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Abstract

State machine replication (SMR) is a well-known technique that guarantees strong

consistency (i.e., linearizability) to online services. In SMR, client commands are ex-

ecuted in the same order on all server replicas, and after executing each command,

every replica reaches the same state. However, SMR lacks scalability: every replica ex-

ecutes all commands, so adding servers does not increase the maximum throughput.

Scalable SMR (S-SMR) addresses this problem by partitioning the service state, allow-

ing commands to execute only in some replicas, providing scalability while still ensur-

ing linearizability. One problem is that S-SMR quickly saturates when executing multi-

partition commands, as partitions must communicate. Dynamic S-SMR (DS-SMR)

solves this issue by repartitioning the state dynamically, based on the workload. Vari-

ables that are usually accessed together are moved to the same partition, which signi-

ficantly improves scalability. We evaluate the performance of DS-SMR with a scalable

social network application.
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1 Introduction

State machine replication (SMR) is a well-established technique to develop highly available services (e.g.,

[1, 2, 3, 4]). In essence, the idea is that replicas deterministically execute the same sequence of client com-

mands in the same order and in doing so traverse the same sequence of states and produce the same results.

State machine replication provides configurable fault tolerance in the sense that the system can be set to

tolerate any number of faulty replicas. Unfortunately, increasing the number of replicas will not scale per-

formance since each replica must execute every command.

Conceptually, scalable performance can be achieved with state partitioning (e.g., [5, 6, 7]). Ideally, if

the service state can be divided such that commands access one partition only and are equally distributed

among partitions, then system throughput (i.e., the number of commands that can be executed per time

unit) will increase linearly with the number of partitions. Although promising, exploiting partitioning in

SMR is challenging. First, most applications cannot be partitioned in such a way that commands always

fall within a single partition. Therefore, a partitioning scheme must cope with multi-partition commands.

Second, determining an efficient partitioning of the state is computationally expensive and requires an

accurate characterization of the workload.

There are two general solutions to handle multi-partition commands. One solution is to weaken the

guarantees of commands that involve multiple partitions (e.g., [5]). In the context of SMR, this would mean

that single-partition commands are strongly consistent (i.e., linearizable) but multi-partition commands

are not. Another solution is to provide strong consistency guarantees for both single- and multi-partition

commands, at the cost of a more complex execution path for commands that involve multiple partitions.

Scalable State Machine Replication (S-SMR) [8] is a solution in this category. S-SMR partitions the service

state and replicates each partition. It relies on an atomic multicast primitive to consistently order com-

mands within and across partitions. Single-partition commands are multicast to their concerned partition
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and executed just like in classical SMR. Multi-partition commands are multicast to all involved partitions;

to prevent command interleaves that violate strong consistency, S-SMR implements execution atomicity.

With execution atomicity, partitions coordinate during the execution of multi-partition commands. Un-

surprisingly, multi-partition commands are more expensive than single-partition commands, and thus, the

performance of S-SMR is particularly sensitive to the way the service state is partitioned.

Determining a partitioning of the state that avoids load imbalances and favors single-partition com-

mands normally requires a good understanding about the workload. Even if enough information is avail-

able, finding a good partitioning is a complex optimization problem [9, 10]. Moreover, many online ap-

plications experience variations in demand. These happen for a number of reasons. In social networks,

some users may experience a surge increase in their number of followers (e.g., new “celebrities"); workload

demand may shift along the hours of the day and the days of the week; and unexpected (e.g., a video that

goes viral) or planned events (e.g., a new company starts trading in the stock exchange) may lead to excep-

tional periods when requests increase significantly higher than in normal periods. S-SMR assumes a static

workload partitioning. Any state reorganization requires system shutdown and manual intervention.

Given these issues, it is crucial that highly available partitioned systems be able to dynamically adapt

to the workload. In this paper, we present Dynamic Scalable State Machine Replication (DS-SMR), a tech-

nique that allows a partitioned SMR system to reconfigure its data placement on-the-fly. DS-SMR achieves

dynamic data reconfiguration without sacrificing scalability or violating the properties of classical SMR.

These requirements introduce significant challenges. Since state variables may change location, clients

must find the current location of variables. The scalability requirement rules out the use of a centralized

oracle that clients can consult to find out the partitions a command must be multicast to. Even if clients can

determine the current location of the variables needed to execute a command, by the time the command

is delivered at the involved partitions one or more variables may have changed their location. Although the

client can retry the command with the new locations, how to guarantee that the command will succeed

in the second attempt? In classical SMR, every command invoked by a non-faulty client always succeeds.

DS-SMR should provide similar guarantees.

DS-SMR was designed to exploit workload locality. Our scheme benefits from simple manifestations of

locality, such as commands that repeatedly access the same state variables, and more complex manifest-

ations, such as structural locality in social network applications, where users with common interests have

a higher probability of being interconnected in the social graph. Focusing on locality allows us to adopt

a simple but effective approach to state reconfiguration: whenever a command requires data from mul-

tiple partitions, the variables involved are moved to a single partition and the command is executed against

this partition. To reduce the chances of skewed load among partitions, the destination partition is chosen

randomly. Although DS-SMR could use more sophisticated forms of partitioning, formulated as an optim-

ization problem (e.g., [9, 10]), our technique has the advantage that it does not need any prior information

about the workload and is not computationally expensive.

To track object locations without compromising scalability, in addition to a centralized oracle that con-

tains accurate information about the location of state variables, each client caches previous consults to the

oracle. As a result, the oracle is only contacted the first time a client accesses a variable or after a variable

changes its partition. Under the assumption of locality, we expect that most queries to the oracle will be

accurately resolved by the client’s cache. To ensure that commands always succeed, despite concurrent

relocations, after attempting to execute a command a few times unsuccessfully, DS-SMR retries the com-

mand using S-SMR’s execution atomicity and involving all partitions. Doing so increases the cost to execute

the command but guarantees that relocations will not interfere with the execution of the command.

We have fully implemented DS-SMR as the Eyrie Java library, and we performed a number of exper-

iments using Chirper, a social network application built with Eyrie. We compared the performance of

DS-SMR to S-SMR using different workloads. With a mixed workload that combines various operations

issued in a social network application, DS-SMR reached 74 kcps (thousands of commands per second),

against less than 33 kcps achieved by S-SMR, improving by a factor of over 2.2. Moreover, DS-SMR’s per-

formance scales with the number of partitions under all workloads.

The paper makes the following contributions: (1) It introduces DS-SMR and discusses some perform-

ance optimizations, including the caching technique. (2) It details Eyrie, a Java library to simplify the design

of services based on DS-SMR. (3) It describes Chirper to demonstrate how Eyrie can be used to implement

a scalable social network service. (4) It presents a detailed experimental evaluation of Chirper, deploying it

with S-SMR and DS-SMR in order to compare the performance of the two replication techniques.

The rest of the paper is structured as follows. Section 2 describes our system model. Section 3 reviews
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SMR and Scalable SMR. Section 4 introduces DS-SMR; we explain the technique in detail and argue about

its correctness. Section 5 details the implementation of Eyrie and Chirper. Section 6 reports on the results

of our experiments with DS-SMR. Section 7 surveys related work and Section 8 concludes the paper.

2 System model and definitions

We consider a distributed system consisting of an unbounded set of client processes C = {c1, c2, ...} and a

bounded set of server processes (replicas) S = {s1, ..., sn}. Set S is divided into disjoint groups of servers

S0, ...,Sk. Processes are either correct, if they never fail, or faulty, otherwise. In either case, processes do

not experience arbitrary behavior (i.e., no Byzantine failures).

Processes communicate by message passing, using either one-to-one or one-to-many communication.

The system is asynchronous: there is no bound on message delay or on relative process speed. One-to-one

communication uses primitives send(p,m) and receive(m), where m is a message and p is the process m

is addressed to. If sender and receiver are correct, then every message sent is eventually received. One-to-

many communication relies on reliable multicast and atomic multicast,1 defined in sections 2.1 and 2.2,

respectively.

Our consistency criterion is linearizability. A system is linearizable if there is a way to reorder the client

commands in a sequence that (i) respects the semantics of the commands, as defined in their sequential

specifications, and (ii) respects the real-time precedence of commands [13].

2.1 Reliable multicast

To reliably multicast a message m to a set of groups γ, processes use primitive reliable-multicast(γ,m).

Message m is delivered at the destinations with reliable-deliver(m). Reliable multicast has the following

properties:

– If a correct process reliable-multicastsm, then every correct process inγ reliable-deliversm (validity).

– If a correct process reliable-deliversm, then every correct process inγ reliable-deliversm (agreement).

– For any message m, every process p in γ reliable-delivers m at most once, and only if some process

has reliable-multicast m to γ previously (integrity).

2.2 Atomic multicast

To atomically multicast a message m to a set of groups γ, processes use primitive atomic-multicast(γ,m).

Message m is delivered at the destinations with atomic-deliver(m). We define delivery order < as follows:

m < m′ iff there exists a process that delivers m before m′.

Atomic multicast ensures the following properties:

– If a correct process atomic-multicasts m, every correct process in a group in γ atomic-delivers m

(validity).

– If a process atomic-delivers m, then every correct process in a group in γ atomic-delivers m (uniform

agreement).

– For any message m, every process atomic-delivers m at most once, and only if some process has

atomic-multicast m previously (integrity).

– The delivery order is acyclic (atomic order).

– For any messages m and m′ and any processes p and q such that p ∈ g, q ∈ h and {g, h} ⊆ γ, if p

deliversm and q deliversm′, then either pdeliversm′ beforem or q deliversmbeforem′ (prefix order).

Atomic broadcast is a special case of atomic multicast in which there is a single group of processes.

1Solving atomic multicast requires additional assumptions [11, 12]. In the following, we simply assume the existence of an atomic

multicast oracle.
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3 Background and motivation

State machine replication is a fundamental approach to implementing a fault-tolerant service by replicating

servers and coordinating the execution of client commands against server replicas [14, 15]. State machine

replication ensures strong consistency (i.e., linearizability [13]) by coordinating the execution of commands

in the different replicas: Every replica has a full copy of the service state V = {v1, ..., vm} and executes

commands submitted by the clients in the same order. A command is a program consisting of a sequence

of operations, which can be of three types: read(v), write(v, val), or a deterministic computation.

3.1 Scaling state machine replication

By starting in the same initial state and executing the same sequence of deterministic commands, servers

make the same state changes and produce the same reply for each command. To guarantee that servers

deliver the same sequence of commands, SMR can be implemented with atomic broadcast: commands

are atomically broadcast to all servers, and all correct servers deliver and execute the same sequence of

commands [16, 17].

Despite its simple execution model, classical SMR does not scale: adding resources (e.g., replicas) will

not translate into sustainable improvements in throughput. This happens for a couple reasons. First, the

underlying communication protocol needed to ensure ordered message delivery may not scale itself (i.e., a

communication bottleneck). Second, every command must be executed sequentially by each replica (i.e.,

an execution bottleneck).

Several approaches have been proposed to address SMR’s scalability limitations. To cope with com-

munication overhead, some proposals have suggested to spread the load of ordering commands among

multiple processes (e.g., [18, 19, 20]), as opposed to dedicating a single process to determine the order of

commands (e.g., [21]).

Two directions of research have been suggested to overcome execution bottlenecks. One approach (scal-

ing up) is to take advantage of multiple cores to execute commands concurrently without sacrificing con-

sistency [22, 23, 24, 25]. Another approach (scaling out) is to partition the service’s state and replicate each

partition (e.g., [26, 27]). In the following section, we review Scalable State Machine Replication (S-SMR), a

proposal in the second category.

3.2 Scalable State Machine Replication

In S-SMR [8], the service state V is composed of k partitions, in set Ψ = {P1, ...,Pk}. Server group Si is as-

signed to partitionPi. For brevity, we say that server sbelongs toPi meaning that s ∈ Si, and say “multicast

to Pi" meaning “multicast to server group Si". S-SMR relies on an oracle, which tells which partitions are

accessed by each command.2

To execute a command, the client multicasts the command to the appropriate partitions, as determined

by the oracle. Commands that access a single partition are executed as in classical SMR: replicas of the

concerned partition agree on the execution order and each replica executes the command independently.

In the case of a multi-partition command, replicas of the involved partitions deliver the command and

then may need to exchange state in order to execute the command since some partitions may not have

all the values read in the command. This mechanism allows commands to execute seamlessly despite the

partitioned state.

Algorithm 1 shows precisely how S-SMR operates. When a server s of partition P , while executing a

command C, reaches a read(v) operation, there are two possibilities: either v belongs to the local partition

P , or it is part of a remote partition P ′. If v is local, s will retrieve its value and send it to the servers of

other partitions concerned by C; if v is remote, s will wait until its value is received from a server of P ′. A

write(v, val) operation does not depend on the previous value of v, not requiring communication between

partitions, even if v is not assigned to the partition of the server executing C. To ensure linearizability, all

partitions involved in the execution of a multi-partition command C must coordinate before a reply can

be sent to the client. In S-SMR, partitions exchange signals while executing multi-partition commands [8].

This guarantees linearizability, at the cost of synchronizing partitions.

2The oracle returns a set with the partitions accessed by the command, but this set does not need to be minimal; it may contain all

partitions in the worst case, when the partitions accessed by the command cannot be determined before the command is executed.
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Algorithm 1 Scalable State Machine Replication (S-SMR)

1: Initialization:

2: ∀C ∈K: rcvd_signals(C)← ∅
3: ∀C ∈K: rcvd_variables(C)← ∅

4: Command C is submitted by a client as follows:

5: C.dests← oracle(C)

6: atomic-multicast(C.dests, C)

7: wait for reply

8: Server s of partitionP executes command C as follows:

9: when atomic-deliver(C)

10: others← C.dests \ {P}
11: reliable-multicast(others, signal(C))

12: for each operation op in C do

13: if op is read(v) then

14: if v ∈ P then

15: reliable-multicast(others, 〈v, C.id〉)
16: else

17: wait until v ∈ rcvd_variables(C)

18: update v with the value in rcvd_variables(C)

19: execute op

20: wait until rcvd_signals(C) = others

21: send reply to client

22: when reliable-deliver(signal(C)) from partitionP ′

23: rcvd_signals(C)← rcvd_signals(C) ∪ {P ′}

24: when reliable-deliver(〈v, C.id〉)
25: rcvd_variables(C)← rcvd_variables(C) ∪ {v}

Algorithm variables:

K: the set of all possible commands

C.id: unique identifier of command C

oracle(C): function that returns a superset of the partitions accessed by C

C.dests: set of partitions to which C is multicast

others: set of all partitions, other thanP , where C is executed.

signal(C): signal exchanged to ensure linearizability

rcvd_signals(C): set of all partitions that already signaledP regarding C

rcvd_variables(C): set of all variables received from other partitions in order to execute C

S-SMR improves on classical SMR by allowing replicated systems to scale, while ensuring linearizability.

Under workloads with multi-partition commands, however, it has limited performance, in terms of latency

and throughput scalability. Such decreased performance when executing multi-partition commands is due

to partitions (i) exchanging state variables and (ii) synchronizing by exchanging signals. S-SMR performs

better as the number of multi-partition commands decreases.

One way to reduce the number of multi-partition commands is by dynamically changing the partition-

ing, putting variables that are usually accessed together in the same partition. However, the partitioning

oracle of S-SMR relies on a static mapping of variables to partitions. One advantage of this implementation

is that all clients and servers can have their own local oracle, which always returns a correct set of partitions

for every query. Such a static mapping has the major limitation of not allowing the service to dynamically

adapt to different access patterns.

4 Dynamic Scalable State Machine Replication

In this section, we introduce Dynamic S-SMR (DS-SMR), discuss performance optimizations, and argue

about its correctness.
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Figure 1: Consulting the oracle and issuing a command are done in multiple calls to atomic-multicast. White boxes

represent actions of the client proxy.
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Figure 2: The architecture of Dynamic Scalable State Machine Replication.

4.1 General idea

Dynamic S-SMR (DS-SMR) defines a dynamic mapping of variables to partitions. Each variable v is mapped

to partition P , meaning that v ∈ P . Such a mapping is managed by a partitioning oracle, which is imple-

mented as a replicated service run by group of server processes S0. The oracle service allows the mapping

of variables to partitions to be retrieved or changed during execution. In more detail, DS-SMR distinguishes

five types of commands: access(ω) is an application command that accesses (reads or writes) variables in

set ω ⊆ V (as described in Section 3), create(v) creates a new variable v and initially maps it to a partition

defined by the oracle, delete(v) removes v from the service state, move(v,Ps,Pd) moves variable v from

partition Ps to partition Pd, and consult(C) asks the oracle which variables are accessed by command C,

and which partition contains each of them. The reply from the oracle to a consult command is called a

prophecy. A prophecy usually consists of a set of tuples 〈v,P〉, meaning that variable v is mapped to par-

tition P . The other possible values for a prophecy are ok and nok, which mean that command can and

cannot be executed, respectively (more details in Section 4.2).

Clients can consult the oracle to know which partitions each command should be multicast to, based on

which variables are accessed by the command. If the reply received from the oracle tells the client that the

command accesses a single partition, the client multicasts the command to that partition. If the command

accesses variables from multiple partitions, the client first multicasts one or more move commands to the

oracle and to the involved partitions, with the intent of having all variables in the same partition. Then, the

command itself is multicast to the one partition that now holds all variables accessed by the command. If a

subsequent command accesses the same variables, it will also access a single partition. With this scheme,

the access patterns of commands will shape the mapping of variables to partitions, reducing the number

of multi-partition commands.

Consulting the oracle and issuing the application command are done with separate calls to atomic mul-

ticast in DS-SMR. It may happen that, between those operations, the partitioning changes. We illustrate

this in Figure 1. Commands C1 and C2 read variable x. Since partitioning is dynamic, the client issuing
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the commands first consults the oracle before multicasting each command. C1 executes without the inter-

ference of other commands, so consulting the oracle and multicasting the command only once is enough

for C1 to be executed. However, before C2 is multicast to P1, another client issues a move command that

relocates x to P2. When C2 is delivered at the servers of P1, the command is not executed, since x is not

available at P1 anymore. A similar situation may arise when a command accesses variables from multiple

partitions, as it consists of multicasting at least three commands separately: consult, move and access. The

partitioning can change between the execution of any two of those commands.

To solve this problem, the client multicasts the set of variables accessed along with each access com-

mand. Upon delivery, each server checks the set of variables sent by the client. If all variables in the set

belong to the local partition, the command is executed; otherwise, a retry message is sent back to the cli-

ent. When the client receives a retry message, it consults the oracle again, possibly moving variables across

partitions, and then reissues the access command. To guarantee termination, if the command fails a cer-

tain number of times, the client multicasts the command to all partitions and the servers execute it as in

the original S-SMR.

The DS-SMR client consists of the application logic and a client proxy. The application does not see the

state variables divided into partitions. When the application issues a command, it sends the command

to the proxy and eventually receives a reply. All commands that deal with partitioning (i.e., consulting

the oracle, moving objects across partitions and retrying commands as described in the previous para-

graph) are executed by the client proxy, transparently to the application. When the client proxy multicasts a

partitioning-related command to multiple partitions and the oracle, partitions and oracle exchange signals

to ensure linearizability, as mentioned in Section 3.2. Every server and oracle process has its own DS-SMR

proxy as well. At each server, the proxy checks whether commands can be executed and manages the ex-

change of data and signals between processes. At the oracle, the service designer defines the application-

dependent rules that must be followed (e.g., where each variable is created at first) and a proxy is responsible

for managing the communication of the oracle with both clients and servers when executing commands.

DS-SMR relies on a fault-tolerant multicast layer for disseminating commands across replicas and imple-

menting reliable communication between partitions. Replies to commands are sent directly through the

network. Figure 2 illustrates the architecture of DS-SMR.

4.2 Detailed algorithm

When issuing a command, the application simply forwards the command to the client proxy and waits for

the reply. Consulting the oracle and multicasting the command to different partitions is done internally by

the proxy at the client. Algorithms 2, 3, and 4 describe in detail how the DS-SMR proxy works respectively

at client, server and oracle processes. Every server proxy at a server in Si has only partial knowledge of the

partitioning: it knows only which variables belong toPi. The oracle proxy has knowledge of everyP ∈ Ψ. To

maintain such a global knowledge, the oracle must atomic-deliver every command that creates, moves, or

deletes variables. (In Section 4.3, we introduce a caching mechanism to prevent the oracle from becoming

a performance bottleneck.)

The client proxy. To execute a command C, the proxy first consults the oracle. The oracle knows all

state variables and which partition contains each of them. Because of this, the oracle may already tell the

client whether the command can be executed or not. Such is the case of theaccess(ω) command: if there is a

variable v ∈ ω that the command tries to read or write and v does not exist, the oracle already tells the client

that the command cannot be executed, by sending nok as the prophecy. A nok prophecy is also returned

for a create(v) command when v already exists. For a delete(v) command when v already does not exist, an

ok prophecy is returned. If the command can be executed, the client proxy receives a prophecy containing

a pair 〈v,P〉, for every variable v created, accessed or deleted by the command. If the prophecy regarding

an access(ω) command contains multiple partitions, the client proxy chooses one of them, Pd, and tries to

move all variables in ω to Pd. Then, the command C itself is multicast to Pd. As discussed in Section 4.1,

there is no guarantee that an interleave of commands will not happen, even if the client waits for the replies

to the move commands. For this reason, and to save time, the client proxy multicasts all move commands

at once. Commands that change the partitioning (i.e., create and delete) are also multicast to the oracle.

If the reply received to the command is retry, the procedure restarts: the proxy consults the oracle again,

possibly moves variables across partitions, and multicasts C to the appropriate partitions once more. After

reaching a given threshold of retries for C, the proxy falls back to S-SMR, multicasting C to all partitions

(and the oracle, in case C is a create or delete command), which ensures the command’s termination.
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Algorithm 2 DS-SMR Client Proxy

1: To issue a command C, the client proxy does:

2: do

3: atomic-multicast(oracle, consult(C))

4: wait for prophecy

5: if prophecy ∈ {ok, nok} then

6: reply ← prophecy

7: else

8: C.dests← {P : ∃〈v,P〉 ∈ prophecy}
9: if C is an access(ω) command and |C.dests| > 1 then

10: letPd be one of the partitions in C.dests

11: for each v ∈ ω do

12: //move v to partitionPd

13: letPs beP : 〈v,P〉 ∈ prophecy

14: ifPs 6= Pd then

15: Cmove ← move(v,Ps,Pd)

16: Cmove.dests← {oracle,Ps,Pd}
17: atomic-multicast(Cmove.dests, Cmove)

18: C.dests← {Pd}
19: if C is create or delete then

20: C.dests← dests ∪ {oracle}
21: atomic-multicast(C.dests, C)

22: wait for reply

23: while reply = retry // after many retries, fall back to S-SMR

24: return reply to the application client

The server proxy. Upon delivery, access commands are intercepted by the DS-SMR proxy before they

are executed by the application server. In DS-SMR, every access command is executed in a single partition.

If a server proxy in partitionP intercepts anaccess(ω) command that accesses a variable v ∈ ω that does not

belong to P , it means that the variable is in some other partition, or it does not exist. Either way, the client

should retry with a different set of partitions, if the variable does exist. To execute a delete(v) command, the

server proxy at partition P simply removes v from partition P , in case v ∈ P . In case v 6∈ P , it might be that

the variable exists but belongs to some other partition P ′. Since only the oracle and the servers at P ′ have

this knowledge, it is the oracle who replies to delete commands.

DS-SMR server and oracle proxies coordinate to execute commands that create or move variables. Such

coordination is done by means of reliable-multicast. When a create(v) command is delivered at P , the

server proxy waits for a message from the oracle, telling whether the variable can be created or not, to be

reliable-delivered. Such a message from the oracle is necessary because v might not belong to P , but it

might belong to some other partitionP ′ that servers ofP have no knowledge of. If the create command can

be executed, the oracle can already reply to the client with a positive acknowledgement, saving time. This

can be done because atomic multicast guarantees that all non-faulty servers atP will eventually deliver and

execute the command. As for move commands, eachmove(v,Ps,Pd) command consists of moving variable

v from a source partition Ps to a destination partition Pd. If the server’s partition P is the source partition

(i.e., P =Ps), the server proxy checks whether v belongs to P . If v ∈ P , the proxy reliable-multicasts 〈v, C〉
to Pd, so that servers at the destination partition know the most recent value of v; C is sent along with v to

inform which move command that message is related to. If v 6∈ P , a 〈null, C〉 message is reliable-multicast

to Pd, informing Pd that the move command cannot be executed.

The oracle proxy. One of the purposes of the oracle proxy is to make prophecies regarding the location

of state variables. Such prophecies are used by client proxies to multicast commands to the right partitions.

A prophecy regarding an access(ω) command contains, for each v ∈ ω, a pair 〈v,P〉, meaning that v ∈ P .

If any of the variables in ω does not exist, the prophecy already tells the client that the command cannot be

executed (with a nok value). For a create(v) command, the prophecy tells where v should be created, based

on rules defined by the application, if v does not exist. If v already exists, the prophecy will contain nok,

so that the client knows that the create command cannot be executed. The prophecy regarding a delete(v)

command contains the partition that contains v, or ok, in case v was already deleted or never existed.

Besides dispensing prophecies, the oracle is responsible for executing create, move, and delete com-
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Algorithm 3 DS-SMR Server Proxy

1: To execute a command C, the server proxy in partitionP does:

2: when reliable-deliver(〈val, C〉)
3: rcvd_msgs← rcvd_msgs ∪ {〈val, C〉}

4: when atomic-deliver(C)

5: if C is an access(ω) command then

6: if ∃v ∈ ω : v 6∈ P then

7: reply with retry

8: else

9: have the command executed by the application server

10: send the reply to the client

11: else if C is a move(v,Ps,Pd) command then

12: ifP = Ps then

13: if v ∈ P then

14: reliable-multicast(Pd,〈v, C〉)
15: P ← P \ {v}
16: else

17: reliable-multicast(Pd,〈null, C〉)
18: else

19: wait until ∃val : 〈val, C〉 ∈ rcvd_msgs

20: if val 6= null then

21: v ← val

22: P ← P ∪ {v}

23: else if C is a create(v) command then

24: wait until 〈val, C〉 ∈ rcvd_msgs

25: if val = ok then

26: P ← P ∪ {v}

27: else if C is a delete(v) command then

28: if v ∈ P then

29: P ← P \ {v}

mands, coordinating with server proxies when necessary, and replying directly to clients in some cases. For

each move(v,Ps,Pd) command, the oracle checks whether v in fact belongs to the source partition Ps. If

that is the case, the command is executed, moving v to Pd. Each create(v) command is multicast to the

oracle and to a partition P . If v already exists, the oracle tells P that the command cannot be executed,

by reliable-multicasting nok to P . The oracle also sends nok to the client as reply, meaning that v already

exists. If v does not exist, the oracle tells P that the command can be executed, by reliable-multicasting ok

to P . It also tells the client that the command succeeded with an ok reply. Finally, each delete(v) command

is multicast to the oracle and to a partition P , where the client proxy assumed v to be located. If v belongs

to P , or v does not exist, the oracle tells the client that the delete command succeeded. Otherwise, that is,

if v exists, but delete(v)was multicast to the wrong partition, the oracle tells the client to retry.

4.3 Performance optimizations

In this section, we introduce two optimizations for DS-SMR: caching and load balancing.

Caching. In Algorithm 2, for every command issued by the client, the proxy consults the oracle. If every

command passes by the oracle, the system is unlikely to scale, as the oracle is prone to becoming a bot-

tleneck. To provide a scalable solution, each client proxy has a local cache of the partitioning information.

Before multicasting an application command C to be executed, the client proxy checks whether the cache

has information about every variable concerned by C. If the cache does have such a knowledge, the oracle

is not consulted and the information contained in the cache is used instead. If the reply to C is retry, the

oracle is consulted and the returned prophecy is used to update the client proxy’s cache. Algorithm 2 is

followed from the second attempt to execute C on. The cache is a local service that follows an algorithm

similar to that of the oracle, except it responds only to consult(C) commands and, in situations where the

oracle would return ok or nok, the cache tells the client proxy to consult the actual oracle.

Naturally, the cached partitioning information held by the client proxy may be out of date. On the one

9



Algorithm 4 DS-SMR Oracle Proxy

1: To execute a command C, the oracle proxy does:

2: when atomic-deliver(C)

3: if C is a consult(Cc) command then

4: prophecy ← ∅
5: if Cc is an access(ω) command then

6: if ∃v ∈ ω : (∄P ∈ Ψ : v ∈ P) then

7: prophecy ← nok

8: else

9: for each v ∈ ω do

10: prophecy ← prophecy ∪ {〈v,P〉} : v ∈ P
11: else if Cc is a create(v) command then

12: if ∃P ∈ Ψ : v ∈ P then

13: prophecy ← nok

14: else

15: P ← initial partition, defined by application rules

16: prophecy ← {〈v,P〉}
17: else if Cc is a delete(v) command then

18: if ∄P ∈ Ψ : v ∈ P then

19: prophecy ← ok

20: else

21: prophecy ← {〈v,P〉} : v ∈ P
22: send prophecy to the client

23: else if C is a move(v,Ps,Pd) command then

24: if v ∈ Ps then

25: Ps ← Ps \ {v}
26: Pd ← Pd ∪ {v}

27: else if C is a create(v) command then

28: letPc beP : {P} = C.dests \ {oracle}
29: if ∄P ∈ Ψ : v ∈ P then

30: outcome← ok

31: else

32: outcome← nok

33: reliable-multicast(Pc, 〈outcome,C〉)
34: send outcome to the client

35: else if C is a delete(v) command then

36: letPd beP : {P} = C.dests \ {oracle}
37: if ∄P ∈ Ψ : v ∈ P or v ∈ Pd then

38: send ok to the client

39: else

40: send retry to the client

hand, this may lead a command to be multicast to the wrong set of partitions, which will probably incur

in the client proxy having to retry executing the command. For instance, in Figure 3 the client has an out-

of-date cache, incurring in a new consultation to the oracle when executing C3. On the other hand, the

client proxy may already have to retry commands, even if the oracle is always consulted first, as shown in

Figure 1. If most commands are executed without consulting the oracle, as in the case of C4 in Figure 3,

we avoid turning the oracle into a bottleneck. Moreover, such a cache can be updated ahead of time, not

having to wait for an actual application command to be issued to only then consult the oracle. This way,

the client proxy can keep a cache of partitioning information of variables that the proxy deems likely to be

accessed in the future.

Load balancing. When moving variables, the client proxies may try to distribute them in a way that

balances the workload among partitions. This way, the system is more likely to scale throughput with the

number of server groups. One way of balancing load is by having roughly the same number of state vari-

ables in every partition. This can be implemented by having client proxies choosing randomly the partition

that will receive all variables concerned by each command (at line 10 of Algorithm 2). Besides improving
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Figure 3: Each client proxy in DS-SMR maintains a cache in order to avoid consulting the oracle. White boxes represent

actions of the client proxy.

performance, balancing the load among partitions prevents the system from degenerating into a single-

partition system, with all variables being moved to the same place as commands are executed.

4.4 Correctness

In this section, we argue that DS-SMR ensures termination and linearizability. By ensuring termination, we

mean that for every command C issued by a correct client, a reply to C different than retry is eventually

received by the client. This assumes that at least one oracle process is correct and that every partition has

at least one correct server. Given these constraints, the only thing that could prevent a command from

terminating would be an execution that forced the client proxy to keep retrying a command. This problem

is trivially solved by falling back to S-SMR after a predefined number of retries: at a certain point, the client

proxy multicast the command to all server and oracle processes, which execute the command as in S-SMR,

i.e., with coordination among all partitions and the oracle.

As for linearizability, we argue that, if every command in execution E of DS-SMR is delivered by atomic

multicast and is execution atomic (as defined in [8]), then E is linearizable. We denote the order given by

atomic multicast by relation ≺. Given any two messages m1 and m2, “m1 ≺ m2” means that there exists a

process that delivers both messages and m1 is delivered before m2, or there is some message m′ such that

m1 ≺ m′ and m′ ≺ m2, which can be written as m1 ≺ m′ ≺ m2. Also, for the purposes of this proof, we

consider the oracle to be a partition, as it also atomic-delivers and executes application commands.

Suppose, by means of contradiction, that there exist two commands x and y, where x finishes before y

starts, but y ≺ x in the execution. There are two possibilities to be considered: (i) x and y are delivered by

the same process p, or (ii) no process delivers both x and y.

In case (i), at least one process p delivers both x and y. As x finishes before y starts, then p delivers x,

then y. From the properties of atomic multicast, and since each partition is mapped to a multicast group,

no process delivers y, then x. Therefore, we reach a contradiction in this case.

In case (ii), if there were no other commands in E , then the execution of x and y could be done in any

order, which would contradict the supposition that y ≺ x. Therefore, there are commands z1, ..., zn with

atomic order y ≺ z1 ≺ · · · ≺ zn ≺ x, where some process p0 (of partition P0) delivers y, then z1; some

process p1 ∈ P1 delivers z1, then z2, and so on: process pi ∈ Pi delivers zi, then zi+1, where 1 ≤ i < n.

Finally, process pn ∈ Pn delivers zn, then x.

Let z0 = y and let atomic(i) be the following predicate: “For every process pi ∈ Pi, pi finishes executing

zi only after some p0 ∈ P0 started executing z0.” We now claim that atomic(i) is true for every i, where

0 ≤ i ≤ n. We prove our claim by induction.

Basis (i = 0): atomic(0) is obviously true, as p0 can only finish executing z0 after starting executing it.

Induction step: If atomic(i), then atomic(i + 1).

Proof: Command zi+1 is multicast to bothPi andPi+1. Since zi+1 is execution atomic, before any pi+1 ∈ Pi+1

finishes executing zi+1, some pi ∈ Pi starts executing zi+1. Since zi ≺ zi+1, every pi ∈ Pi start executing

zi+1 only after finishing the execution of zi. As atomic(i) is true, this will only happen after some p0 ∈ P0

started executing z0.

As zn ≺ x, for every pn ∈ Pn, pn executes command x only after the execution of zn at pn finishes. From

the above claim, this happens only after some p0 ∈ P0 starts executing y. This means that y (z0) was issued
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by a client before any client received a response for x, which contradicts the assumption that x precedes y

in real-time, i.e., that command y was issued after the reply for command x was received.

5 Implementation

In this section, we describe Eyrie, a library that implements both S-SMR and DS-SMR, and Chirper, a scal-

able social network application built with Eyrie. Eyrie and Chirper were both implemented in Java.

5.1 Eyrie

To implement a replicated service with Eyrie, the developer (i.e., service designer) must extend three classes:

PRObject, StateMachine, OracleStateMachine.

The PRObject class. Eyrie supports partial replication (i.e., some objects may be replicated in some

partitions, not all). Therefore, when executing a command, a replica might not have local access to some

of the objects involved in the execution of the command. The developer informs Eyrie which object classes

are partially replicated by extending the PRObject class. Each object of such class is stored either locally or

remotely, but the application code is agnostic to that. All calls to methods of such objects are intercepted

by Eyrie, transparently to the developer.

The StateMachine class. This class implements the logic of the server proxy. The application server

class must extend the StateMachine class. To execute commands, the developer must provide an imple-

mentation for the method executeCommand(Command). The code for such a method is agnostic to the

existence of partitions. In other words, it can be exactly the same as the code used to execute commands

with classical state-machine replication (i.e., full replication). Eyrie is responsible for handling all com-

munication between partitions and oracle transparently. To start the server, method runStateMachine() is

called. Method createObject() also needs to be implemented, where the developer defines how new state

objects are loaded or created.

The OracleStateMachine class. This class implements the logic of the oracle proxy. It extends StateM-

achine, so the oracle can be deployed similarly to a fault-tolerant partition in the original S-SMR. Class

OracleStateMachine has a default implementation, but the developer is encouraged to override its meth-

ods. Method extractObject(Command) returns the set of objects accessed by the command. It should be

overridden by the application so that the client proxy can relocate all necessary objects to a destination par-

tition before executing the application command. Method getTargetPartition(Set〈Object〉) returns a partic-

ular partition to which objects should be moved, when they are not in the same partition yet, in order to

execute an application command that accesses those objects. The default implementation of the method

returns a random partition. The developer can override it in order to further improve the distribution of

objects among partitions. For instance, the destination partition could be chosen based on an attribute of

the objects passed to the method.

The client proxy is implemented in class Client, which handles all communication of the application

client with the partitioned service. The client proxy provides methods sendCreate(Command, Callback-

Handler), sendAccess(Command, CallbackHandler), and sendDelete(Command, CallbackHandler). The

client proxy’s default behavior is to keep retrying commands (and fallback to S-SMR in case of too many

retries) and only call back the application client when the command has been successfully executed. How-

ever, the developer can change this behavior by overriding the error() method of CallbackHandler. The

error() method is called when a retry reply is received.

5.2 Chirper

We implemented Chirper, a social network application similar to Twitter, using Eyrie. Twitter is an online

social networking service in which users can post 140-character messages and read posted messages of

other users. The API consists basically of: post (user publishes a message), follow (user starts following

another user), unfollow (user stops following someone), and getTimeline (user requests messages of all

people whom the user follows).

State partitioning in Chirper is based on users’ interest. A function f (uid) returns the partition that user

with id uid should belong to, based on the user’s interest. Function f is implemented in method getOb-

jectPlacement(User) of class ChirperOracle, which extends OracleStateMachine (class User extends PROb-

ject). Taking into account that a typical user probably spends more time reading messages (i.e., issuing get-
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Figure 4: Results of Chirper running with S-SMR and DS-SMR. Throughput is shown in thousands of commands per

second (kcps).

Timeline) than writing them (i.e., issuing post), we decided to optimize getTimeline to be single-partition.

This means that, when a user requests his or her timeline, all messages should be available in the parti-

tion that stores that user’s data, in the form of a materialized timeline (similarly to a materialized view in

a database). To make this possible, whenever a post request is executed, the message is inserted into the

materialized timeline of all users that follow the one that is posting. Also, when a user starts following an-

other user, the messages of the followed user are inserted into the follower’s materialized timeline as part

of the command execution; likewise, they are removed when a user stops following another user. Because

of this design decision, every getTimeline request accesses only one partition, follow and unfollow requests

access objects on at most two partitions, and post requests access up to all partitions. The Chirper client

does not need any knowledge about partitions, since it uses method sendAccessCommand(command) of

the DS-SMR client proxy to issue its commands.

One detail about the post request is that it needs access to all users that follow the user issuing the

post. To ensure linearizability when executing a post request, the Chirper server overrides the extractOb-

ject(command) method to check if all followers that will be accessed by the command are available in the

local partition (i.e., the partition of the server executing the post command). If this is the case, the request

is executed. Otherwise, the server sends a retry(γ)message, where γ is the complete set of followers of the

user who was posting. Then, the Chirper server proceeds to the next command. Upon receiving the retry(γ)

message, the client proxy tries to move all users in γ to the same partition before retrying to execute the post

command.

6 Performance evaluation

In this section, we present the results found for Chirper with different loads and partitionings and compare

them with the original S-SMR [8]. In Section 6.1, we describe the environment where we conducted our

experiments. In Section 6.2, we show the results.

6.1 Environment setup and configuration parameters

We conducted all experiments on a cluster that had two types of nodes: (a) HP SE1102 nodes, equipped

with two Intel Xeon L5420 processors running at 2.5 GHz and with 8 GB of main memory, and (b) Dell

SC1435 nodes, equipped with two AMD Opteron 2212 processors running at 2.0 GHz and with 4 GB of

main memory. The HP nodes were connected to an HP ProCurve 2920-48G gigabit network switch, and the

Dell nodes were connected to another, identical switch. Those switches were interconnected by a 20 Gbps

link. All nodes ran CentOS Linux 7.1 with kernel 3.10 and had the OpenJDK Runtime Environment 8 with

the 64-Bit Server VM (build 25.45-b02).
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Table 1: Absolute values of Chirper running S-SMR and DS-SMR.

Timeline Post Follow/unfollow Mix

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Throughput (commands per second)

S-SMR 31757 60699 71274 84065 32151 2884 1894 1200 32541 11476 8580 3371 32151 22803 16822 10657

DS-SMR 28882 55925 57900 86685 14874 23295 35188 54250 30215 48976 54025 83880 27101 45686 50671 74257

Throughput rate =DS-SMR tput / S-SMR tput

0.91 0.92 0.81 1.03 0.46 8.08 18.48 45.00 0.93 4.27 6.30 24.88 0.84 2.00 3.01 6.97

Latency (milliseconds)

S-SMR 3.1 6.6 5.6 7.0 3.4 5.2 7.9 8.3 3.0 5.2 7.0 8.8 3.4 3.7 3.8 7.9

DS-SMR 6.9 7.1 8.6 11.4 6.7 8.6 11.3 9.1 6.6 6.1 7.4 7.0 7.3 6.5 7.8 7.9

For the experiments, we use the following workloads: Timeline (composed only of getTimeline requests),

Post (only post requests), Follow/unfollow (50% of follow requests and 50% of unfollow), and Mix (7.5% post,

3.75% follow, 3.75% unfollow, and 85% getTimeline).

6.2 Results

We can see in Figure 4 and Table 1 the results achieved with Chirper. For the Timeline workload, the

throughput with DS-SMR and S-SMR are very similar. This happens because getTimeline requests are op-

timized to be single-partition: all posts in a user’s timeline are stored along with the User object. This is the

ideal workload for S-SMR. In DS-SMR, the partitioning does not change, and consulting the oracle becomes

unnecessary thanks to the local cache at each client. This happens because there are no other commands

in the Timeline workload.

In the Post workload, every command accesses up to all partitions in the system, which is the worst

case for S-SMR: the more partitions are involved in the execution of a command, the worst is the system’s

performance. We can see that the throughput of S-SMR decreases significantly as the number of partitions

increases. For DS-SMR, we can see that the system throughput scales with the number of partitions. This

happens because User objects that are accessed together, but which are in different partitions, are moved

to the same partition based on the interests of the users. As the execution proceeds, this leads to a lower

rate of multi-partition commands, which allows throughput to scale. (In the case of posts on 2 partitions,

the number of move commands started at 3 kcps, with throughput of 23 kps, and eventually reduced to less

than 0.1 kcps.) As a result the throughput improvement of DS-SMR with respect to S-SMR increases over

time. With eight partitions, DS-SMR sports a performance that is 45 times that of S-SMR!

With the Follow/unfollow workload, the system performs in a similar way to that observed with the Post

workload. The difference is that each follow or unfollow request accesses only two User objects, whereas

every post request may affect an unbounded number of users. For this reason, each follow/unfollow com-

mand is executed at most by two partitions in S-SMR. In DS-SMR, a single move command is enough to

have all User objects affected by such a command in the same partition. For this reason, both replication

techniques have better throughput under the Follow/unfollow workload than with Post. As with the Post

workload, DS-SMR’s advantage over S-SMR increases with the number of partitions, reaching up to almost

25 times with eight partitions.

We approximate a realistic distribution of commands with the Mix workload. With such a workload,

S-SMR does not perform as bad as in the Post or Follow/unfollow workloads, but the system throughput still

decreases as partitions are added. As with the other workloads, DS-SMR scaled under the Mix workload.

With eight partitions, it reached 74 kcps (thousands of commands per second), fairly close to the ideal case

(the Timeline workload), where DS-SMR reached 86 kcps. Under the Mix workload, S-SMR had less than

33 kcps in the best case (one partition) and around 10 kcps with eight partitions. In the configuration with

eight partitions, DS-SMR reaches almost seven times S-SMR’s throughput.

Latency values with DS-SMR are higher than with S-SMR. This was expected for two reasons. First, there

is an extra group of servers (the oracle) to communicate with. Second, executing a command often means

moving all accessed objects to the same partition. Taking this into account, we consider the (often slight)
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increase in latency observed with DS-SMR a low price to pay for the significant increase in throughput and

the scalability that DS-SMR brought to the system; with S-SMR, the system did not scale with multi-partition

commands.

7 Related work

State machine replication is a well-known approach to replication (e.g., [14, 15, 22, 28, 29]). It requires rep-

licas to execute commands deterministically, which implies sequential execution. Even though improving

the performance of SMR is non-trivial, different techniques have been proposed to achieve scalable sys-

tems, such as optimizing the propagation and ordering of commands (i.e., the underlying atomic broadcast

algorithm). In [30], the authors propose to have clients send their requests to multiple computer clusters,

where each such cluster executes the ordering protocol only for the requests it received, and then forwards

this partial order to every server replica. The server replicas, then, must deterministically merge all differ-

ent partial orders received from the ordering clusters. In [31], Paxos [21] is used to order commands, but it

is implemented in a way such that the task of ordering messages is evenly distributed among replicas, as

opposed to having a leader process that performs more work than the others and may eventually become

a bottleneck.

Other works have proposed multi-threaded implementations of state machine replication, circumvent-

ing the non-determinism caused by concurrency in some way. In [29], the authors propose to receive, batch,

and dispatch commands in parallel, while commands themselves are still executed sequentially. In [28], a

parallelizer module uses application semantics to determine which commands can be executed concur-

rently without reducing determinism (e.g., read-only commands, which can be executed in any order rel-

ative to one another). In [22], commands are speculatively executed in parallel. After a batch of commands

is executed, replicas verify whether they reached a consistent state; if not, commands are rolled back and

re-executed sequentially.

Many database replication schemes also aim at improving the system throughput, although commonly

they do not ensure linearizability. Many works (e.g., [6, 32, 33, 34]) are based on the deferred-update replic-

ation scheme, in which replicas commit read-only transactions immediately, not necessarily synchronizing

with each other. This provides a significant improvement in performance, but allows non-linearizable exe-

cutions to take place. The consistency criteria usually ensured by database systems are serializability [35] or

snapshot isolation [36]. Those criteria can be considered weaker than linearizability, in the sense that they

do not take into account real-time precedence of different commands among different clients. For some

applications, this consistency level is enough, allowing the system to scale better, but services that require

linearizability cannot be implemented with such techniques.

Besides S-SMR [8], other works have tried to make linearizable systems scalable [37, 38, 39]. In [38], the

authors propose a scalable key-value store based on DHTs, ensuring linearizability, but only for requests

that access the same key. In [39], a partitioned variant of SMR is proposed. However, it requires total order

(i.e., all commands have to be ordered against each other) and it does not allow update commands to ac-

cess variables from different partitions. Spanner [37] uses a separate Paxos group per partition. To ensure

strong consistency across partitions, it assumes that clocks are synchronized within a certain bound that

may change over time. The authors say that Spanner works well with GPS and atomic clocks. Dynamic

Scalable State Machine Replication employs state partitioning and ensures linearizability for any possible

execution, while allowing throughput to scale as partitions are added, even when commands update mul-

tiple partitions and without synchronized clocks.

DS-SMR is not to be confused with other dynamic replication schemes though. Systems such as [40,

41, 42] are “dynamic” in the sense that they allow the membership to be reconfigured during execution.

For instance, a multicast layer based on Paxos can be reconfigured by adding or removing acceptors. They

also allow server replicas to be added and removed during execution. However, this is orthogonal to what

DS-SMR proposes. Dynamic Scalable State Machine Replication consists of allowing the state partitioning,

that is, which state variables belong to which partition, to change dynamically. The greatest challenge that

is addressed by DS-SMR is how to provide such a solution, with a dynamic partitioning oracle, while ensur-

ing the strongest level of consistency (linearizability), as variables are created, deleted, and moved across

partitions, based on the access patterns of the workload.

Schism [9] proposes an automatic graph-based partitioning of transactional databases that uses the

workload to decide where to place data items. The authors detail how the workload is used to create a graph

that captures dependencies between data items, but they do not provide much detail about how the repar-
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titioning can be done dynamically without violating consistency. E-Store [10] is a reconfiguration system for

transactional databases that repartitions the data according to the access patterns detected in the workload.

It strives to minimize the number of multi-partition accesses and is able to redistribute data items among

partitions during execution. However, E-Store assumes that all non-replicated tables form a tree-schema

based on foreign key relationships. This has the drawback of ruling out graph-structured schemas and m-n

relationships. DS-SMR is a more general approach that works with any kind of relationship between data

items, while also ensuring the strongest level of consistency.

8 Conclusion

This work introduces Dynamic Scalable State Machine Replication (DS-SMR), a scalable variant of the well-

known state machine replication technique. DS-SMR implements dynamic state partitioning to adapt to

different access patterns throughout the execution, while scaling throughput with the number of parti-

tions and ensuring linearizability. To evaluate DS-SMR, we developed the Eyrie library and implemented

Chirper, a scalable social network application, with Eyrie. In our experiments, we deployed Chirper with

both DS-SMR and S-SMR. The results demonstrate that DS-SMR significantly improves the performance

of Chirper over S-SMR in the presence of multi-partition commands.
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