encoding of edge lengths. As a consequence, we compress dihedral angles aggressively using few basis
vectors and investigate more bits to encode the edge length matrix. For sequences with about 200 frames
choosing bL = 30 and bA = 10 provides good results in most cases. We also point out the fact that, while the
Coddyac-based approaches take advantage of spatial coherence to reduce the original coefficients entropy,
our approach does not exploit the local proximity of edges, which instead appears to affect the entropy value
only marginally. The results of this technique are the best we achieved so far, as shown in Figure 12. Further
improvements are still possible, due to the high entropy characterizing the coefficient matrices. We therefore
developed two variants of this technique, which involve a clustering step.

In order to reduce the entropy of the coefficient matrix in vertex space, spatial predictors similar to
the ones described in Section 4.1 can be used. Instead of predicting vertex coordinates, they are used to
predict the coefficients characterizing a vertex from the coefficients that characterize its neighbours. In
this simple way, the entropy of the coefficients is drastically reduced. Since the spatial correlation between
edges is weaker, as already pointed out, the same principle cannot be applied in edge space. However, the

14



Figure 12: Rate-distortion plots for PCA-based compression in vertex space [31, 30] and in edge space for the Samba
data set (left) and the March2 data set (right).

Figure 13: Two edges from the Dance data set with similar trajectories. Notice that the actual length values are different,
but the behaviour of the edges is the same. Therefore, their relative trajectory are similar and they will are described by
similar PCA coefficients.

experiments show that there are subsets of edges, not necessarily close in the spatial sense, which have very
similar trajectories and are characterized by similar coefficient vectors (see Figure 13).

This similarity can be exploited in order to reduce the amount of coefficients by identifying a number of
coefficient clusters and using the average trajectory of each cluster to predict the actual trajectories of its
edges. In order to perform the clustering, we express each edge in terms of relative length and angles, that is,
instead of considering the actual edge coordinates, we normalize both lengths and angles, dividing them by
their average value. The average lengths and angles for each edge are encoded with high precision. This
representation improves the detection of edges that are characterized by similar trajectories and reduces the
range of values of the associated coefficients, thus possibly reducing the entropy of the edge data.

We consider each row-vector of Cl as a point inRh
l , and the actual clustering is then carried out using

a standard k -means algorithm. The number of clusters is a parameter of the algorithm. At the end of the
clustering step, an integer label index Ii ∈ [1,k ] is assigned to each row-vector C l

i . We replace row C l
i in Cl

with the vector C l
i −HIi

, where HIi
is the centroid (average vector) of the cluster Ii . In this way, we reduce the

entropy of Cl , since edges with similar trajectories are expected to be close to their cluster centroid. The
same process is repeated on the Cθ matrix, with a possibly different number of clusters.

This method introduces a small overhead to the data size, since we have to properly encode the cluster
centroids and the label characterizing each edge, therefore adding 2E +(kl ×hl )+ (kθ ×hθ ) values to the size
of the problem. However, the compression rate is improved, even if the entropy reduction is not as significant
as expected. As a consequence there is 5–10% size reduction with respect to PCA only (see Figure 12).

The clustering technique may be alternatively employed as a preprocessing step, identifying the edges
that are characterized by similar trajectories by performing the clustering directly on the Sl and Sθ matrices,
possibly after trajectory normalization and before applying the PCA. This approach is more expensive than
the previous one, since the space RN of the trajectories is much larger than the space of coefficients (Rh

l or
Rh
θ ) and the computation of the distances between vectors is computationally more expensive. After the

15



preprocessing, each edge is characterized by its cluster label, and each cluster consists of edges with similar
trajectories, expressed in terms of edge coordinates. We then apply PCA separately on each cluster. In fact,
since the variance of the trajectories is supposedly small, it should be possible to efficiently decompose
the edges with few basis and shorter coefficient vectors. We can also employ a different number of basis
vectors for each cluster, which allows us to further reduce the overall size. The overhead of the preprocessing
clustering step consists of a set of PCA basis vectors for each cluster plus one label for each edge, for a
total amount of E +kl ×hl +kθ ×hθ values. Note that applying clustering after PCA results in a significant
improvement compared to the standard PCA-based technique, while applying clustering on trajectories as a
preprocessing step usually introduces an overhead that may cause, at least for small compression rates, a
worse performance than the standard PCA (see Figure 12). In general, we are still not able to achieve a result
better than [31], but the improvements with respect to the methods presented in Sections 4.1 and 4.3 are
remarkable.

5 Discussion

Despite the premises, our findings regarding redundancy in the edge data are disappointing. As a con-
sequence, none of the proposed approaches was able to significantly improve the state of the art. In fact,
none of the presented techniques was able to outperform the commonly used techniques for compression
of both static and dynamic geometry, and in most cases the performance is significantly worse than the
state-of-the-art approaches. Therefore, the question is: what did not work out?

The answer is neither trivial nor straightforward. There are several problems in performing geometry
compression in the space of edge coordinates; some of them were known from the beginning, while others
emerged during our work. Undoubtedly, working in edge space has the disadvantage of working in a space
whose size is twice as big than the standard vertex space. In the context of a single static mesh, it is not
possible to select less than 3V data to uniquely identify the geometry of a triangular mesh. However, when
dealing with dynamic geometry, it is possible to encode less than 3V N data to recover the whole sequence,
as demonstrated in [33]. Our hope was to find redundancy in the data and to further reduce the amount of
data needed to reconstruct the sequence.

However, this redundancy in edge space is not as strong as we expected, and it did not impact the final
results as we had hoped. One reason is the difficulty to exploit spatial redundancy in edge space, which is
one of the fundamental aspects of all compression technique. In vertex space, the spatial coherence may be
exploited in simple and linear ways, using geometric predictors or PCA. In edge space, spatial coherence
appears to be harder to find. It does not mean that there is no spatial coherence between edges. In fact, it
means that the spatial relationship between edges is not trivial and, most likely, this relationship is not linear.
For example, we noticed that the accuracy of a spatial predictor of the edge length benefits from adding
weights depending on the angle between edge vectors. Particularly, parallel edge vectors are characterized
by a similar behaviour and may be used to predict the behaviour of another parallel edge. However, this
relationship is also not linear, since it involves the angle between vectors, and cannot be easily plugged into
an edge predictor, since it requires a knowledge of the geometry that we usually do not have. Including more
information into our predictors (for example, interior angles) requires encoding more geometric data, thus
resulting in higher bit rates.

We experienced several problems in terms of temporal coherence of edges, which eventually made it
impossible to outperform the existing approaches. As mentioned earlier, an edge may be stretched or bent,
and it is reasonable to assume that the deformation affects not only one edge, but a subset of them. However,
not all the edges of the subset are affected in the same way; some edges are distorted more while others
are only slightly modified, depending on their position and orientation. Also, in most cases, such as for
articulated shapes, the bending of certain edges results in the bending of possibly distant edges, due to the
structure of the object, or the bending energy can be distributed across various edges in a non-uniform
fashion. This relationship can help to exploit the redundancy in the behaviour of the edges, but it is not
trivial to model and requires to introduce some additional knowledge about the problem, making it harder
to reach a competitive rate-distortion tradeoff.

Moreover, other problems arise from our framework. Unexpectedly, we found that parts of the mesh
which are supposedly not affected by any stretching or bending deformation may exhibit some variation in
the edge data. This is particularly true for data acquired by scanning a real, moving object (for example, the
Jump data set) which are usually affected by noise. That means that the assumption of rigidity of a large part
of the shape, that should result in reliable temporal predictors and smooth edge trajectories, cannot always

16



be guaranteed. A strictly related problem is that the MSGI projection operator, which we employ to recover
spatial coordinates from edge data, is quite sensitive to noise and requires the edge data to be compressed
with high precision in order to get the shape without introducing too much distortion in the process. As far
as we know, the only alternative to MSGI is the DSO algorithm [6], which appears to be slightly more robust
but does not significantly impact the rate-distortion plots. Moreover, DSO is more expensive than MSGI in
terms of computational and memory complexity, with the result that the compression technique will not be
of any practical use.

Another potential problem of our framework is the fact that we mainly focus on adapting compression
techniques that were designed for working in vertex space. Geometric vertex data have high entropy values,
and even a simple technique such as parallelogram prediction may significantly reduce this value, leading to
an outstanding size reduction. The same holds for Laplacian compression and PCA, which efficiently exploit
spatial and temporal coherence. The entropy reduction is given by the fact that these techniques allow to
pass from the common R3 space to a local frame, where the span of vertex coordinates is smaller and lots of
coordinates are almost equal to zero. The same transformation, however, does not work so well for the edge
data, since lengths and angles are not affected by the change from global to local frames, and the entropy is
not significantly reduced. This also explains why the PCA approach is the one that achieves the best results
in our case: the entropy is not significantly reduced, but the amount of encoded data is much smaller than
encoding the whole sequence using spatio-temporal predictors. Unfortunately, we cannot further reduce
the amount of data without affecting the quality of the mesh sequence.

5.1 Future work

After having summarized the problems which arose in our experiments, the question becomes: can we make
things work out?

It is not trivial to effectively tackle the issues mentioned above. In general, the problem of efficiently
compressing static and dynamic geometry represented in edge shape space is affected by issues that are
strictly related to the non-linear nature of this representation. As pointed out, to improve edge predictors we
could develop new, non-linear predictors based on additional geometric information, unlike most of the
vertex predictors which require only connectivity information. Adding geometry information has several
drawbacks, such as increasing the size of the problem and adding more redundancy. If, for example, we
decide to encode geometric information about interior angles of the mesh, the size of the problem passes
from 6V to 10V for each mesh. Besides, since the interior angles and edges are strictly correlated, interior
angle compression will suffer the same problems as edge compression.

On a practical note, most of the techniques working in vertex space are easy to implement and achieve a
huge size reduction at low cost. A more complex predictor would probably not be of practical use, due to its
expensiveness. The complexity of the process will also depend on the complexity of the projection operator
needed to recover the geometry of the mesh in terms of vertex coordinates, which is another bottleneck in
the compression pipeline. Due to the intrinsic nature of the problem and of the involved data, it appears
definitely hard to improve the current techniques in terms of both robustness and efficiency.

Acknowledgements

This work was supported by the SNF under project number 200020-146764. The authors thank Libor Váša
for his valuable help.

References

[1] M. Alexa and W. Müller. Representing animations by principal components. Comput. Graph. Forum, 19(3):411–418,
2000.

[2] P. Alliez and M. Desbrun. Valence-driven connectivity encoding for 3D meshes. Comput. Graph. Forum, 20(3):480–
489, 2001.

[3] R. Amjoun and W. Straßer. Efficient compression of 3D dynamic mesh sequences. Journal of the WSCG, 15(1–3):99–
106, 2007.

[4] I. Baran, D. Vlasic, E. Grinspun, and J. Popović. Semantic deformation transfer. ACM Trans. Graph., 28(3):36:1–36:6,
2009.

[5] M. Bourges-Sévenier and E. S. Jang. An introduction to the MPEG-4 animation framework eXtension. IEEE Trans.
Circuits Syst. Video Technol., 14(7):928–936, 2004.

17



[6] S. Fröhlich and M. Botsch. Example-driven deformations based on discrete shells. Comput. Graph. Forum,
30(8):2246–2257, 2011.

[7] E. Grinspun, A. N. Hirani, M. Desbrun, and P. Schröder. Discrete shells. In Proc. of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’03, pages 62–67, 2003.

[8] L. He and S. Schaefer. Mesh denoising via L0 minimization. ACM Trans. Graph., 32(4):Article 64, 8 pages, 2013.

[9] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak. Out-of-core compression and decompression of large
n-dimensional scalar fields. Comput. Graph. Forum, 22(3):343–348, 2003.

[10] E. S. Jang, J. D. K. Kim, S. Y. Jung, M.-J. Han, S. O. Woo, and S.-J. Lee. Interpolator data compression for MPEG-4
animation. IEEE Trans. Circuits Syst. Video Technol., 14(7):989–1008, 2004.

[11] Z. Karni and C. Gotsman. Compression of soft-body animation sequences. Comput. Graph., 28(1):25–34, 2004.

[12] M. Kilian, N. J. Mitra, and H. Pottmann. Geometric modeling in shape space. ACM Trans. Graph., 26(3):Article 64, 8
pages, 2007.

[13] S. Kircher and M. Garland. Free-form motion processing. ACM Trans. Graph., 27(2):Article 12, 13 pages, 2008.

[14] P.-F. Lee, C.-K. Kao, J.-L. Tseng, B.-S. Jong, and T.-W. Lin. 3D animation compression using affine transformation
matrix and principal component analysis. IEICE Trans. Inf. Systems, E90-D(7):1073–1084, 2007.

[15] Y. Lipman, O. Sorkine, D. Levin, and D. Cohen-Or. Linear rotation-invariant coordinates for meshes. ACM Trans.
Graph., 24(3):479–487, 2005.

[16] K. Mamou, T. Zaharia, F. Preteux, N. Stefanoski, and J. Ostermann. Frame-based compression of animated meshes
in MPEG-4. In Proceedings of the 2008 IEEE International Conference on Multimedia and Expo, pages 1121–1124,
2008.

[17] S. Marras, T. J. Cashman, and K. Hormann. Efficient interpolation of articulated shapes using mixed shape spaces.
Comput. Graph. Forum, 32(8):258–270, 2013.

[18] K. Müller, A. Smolic, M. Kautzner, P. Eisert, and T. Wiegand. Predictive compression of dynamic 3D meshes. In
Proceedings of the 2005 IEEE International Conference on Image Processing, volume 1, pages 621–624, 2005.

[19] K. Müller, A. Smolic, M. Kautzner, P. Eisert, and T. Wiegand. Rate-distortion-optimized predictive compression of
dynamic 3D mesh sequences. IEEE Int. Conf. Image Process., 21(9):812–828, 2006.

[20] J. Peng, C.-S. Kim, and C.-C. Jay Kuo. Technologies for 3D mesh compression: A survey. J. Vis. Comm. Im. Repr.,
16(6):688–733, 2005.

[21] J. Peng and C.-C. J. Kuo. Geometry-guided progressive lossless 3D mesh coding with octree (OT) decomposition.
ACM Trans. Graph., 24(3):609–616, 2005.

[22] J. Rossignac, A. Safonova, and A. Szymczak. 3D compression made simple: Edgebreaker on a corner-table. In
Proceedings of Shape Modeling International, SMI ’01, pages 278–283, 2001.

[23] M. Sattler, R. Sarlette, and R. Klein. Simple and efficient compression of animation sequences. In Proceedings of the
2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’05, pages 209–217, 2005.

[24] O. Sorkine, D. Cohen-Or, and S. Toledo. High-pass quantization for mesh encoding. In Proceedings of the 2003
Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP ’03, pages 42–51, 2003.

[25] N. Stefanoski, X. Liu, P. Klie, and J. Ostermann. Scalable linear predictive coding of time-consistent 3D mesh
sequences. In Proceedings of 3DTV 2007, pages 1–4, 2007.

[26] N. Stefanoski and J. Ostermann. Connectivity-guided predictive compression of dynamic 3D meshes. In Proceedings
of IEEE International Conference on Image Processing, pages 2973–2976, 2006.

[27] R. W. Sumner and J. Popović. Deformation transfer for triangle meshes. ACM Trans. Graph., 23(3):399–405, 2004.

[28] C. Touma and C. Gotsman. Triangle mesh compression. In Proceedings of Graphics Interface, pages 26–34, 1998.

[29] L. Váša and G. Brunnett. Exploiting connectivity to improve the tangential part of geometry prediction. IEEE Trans.
Vis. Comput. Graph., 19(9):1467–1475, 2013.

[30] L. Váša, S. Marras, K. Hormann, and G. Brunnett. Compressing dynamic meshes with geometric Laplacians. Comput.
Graph. Forum, 33(2):145–154, 2014.

[31] L. Váša and O. Petrik. Optimising perceived distortion in lossy encoding of dynamic meshes. Comput. Graph.
Forum, 30(5):1439–1449, 2011.

[32] L. Váša and J. Rus. Dihedral angle mesh error: A fast perception correlated distortion measure for fixed connectivity
triangle meshes. Comput. Graph. Forum, 31(5):1715–1724, 2012.

[33] L. Váša and V. Skala. CODDYAC: Connectivity driven dynamic mesh compression. In Proceedings of 3DTV, pages
1–4, 2007.

[34] L. Váša and V. Skala. COBRA: Compression of the basis for PCA represented animations. Comput. Graph. Forum,
28(6):1529–1540, 2009.

18



[35] L. Váša and V. Skala. Combined compression and simplification of dynamic 3D meshes. Comput. Animat. Virtual
Worlds, 20(4):447–456, 2009.

[36] L. Váša and V. Skala. Geometry-driven local neighbourhood based predictors for dynamic mesh compression.
Comput. Graph. Forum, 29(6):1921–1933, 2010.

[37] L. Váša and V. Skala. A perception correlated comparison method for dynamic meshes. IEEE Trans. Vis. Comput.
Graph., 17(2):220 –230, 2011.

[38] D. Vlasic, I. Baran, W. Matusik, and J. Popović. Articulated mesh animation from multi-view silhouettes. ACM Trans.
Graph., 27(3):Article 97, 9 pages, 2008.

[39] T. Winkler, J. Drieseberg, M. Alexa, and K. Hormann. Multi-scale geometry interpolation. Comput. Graph. Forum,
29(2):309–318, 2010.

[40] J. Zhang and C. B. Owen. Octree-based animated geometry compression. In Proceedings of the 2004 Data Compres-
sion Conference, pages 508–517, 2004.

[41] J. Zhang and C. B. Owen. Hybrid coding for animated polygonal meshes: combining delta and octree. In Proceedings
of the 2005 International Conference on Information Technology: Coding and Computing, volume 1, pages 68–73,
2005.

19


	Introduction
	Related work
	Mesh compression
	Differential shape spaces

	Motivation
	Compression in edge shape space
	Parallelogram predictors
	Laplacian encoding
	Trajectory approximation
	Principal Component Analysis

	Discussion
	Future work


