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Abstract

Sharding and replication are the mechanisms of choice of most scalable and fault-
tolerant distributed systems. The performance of a sharded system, however, heavily
depends on the partitioning of the data: in order to scale, most commands must in-
volve a single shard and load across shards must be balanced. Estimating a good par-
titioning of the application state is challenging since it requires a priori information
about the workload. Moreover, even if such information is available, access patterns
may change during system execution (e.g., a good data partitioning for uniform access
patterns may lead to poor performance under skewed access patterns). The paper in-
troduces DynaStar, a scalable and fault-tolerant system that supports dynamic state
partitioning. DynaStar does not require a priori knowledge about the workload and
can adapt to workload variations. The paper describes DynaStar’s design and imple-
mentation, and presents a detailed performance evaluation using two benchmarks, a
social network based on real data and TPC-C.
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1 Introduction

Modern distributed systems typically scale performance by sharding application data and tolerate failures
by replicating each shard. Clients submit commands for execution to one or more shards. Within a shard,
replicas coordinate by means of a consensus protocol (e.g., Paxos [1]). To coordinate the execution of multi-
shard commands, replicated shards rely on some distributed coordination protocol (e.g., two-phase locking
[2], optimistic concurrency control [3], atomic multicast [4]).

Even though different techniques have been proposed to handle commands that access state in mul-
tiple shards, inherently multi-shard commands are more expensive than single-shard commands. This hap-
pens due to overhead from ordering and coordinating commands across shards to ensure strong consist-
ency. Moreover, if data is not distributed carefully, then load imbalances can nullify the benefits of sharding.
Consequently, the achilles heel of sharded systems lies on the partitioning of the service state. An ideal par-
titioning scheme is one that would both (i) allow commands to be executed at a single partition only, and (ii)
evenly distribute data so that load is balanced among partitions. Under such conditions, performance will
scale with the number of partitions.

Partitioning the service state in order to achieve scalable performance, however, is challenging. First,
it depends on a good understanding of the workload, which may not be available. Second, even if enough
information is available, finding a good partitioning is a complex optimization problem [5, 6]. Third, work-
loads may vary over time. In social networks, for example, some users may experience a surge increase in
their number of followers (e.g., new “celebrities”); workload demand may shift along the hours of the day and
the days of the week; and unexpected (e.g., a video that goes viral) or planned events (e.g., a new company
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starts trading in the stock exchange) may lead to exceptional periods when requests increase significantly
higher than in normal periods. These challenges perhaps explain why most approaches that rely on state
partitioning delegate the task of partitioning the service state to the application designer (e.g., [7, 4, 2, 8]).

In this paper, we introduce DynaStar, a new approach to scalable replication. DynaStar differs from pre-
vious solutions in that it supports dynamic state partitioning. This means that data can be relocated from
one shard (or partition) to another to optimize performance. Moreover, data relocation is done on-the-fly,
with minimal service disruption. As a result, DynaStar does not require any a priori information about the
workload and can adapt to workload variations. To achieve this design, DynaStar maintains a location oracle
with a global view of the application state. The oracle minimizes the number of state relocations by monit-
oring the workload, and re-computing an optimized partitioning on demand using a partitioning algorithm
(METIS). The location oracle maintains two data structures: (i) a mapping of application state variables to
shards, and (ii) a workload graph with state variables as vertices and edges as commands that access the
variables. Before a client submits a command, it contacts the location oracle to discover the shards on which
state variables are stored. If the command accesses variables in multiple shards, the client chooses one shard
to execute the command and instructs the other involved shards to temporarily relocate the needed variables
to the chosen shard. Of course, when relocating a variable, the client is faced with a choice of which shard to
use as a destination. The client estimates the partition that minimizes the number of state relocations.

To tolerate failures, DynaStar implements the oracle as a regular partition, replicated in a set of nodes.
To ensure that the oracle does not become a performance bottleneck, clients cache location information.
Therefore, clients only query the oracle when they access a variable for the first time or when cached entries
become invalid (i.e., because a variable changed location). DynaStar copes with commands addressed to
wrong partitions by telling clients to retry a command.

We implemented DynaStar and compared its performance to alternative schemes, including an idealized
approach that knows the workload ahead of time. Although this scheme is not achievable in practice, it
provides an interesting baseline to compare against. DynaStar’s performance rivals that of the idealized
scheme, while having no a priori knowledge of the workload. In most workloads of interest, DynaStar largely
outperforms existing dynamic schemes. We also show that the location oracle never becomes a bottleneck
in our experiments and can handle workload graphs with millions of vertices.

The paper makes the following contributions:

• It introduces DynaStar and discusses its implementation.

• It evaluates different partitioning schemes for state machine replication under a variety of conditions.

• It presents a detailed experimental evaluation of DynaStar using the TPC-C benchmark and a social
network service.

The rest of the paper is structured as follows. Section 2 presents the system model. Section 3 reviews
existing scalable state machine replication approaches. Section 4 introduces DynaStar, describes the tech-
nique in detail and argues about its correctness. Section 5 overviews our prototype. Section 6 reports on the
results of our experiments. Section 7 surveys related work and Section 8 concludes the paper.

2 System model and definitions

DynaStar relies on multicast abstractions to handle complex coordination among partitions without viol-
ating correctness. In this section, we detail the system model, define multicast, and state our correctness
criterion.

2.1 Processes and communication

We consider a distributed system consisting of an unbounded set of client processes C = {c1, c2, ...} and a
bounded set of server processes (replicas) S = {s1, ..., sn}. Set S is divided into disjoint groups of servers
S0, ...,Sk . Processes are either correct, if they never fail, or faulty, otherwise. In either case, processes do not
experience arbitrary behavior (i.e., no Byzantine failures).

Processes communicate by message passing, using one-to-one or one-to-many communication. One-
to-one communication uses primitives s e nd (p , m ) and r e c e i v e (m ), where m is a message and p is the
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process m is addressed to. If sender and receiver are correct, then every message sent is eventually received.
One-to-many communication relies on atomic multicast, defined in §2.2.

The system is partially synchronous [9]: it is initially asynchronous and eventually becomes synchronous.
When the system is asynchronous, there are no bounds on the time it takes for messages to be transmitted
and actions to be executed; when the system is synchronous, such bounds exist but are unknown to the
processes.

2.2 Atomic multicast

To atomically multicast a message m to a set of groups γ, processes use primitive a-mcast(γ, m ). Message
m is delivered at the destinations with a-deliver(m ). We define delivery order < as follows: m <m ′ iff there
exists a process that delivers m before m ′.

Atomic multicast ensures the following properties:

– If a correct process a-mcasts m , every correct process in a group in γ a-delivers m (validity).

– If a process a-delivers m , then every correct process in a group in γ a-delivers m (uniform agreement).

– For any message m , every process a-delivers m at most once, and only if some process has a-mcast m
previously (integrity).

– If a process a-mcasts m and then m ′, then no process a-delivers m ′ before m (fifo order).

– The delivery order is acyclic (atomic order).

– For any messages m and m ′ and any processes p and q such that p ∈ g , q ∈ h and {g , h} ⊆ γ, if p
delivers m and q delivers m ′, then either p delivers m ′ before m or q delivers m before m ′ (prefix
order).

Atomic broadcast is a special case of atomic multicast in which there is a single group of processes.

2.3 Correctness criterion

DynaStar ensures linearizable executions. An execution is linearizable if there is a way to reorder the client
commands in a sequence that (i) respects the semantics of the commands, as defined in their sequential
specifications, and (ii) respects the real-time precedence of commands [10].

3 Background

Distributed systems typically rely on sharding and replication to scale performance and tolerate failures.
More precisely, the service state V is composed of k partitions, P1, ...,Pk , where each partition Pi is as-
signed to server group Si . (For brevity, we say that server s belongs toPi meaning that s ∈Si .) Commands
that access a single partition are executed as in classical state machine replication [11, 12]: replicas of the
concerned partition use a consensus protocol to agree on the execution order of commands and each rep-
lica executes the commands independently. Different approaches to multi-partition commands have been
proposed in the literature.

Some protocols assume a workload that can be “perfectly partitioned,” that is, there is a way to shard the
service state that avoids multi-partition commands [13, 14]. Since commands are essentially single-partition,
if the load is balanced across partitions then performance scales with the number of partitions.

With protocols that support commands that span multiple partitions, the multi-partition command is
executed by each involved partition, possibly after it is ordered across the involved partitions using a dis-
tributed protocol (e.g., atomic multicast, two-phase commit). Some protocols assume the workload can be
sharded such that multi-partition commands are executed locally by each of the involved partitions [15],
that is, the execution of a multi-partition command in one partition does not need data stored in a different
partition. For example, to support the assignment command “x := y ", variables x and y must be placed in
the same partition. However, a command that increments x and increments z allows these variables to be
placed in different partitions.
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More general solutions do not impose restrictions on state partitioning, but must incur additional over-
head in the execution of multi-partition commands [4, 2]. More precisely, upon delivering a multi-partition
command, replicas may need to exchange state, since some partitions may not have all the data needed in
the command. For example, consider again the assignment command “x := y " in a system where x and y
are stored in different partitions. If the system does not support dynamic partitioning of state, then parti-
tions can first create temporary copies of the variables they do not have so that both partitions execute the
command [4]. With dynamic partitioning of state, either x can be moved to the partition that contains y or
vice-versa, and the command is executed at a single partition [13].

DynaStar supports dynamic partitioning of state. It does not require the workloads to be perfectly par-
titioned and does not impose restrictions on state partitioning. Moreover, DynaStar implements multi-
partition commands differently from previous proposals. In DynaStar, one chosen partition first “borrows”
the needed variables from the other partitions and then executes the command locally.

4 DynaStar

4.1 Overview

DynaStar defines a dynamic mapping of application variables to partitions.1 Such a mapping is managed
by a partitioning oracle, which is handled as a replicated partition. To simplify the discussion, we initially
assume that every command involves the oracle. In §4.3, we explain how clients can use a cache to avoid the
oracle in the execution of most commands.

Clients submit commands to the oracle and wait for the reply. DynaStar supports three types of com-
mands: c r e a t e (v ) creates a new variable v and initially maps it to a partition defined by the oracle; a c c e s s (ω)
is an application command that reads and modifies variables in setω⊆ V ; and d e l e t e (v ) removes v from
the service state. The reply from the oracle is called a p r o p he c y , and usually consists of a set of tuples
〈v,P 〉, meaning v ∈P , and a target partitionPd on which the command will be executed. The p r o p he c y
could also tell the clients if a command cannot be executed (e.g., it accesses variables that do not exist). If
the command can be executed, the client waits for the reply from the target partition.

If a command C accesses variables inω on a single partition, the oracle multicasts C to that partition for
execution. If the command accesses variables on multiple partitions, the oracle multicasts a g l o b a l (ω,Pd , C )
command to the involved partitions to gather all variables in ω to the target partition Pd . After having all
required variables, the target partition executes command C , sends the reply to the client, and returns the
variables to their source.

The oracle also collects hints from clients and partitions to build up a workload graph and monitors the
changes in the graph. In the workload graph, vertices represent state variables and edges dependencies
between variables. An edge connects two variables in the graph if a command accesses both of them. Peri-
odically, the oracle computes a new optimized partitioning and sends the partitioning plan to all partitions.
Upon delivering the new partitioning, the partitions exchange variables and update their state accordingly.
DynaStar relocates variables without blocking the execution of commands.

4.2 The detailed protocol

Algorithms 1, 2, and 3 describe the client, oracle, and server processes, respectively. For brevity, we omit the
delete command since the coordination involved in the create and delete commands are analogous. A proof
of correctness for the protocol is available as additional material.2

4.2.1 The client process

To execute a command, the client atomically multicasts the command to the oracle (Algorithm 1). The oracle
replies with a prophecy, which may already tell the client that the command cannot be executed (e.g., it needs
a variable that does not exist, it tries to create a variable that already exists). If the command can be executed,

1Applications may also define other granularity of data when mapping application state to partitions. For example, in our social
network application (§5.4), each user (together with the information associated with the user) is mapped to a partition; in our TPC-C
implementation (§5.3), every district in a warehouse is mapped to a partition.

2https://github.com/dynastar2018/DynaStar/blob/master/appendix-correctness.pdf
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Figure 1: The execution of a create (C1) and a write without client cache (C2) and with client cache (C3) in DynaStar.

the client receives a prophecy containing the partition where the command will be executed. The client then
waits for the result of the execution of the command.

4.2.2 The oracle

When the oracle delivers a request, it distinguishes between two cases (Task 1 in Algorithm 2).

• If the command is to create a variable v , and v does not already exist, the oracle chooses a random
partition for v , multicasts the create command to the partition and itself, and returns the partition to
the client as a prophecy (Figure 1).

• If the command reads and writes existing variables, the oracle first checks that all such variables ex-
ist. If the variables exist and they are all in a single partition, the oracle multicasts the command to
that partition for execution. If the variables are distributed in multiple partitions, the oracle determ-
inistically determines the destination partition, and atomically multicasts a command to the involved
partitions so that all variables are gathered at the destination partition. The oracle chooses as the des-
tination partition the partition that contains most of the variables needed by the command. (In case
of a tie, one partition is chosen deterministically, among those that contain most variables.) Once the
destination partition has received all variables needed by the command, it executes the command and
returns the variables to their source partition.

Algorithm 1 Client

1: To issue a command C , the client does:

2: a-mcast(oracle, e x e c (C ))
3: wait for p r o p he c y
4: if p r o p he c y = no k then {if receive no k then...}
5: r e p l y ← p r o p he c y {...there’s nothing to execute}
6: else {in this case, p r o p he c y is (d e s t )}
7: wait for r e p o n s e from a server in p r o p he c y
8: r e p l y ← r e p o n s e
9: return r e p l y to the application

Upon delivering a create (Task 2), the oracle updates its partition information. As part of a create com-
mand, the oracle coordinates with the partition to ensure correctness (Task 3) [4]. The oracle also keeps track
of the workload graph by receiving hints with variables (i.e., vertices in the graph) and executing commands
(i.e., edges in the graph). These hints can be submitted by the clients or by the partitions, which collect data
upon executing commands and periodically inform the oracle (Task 4). The oracle computes a partitioning
plan of the graph and multicasts it to all servers and to itself. Upon delivering new partition plan, the oracle
updates its location map accordingly (Task 5).

To compute an optimized partitioning, the oracle uses a graph partitioner. A new partitioning can be
requested by the application, by a partition, or by the oracle itself (e.g., upon delivering a certain number of
hints). To determine the destination partition of a set of variables, as part of a move, the oracle uses the last
computed partitioning.
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Algorithm 2 Oracle

1: when a-deliver(e x e c (C )) {Task 1}

2: case C is a c r e a t e (v ) command:
3: if p a r t i t i o n ({v }) 6=⊥ then {if v already exists...}
4: p r o p he c y ← no k {...notify client}
5: else {if v doesn’t exist...}
6: P ← choose v ’s partition {...determine v ’s partition}
7: p r o p he c y ←P {prepare client’s response}
8: a l l d e s t ←{o r a c l e }∪ {P }
9: a-mcast(a l l d e s t , (P , c r e a t e (v )))

10: case C is any command, but c r e a t e (v ):
11: ω← v a r s (C ) {variables accessed by C }
12: if ∃v ∈ω : p a r t i t i o n ({v }) =⊥ then {if v ¬exists:}
13: p r o p he c y ← no k {tell the client}
14: else {if all vars inω exist}
15: d e s t s ← p a r t i t i o n (ω) {get all partition involved}
16: Pd ← t a r g e t (d e s t s , C ) {Pd will excecute C }
17: a-mcast(d e s t s , C )
18: p r o p he c y ←Pd

19: send p r o p he c y to the client

20: when a-deliver(Pv , c r e a t e (v )) {Task 2}

21: ∀x ∈Pv : send (〈s i g na l , C 〉) to x {exchange signal...}
22: wait until 〈s i g na l , C 〉 ∈ r c v d _m s g s {...to coordinate}
23: Pv ←Pv ∪{v }

24: when receive (〈v a l , C 〉) {Task 3}

25: r c v d _m s g s ← r c v d _m s g s ∪{〈v a l , C 〉}

26: function partition(v a r s )
27: d e s t s ←{P : ∃v ∈ v a r s ∩P }
28: return d e s t s

29: when a-deliver(hi n t (Vh , Eh )) {Task 4}

30: update GW with (Vh , Eh )
31: i n c (c ha ng e s )
32: if c ha ng e s ≥ t h r e s ho l d then
33: p a r t i t i o ni ng ← compute I1, ...,Im from GW

34: a l l d e s t ←{o r a c l e }∪a l l p a r t i t i o n s
35: a-mcast(a l l d e s t , (p a r t i t i o ni ng ))

36: when a-deliver(partitioning) {Task 5}

37: apply p a r t i t i o ni ng

38: function target(P , C )
39: Pd ← deterministicly compute partition to execute

command C from ∀Pi ∈P
40: returnPd

Algorithm variables:

GW : the set of all variable and their locations
p a r t i t i o ni ng : the partition configuration of GW

4.2.3 The server process

When a server delivers a command C , it first checks if it has all variables needed by the command. If the
server has all such variables, it executes the command and sends the response back to the client (Tasks 1a
and 2 in Algorithm 3). If not all the variables needed by the command are in that partition, the server runs a
deterministic function to determine the destination partition to execute the command (Task 1b). The func-
tion uses as input the variables needed by the command and the command itself. In this case, each server
that is in the multicast group of the command C but is not the destination partition sends all the needed
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Algorithm 3 Server in partitionP

1: when a-deliver(C ) {Task 1}

2: ω← v a r s (C ) {variables accessed by C }
3: if ∀v ∈ω : v ∈P then {Task 1a}
4: execute command C
5: send response to the client
6: else {Task 1b}
7: d e s t s ← p a r t i t i o n (ω) {get all involved partition}
8: Pd ← t a r g e t (d e s t , C ) {Pd ∈ d e s t will execute C }
9: ifP =Pd then {P is the target partition:}

10: wait until ∀v ∈ω \P : ∃〈v a r s , C 〉 ∈ r c v d _m s g s : v ∈ v a r s {wait for needed variables}
11: execute command C
12: send response to the client
13: for eachQ ∈Ps do ∀x ∈Q:

send (〈v : v ∈Q〉, C ) to x {return the variables}
14: else {ifP is not the target partition:}
15: v a r s ←ω∩P {all needed variables inP }
16: r-mcast(Pd , 〈v a r s , C 〉) {send variables to destination}
17: wait until ∀v ∈ v a r s ∈ r c v d _m s g s : v ∈ v a r s

18: when a-deliver(P , c r e a t e (v )) {Task 2}

19: ∀x ∈ o r a c l e : send (〈s i g na l , C 〉) to x {exchange signal to...}
20: wait until 〈s i g na l , C 〉 ∈ r c v d _m s g s {...coordinate}
21: P ←P ∪{v }
22: send o k to the client

23: when a-deliver(p a r t i t i o ni ng ) {Task 3}

24: for eachQ ∈Pv ∈ p a r t i t i o ni ng do
25: ifP isQ then
26: v a r s ← p a r t i t i o ni ng (Q) \ v : v ∈P
27: if ∀v ∈ v a r,Pi ∈ p a r t i t i o ni ng :

∃〈v a r s ,Pi 〉 ∈ r c v d _m s g s : v ∈ v a r s then
28: apply p a r t i t i o ni ng
29: else
30: v a r s ← p a r t i t i o ni ng (Q)∩ v : v ∈P
31: ∀ x ∈Q: send(〈v a r s ,P 〉) to x {send objs that are inQ}

32: when receive (〈v a l , C 〉) {Task 4}

33: r c v d _m s g s ← r c v d _m s g s ∪{〈v a l , C 〉}
34: function target(P , C )
35: Pd ← deterministicly compute partition to execute

command C from ∀Pi ∈P
36: returnPd

Algorithm variables:

p a r t i t i o ni ng : the partition configuration from the o r a c l e

variables stored locally to the destination partition and waits to receive them back. The destination partition
waits for a message from other partitions. Once all variables needed are available, the destination partition
executes the command C , sends the response back to the client, and returns the variables to their source.
Periodically, the servers deliver a new partitioning plan from the oracle (Task 3). Each server will send the
variables to the designated partition, as in the plan, and wait for variables from other partitions. Once a
server receives all variables, it updates its location map accordingly. To determine the destination partition
for a command, the servers uses the last computed partitioning.

4.3 Performance optimization

In the algorithm presented in the previous section, clients always need to involve the oracle, and the oracle
dispatches every command to the partitions for execution. Obviously, if every command involves the oracle,
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the system is unlikely to scale, as the oracle will likely become a bottleneck. To address this issue, clients are
equipped with a location cache. Before submitting a command to the oracle, the client checks its location
cache. If the cache contains the partition of the variables needed by the command, the client can atomically
multicast the command to the involved partition and thereby avoid contacting the oracle.

The client still needs to contact the oracle in one of these situations: (a) the cache contains outdated in-
formation; or (b) the command is a create, in which case it must involve the oracle, as explained before. If
the cache contains outdated information, it may address a partition that does not have the information of
all the variables accessed by the command. In this case, the addressed partition tells the client to retry the
command. The client then contacts the oracle and updates its cache with the oracle’s response. Although
outdated cache information results in execution overhead, it is expected to happen rarely since repartition-
ing is not frequent.

5 Implementation

5.1 Atomic multicast

Our DynaStar prototype uses the BaseCast atomic multicast protocol described in [16] and available as open
source.3 Each group of servers in BaseCast executes an instance of Multi-Paxos.4 Groups coordinate to en-
sure that commands multicast to multiple groups are consistently ordered (as defined by the atomic multic-
ast properties §2.2). BaseCast is a genuine atomic multicast in that only the sender and destination replicas
of a multicast message communicate to order the multicast message.

5.2 DynaStar

Our DynaStar prototype is written as a Java 8 library. The code is publicly available as open-source. Applic-
ation designers who use DynaStar to implement a replicated service must extend three key classes:

– PRObject: provides a common interface for replicated data items.

– PartitionStateMachine: encapsulates the logic of the server proxy. Note that the server logic is written
without knowledge of the actual partitioning scheme. The DynaStar library handles all communication
between partitions and the oracle transparently.

– OracleStateMachine: computes the mapping of objects to partitions. Our default implementation uses
METIS5 to provide a partitioning based on the workload graph. While partitioning a graph, METIS
aims to reduce the number of multi-partition commands (edge-cuts) while trying to keep the various
partitions balanced. We configured METIS to allow a 20% unbalance among partitions.

We note one important implementation detail. The oracle is multi-threaded, and can service requests
while computing a new partitioning concurrently. To ensure that all replicas start using the new partition-
ing consistently, the oracle identifies each partitioning with a unique id. When an oracle replica finishes a
repartitioning, it atomically multicasts the id of the new partitioning to all replicas of the oracle. The first
delivered id message defines the order of the new partitioning with respect to other oracle operations.

5.3 TPC-C benchmark

The TPC-C benchmark is an industry standard for evaluating the performance of OLTP systems. It has 9
tables and five transaction types that simulate a warehouse-centric order processing application: New-Order
(45% of transactions in the workload), Payment (43%), Delivery (4%), Order-Status (4%) and Stock-Level (4%).
We implemented a Java version of the TPC-C benchmark that runs on top of DynaStar. Each row in TPC-C
tables is an object in DynaStar. The oracle models the workload at the granularity of districts, thus each
district or warehouse is a node in the graph. If a transaction accesses a district and a warehouse, the oracle
will create an edge between that district and the warehouse. The objects (e.g., customers, orders) that belong
to a district are considered part of district. However, if a transaction requires objects from multiple district,
only those objects will be moved on demand, rather than the whole district.

3https://bitbucket.org/paulo_coelho/libmcast
4http://libpaxos.sourceforge.net/paxos_projects.php#libpaxos3
5http://glaros.dtc.umn.edu/gkhome/views/metis
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5.4 Chirper social network service

For the purposes of micro benchmark, we have developed a Twitter-like social network service using the
DynaStar library. In our social network, users can follow, unfollow, post, or read other users’ tweets according
to whom the user is following. Like Twitter, users are constrained to posting 140-character messages.

Each user in the social network corresponds to a node in a graph. If one user follows another, then a
directed edge is created from the follower to the followee. Each user has an associated timeline, which is a
sequence of post messages from the people that the user follows. Thus, when a user issues a post command,
it results in writing the message to the timeline of all the user’s followers. In contrast, when users read their
own timeline, they only need to access the state associated with their own node.

Since DynaStare guarantees linearizable executions, any causal dependencies between posts in Chirper
will be seen in the correct order. More precisely, if user B posts a message after receiving a message posted
by user A, no user who follows A and B will see B’s message before seeing A’s message.

Overall, in Chirper, post, follow or unfollow commands can lead to object moves. Follow and unfollow
commands can involve at most two partitions, while posts may require object moves from many partitions.

5.5 Alternative system

Throughout our evaluation, we compare DynaStar to an optimized version of S-SMR [4], available in a public
repository.6 S-SMR has been shown to scale performance with the number of partitions under a variety of
workloads. It differs from DynaStar in two important aspects: multi-partition commands are executed by
all involved partitions, after the partitions exchange needed state for the execution of the command and S-
SMR supports static state partitioning. In our experiments, we manually optimize S-SMR’s partitioning with
knowledge about the workload. In the experiments, we refer to this system and configuration as S-SMR*.

6 Performance evaluation

In this section, we evaluate DynaStar according to various metrics, under a variety of different operational
parameters. We ran a number of experiments using two benchmarks: the TPC-C benchmark and Chirper
social networking service described in the previous section. Our experiments show that DynaStar is able to
rapidly adapt to changing workloads, while achieving throughputs and latencies far better than the existing
state-of-the-art approaches to state machine replication partitioning.

6.1 Experimental environment

We conducted all experiments on Amazon EC2 T2 large instances (nodes). Each node has 8 GB of RAM, two
virtual cores and is equipped with an Amazon EBS standard SSD with a maximal bandwidth 10000 IOPS.
All nodes ran Ubuntu Server 16.04 LTS 64 and had the OpenJDK Runtime Environment 8 with the 64-Bit
Server VM (build 25.45-b02). In all experiments, the oracle had the same resources as every other partition:
2 replicas and 3 acceptors (in total five nodes per partition).

6.2 Methodology and goals

The experiments seek to answer the following questions:

• What is the impact of repartitioning on a real dataset?

• How does partitioning affect performance when the workload grows with the number of partitions and
when the workload has constant size?

• How does DynaStar performance compare to other approaches?

• How does DynaStar perform under dynamic workloads?

• What is the performance of the oracle?
6https://bitbucket.org/kdubezerra/eyrie
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Performance metrics. The latency was measured as the end-to-end time between issuing the command,
and receiving the response. Throughput was measured as the number of posts/second or transactions/second
that the clients were able to send.

6.3 TPC-C benchmark

In the experiments in this section, we deploy as many partitions as the number of warehouses.
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Figure 2: Repartitioning on DynaStar; throughput (top), objects exchanged between partitions (middle), and percent-
age of multi-partition commands (bottom).

The impact of graph repartitioning. In order to assess the impact of state partitioning on performance,
we ran the TPC-C benchmark on an un-partitioned database. Figure 2 shows the performance of DynaStar
with 4 warehouses and 4 partitions. At the first part of the experiment, all the variables are randomly distrib-
uted across all partitions. As a result, almost every transaction accesses all partitions. Thus every transaction
required coordination between partitions, and objects were constantly moving back and forth. This can be
observed in the first 50 seconds of the experiment depicted in Figure 2: low throughput (i.e., a few trans-
actions executed per second), high latency (i.e., several seconds), and a high percentage of cross-partition
transactions.

After 50 seconds, the oracle computed a new partitioning based on previously executed transactions
and instructed the partitions to apply the new partitioning. When the partitions delivered the partitioning
request, they exchanged objects to achieve the new partitioning. It takes about 10 seconds for partitions
to reach the new partitioning. However, during the repartitioning servers continue to execute transactions.
After the state is relocated, most objects involved in a transaction can be found in a local partition, which
considerably increases performance and reduces latency.
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Figure 3: Performance scalability with TPC-C.
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Scalability. In order to show how DynaStar scales out, we ran experiments with 1, 2, 4, 8 and 16 partitions.
We used sufficient clients to saturate the throughput of the system in each experiment. Figure 3 shows the
peak throughput of DynaStar and S-SMR* as we vary the number of partitions. Notice that we increase the
state size as we add partitions (i.e., there is one warehouse per partition). The result shows that DynaStar is
capable of applying a partitioning scheme that leads to scalable performance.

6.4 Social network

We used Higgs Twitter Dataset [17] as the social graph used in the experiments. The graph is a subset of the
Twitter network that was built based on the monitoring of the spreading of news on Twitter after the discovery
of a new particle with the features of the elusive Higgs boson on 4th July 2012. The dataset consists of 456631
nodes and more than 14 million edges.

We evaluate the performance of DynaStar and S-SMR* with the dataset mentioned above. With S-SMR*,
we used METIS to partition the data in advance. Thus, S-SMR* started with an optimized partitioning.
DynaStar started with random location of the objects. Each client issues a sequence of commands. For each
command, the client selects a random node as the active user with Zipfian access pattern (ρ = 0.95). We
focused on two types of workloads: timeline only commands and mix commands (85% timeline and 15%
post). Each client operates in a closed loop, that is, the client issues a command and then waits from the
response to submit the next command.
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Figure 5: Cumulative distribution function (CDF) of latency for mix workloads on different partitioning configurations.

DynaStar vs. alternative technique. Figure 4 shows the peak throughput and latency for approximately
75% of peak throughput (average and 95-th percentile) of the evaluated techniques on different workloads,
as we vary the number of partitions of the fixed graph for the social networks.

Both techniques perform similarly in the experiment with timeline commands. This happens because
no moves occur in DynaStar, and no synchronization among partitions is necessary for S-SMR* in this case.
Consequently, the two schemes scale remarkably well, and the difference in throughput between each tech-
nique is due to the implementation of each one.

In the experiment with mix workload, we see that the throughput still scales with the number of partitions
in experiments with up to 8 partitions. While increasing the number of partitions to 16 with that fixed graph
starts introducing a tradeoff. On the one hand, additional partitions should improve performance as there
are more resources to execute the commands. On the other hand, the number of edge cuts increases with
the number of partitions, which hurts performance as there are additional operations involving multiple
partitions.

Notice that only post operations are subject to this tradeoff since they may involve multiple partitions.
The most common operation in social networks is the request to read a user timeline. This is a single-
partition command in our application and as a consequence it scales linearly with the number of partitions.

Figure 5 shows the cumulative distribution functions (CDFs) of latency for the mix workload of DynaStar
and S-SMR* on different configurations. The results suggest that S-SMR* achieves lower latency than DynaStar
for 80% of the load. This is expected, as for multi-partition commands, partitions in DynaStar have to send
additional data to return objects to their original location after command execution .

Performance under dynamic workloads. Figure 6 depicts performance of DynaStar and S-SMR* of an
evolving social network. We started the system with the original network from Higg dataset. After 200 seconds,
we introduced a new celebrity user in the workload. The celebrity user posted more frequently, and other
users started following the celebrity.

At the beginning of the experiment, DynaStar performance was not as good as S-SMR* (i.e., lower through-
put, higher number of percentage of multi-partition commands, and higher number of exchanged objects),
because S-SMR* started with an optimized partitioning, while DynaStar started with a random partitioning.
After 50 seconds, DynaStar triggered the repartitioning process, which led to an optimized location of data.
Repartitioning helped reduce the percentage of multi-partition commands to 10%, and thus increased the
throughput. After the repartitioning, DynaStar got better throughput than S-SMR* with the optimized par-
titioning. After 200 seconds, the network started to change its structure, as many users started to follow a
celebrity, and created more edges between nodes in the graph. Both DynaStar and S-SMR suffered from the
change, as the rate of multi-partition command increased, and the throughput decreased. However, when
the repartitioning takes place in DynaStar, around 300 seconds into the execution, the previously user map-
ping got a better location from the oracle, which adapted the changes. After the repartitioning, the objects
are moved to a better partition, with a resulting increase in throughput.
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Figure 6: The impact of repartitioning of a dynamic workload in DynaStar (a) and S-SMR without repartitioning (b).

Table 1 shows the throughput of each partition when the system reached the maximum throughput at
the second of 180. Although the objects were evenly distributed among partitions, there was still a skew in the
load of the system, e.g., partition 1 and 2 served more commands than the other partitions. This happened
because of the skew in the access pattern: some users were more active and posted more than the others,
thus the requests that sent to their servers are more than to other servers.

Table 1: Average load at partitions at peak throughput.

Partition Tput M-part commands per sec Exchanged objects per sec
1 12766 887 3907
2 11790 643 3036
3 6775 440 1503
4 6458 400 1490

6.5 The performance of the oracle

DynaStar uses an oracle that maintains a global view of the workload graph. The oracle allows DynaStar
to make better choices about data movement, resulting in an overally better throughput and lower latency.
However, introducing a centralized component in a distributed system is always a cause for some skepticism,
in case the component becomes a bottleneck, or a single point of failure. To cope with failures, the oracle
is implemented as a replicated partition. We conducted two experiments to evaluate if the DynaStar oracle
is a bottleneck to system performance. The results show that the load on the oracle is low, suggesting that
DynaStar scales well.

The first experiment assesses the scalability of the METIS algorithm only. We measured the time to com-
pute the partitioning solution, and the memory usage of the algorithms for increasingly large graphs. The
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results, depicted in Figure 7, show that METIS scales linearly in both memory and computation time on
graphs of up to 10 million vertices.
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Figure 7: METIS processor and memory usage.

The second experiment evaluates the oracle in terms of the number of queries sent to the oracle over
time, for varying numbers of partitions. The experiment results was measured when the system was running
stable, and the clients had cache all requests. The results are shown in Figure 8. The number of queries
processed to the oracle is zero at the beginning of the experiment, as the clients has cached the location
of all objects. After 80 second, the repartitioning was triggers, made all the cache on clients invalid. Thus
the throughput of queries at the oracle increases, when clients started asking for new location of variables.
However, the load diminishes rapidly and gradually reduce to zero. This is because access to the oracle is
necessary only when clients have an invalid cache or when a repartition happens. These experiments suggest
that the oracle would not become a bottleneck.
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7 Related work

State machine replication [18, 19, 11, 20, 12] provides strong consistency guarantees, which come from total
order and deterministic execution of commands. Since consistent ordering is fundamental for SMR, some
authors proposed to optimize the ordering and propagation of commands. For instance, [21] proposes to
divide the ordering of commands between different clusters: each cluster orders only some requests, and
then forwards the partial order to every server replica, which then merges the partial orders deterministically
into a single total order that is consistent across the system. In [22], Paxos [23] is used to order commands, but
it is implemented in a way that avoids overloading the leader process, which would turn it into a bottleneck.

Multi-threaded execution is a potential source of non-determinism, depending on how threads are sched-
uled to be executed in the operating system. Some works attempted to circumvent this problems and come
up with a multi-threaded, yet deterministic implementation of SMR. In [20], the authors propose to parallel-
ize the receipt and dispatching of commands, while executing commands sequentially. In [19], application
semantics is used to determine which commands can be executed concurrently and still produce a determ-
inistic outcome (e.g., read-only commands). In [18], commands are tentatively executed in parallel. After
the parallel execution, replicas verify whether they reached a consistent state; if not, commands are rolled
back and re-executed sequentially.
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Many database replication schemes aim at achieving high throughput by relaxing consistency, that is,
they do not ensure linearizability. In deferred-update replication [24, 25, 26, 27], replicas commit read-
only transactions immediately, not always synchronizing with each other. Although this indeed improves
performance, it allows non-linearizable executions. Database systems usually ensure serializability [28] or
snapshot isolation [29], which do not take into account real-time precedence of different commands among
different clients. For some applications, these consistency levels may be enough, allowing the system to scale
better, but services that require linearizability cannot be implemented with such techniques.

Efforts to make linearizable systems scalable have been made in the past [4, 2, 30, 13, 31]. In [30], the au-
thors propose a scalable key-value store based on DHTs, ensuring linearizability, but only for requests that
access the same key. In [31], variant of SMR is proposed in which data items are partitioned but commands
have to be totally ordered. Spanner [2] uses a separate Paxos group per partition and, to ensure strong con-
sistency across partitions, clocks are assumed to be synchronized. Although the authors say that Spanner
works well with GPS and atomic clocks, if clocks become out of synch beyond tolerated bounds, correctness
is not guaranteed. S-SMR [4] ensures consistency across partitions without any assumption about clock syn-
chronization, but relies on a static partitioning of the state. DS-SMR [13] extends S-SMR by allowing state
variables to migrate across partitions in order to reduce multi-partition commands. However, DS-SMR im-
plements repartitioning in a very simple way that does not perform very well in scenarios where the state can-
not be perfectly partitioned. DynaStar improves on DS-SMR by employing well-known graph partitioning
techniques to decide where each variable should be. Moreover, DynaStar dillutes the cost of repartitioning
by moving variables on-demand, that is, only when they are accessed by some command.

Graph partitioning is an interesting problem with many proposed solutions [32, 33, 34]. In this work, we
do not introduce a new graph partitioning solution, but instead we use a well-known one (METIS [32]) to par-
tition the state of a service implemented with state machine replication. Similarly to DynaStar, Schism [5]
and Clay [35] also use graph-based partitioning to decide where to place data items in a transactional data-
base. In either case, not much detail is given about how to handle repartitioning dynamically without vi-
olating consistency. Sword [36] is another graph-based dynamic repartitioning technique. It uses a hyper-
graph partitioning algorithm to distribute rows of tables in a relational database across database shards.
Sword does not ensure linearizability and it is not clear how it implements repartitions without violating
consistency. E-Store [6] is yet another repartitioning proposal for transactional databases. It repartitions
data according to access patterns from the workload. It strives to minimize the number of multi-partition
accesses and is able to redistribute data items among partitions during execution. E-Store assumes that all
non-replicated tables form a tree-schema based on foreign key relationships. This has the drawback of rul-
ing out graph-structured schemas and m-n relationships. DynaStar is a more general approach that works
with any kind of relationship between data items, while also ensuring linearizability.

Some replication schemes are “dynamic” in that they allow the membership to be reconfigured during
execution (e.g., [37, 38, 39]). For instance, a multicast layer based on Paxos can be reconfigured by adding or
removing acceptors. These systems are dynamic in a way that is orthogonal to what DynaStar proposes.

8 Conclusion

In this paper we present DynaStar, a partitioning strategy for scalable state machine replication. DynaStar is
inspired by DS-SMR, a decentralized dynamic scheme proposed by Le et al. [13]. Differently from DS-SMR,
however, DynaStar performs well in all workloads evaluated. When the state can be perfectly partitioned,
DynaStar converges more quickly than DS-SMR; when partitioning cannot avoid cross-partition commands,
it largely outperforms DS-SMR. The key insights of DynaStar are to build a workload graph on-the-fly and
use an optimized partitioning of the workload graph, computed with an online graph partitioner, to decide
how to efficiently move state variables. The paper describes how one can turn this conceptually simple idea
into a system that sports performance close to an optimized (but impractical) scalable system.
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