A Methodology for Formalizing
Different Types of Norms*

Soheil Roshankish(B), Nicoletta Fornara

Universita della Svizzera italiana, via G. Buffi 13, 6900 Lugano, Switzerland
soheil.roshankish@usi.ch,nicoletta.fornara@usi.ch

Abstract. In a world where many activities are carried out digitally, it is
increasingly urgent to be able to formally represent the rules, norms, and
policies that regulate these activities. In multi-agent systems, formalizing
policies written in a natural language into a formal model, making them
machine-readable, is a demanding task. In this paper, we introduce a
methodology to help people to understand the fundamental elements
that they should consider for this transformation. In this paper we will
focus mainly on a methodology for formalizing norms using the T-Norm
norm model, this because it allows us to express a rich set of different
types of norms. In any case, the proposed methodology is general enough
to also be used, in some of its steps, to formalize norms using other
formal languages. This is an important issue because since there is not
yvet a set of different types of norms that is sufficiently expressive and
is recognized as valid by the NorMAS community, papers presenting a
given model usually do not explicitly state which types of norms can
be expressed with that model and which cannot. Therefore, the second
goal of this paper is to propose and discuss a rich set of norm types that
could be used to study the expressive power of different formal models
of norms and to compare them.

1 Introduction

In a world where many activities are carried out digitally, it is increasingly urgent
to be able to formally represent the rules, norms, and policies that regulate these
activities. By doing that, it is important to take into account that they are carried
out by autonomous subjects who are able to decide to violate these rules. The
activities regulated by the norms can be of various types and also include the very
important ones related to the use, exchange and manipulation of the enormous
amount of digital data that exist nowadays. Since these norms and policies can
be violated (for example, it is very difficult to regiment obligations [8]) it is also
urgent to propose mechanisms to automatically monitor compliance with these
norms.

In the academic literature, there are an interesting number of general models
of norms and policies. Some of these are close to being able to be used in real

* Funded by the SNSF (Swiss National Science Foundation) grant no.
200021 175759/1.

applications in today’s Web as they are expressed with standard Semantic Web
Technologies, which is a crucial characteristics for realizing interoperable sys-
tems. One of them is the W3C Recommendation ODRL 2.2% (the Open Digital
Rights Language), which is a policy expression language that provides an in-
formation model and a vocabulary for specifying permissions, prohibitions, and
obligations about the usage of digital assets and services. Two others are the
T-Norm model [10] and the OWL-POLAR model [19]. They are two semantic
web based complementary models having an operational semantics for reasoning
about norms and policies fulfillments and violations.

The papers that describe these models are mainly focused on the presentation
of the model that is exemplified usually with the formalization of some examples
of norms, regardless of their type. What is missing, however, is a methodology
that explains what steps should be followed if one wants to start from a norm
written in a natural language (e.g., English) and be able to choose the model
for its formalization and use it to arrive at the formal specification of the norm,
which can then be used to reason about it and verify its fulfillment or violation.
Since there is not a commonly accepted set of types of norms in the literature,
papers presenting a given model usually do not explicitly state which types of
norms can be expressed with that model and which cannot. Thus in this paper
we have the following two goals.

Our first goal is to explain the methodology that can be used by people
to translate norms written in one natural language into a language specifically
designed for the formal specification of norms. The proposed methodology con-
sists in: first understand if the norm can be expressed with a certain model, that
means to understand which type the norm belongs to and if the type is supported
by the model; secondly come to a proper formalization of the norm using the
chosen model, this by applying the methodology proposed in this paper. We will
focus mainly on formalizing norms using the T-Norm norm model, this because
it allows us to express a rich set of different types of norms. However, it is impor-
tant to emphasize that the proposed methodology is general enough to also be
used, in some of its steps, to formalize norms using other formal languages that
have some similarities with the T-Norm model, such as at least OWL-POLAR
and ODRL.

There are many reasons why it is interesting to specify norms using formal
models. First, because norms become machine-readable, therefore it is possible
to automatically analyse and query them like for example it is discussed in [15]
where the PrivOnto ontology is used for analysing 115 privacy policies. For ex-
ample, it will be possible to search the set of resources on which it is possible
to perform certain actions based on the customers’ interests. When a policy is
formalized with a machine-readable formal language that has an operational se-
mantics, it is also possible to provide services for compliance checking of policies
[19,16,9, 10]. This functionality plays an important role especially in domains in
which the customers’ sensitive data is collected and companies need to monitor
the compliance of customers’ privacy. This functionality is important also to cre-

! https://www.w3.org/TR/odrl-model/

ate a trustworthy environment for customers by providing monitoring platform
that they can use to see whether their privacy policies (norms) are violated or
not. For instance, a customer can attach to one picture the prohibition to pub-
lish it on a public platform for advertisement and would like to monitor if the
actions which are performed on the picture are compliant with this prohibition.

Another reason why it can be useful to specify norms with formal languages
is that it becomes easier for humans to understand their actual meaning, which
is not always as immediate as it should be. For example, during the Covid-19
pandemic, it was not always easy to immediately understand what norms are in
effect at any given time in a specific location and whether they entail obligations
or prohibitions to perform actions. Another example of norms whose meaning
and implications are not always immediately clear to the reader are the various
privacy policies that regulate the processing of our data when we browse websites
and use social networks. Users often accept such policies in order to use online
services often without fully understanding what they mean, this is because they
are too long or complex.

The second goal of this paper is to propose and discuss a rich set of norm
types that could be used to study the expressive power of different formal models
of norms and to compare them. Knowing that a certain model of norms is or
is not capable of expressing a certain type of norms is fundamental to deciding
which model to adopt in a certain application context. For example, if a norm
generates a specific obligation that has a deadline, it is necessary to choose a
model of norms that allows to express this temporal constraint and to verify its
fulfillment. Secondly, once it is clear that a certain type of norm can be expressed
in both language A and language B, it will also be possible to translate norms
written with the first language into norms written with the second. Thus making
systems that use different norm models interoperable, a fundamental aspect in
today’s world where one software agent must be able to interact with multiple
open interaction systems without having to be reprogrammed every time.

This paper is organized as follows: in Section 2 the most relevant and recent
papers presenting a model for norms and policies specification in which semantic
web technologies have been used are discussed. In Section 3 the T-Norm model
is briefly presented. In Section 4 the methodology proposed in this paper is
described and the set of different types of norms is discussed. Finally in Section
5 we draw some conclusions.

2 Related works

In the multiagent systems community, over the last twenty years, many models
of norms and policies for regulating the behaviour of autonomous agents have
been proposed [2,6]. In some of these models semantic web technologies have
been used for modeling some components of norms/policies that can be used for
expressing obligations, prohibitions, and permissions. The first proposals were
the KAoS framework [21], the REI [14] policy language, and the PRovisional
TrUst NEgotiation framework Protune [4]. Those approaches are summarized

and compared in [5] where the requirements for a policy framework are discussed
and the various approaches are categorized discussing whether the policies are
public or not. For example, for the public policies, it is possible to use KAOS
and REI frameworks as we need just one step evaluation to see if two policies
are compatible. On the other hand, if a policy contains sensitive data, they are
required to have stateful and stateless megotiation protocols for further security
concerns.

An important policy language based on semantic web technologies, which is
a W3C Recommendation since 15 February 2018, is the Open Digital Rights
Language (ODRL 2.2). It is a policy expression language that can be used to
represent permitted, prohibited, and obliged actions over a certain asset. ODRL
policies may be limited by constraints (e.g., temporal or spatial constraints).
ODRL was originally (in 2001) an XML language for expressing digital rights,
that is, digital content usage terms and conditions. In version 2.0 and 2.1 ORDL
is a Policy Language formalized in RDF with an abstract model specified by an
ontology.It has no formal semantics, so compliance checking of policies written
with this language cannot be performed automatically. An interesting attempt
to give a formal semantics to ODRL 2.1 policies is presented in [20]. Some exten-
sions of ODRL has been proposed to overcome to some of its limits. In particular,
in [9] an extension of the ODRL Information Model has been proposed together
with a set of state machines used for describing the evolution in time of the
deontic state of obligations, prohibitions, and permissions. Another extension of
ODRL is presented in [7] to model both regulatory policies (in the form of nested
permissions, prohibitions, obligations and dispnesations), and business policies
via discrete permissions. A policy written with that extension of the ODRL lan-
guage is then translated into an Institutional Action Language (InstAL) policy
and thanks to its formal semantics, expressed in Answer Set Programming, it is
possible to automatically check compliance and also provide an explanation of
the aspects of the policy that brings to the non-compliance. In [13] a specific use
case drawn from the social networks field is used to validate the expressiveness
of the ODRL 2.0 model.

Other two interesting proposals of a policy/norm model and framework,
which are based on semantic web technologies, are OWL-POLAR [19] and T-
Norm [10, 11] models. Those policies/norms models and their expressivity will be
discussed in Section 3. An interesting aspect that differentiates the two models
is the way in which the two models define mechanisms to reason about policies
to test whether agents’ behavior satisfies them or not. In the OWL-POLAR a
query answering mechanism (DL-safe) has been used to check if any action that
happened satisfies the policies. In the T-Norm model a rule-based approach is
used that brings the generation of several deontic relations used to represent
obligations and prohibitions generated by the activations of norms. In addition,
the T-Norm model makes it possible to formalize the temporal constraints that
exist between the activation of a norm and the class of actions regulated by the
norm.

Other interesting models of norms that, like the T-Norm model, are rule-
based are: the one proposed by Garcia-Camino et al. [12] where rules are op-
erationalized using the JESS a rule engine for the Java platform; and the one
proposed in [1] where reasoning on norms is realized with DROOLS a business
rule management system. Another interesting proposal is the OASIS standard
LegalRuleML?2, which defines a rule interchange language for the legal domain
and is formalized using RuleML.

Logic and Knowledge Engineering Framework and Methodology (LOGIKEY)
is another interesting framework which was introduced recently in [3]. The main
objective of this framework is to enable and support the practical development of
computational tools for normative reasoning based on formal methods. In their
approach, they use higher-order logic (HOL) as the formal framework. They also
used some GDPR examples to show how their framework supports the ethical
and/or legal (ethico-legal) domains theories.

3 The T-Norm model

The T-Norm model can be used to formalize a precise and rich set of types of
norms that regulate the interactions between autonomous agents. Namely (as
we will further discuss in the paper): (i) norms with a activation condition rep-
resented by a class of events; (ii) norms without an activation condition; norms
that generate (iii) general or (iv) specific obligations or prohibitions to perform
(or not to perform) actions that can be constrained to happen before something
else happens, (v) exceptions to those norms; (vi) exceptions to obligations and
prohibitions (i.e. exemptions and permissions respectively). Once a set of norms
is formalized, a specific framework has been proposed to automatically check if
the agents’ behavior conforms or does not conform to the given set of norms.
This is done by simulating or monitoring the evolution of the state of those set
of norms as time passes, events occur and autonomous agents perform actions.
The framework for norms monitoring has been proposed by taking into account
the operational semantics of the T-Norm model. The model, its operational se-
mantics, and the framework were introduced in [10, 11].

The T-Norm model captures the following intuitive meaning of norms: when-
ever a particular activation condition is satisfied (i.e. an event that belongs to
a particular class of events occurs) a deontic relation (general or specific) is
created for regulating the performance of a class of actions by certain agents.
In turn, every time an action belonging to the class of the regulated actions is
executed before a certain event happens (for example a certain temporal event
representing a deadline) and the deontic relationship represents an obligation it
will be fulfilled, while if the deontic relation represents a prohibition it will be
violated. On the contrary, when an action belonging to the class of regulated ac-
tions can no longer be performed (for example because the deadline has expired)
and the deontic relationship represents an obligation it will be wviolated, while if
the deontic relation represents a prohibition it will be fulfilled.

2 https://www.oasis-open.org/committees/legalruleml/

In order to formally describe such a dynamic behaviour, the abstract model
of a norm cannot consists only of a set of facts (like it is in many models of
norms and policies, e.g. ODRL3, OWL-POLAR [19], and the model proposed in
[1]). In all these models the intrinsically dynamic nature of norms is described
in their semantics or is left to their intuitive meaning described in the text.
The T-Norm model allows to specify how the performance of certain actions or
the occurrence of certain events will change the state of the interaction among
agents. Therefore the basic building blocks of the T-Norm abstract norm are
rules of the form ON...THEN...ELSE%. The abstract norm has not a pre-defined
deontic type, as discussed in Section 4, it is those who formally specify a norm
who will decide whether the norm activation creates obligations or prohibitions.
In the T-Norm model a generic abstract norm has the following form:

1 NORM Norm_n

2 [ON ?eventl WHERE conditions on 7eventl

3 THEN

4: COMPUTE]

5: CREATE DeonticRelation(?dr);

6 ASSERT isGenerated(?dr,Norm_n); [activated(?dr,7eventl);]
7 ON ?event2 [BEFORE 7event3 WHERE conditions on ?event3]
8: WHERE actor(7event2,?agent) AND conditions on Tevent2
9: THEN ASSERT fulfills(7agent,?dr); fullfilled(?dr,7event2) |
10: violates(7agent,?dr); violated(?dr,?event2)
11: [ELSE ASSERT violates(7agent,?dr); violated(?dr,?event3) |
12: fulfills(?agent,?dr); fulfilled(7dr,7event3]

In the proposed model the first (optional) ON. . .THEN component (line 2,3) is
used for expressing those norms that have an activation condition. The second
ON...THEN component (line 7,9) is used for expressing that when a specific ac-
tion, which belongs to the class of actions regulated by the norm, is performed
(before something else occurs) there will be a fulfillment or a violation. In alter-
native, the ELSE part of the second rule (line 11) will be followed when an action
that belongs to the class of the regulated actions can no longer be performed.

The formulas used in the abstract norm are conjunctions (in the WHERE part)
or sequences (in the CREATE and ASSERT part) of atomic assertions written using
the classes (unary predicates starting with capital letter) and the properties (bi-
nary predicates starting with a lowercase letter) defined in the T-Norm Ontology
depicted in Figure 1°. Variables (starting with ’?") refers to individuals. Vari-
ables used in the WHERE parts of the norm for expressing conditions on events

3 https://www.w3.org/TR/odrl-model/

4 The ON clause has been chosen instead of the more common IF clause to highlight
that the part after THEN is executed when a particular event or action occurs and
not simply when a condition is satisfied

® The T-Norm ontology in OWL is available at https://raw.githubusercontent.
com/fornaran/T-Norm-Model/main/tnorm. owl

can be used freely and have to be bound to individuals in the State Knowledge
Base (where the interaction among agents is represented) for the conditions to
be met. In the WHERE parts it is also possible to compare the value of a variable
with a constant value using any of the symbols {<, >, =,#, <,>}. A constant is
a numerical value or an individual in the ontology. Variables that appear in the
ASSERT part of a norm must have been introduced previously in one of its ON or
CREATE parts. In the COMPUTE part some values can be calculated (for example
the deadlines) using the value of previously introduced variables.

* subclass

= object property
--»> datatype property
ACDB BimportsA

Event Ontology

event:Eventuality

time:TemporalEntity

everit:atTime

time:Instant

timezinXSDDateTimeStamp :>

xsd:dateTimeStamp

Time Ontology

event:Action
event:actor

‘ event:Agent | <:|
¥

‘ event:TimeEvent ‘

!

norm:end

; T-Norm Ontology norm:activated " 5
H N action:Action
norm:fulfilled
norm:exceptionToNort norm:violated norm:fulfils
norm:exceptionToExs norm:exceptionToDl norm:violates

norm:debtor

norm:D i i
norm:isGenerated [e

domain-specific
Ontology

Fig.1. The T-NORM Ontology and its connections with other ontologies.

4 Methodology

In this section, we describe the various steps of the procedure to be followed to
transform a norm written in a natural language (for example in English) into a
norm written using a formal machine-readable language like the T-Norm model.
As it will be discussed, some steps of the described procedure can also be used
to formalize norms using the OWL-POLAR or the ORDL normative language.
Starting from a norm expressed in natural language, following each step of the

6 The choice of using conjunctions or sequences of atomic assertions (analogously to
what is proposed in OWL-POLAR, to express the various components of their norm
model) has the advantage of avoiding requiring the user of the model to learn a
specific formal language, once written those expressions can be easily and automat-
ically translated into the conditions or actions of production rules or into SPARQL
queries.

methodology, the Abstract Norm, introduced in the previous section, is made
more concrete to the point of being the formalization of the norm from which
the process started. In the following, we use two real running examples. We call
the first example Norm1, which is inspired from the law regarding the access to
limited traffic area in Milan city such that "when an agent enters in the limited-
traffic area of Milan, between 7:30 and 19:30, they have to pay 5 euros before
24:00 on the day of entry"”. The second example, called Norm2, is the rule that
must be followed by libraries in Italy regarding lending of DVDs, it is "Italian
libraries cannot lend DVDs until 2 years are passed from the distribution of the
DVD"8.

4.1 Using ontologies for modeling norms

In the first step of the procedure, we need to define (or search among the existing
ones) one or more formal ontologies to represent the classes of events or actions
that are relevant for the norm that we want to formalize. As it is discussed in the
previous section, for every norm normally three classes of events/actions should
be specified:

e The class of events that represent the activation condition of the norm (de-
scribed using 7eventl in line 2 in the Abstract Norm);

e Te class of actions regulated by the norm (described using 7event2 in line
7,8 in the Abstract Norm);

e The class of events defined for constraining the performance of the actions
regulated by the norm. One action, belonging to the class of the regulated
ones, should or should not occur before an event belonging to this constrain-
ing class (described using 7event3 in line 7 in the Abstract Norm).

Those classes are specified in the WHERE parts of the norm and are represented
using the classes and properties defined in formal ontologies. In the T-Norm
model and in OWL-POLAR model, the W3C Web Ontology Language (OWL
2) is used for specifying ontologies. OWL is a Semantic Web language designed
to represent knowledge about things, groups of things, and relations between
things. An important advantage of using OWL is that it is a well-known stan-
dard language, which can make it easier for those who want to formalize their
norms. Moreover, the formal semantics of OWL makes it possible to perform
automatic reasoning on the state of the world, an operation that has impor-
tant consequences on the computation of the deontic force (it is obliged or it is
prohibited) associated to the actions performed by the agents. In ODRL the in-
formation model of the language is formalized using an OWL ontology, while the
actions, the parties, and the assets involved in one ODRL policy are described
using the ODRL Vocabulary”.

" https:/ /www.comune.milano.it /aree-tematiche /mobilita/area-c
& According to Art. 69 c.1 of the Copyright Law (22-4-1941, no. 633)
 https://uww.u3.org/TR/odrl-vocab/

It is possible to use several different ontologies for representing class of ac-
tions and their properties inside one T-Norm norm or one OWL-POLAR policy.
For compatibility reasons, we suggest to use ontologies that are compatible with
OWL ontologies, this because the chosen ontologies (each one referred to as
domain-specific Ontology in Figure 1) should be imported into the Event Ontol-
ogy which is written by using the OWL language.

We will now exemplify the formalization of two classes of events necessary
for the formalization of Norm1. Norm1 is activated every time a vehicle enters the
restricted traffic zone of the city of Milan. We assume that RestrictedTraffic
Arealccess is a class of actions, vehicle and owner are two properties having
as domain the RestrictedTrafficArealAccess class, which are defined in an
OWL domain-specific Ontology. We can then specify the class of events that
activates Norml as (where 7event1 is shortened to 7el):

ON ?el WHERE RestrictedTrafficAreaAccess(?el) AND vehicle(?el,?v) AND
owner (?v,7agent) AND atTime(7el,?instl) AND inXSDDateTimeStamp(?instl,?t1)
AND 7t1.time()>07:30:00 AND 7t1.time()<19:30:00

In the previous expression the variable 7agent is introduced because it will be
used in the second part of the norm to recognize who fulfills or violates the norm.
After representing the activation condition of the norm, we need to formalize
the class of actions regulated by the norm. For Norm1, the class of actions is the
payment of 5 euros before 24:00 on the day of entry. For formalizing it we can for
example use the PayAction class defined in the Schema.org vocabulary, which
has an OWL version. Schema.org provides a collection of types and properties
available at the URL schema.org. The major search engine providers use the
Schema.org markup to improve the searching and the display of search results.
This vocabulary has been designed by and is controlled by these organizations
and represents an interesting attempt to realize a lightweight ontology that can
be reused in different applications.

As mentioned earlier, the class of events described with the variable 7event3
has the role of constraining the time interval in which the action belonging to the
class of actions regulated by the norm (?event2) shall or cannot be performed.
In Normi, the time interval when the payment action should be performed is con-
strained by a deadline (referred with the variable ?paymentDeadline), i.e. the
payment action must occur before 24:00 on the day of entry into the limited traf-
fic zone. The formalization of norms where 7event3 is a time event are discussed
in Section 4.4. To be able to express facts about the topological relationships
(ordering) between instants and intervals, along with information about their
length, and their value in terms of dates and times, we imported the W3C Time
Ontology*? into our Event Ontology both written in OWL. However, in the for-
malization of other norms the time constraint could be expressed with any class
of actions (e.g. the payment must be made before leaving the restricted area)
and in this case we will need to use another ontology to represent that class. The

19 https://www.w3.org/TR/owl-time/

10

class of actions regulated by Norml can be specified as (where 7el and 7agent
are variables introduced in the previous ON clause):

ON 7e2 BEFORE 7paymentDeadline
WHERE PayAction(?e2) AND reason(7e2,7el) AND recipient(7e2,Milan)
AND price(7e2,5) AND priceCurrency(?e2,euro) AND actor(7e2,7agent)

4.2 Norms with activation condition

The goal of this section is to explain how to recognize whether a norm has
an activation condition or not. In every norms or policy models the activation
condition may describe a class of events/actions or as a state of affairs.

In the T-Norm model, the activation condition is the description of a par-
ticular class of events or actions. When an event that belongs to the activation
condition class occurs, a new deontic relation is created and some temporal pa-
rameters may be computed. In order to recognize the activation condition in the
text of a norm, we have to look for the events or actions that induce the model to
activate obligations or prohibitions. The temporal relation between an event or
action that satisfy the activation condition and the action that should or should
not be performed is crucial: the activation condition must be satisfied before
the obligation or the prohibition to perform a certain class of actions starts to
hold. The instant of time at which the activation condition of a norm is satisfied
by an event or action is very important because it can be used to calculate the
deadline of obligations generated by the norm or the instant of time at which a
prohibition ceases to subsist. For example in Norm1, the activation condition is
represented by the class of actions regarding entering the Milan limited traffic
zone and it is used for computing the deadline for the payment. In Norm2, the
activation condition is given by the class of actions with which a DVD distribu-
tion is initiated. It is important to note that in the T-Norm model the activation
condition cannot describe a state of affairs, although often a state of affairs is
the result of an event and therefore the description of the class of events may
substitute the description of the state of affairs as activation condition.

The reason why, in a norm model, a class of events and a state of affairs are
treated differently is mainly due to their ontological difference: an event when it
has happened it can no longer be retracted, a state of affairs can be satisfied at
a certain instant of time and it can become unsatisfied subsequently. This is a
crucial difference, because in the T-Norm model any satisfaction of the activation
condition leads to the permanent creation of deontic relations. This permanent
creation is important when the deontic relation regulates a class of actions that
should or should not be performed in an interval of time and when the deontic
relation itself can generate many violations and fulfillments as it is discussed
below when Norm2 will be formalized.

The OWL-POLAR model for policies can be used when the activation con-
dition « describes a state of affairs, like for example “a person is obliged to
leave a location when there is a fire risk” or “when a person has a child which
is under 18 they have to pay their tuition”[19]. In the OWL-POLAR model a

11

policy is activated for a specific agent when the world state is such that the
activation condition holds for that agent and the expiration condition does not
hold. Therefore, at the time of activation it is necessary to know the specific
agent for whom the policy is being activated, and this is not the case when the
activation of a policy leads to the creation of general deontic relations, as will
be discussed below. In the OWL-POLAR model the time constraint that exists
between the initial satisfaction of the activation and the subsequent activation
of the policy is not explicitly represented in the norms model, it is expressed in
the description of how it is possible to reason about policies, therefore it is not
in the model but inside the algorithm proposed for reasoning on policies.

There is another important distinction between an activation condition that
describes a class of events and the one that describes a state of affairs. When
it describe a state of affairs, it may make sense to ask whether the condition in
the text should be formalized as an activation condition or as a set of conditions
that restrict the class of actions regulated by the policy. For example in [18§]
conditional norms are discussed and the following example of a norm with a
condition is described as: “it is prohibited to litter as long as there is a rubbish
bin within x meters from an agent”. The condition of being within x meters from
a rubbish bin may be modelled as an activation condition in some cases, and it
can be considered as a condition that constrains the class of actions regulated by
the policy in other cases. In this second case the policy can be modelled with the
T-Norm model, and it is a prohibition (without activation condition) to perform
the following class of actions: littering when the actor of the action is within x
metres from the rubbish bin. If one action belonging to that class is performed
then there is a violation of the prohibition.

The choice between the first and the second formalization depends on the
type of reasoning that the norm designer'! wants to be able to perform on the
policy. In the first case (with an activation condition) it is possible to compute if
the policy is active in a given situation and therefore plan the action for fulfilling
or violating it. When computing all the activations may be too costly and the
goal of reasoning is monitoring the fulfillment or violation of the policy, the
second formalization, without activation condition, is the more efficient because
it does not require to compute the activation of many policies.

In the ODRL 2.2 model it is possible to express constraints associated to the
rules contained in one policy and refinements associated to the actions regulated
by one rule (a duty, a prohibition, or a permission). Reading the documentation
that provides the meaning of a prohibition or duty, the constraint can be used to
express the activation condition, but again, like in OWL-POLAR, the temporal
constrains between the satisfaction of the activation condition and the perfor-
mance of the action regulated by the rule is not explicitly expressed in the model.
Therefore, when the activation condition is a state of affairs the policy designer
has to choose weather it is better to put the conditions in the constraint or in the
refinement. Differently, when the activation condition of the norm is represented

1 The term “norm designer” refers to the person in charge of formalizing norms with
a formal model.

12

by a class of events, by using the ODRL 2.2 and OWL-POLAR models it is
impossible to specify in the norm formalization the need to compute at run-time
the value of the deadline and it is impossible to model those policies that when
are activated generates general deontic relations.

4.3 Representing obligations and prohibitions

In this section, we describe how we can distinguish if a norm generates an obli-
gation or prohibition and how to express them using the T-Norm model. In
contrary with other approaches such as OWL-POLAR and ODRL, in the T-
Norm model there is not a component or a predefined class that may be used
to specify if the norm express an obligation or a prohibition. The advantage of
this approach is that both obligation and prohibitions can be expressed starting
from the same abstract norm and there is not need to formalize the semantics
or a state machine (like in [9]) for obligations, another one for prohibitions, and
others for other deontic concepts like permission, right, privilege, liability and
so on. However, in this Section we focus only on obligation and prohibition.

In the T-Norm model the intuitive meaning of having an obligation or pro-
hibition is that when something happens and certain conditions hold, an agent
is obliged or prohibited to do something in a given interval of time. We can use
few basic constructs and combine them in different ways to express the obliga-
tion to perform an action before a given deadline or the prohibition to perform
an action within an interval of time. The main difference in representing a pro-
hibition or an obligation is in the second THEN part of the norm. If the norm
designer wants to formalize the obligation to perform an action, performing the
regulated action must bring to the specification of the fulfillment of the deontic
relation in the THEN part of the norm. The ELSE part have to be used to specify
that in case on instance of the class of actions regulated by the policy cannot be
performed before than a given event happens the deontic relation, representing
the obligation, becomes violated. On the contrary, if the norm designer wants to
formalize the prohibition to perform an action (described in the second ON part
of the norm) in the specific interval of time, performing the action will bring to
the violation of the deontic relation in the second THEN part. Once the prohibited
action can no longer be performed (for example, the time interval has expired)
the prohibition becomes fulfilled.

As we know from deontic logic literature[22] the expression “it is impermis-
sible (IM) that p” is defined as equivalent to “it is obligatory (OB) that not p”
(IMp = defOB-p). This implies that some norms may be either formalized as
an obligation or as a prohibition. When a norm is formalized with the T-Norm
model and the activation of the norm brings to the creation of gemeral deon-
tic relations, it is very important to evaluate which of the two formalizations
would be most cost-effective. That is because, as discussed below, every general
deontic relation created by the activation of a norm, may in turn bring to the
costly generation of many fulfillments and violations. For example, the norm
“when the school bell rings, students should go back to the classrooms in five
minutes” can be formalized as a norm that generates obligations or prohibitions.

13

Suppose that the person in charge of formalizing the norm is only interested in
computing the violations of the norm. In the first scenario, if we formalize the
norm as a generator of obligations, when the activation condition is satisfied
because the school bell rings, the norm generates a general deontic relation that
will generate fulfillments for all those students who respect the school rule and
go back to their classrooms, and violations for those students who did not fulfill
the rule before the deadline. In the second scenario, it is possible to formalize
such a norm as a generator of prohibitions by reframing it as follows “when five
minutes have elapsed since the bell rang, students cannot remain in the court-
yard”. The formalization of this norm is much easier and cost-effective as we only
need to check the violations that are generated for those students who stay in
the courtyard.

4.4 Temporal aspect of norms

The ability to represent time-constrained norms is one important characteristics
of the T-Norm model. Unlike the OWL-POLAR model, in the T-Norm model
can be used by the norm designer to easily represent any obligations containing
deadlines (that are represented as time events) and prohibitions that holds for
an interval of time. A norm governs a class of actions and, as can be seen from
the abstract norm in Section 3, that class can be temporally constrained by
specifying the BEFORE part and another class of events (7event3). The latter
class can be specified using the TimeEvent class or the more generic Event class
depicted in Figure 1.

The TimeEvent class is used for specifying a deadline for obligations or the
instant at when a time interval for prohibitions ends. In this case the value of the
deadline or the end of the time interval can be computed in the COMPUTE part of
the norm as exemplified below. For example, in Norm01, an agent is obliged to
perform the paying action before midnight (the deadline). In Norm02, the time
interval in which Italian libraries cannot lend DVDs begins with the release of
the DVD and ends after 2 years. Norm2 can be represented with the T-Norm
model as follows:

ON 7el

WHERE isReleased(7el) AND object(7el,?dvd) AND VideoObject(7dvd) AND

place(?el;Italy) AND atTime(7el,?inst1l) AND inXSDDateTimeStamp(7instl,?t1)

THEN

COMPUTE 7tend_n=7t1.year+2

CREATE DeonticRelation(?dr) ;TimeEvent(?tev_end_n) ;Instant(?inst_end_n);

ASSERT isGenerated(?dr,Norm2); activated(?dr,?el); end(?dr,?tevend_n);
atTime (?tev_end_n,7inst_end_n);
inXSDDateTimeStamp(?inst_end_n,?tend_n);

ON 7e2 BEFORE 7tev_end_n

WHERE LendAction(7e2) AND object(7e2,7dvd) AND actor(7e2,7agent)
THEN violates(7agent;?dr); violated(?dr,7e2)

14

The CREATE and ASSERT parts of the norm above, which specify the charac-
teristics of the time event used to constrain the class of actions governed by the
norm, represent a prototype of what these two parts look like in all such type of
norms.

On the other hand, if the temporal constraint (?event3) belongs to a generic
Event class (or one of its subclasses), it is not necessary to compute anything.
This means that the regulated action is temporally constrained by another
generic class of events. For example, in the norm “You should pay the park-
ing ticket before exiting”, there exists no deadline for the payment action, but
the payment action must be performed before leaving the parking area with
one’s car. This event should be specified in the WHERE part used to describe
7event3.

In literature there exist approaches, such as [17], in which they used temporal
logics such as Linear Temporal Logic (LTL) for representing time-constrained
norms. Nevertheless, using these approaches present some difficulties when it
comes to the automatic reasoning on the evolution of the normative state from
activated to fulfilled or violated.

4.5 Specific and General Deontic Relations

In the T-Norms model, a norm can create several deontic relations when the
activation condition of the norm is satisfied. Such deontic relations may belong
to one of the following two categories: specific deontic relations and general
deontic relations.

A specific deontic relation is generated, when the regulated action should be
performed by a specific agent, e.g. in Norm1, for each vehicle entering into the
limited traffic area an obligation to pay for the owner of the vehicle is generated.
In the specific deontic relations, the debtor, the owner of the vehicle, is known.
Therefore, in case of any violation, the system can recognize who violated the
deontic relation. The specific deontic relations generated by Norm1 have a debtor
property that connects the deontic relation with the agent that is the owner of
the vehicle: ASSERT ... debtor(?dr, 7agent).... This property has to be inserted
in the ASSERT part of the norm for all those norms that generate specific deontic
relations.

The second type of deontic relations is the general deontic relations. The
main difference between general deontic relations and specific deontic relations
is that in the first one we do not have any knowledge about the debtor of the class
of actions regulated by the norm and the action can be performed by a set of
agents, for example in Norm2 by all the people registered in one library. For that
reason, we cannot have any predefined estimation about which agent is going to
violate or fulfill the deontic relation. It is possible to have many violations and
many fulfillments of the same deontic relation. For example Norm2 is activated
for every new distribution of a DVD. The general deontic relation created by
the activation of Norm2 regulates the actions of lending such a DVD by all the
Italian libraries, the debtor is not one specific agent.

15

Another significant difference between OWL-POLAR and the T-Norm model
is in formalizing norms that generates general deontic relations. In OWL-POLAR
a policy can only be activated for a specific agent therefore the type of norms
that when activated regulate the actions of a set of agents cannot be represented.
This is due to the design choice to propose a model for reasoning on policies that
does not create deontic relations. In ODRL it not specified the mechanism for
reasoning on policies activations.

5 Conclusions

In this paper, we introduced a methodology that explains how a norm designer
can formalize norms written in a natural language into a machine-readable for-
mat by understanding the types of the norms and choosing the proper model.
As it is discussed in the previous section the norm can be: (i) a norm with or
without an activation condition; (ii) if there is an activation condition it can be
represented by a class of events or by a state of affairs; (iii) a norm can express
obligations or a prohibitions; (iv) a norm can regulate a class of actions that
is time constrained or not; (v) finally a norm can generate specific or general
deontic relations. In our future works we plan to extend the methodology by
discussing the formalization of exceptions to norms and in particular of permis-
sions and exemptions and the definition of institutional powers for manipulating
norms.

6 Acknowledgement

The Version of Record of this contribution is published in Multi-Agent Sys-
tems vol 13442. Springer, Cham, and is available at https://doi.org/10.1007/
978-3-031-20614-6_20 .

References

1. S. Alvarez-Napagao, H. Aldewereld, J. Vazquez-Salceda, and F. Dignum. Nor-
mative monitoring: Semantics and implementation. In M. D. Vos et al., edi-
tors, COINQAAMAS 2010, Toronto, Canada, May 2010, COINQMALLOW 2010,
Lyon, France, August 2010, Revised Selected Papers, volume 6541 of LNCS, pages
321-336. Springer, 2010.

2. G. Andrighetto, G. Governatori, P. Noriega, and L. W. N. van der Torre, edi-
tors. Normative Multi-Agent Systems, volume 4 of Dagstuhl Follow-Ups. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2013.

3. C. Benzmiiller, X. Parent, and L. W. N. van der Torre. Designing normative
theories for ethical and legal reasoning: Logikey framework, methodology, and tool
support. Artificial Intelligence, 287:103348, 2020.

4. P. Bonatti and D. Olmedilla. Driving and monitoring provisional trust negoti-
ation with metapolicies. In Sizth IEEE International Workshop on Policies for
Distributed Systems and Networks (POLICY’05), pages 14-23, 2005.

16

6

7.

10

11.

12.

13.

14.

15.

16.

17.

18.

P. A. Bonatti and D. Olmedilla. Rule-Based Policy Representation and Reasoning
for the Semantic Web, pages 240-268. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2007.

A. Chopra, L. van der Torre, H. Verhagen, and S. Villata, editors. Handbook of
Normative Multiagent Systems. College Publications, Aug. 2018.

M. De Vos, S. Kirrane, J. Padget, and K. Satoh. ODRL Policy Modelling and
Compliance Checking. In P. Fodor, M. Montali, D. Calvanese, and D. Roman,
editors, Rules and Reasoning, pages 36—51, Cham, 2019. Springer International
Publishing.

N. Fornara and M. Colombetti. Specifying and enforcing norms in artificial insti-
tutions. In M. Baldoni, T. C. Son, M. B. van Riemsdijk, and M. Winikoff, editors,
Declarative Agent Languages and Technologies VI, pages 1-17, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

N. Fornara and M. Colombetti. Using semantic web technologies and production
rules for reasoning on obligations, permissions, and prohibitions. AI Commun.,
32(4):319-334, 2019.

N. Fornara, S. Roshankish, and M. Colombetti. A framework for automatic mon-
itoring of norms that regulate time constrained actions. In Proceedings of the
International Workshop on Coordination, Organizations, Institutions, Norms and
Ethics for Governance of Multi-Agent Systems (COINE), co-located with AAMAS
2021, 3rd May 2021, London, UK, 2021. arXiv, 2021.

N. Fornara and M. Sterpetti. An architecture for monitoring norms that combines
OWL reasoning and forward chaining over rules. In E. M. S. et al., editor, Pro-
ceedings of the Joint Ontology Workshops 2021 Episode VII: The Bolzano Summer
of Knowledge co-located with the 12th International Conference on Formal Ontol-
ogy in Information Systems (FOIS 2021), and the 12th International Conference
on Biomedical Ontologies (ICBO 2021), Bolzano, Italy, September 11-18, 2021,
volume 2969 of CEUR Workshop Proceedings. CEUR-WS.org, 2021.

A. Garcia-Camino, P. Noriega, and J. A. Rodriguez-Aguilar. Implementing norms
in electronic institutions. In Proceedings of the Fourth International Joint Confer-
ence on Autonomous Agents and Multiagent Systems, AAMAS ’05, pages 667673,
New York, NY, USA, 2005. ACM.

G. Governatori and R. Tannella. A modelling and reasoning framework for social
networks policies. Enterp. Inf. Syst., 5(1):145-167, feb 2011.

L. Kagal. A Policy-Based Approach to Governing Autonomous Behavior in Dis-
tributed Environments. PhD thesis, University of Maryland Baltimore County,
Baltimore MD 21250, September 2004.

A. Oltramari, D. Piraviperumal, F. Schaub, S. Wilson, S. Cherivirala, T. B. Norton,
N. C. Russell, P. Story, J. R. Reidenberg, and N. M. Sadeh. Privonto: A semantic
framework for the analysis of privacy policies. Semantic Web, 9(2):185-203, 2018.
J. Padget, M. D. Vos, and C. A. Page. Deontic sensors. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-
18, pages 475-481. International Joint Conferences on Artificial Intelligence Orga-
nization, 7 2018.

S. Panagiotidi, S. Alvarez-Napagao, and J. Vazquez-Salceda. Towards the norm-
aware agent: Bridging the gap between deontic specifications and practical mech-
anisms for norm monitoring and norm-aware planning. In Revised Selected Papers
of the COIN 2013, volume 8386, pages 346-363. Springer-Verlag Inc., 2014.

B. T. R. Savarimuthu, S. Cranefield, M. Purvis, and M. K. Purvis. Identifying
conditional norms in multi-agent societies. In M. D. Vos, N. Fornara, J. V. Pitt,

19.

20.

21.

22

17

and G. A. Vouros, editors, Coordination, Organizations, Institutions, and Norms in
Agent Systems VI - COIN 2010 International Workshops, COINQAAMAS 2010,
Toronto, Canada, May 2010, COINGMALLOW 2010, Lyon, France, August 2010,
Revised Selected Papers, volume 6541 of Lecture Notes in Computer Science, pages
285-302. Springer, 2010.

M. Sensoy, T. J. Norman, W. W. Vasconcelos, and K. P. Sycara. OWL-POLAR:
A framework for semantic policy representation and reasoning. Journal of Web
Semantics, 12:148-160, 2012.

S. Steyskal and A. Polleres. Towards Formal Semantics for ODRL Policies. In
N. Bassiliades, G. Gottlob, F. Sadri, A. Paschke, and D. Roman, editors, RuleML
2015, Berlin, Germany, August 2-5, 2015, Proceedings, volume 9202 of Lecture
Notes in Computer Science, pages 360-375. Springer, 2015.

A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M. Breedy, L. Bunch,
M. Johnson, S. Kulkarni, and J. Lott. Kaos policy and domain services: toward a
description-logic approach to policy representation, deconfliction, and enforcement.
In Proceedings POLICY 2003. IEEE 4th International Workshop on Policies for
Distributed Systems and Networks, pages 9396, 2003.

G. H. von Wright. Deontic logic. Mind, New Series, 60(237):1-15, 1951.

