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Abstract

Deep learning is a recent predictive modeling approach which may yield near-
human performance on a range of tasks. Deep learning models have gained
popularity as they achieved state-of-the-art results in many tasks, such as lan-
guage translation or object recognition, but are computationally intensive thus
requiring computers with accelerators and weeks of computation time. Here we
test computational and parallel performance of deep learning implementations
on the Intel Xeon Phi accelerator. We find that the performance for deep learn-
ing algorithms where successive operations have different dimensions is poor.
In particular performance of general matrix multiplication and random number
generation lead to a reduction about 20% and 7% , respectively, compared to
when successive operations are of the same size. While parallelization perform-
ance seems to be in line with GPUs, we conclude that the Xeon Phi is unsuitable
for deep learning in its current state.
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1 Introduction

Deep learning is a field that depends highly on computational power. Graphics processing units (GPUs)
were critical in achieving the first major milestones in deep learning [4, 8]. GPUs have been heavily
researched as an option for deep learning algorithms and the computational efficiency of convolutions
and general matrix multiplications (GEMM) has steadily been improved over the years [1, 9, 10, 13]1.
However, the reliance on a single architecture may hinder progress in computational performance since
it discourages research on hardware options which may have better computational performance once
their software matures.

In this work, we benchmark our deep learning software on the Intel Xeon Phi’s accelerator and make
the following contributions:

• We show that computational performance of individual GEMMs, is only efficient when all cores
on the Xeon Phi are utilized, but at the same time we show that the full utilization of the cores
drops the performance of successive GEMMs which have different dimensions to 20% with respect
to successive GEMMs of the same dimensions.

• We show that random number generation for successive matrices with different dimensions results
in a performance drop to 10% or less compared to matrices of the same size, and that this is
independent of the number of threads used.

1Also see https://github.com/soumith/convnet-benchmarks and https://github.com/NervanaSystems/maxas/wiki/SGEMM
for additional important contributions.
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• We test MPI performance on a simple feed forward neural network and show that the results are
similar to results obtained on GPUs.

1.1 Cluster and Hardware

1.1.1 Salomon Cluster

We used the Salomon cluster which consists of 432 nodes equipped with Intel Xeon Phi 7120 accelerators
where each node is additionally powered by two Intel Xeon E5-2680v3, 2.5 GHz with 12 cores. The
nodes are interconnected in a 7 dimensions enhanced hypercube Infiniband FDR56 network.

1.2 Intel Xeon Phi

The Intel Xeon Phi 7120 is a coprocessor, or accelerator, with 61 1.2 GHz cores and 16 GB, 352
GB/s memory. Although memory latency is high, the latency is usually hidden under massive thread
parallelism, where each core can execute up to four threads at a time. The Xeon Phi makes heavy use
of SIMD technology and as such is highly suitable for deep learning applications which usually make use
of simple operations over large tensors. Unlike GPUs, the architecture of the Xeon Phi is full x86_64
and thus more complex instructions can be executed on Xeon Phis than on GPUs.

Figure 1. Architecture of the Intel Xeon Phi coprocessor.[2]

An important component of the Intel Xeon Phi coprocessor is its vector processing unit (VPU) which
features a 512-bit SIMD instruction set. Thus, the VPU can execute 16 single-precision (SP) operations
per cycle. The VPU also supports Fused Multiply-Add (FMA) instructions and hence can execute 32
SP floating point operations per cycle. Figure 2 shows the architecture of a single VPU.

Figure 2. Architecture of a VPU.[3]

2 Deep Learning Language Model

Our initial aim was to accelerate recurrent deep neural networks for language generation as these models
are computationally demanding, often taking weeks to train and also because recurrent neural networks
lend themselves well to parallelization [6, 12]. The deep learning language model we planned on using
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takes a sequence of character and predicts the next character in the sequence (see Figure 3) by using
multiple layers of non-linear features, that is input sequences are transformed by a sequence of multiple
nonlinear transformations of the form,

Outputt+1 = tanh(InputtWt +Outputt−1Rt +Bias).

After a sequence has been processed we calculate the gradient of the error with respect to the weight
parameters W and recurrent weight parameters R by using the chain rule

Yt+1
i+1 = At

iWi +At−1
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where W is the weight matrix, A is the forward activation, B is the bias, Y is the output, and E
is the error matrix. The indices i indicate the layer, while indices t indicate the time step for each
iteration. Equations for the recurrent parameters follow analogously. The error here is the cross

entropy error E =
1

n

n∑
i

(y log zi(1− zi) log(1− y)), where y is the target character class and zi is the

predicted character class. The gradients are averaged and we then use stochastic gradient descent to
update the parameters. Unlike full gradient descent only a small sample of the data, termed mini
batch (128 samples per iteration in our case) are used per iteration since many of the input samples
are correlated. This stochastic approach is much more efficient than using the full-batch data as we
can find an improvement in the search space even if we only calculate a rough approximation of the
full-batch gradient; this is especially true in the beginning of the optimization process. Thus this whole
procedure then also entails a chain of small matrix multiplications with a rough dimension of 128 x
1024 times 1024 x 1024 where the dimensions after each layer may vary.

Input sequence

"Start" H E L L O

E L L OH "End"

Output sequence

Figure 3. Schematic of the deep learning language model.
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3 Parallelization

We can use data parallelism to accelerate learning on multiple nodes, where we split the data into equal
parts for each accelerator and keep the model constant for each node. When we update the parameters
after each iteration we need to synchronize them. The best way to do this is to split the gradients
of each model into N parts, where N is the number of nodes and let each node aggregate one of the
N parts, average them and then distribute them among all nodes. This operation can be done by an
MPI SCATTER followed by an MPI Allgather. For the recurrent model we have a lot of computation
and little communication so that the bottleneck is not too big. However, in this case we tested our
parallelization procedure on a simple neural network model, which is the same model as above but
without any recurrent connections. We do this because our implementation was too slow to test MPI
performance on recurrent neural networks.

4 Xeon Phi performance problems

We attempted to benchmark our deep learning model, but soon we found that this was rather infeasible
as one pass through our test data which was the fairly small Brown corpus would have taken many
weeks and full training up to one year. It was clear to us that either something in our implementation
was wrong or that there were performance problems associated with the Xeon Phi software or hardware.
We did end up checking our code for vectorization and benchmarked most procedures against the GPU.
For vectorized and the few procedures that could not be vectorized easily we found that the performance
of the Xeon Phi was on par with GPUs after normalizing with theoretical FLOPS of each accelerator.
However, after having a closer look at GEMM and random number generation operations we found that
the bottlenecks lie here.

4.1 GEMM problems

We found that GEMM operations are slow when they are chained one after each other and the dimen-
sions of successive GEMMs change (see Figure 4). We isolated our GEMM procedure from our library
and created a minimal benchmark to test the performance of the GEMM as implemented in the Intel
MKL (which is optimized for Xeon Phis).

Figure 4. GEMM performance in isolated environments (GEMM and Chain GEMM) and in our neural network
library on the MNIST data set.

More specifically we found the following.

• GEMM is fast if many threads are used (about 70% peak performance) and slow if few threads
are used (25% of peak performance).
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• GEMM is slow if many threads are used and the successive matrix dimensions differ (typical for
a neural network; 10% of peak performance) but faster for different sizes and few threads (20%
of peak performance).

• It follows that neither many, nor few threads are efficient for feedforward and recurrent neural
networks.

4.2 Random number generation

We isolated the random number generator for uniform random numbers which has Intel Xeon Phi
support and performed our test for this algorithm. The random number generator for Xeon Phi makes
uses of the Mersenne twister algorithm which is able to generate random numbers quickly in a parallel
fashion.

However, in our case we found that filling matrices with random numbers is only fast if the matrices
have the same dimension but slow if the dimensions differ. Unlike the GEMM operation this does occur
for any number of threads. We also found that performance does not improve if some operations are
between successive random number generation calls, for example, when we are using dropout for every
hidden layer [7, 11], the performance does not improve. The slow down is significant with our neural
network training being hit by a performance reduction of 13.5 times. This makes it infeasible to use
dropout regularization with the Xeon Phi.

4.3 Discussion of performance problems

We do not know why the performance decreased so significantly in our case as it was difficult to analyze
the situation further beyond isolating the algorithms. One hypothesis is that the scheduling of threads
on the Xeon Phi works sub optimally when confronted with rapidly changing sizes for the memory
buffers (in our case matrices) so that most of the time is spend on scheduling threads rather than
fetching memory or doing computations. This hypothesis is to be explored in further studies.

5 Parallel

We initially set out to parallelize the language model introduced above, but the performance was so
poor that even with large scale parallelization over many nodes it would still have taken weeks to
perform. We thus benchmarked the MPI performance of the Xeon Phi for a simple neural network task
on the MNIST dataset for two epochs, that is two passes through the dataset. We expected normal
performance since the parallelization bottleneck is situated in the network and PCIe interfaces that
connect the Xeon Phi with the network interface and not the Xeon Phi itself [5]. The performance can
be seen in Table 1 and is in line with our expectations for the performance of simple neural network
parallelization.

Table 1. Parallelization performance of simple neural network.

Features Seconds per epoch Speedup

1 node base line 25 1.0x
1 node, halved data set 14 1.8x

MPI 2 nodes 20 1.25x
MPI 4 nodes 17 1.5x
MPI 8 nodes 13.5 1.9x
MPI 16 nodes 11 2.3x

6 Conclusion

Here we analyzed the computational and parallelization performance of the Xeon Phi accelerator for
simple deep learning tasks such as classification of handwritten digits and the generation of language.
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We found that the parallel performance on Xeon Phis is about equivalent to the parallel performance
on GPUs. We also found that matrix multiplication and random number generation on the Xeon Phi
are slow if one queues these operations one after each other with differently sized buffers. Since we
isolated these operations to minimally working code, we hypothesized that these performance problems
take root in their internal implementation or that this is due to thread scheduling for the Xeon Phi.
However, we do not have any further insights into these hypotheses and further work is required to
unravel the root of these performance problems.
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