
UML in an Electronic System Level Design

Methodology

Ananda Shankar Basu1, Marcello Lajolo2, and Mauro Prevostini1

1 ALaRI, University of Lugano, Lugano, Switzerland
2 NEC Laboratories America, Princeton NJ 08540, USA

Abstract. The interest in System-On-Chip (SoC) design using the Uni-
fied Modeling Language (UML) has been growing significantly during the
last couple of years. In this paper we would like to present a methodology
that aims to address embedded systems design issues at multiple levels
of abstraction and to support a function/architecture codesign process.
Our approach integrates UML with high-level synthesis and hardwa-
re/software co-verification techniques in order to provide an automated
flow for SoC design starting from system-level specifications down to
hardware/software partitioning and integration. UML has been selected
because it is platform independent and helps team members to share very
efficiently relevant information during the various design phases, while
high-level synthesis helps to evaluate constraints that the embedded sys-
tem must satisfy: e.g. performance, power and cost starting from behav-
ioral specifications. The paper aims to give a contribution towards SoC
Design automation from System-level specification to hardware/software
partitioning.

1 Introduction

The increasing complexity and the shortening of the time-to-market windows
make the design of electronic systems a challenging task that can no longer be
handled by traditional methodologies. New methodologies are needed to improve
design productivity and derive high-performance low-cost implementations. This
requires to develop formal methods that synthesize correct-by-construction im-
plementations and maximize reuse of pre-designed components.

The software community, after several years of work, converged on a set of
notations for developing specifications of object-oriented systems known as the
Unified Modeling Language or UML [1] that has been very successful as a visual
way for describing software. However, UML is not limited to software modeling
and the development of UML 2.0 has been undertaken with the express intention
of producing a language that has benefits for a much wider audience than just
software developers, including the world of systems engineering [2].

In this work, we present an integration of a UML-based modeling method-
ology with a C-based design technology called Aces (Application to C to
Exploration to System LSI) [3] that leverages on high-level synthesis and co-
verification tools and aims to assist the designer in the hardware/software parti-
tioning and architecture selection phases. Aces has the unique advantage with

respect to all similar approaches to be able to leverage off the strengths of two
key pieces in NEC’s C-based design flow [4]: Cyber and Classmate. Cyber

is a behavioral hardware synthesis tool that can provide the link to implemen-
tation that is missing in all the alternative environments and Classmate is a
hardware/software co-verification tool that can be exploited in order to derive
accurate and fast timed functional models for behavioral IPs. UML complements
Aces with an object oriented modeling language with both graphical and tex-
tual notations, organized in a set of diagrams, each diagram capturing a different
aspect, or level of abstraction, of the system. The result is a unified design flow
from system specification down to system implementation.

This paper is organized as follows. Section 2 shows the proposed flow and
the Co-design environment used in this methodology. Section 3 describes our
methodology for SoC design starting from UML specification and in Section 4
you will find our conclusions.

2 The Proposed Flow

The overall flow presented in this paper is shown in Figure 1. Our proposed
methodology starts with the UML specification of the system, followed by an
interactive process performed through a web-based interface that allows to cap-
ture UML specifications and design constraints provided by the designer, like
architectural specifications and hardware/software partitioning, and export the
entire structure of the design into the Aces codesign environment. The following
sections provide additional details about this design flow.

UML

��

� � � � �

� � � �	
 �
 � �

 � �
� � �
 � ���������	
 � �� �	
 	

��������� ���� � � ����� 	 �
 � ��
 ��

� ��� ��� � � �� �
 � �� � � �	 	 � ���� �� �
 ��� �� ���� ���
 � � � ��
 ��

� � ������ �	
 � �� �	
 	

� ���
 �
 ��
 � �

�
 	 ��� �� �� ��
 ���� � ! � �!� ��	
 � � � ��
 ��

� " ���� �� � � ��� 	A C E S C o d e s i g n E n v i r o n m e n t

� # � � $� �� ��
 �����
 � �� �	
 % ��

�
 	
 � & ��

' �(� � � �� ��

 ��) ����� ���� � � ����� 	 �
 � ��
 ��
� � � � �
 � � � � �

W e b -b a s e d I n t e r f a c e

RTOS

Design summary

� ��� � � � � �	� � �
 �	� � � � � �
�� � � � � � � �
��
 � �
 � �
���� � � � � ���

F unc t io nal S p ec if ic at io n

Design P ro b l emF o rmul at io n� ���
�� � �
���� � � � � ��� �

P l at f o rm S el ec t io n

C o mp o nent M ap p ing

C o mmunic at io n R ef inement

C o d e G enerat io n

U M L Dat ab ase
E x p l o rat io n

Fig. 1. The overall design flow.

2.1 UML Specifications

The Unified Modeling Language (UML), is an object oriented modeling language
that consists of graphical and textual notations, organized in a set of diagrams,
each diagram capturing a different aspect or level of abstraction of the system [1].

For a first analysis of a possible integration between UML and codesign, we
have started by considering a UML specification flow in which first an Object
Model Diagram is defined to capture the structural decomposition of the system
into interacting components. Each class in this diagram corresponds to a func-
tional component in the system specification. Classes are divided in two sets:
the ones whose behavior could potentially be implemented either in hardware or
in software and others that do not have to enter in the codesign flow. Examples
of the second set of classes are testbenches and strictly software oriented com-
ponents. Classes belonging to the first set are distinguished by the ones of the
second set using the Partitionable stereotype that has to be specified manually
by the user (see [5]). Communication among classes can be specified through
uni-directional relationships, associated to events, or by means of shared vari-
ables and we provide a specific API (further details are given in section 3.2) in
order to guide the designer in this modeling phase. All partitionable classes are
required to have a state diagram associated for specifying its run-time behavior,
while non-partitionable classes may or may not have a state diagram associated.

As a next step, the UML Functional Specification must be translated into
Aces Discrete Event Models to conjugate the convenience of using the graphi-
cal UML interface for specification with the possibility to use the analysis and
synthesis tools available using the Aces codesign methodology.

2.2 The ACES Codesign Flow

The back-end of the proposed methodology is the Aces codesign flow that is
depicted in the bottom part of Figure 1. The system is described at the behav-
ioral level as a network of discrete event models (tasks) that can communicate
by both means of events as well as shared variables. Those models have a precise
semantics and are written in SystemC. For each module in the system specifica-
tion, Aces can synthesize a hardware netlist, a software program and the inter-
faces between hardware and software, based on partitioning and communication
mapping information given manually by the user on a module by module basis.
Behavioral SystemC co-simulation is used to test the behavior of the system and
to perform hardware/software partitioning in a closed loop. Good estimates of
both hardware and software performance and power are of crucial importance in
this phase in order to avoid costly design reiterations. During the co-simulation,
hardware modules run concurrently, while the operation of the software mod-
ules is coordinated by a scheduler modeling the RTOS used in the final imple-
mentation. The interfaces between the modules are also abstracted out using a
transaction-level paradigm. Once a suitable hardware/software architecture has
been identified, hardware, software and the hardware/software interfaces synthe-
sized by Aces can be exported into the Classmate co-verification environment
and can be simulated and verified at the architectural level.

Aces provides the unique possibility to change the hardware/software im-
plementation of each component in the system by simply changing an imple-
mentation parameter in the web browser. The same simulation code is used to
simulate the functionality for both hardware and software implementations. The
only things that change are the delay annotations that are used for modeling per-
formance and power consumption and also the scheduling policy of the module
in order to model shared system resources like the CPU.

3 From UML to Co-design

The link between UML specifications and an existing methodology for hardwa-
re/software codesign is the core of this paper. After the application is modeled
and analyzed using the UML tool, we get a repository that contains information
of the model in the internal database. We have used Rhapsody from I-Logix,
Inc. as UML tool. We have found very useful the API’s provided by Rhapsody
to extract information from the repository and generate the input files for the
ACES environment. The transformation process has two phases:

1. code generation for synthesizable models, and
2. export of structural information

3.1 Code generation from state diagrams

In our UML specifications all partitionable entities must have an associated
state diagram, which is a description based on Harel statecharts [6], used to
model the object behavior. The designer is responsible to figure out for each
module what the states are, and how transitions happen between them. The
transition indicates one movement from one state to another. Each transition
has a label that comes in three parts: trigger-signature [guard]/activity.
All the parts are optional. The trigger-signature is usually a single event that
triggers a potential change of state. The guard, if present, is a boolean condition
that must be true for the transition to be taken. The activity is some behavior
that is executed during the transition. States can also have some internal activity,
like actions on entry and actions on exit, and there are some mechanisms to
specify a delay for executing a transition. States can be broken into several
orthogonal state diagrams that run concurrently and superstates can be used in
order to share common transitions and internal activities among states. The state
diagrams describing the behavior of each partitionable class need to be converted
into SystemC in order to be imported into the Aces codesign environment. From
this textual representation, Aces is then able to perform both hardware and
software synthesis.

Figure 2 shows on the left an example of state diagram and on the right
the pseudocode of the algorithm that we have developed for automating this
code generation process. The algorithm utilizes the Rhapsody’s API in order to
extract various information like list of classes, global variables and events in the

codeGenerate(state *S) {
1. If S is visited, return;
2. Mark S as visited.
3. Issue code specified in the action-on-entry section (This

code can be directly copied)
4. Get out transitions { T} from state S;
5. { U} = empty;
6. for each out-transition ‘ t’ of { T} do {

if ‘ t’ is conditional {
issue code specified in the action-on-exit section;
s_t = target state if condition is true;
s_f = target state if condition is false;
issue if-then-else with goto label as ‘s_t’ or ‘s_f’

depending on condition;
insert ‘ s_t’ , ‘s_f’ in { U} ;

} else {
s = target state of ‘ t’ , insert ‘s’ in { U} ;
if ‘ t’ is triggered by event ‘e’ {

issue wait on event ‘e’ ;
}
issue code specified in the action-on-exit section;
issue goto with label as ‘s’ ;

}
issue code specified in the action section of transition
‘ t’ ;

}
for each ‘u’ in { U} do

codeGenerate(u);
}

��� � � � ��� �	�
 � � �
� �
 ��� � � � ����� �

��� � � � ��� ��� � � � � �
� � � � � �
 � � ��� � � � � � � � � ! �� � � � � � � " � #�� � � � ! �

��� � � � ��� ��� � � � � �
� � � � � �%$ � � � � � " � � � &�� � '�� ((� � ! �

StoreAvgInBuff>

SendProcessingData>

CheckCol

CheckRow>

Init>

C

C

outready

/col_count ++;

progress

[row_count < height]

[col_count < width]

[row_count >= height]/triggerFinished();

[col_count >= width]/row_count ++;

�%� � � � ��� �	� � � � � �� � � ��� � � � � � ���

Fig. 2. An example of state diagram (left) and the pseudocode of the code generation
algorithm (right).

model, the action/guard for the transitions, entry-action and exit-actions in a
state, in transitions to a state, out transitions from a state, etc.

The algorithm is called on the default state of each state diagram for which
code has to be generated. In every state, it first emits the code specified by the
user in the action on entry portion of the state. Then it checks out-transitions
from the state. For the transitions triggered by events, it issues a wait statement
on that event, then it emits the code specified in the action on exit portion,
followed by a goto statement, the label being the target state. In case of a con-
ditional transition, it issues an if-then-else statement with goto labels depending
on the condition. It also issues the code (if any) specified in the action section of
the transition. Then the algorithm is called recursively on each state reachable
by the current out transition.

3.2 Exporting structural information

In order to start with the codesign process, the last thing we need is to ex-
tract from the UML specifications a summary of the design, essentially a textual
representation containing a list of all the partitionable modules and their inter-
connections. In order to identify the partitionable modules, we require the user
to specify the stereotype Partitionable on those modules that need to be consid-
ered in the co-design process. This is needed because the entire design usually
contains some modules which do not need to be synthesized neither in hardware,
nor in software, like the testbenches.

UML allows to specify the description of a model through a wide variety
of styles, but in order to perform a tight link with a codesign tool, we had to
impose some restrictions to the user. In our system, the communication between
partitionable entities can be described using events, data ports and shared vari-
ables. Events are a point-to-point communication mechanism used to describe

the reactive behavior of a module and they generally trigger some transitions
in a state diagram. Data ports are also a point-to-point communication mech-
anism, but they differ with respect to events because they do not trigger any
transition. Their value can instead be used anywhere within the state diagram
code. Finally, communication by means of shared variables is generally used in
order to describe multiple access capabilities to a data that can be shared among
different modules.

We provide a specific API, basically an extended UML library, in order to
allow the user to describe the type of communication that he wants to be per-
formed. The internal implementation of this API is completely transparent to
the user. We have implemented and tested it within the Rhapsody UML tool, but
it can be supported in any other UML-based kind of technology. The macros of
this API can be identified very easily during the exploration of the UML database
of a project and allow us to export the information that we need for the following
codesign phase.

4 Conclusions

The complexity of current embedded systems requires large teams of designers
that interact especially at the early stages where the design task is partitioned.
Models and tools that allow to visualize and document the design abstractions
and the interactions between different components or levels of abstraction of a
specification are essential. UML is a modeling language with a rich graphical
notation, it is platform independent and can serve this purpose. We presented
a methodology that specializes the UML standard notation for modeling em-
bedded systems platforms and protocols. Then we proposed an integration with
an existing hardware/software codesign technology. The paper aims to give a
contribution towards system-level design automation.

References

1. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language

Reference Manual. Addison-Wesley, 1998.
2. I. Barnard, “Using UML 2.0 to solve Systems Engineering Problems,” Telelogic

White Paper, Dec. 2003.
3. M. Lajolo, “IP-Based SOC Design in a C-based design methodology,” in Proc. of

IP Based SoC Design 2003, pp. 203–208, Oct. 2003.
4. K. Wakabayashi and T. Okamoto, “C-Based SoC Design Flow and EDA Tools: An

ASIC and System Vendor Perspective,” IEEE Trans. Computer-Aided Design,
vol. 19, pp. 1507–1522, Dec. 2000.

5. A. Minosi, S. Mankan, A. Martinola, F. Balzarini, A. Kostadinov, and
M. Prevostini, “UML-based Specifications of an Embedded Systems Oriented to
HW/SW Partitioning: a Case Study,” in FDL’03 Proceedings, pp. 226–237, Sep.
2003.

6. D. Harel, “A visual formalism for complex systems,” in Science of Computer

Programming, 1987.

