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Abstract

This paper finds that the market betas of value and small stocks have decreased by about
75% in the second half of the twentieth century. The path of beta can be closely tracked using
variables that summarize the state of the economy. On the basis of this analysis, the decline in
beta can be related to a long-term improvement in economic conditions that made these com-
panies less risky. Decomposing beta into the cash flow and expected return news components
confirms that the payoffs of these companies are less sensitive to market conditions. This finding

has implications for the debate on the CAPM anomalies.

JEL Classification: G12

Keywords: Asset Pricing, Beta, Book-to-market, Valuation

*Aknowledgments: I am grateful to my advisors, Jonathan Lewellen, Sendhil Mullainathan, and Dimitri Vayanos,
for their guidance and support. A special thank to John Campbell for insights and attention. This paper bene-
fited from discussions with Ken French, Xavier Gabaix, S.P. Kothari, Guido Kuersteiner, Steve Ross, and Tuomo
Vuolteenaho. I also wish to thank Tobias Adrian, Manuel Amador, Quy-Toan Do, Jonathan Kearns, Augustin
Landier, Tomas Philippon, Jonathan Reuter, and participants at the Batterymarch Finance Seminar at MIT, and

the Finance Seminar at Pompeu Fabra University. All the errors are the author’s responsibility.



1 Introduction

Since the development of the Capital Asset Pricing Model (CAPM) by Sharpe (1964) and Lintner
(1965), beta risk has become an important input into many asset-pricing applications. The market
beta of a portfolio plays a central role not only in the academic tests of the CAPM, but also in
mutual fund performance evaluation, portfolio optimization and cost of capital estimation. Beta
is also of independent interest, as it summarizes some of the relevant characteristics of the firm’s
fundamentals. The analysis of the direction and the causes of the change in a firm’s beta is
informative on the relationship between the company’s payoffs and general business conditions,
as well as on the correct asset-pricing model. Consequently, understanding whether and how the
market beta changed for some portfolios is informative on the reasons behind the failure of CAMP
in pricing those portfolios For all of these reasons, this paper takes a close look at the evolution
of beta for book-to-market (B/M) and size portfolios, specifically those stocks that create major
problems for the CAPM (e.g., Fama and French, 1992 and 1993).

Using monthly data from 1926 to 2000, I find a striking decrease in the market beta of value
and small stocks. Beta fell by about 75% in sixty years for both these portfolios. In the case of
value stocks beta dropped from 2.20 in the early forties to 0.55 in the late nineties. Similarly,
small stocks’ beta dropped from 2.50 to 0.65. This decline does not seem to follow mechanically
from portfolio formation procedures, nor does it depend on a reduction in the leverage of these
companies. Also, the magnitude of this decline is by no means solely imputable to the behavior of
these portfolios in the late nineties. Moreover, the decrease in beta can be explained by a decline
in the volatility of these portfolios relative to the rest of the market, rather than by a drop in their
correlation with the market.

The paper also attempts to explain this evolution of beta. The conditional CAPM literature
provides one way to go about this task. Following Shanken (1990), I assume a linear relation between
beta and some state variables, and estimate the parameters of this function in a conditional CAPM
time-series regression. The resulting fitted beta series tracks very closely the original estimated
series, and it captures as much as 71% of its variance in the case of value stocks. The variables
that I use as instruments (the T-bill rate, the dividend yield, the default spread, the term spread,
and the growth rate of industrial production) are tightly linked to general economic conditions

(see, e.g., Fama and French, 1989). The general result is that when the state variables predict an



improvement in the economy, these stocks’ betas become smaller. This result not only applies to
the cyclical movements of beta, but also to the long run decrease, because some of these variables
display a trending behavior that is believed to be related to a long-term improvement in business
conditions. This evidence is consistent with the findings in Lettau and Ludvigson (2001), who show
that the returns of value stocks are more highly correlated with fundamental factors when times
are bad.

The evidence suggests that the decline in beta has to be tied to the effect of better economic
conditions on the structure of value and small companies’ cash flows. Since these companies are
presumably more prone to financial distress (Chan and Chen, 1991, Fama and French, 1995), a
general reduction in the likelihood of distress can have made their payoffs less risky. To investigate
this explanation, I consider whether the decrease in the beta can be imputed to a decrease in these
firms’ cash flow sensitivity to the market. After breaking excess returns into components related
to news about future dividends, news about future excess returns, and news about future real
interest rates, following Campbell and Mei (1993), I express the overall market beta as the sum
of the betas of each of these components with the market. Using this approach within a rolling
regression framework, I can determine the importance of each component in the observed decrease
of the overall beta. The conclusion of this analysis is that the decline occurs because of a fall in
the dividend news beta. Overall, the results from the beta decomposition are consistent with the
interpretation of the conditional CAPM analysis, because they point in the direction of reduced
cash flow riskiness.

This paper is organized as follows. Section 2 presents in detail the decrease in the estimated
beta of value and small stocks, and tests the robustness of the fact to mechanical explanations.
Section 3 explains the path of beta using conditional information, as in a conditional CAPM
analysis. Section 4 implements Campbell and Mei’s (1993) beta decomposition in order to identify

the sources of the change in beta. Section 5 draws the conclusions of this work.



2 The decrease in the beta of value and small stocks

2.1 The data

The data come from the merger of three different sources. Monthly return data are taken from the
Center for Research in Securities Prices (CRSP) database, which covers NYSE, Amex and Nasdaq
stocks between January 1926 and December 2000. Accounting data come from two sources. The
Compustat annual research file contains the relevant information for most publicly traded US stocks.
This information is supplemented by Moody’s book equity information manually collected by Davis,
Fama, and French (2000) !. Their paper contains a precise definition of the book-value-of-equity
variable.

Portfolios are formed according to the procedure described in Fama and French (1993). At the
end of June of year ¢ stocks are sorted on either B/M or size. B/M is measured as the ratio of
book value of equity at the end of year ¢ — 1 to market value of equity in December of year ¢t — 1.
Size is market capitalization, i.e. price times shares outstanding, at the end of June of year ¢. All
stocks are assigned to ten deciles for each characteristic using the break-points of the distribution
of NYSE stocks. For each decile a portfolio return is computed between July of year ¢ and June
of year t + 1 as the value-weighted return of the stocks in the decile. The excess returns (returns
minus the one-month Treasury Bill rate) on these ten B/M and ten size portfolios are the main
variables of interest in this paper. From now on, unless otherwise specified, when I refer to ’value
stocks’ I mean the tenth B/M decile, and by ’small stocks’ I mean the first size decile.

Panel A of Table 1 provides some summary statistics for the portfolios. Notice the similarities
between the small and value stocks portfolios in terms of means and standard deviations of returns,
and the high negative correlation between the B/M and size decile assignments, especially in the
first part of the sample. These two categories of stocks become more homogenous to the rest of
the market in terms of mean and standard deviation of returns in the second part of the sample,
when also the correlation between the decile assignment decreases in absolute value. This last fact
is consistent with the results in Fama and French (2001), who show that a large part of newly listed

firms tend to be small firms with the glamour characteristic.

'T thank Ken French for providing me with the accounting data. The portfolio returns can be downloaded directly

from his web-site.



2.2 The evolution of beta

The first graphical impression of the decrease in the estimated beta of value and small stocks can
be obtained from Figures 1 and 2. The figures plot the series of estimates of beta for these two
portfolios. The estimates come from rolling regressions, with five-year estimation windows and
one-month increments. The sample goes from July 1926 to December 2000. The tenth B/M decile
portfolio (Figure 1) displays drastic changes in beta that can be as high as 2.2 between July 1938
and June 1943, and as low as 0.55 between December 1995 and November 2000. Similarly, the beta
of the first size decile portfolio (Figure 2) peaks at 2.5 between September 1939 and August 1944,
and it touches the minimum at 0.65 between April 1991 and March 1996. For both portfolios, betas
display an increase at the beginning of the sample, peaking in the early forties. Then the series
experience a large decline until the beginning of the sixties, when for both portfolios beta drops
below one, this decrease being more pronounced in the case of small stocks. In the sixties the two
series rebound above one, being more or less stable through the beginning of the eighties, when
they start dropping again. From the mid-eighties through all the nineties the betas stay below one.
In spite of the short-term swings, the long-term picture that emerges is the decreasing trend that
caused value and small stocks’ estimated beta to decrease by 75% in about sixty years.

The magnitude of the standard errors of the betas is such that we can statistically rule out
the equality of the estimates from different subsamples. For example, the 2.2 estimate of beta for
value stocks in the 7/38-6/43 subsample has a standard error of 0.17, while the standard error for
the 0.55 estimate from the 12/95-11/00 interval is 0.07. In the middle of the sample, namely in
the first half of the sixties, when beta lingers around 1.2, the standard error is about 0.10. More
generally, one can check if beta takes on statistically different values over time by performing tests
of structural change. The results of these tests for the tenth B/M and first size decile portfolios (not
reported) reject the equality of the betas over any subsample in which the total 1926-2000 sample
can be split. Even in the shorter 1963-1991 sample, which is the one used by Fama and French
(1993), the tests reject the equality of the betas between subsamples for many possible splits. The
beta in the second subsample is significantly smaller than the one in the first subsample.

In order to compare the time behavior of the beta for the different B/M and size deciles, I regress
(the log of) each beta series on a time trend. The results are reported in Table 2. The t-statistics

are computed using Newey-West estimator of variance which corrects for the autocorrelation due



to the use of overlapping windows in estimating beta. In the entire 1926-2000 sample, the trend for
B/M portfolios (Panel A) is negative for deciles four through ten, and it decreases uniformly from
the first to the tenth decile. The fact that beta increases for the lower deciles is the mirror image
of the increase for the highest deciles, and it is consistent with the theoretical constraint that the
value-weighted sum of the betas is one. The estimated trend in the beta of the tenth B/M decile
portfolio is -0.1% per month (1.1% annually). In the case of size portfolios (Panel B) the trends
are negative for all the deciles but the last one. The trend in the small stock portfolio is -0.08%
per month (-0.9% annually).

One might wonder if the responsibility of the negative trend lies with the big drop that the
betas experienced in the fifties. In fact, the trend in the beta estimates for the high B/M and low
size deciles is still there, even when I let the estimation sample start in July 1963, which is the
beginning of Fama and French’s (1993) sample. From Table 2 one can see that trend coefficients
for value and small stocks are actually larger in absolute value in the shorter samples. The trend
in beta for the first size decile portfolio in the 1963-2000 sample is twice as much as in the overall
sample.

Given the large correlation between the small and value characteristics reported in Table 1, the
question could rise whether the decrease in the betas is a small stock phenomenon. A first reply
to this question can be the fact that the negative trend is actually larger for the tenth B/M decile
portfolio than for the first size portfolio. The relevance of the value characteristic also appears
from a double sort of stocks by size and B/M. Companies are assigned to five quintiles for each
characteristic, and then twenty-five portfolios are formed from the intersection of the two sorts, like
in Fama and French (1993). I perform the rolling regressions analysis on these twenty-five portfolios
and obtain the series of beta estimates. The estimated trend (not reported) in the portfolio of big
high B/M stocks (fifth size quintile and fifth B/M quintile) is still -0.1% per month (t-stat. = -
6.54). Moreover, these stocks are on average bigger than the companies in other portfolios that
are in lower B/M deciles, and for which the trend is positive. For example, the average size of the
companies in this portfolio is over twenty times that of the stocks in the intersection of the second
size and first B/M quintiles, for which the trend in the beta is instead 0.03% (t-stat. = 2.26). This
evidence confirms that the value characteristic is relevant independently of size. I can infer that

also the size characteristic matters by itself from the fact that the beta of the portfolio of small



glamour stocks (first size and first B/M quintiles) has a significantly negative trend (-0.04%, t-
stat. = -2.69) /footnotel consider the effect on the observed trend in the market sensitivity of small
and value stocks of the introduction of Fama and French’s (1993) HML and SMB factors. As one
might expect, the coefficient on the market factor is no longer decreasing over time for value and
small stocks. In fact, this coefficient captures returns sensitivity to the component of the market
that is orthogonal to HML and SMB, and these portfolios mimic the behavior of value and small
stocks. Therefore, the trending behavior in the beta that is peculiar of these two categories of

stocks is filtered out by the inclusion of HML and SMB..

2.3 A different perspective

A different way to look at the decline in beta is asking whether it is imputable to a decrease in the
correlation of these portfolios with the rest of the market, or to a drop in their relative volatility.
This analysis generates some additional evidence that any explanation of the decrease in beta will
have to account for.

We can consider the market index as composed of two portfolios. Portfolio 1 is either the value

or small stock portfolio, and portfolio 2 is the rest of the market.
Ry, = wiRy + wa Ry, (1)

where wy + wg = 1.

The beta of portfolio 1 can be written as

Cov(Ry, Ry)
Var(Ry,)
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wm% + w2012
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where 022 is the variance of return ¢, oo is the covariance between R; and Ro, r = % and p is the

correlation coefficient between R; and Ry 2.

2 A more straightforward way of decomposing beta, is:

ﬂl - pl,ma_m7

6



The changes in beta are governed by the changes in its two components r and p. We can study

the sign of the derivatives of beta with respect to these components:

9b1
or

0
8p w1 g9

The size of both the value and small stock portfolios relative to the rest of the market is so
small 2 that the condition for %—ﬁ; > (0 is always respected.

Equation 1 implies that

w1 By + w2y =1

Therefore 3, and (85 mechanically move in opposite directions, if weights are constant.

Figure 3 graphs the estimated beta for the tenth B/M decile portfolio along with its two com-
ponents: the ratio of the volatility of high B/M stocks (10th decile) to the volatility of the rest of
the market (1st to 9th deciles), and the correlation coefficient between these two portfolios. The
volatility is estimated as the standard deviation of the portfolio monthly excess returns over a
five-year rolling window. Similarly, the correlation is the correlation coefficient between the returns
of the two portfolios over five-year rolling windows.

It appears clearly from the figure that the driving force behind the movements in the betas is
the ratio of the volatilities. This impression is confirmed by regressing (the log of) the ratio on
a time trend. The coefficient is 0.08% per month, very close to the 0.1% of the betas in Table 2,
while the estimated correlation decreases only by 0.01% per month, and this trend is largely driven
by the drop in the nineties. From Figure 3 one can notice that the estimated volatility of value
stocks was 2.6 times that of the rest of the market between August 1938 and July 1943, and it
dropped to 0.7 times in the period between December 1995 and November 2000. A similar picture
(not reported) describes small stocks’ beta and its components.

One might be concerned that the change in the weights of the portfolios might affect the

where P1.m is the correlation coefficient between R; and the market return, o is the standard deviation of R;, and

om is the standard deviation of the market return. This decomposition yields the same results as the one in the text.

g1

In particular, - and p, ,, track closely 7%

7L and p, respectively. The advantage of the decomposition in the text is
2

that portfolio 2 does not contain stocks from portfolio 1, which makes the interpretation of the results unambiguous.

3The share of the tenth B/M decile portfolio is on average 2% of total market capitalization, and that of the first

size decile is on average 1%.



comparability of the series in Figure 3 with the decomposition in Equation (2). In fact, I obtain a
similar plot when I use portfolios constructed to have constant weights throughout the sample.

To complete the picture one needs to describe the evolution of idiosyncratic risk for these
portfolios. For both value and small stocks, idiosyncratic risk, computed as the estimated standard
deviation of the residuals from rolling window CAPM regressions, follows broadly the path of market
volatility, which is documented in Schwert (1989) and Campbell et al. (2001). Hence, idiosyncratic
risk peaks in the years of the Great Depression and World War II, but then it drops drastically,
without displaying any trending behavior. However, unlike market volatility, the idiosyncratic
volatility of these portfolios is high in the first half of the nineties. The absence of a trend in portfolio
idiosyncratic risk is not inconsistent with the finding in Campbell et al. (2001) that individual stocks
have become more volatile. In fact their paper also finds that portfolio idiosyncratic volatility (in
their case at industry level) is not trending.

From a market model, where portfolio return is broken into market risk and idiosyncratic risk,

it follows that the variance of portfolio 1 can be expressed as
ol = Foy, + ol (3)

2

where o7,

is the variance of the market return, and Jia is the idiosyncratic variance of portfolio
1. Since beta can be expressed as the product of the correlation coefficient between portfolio 1
and the market return (p, ,,) times the ratio of portfolio 1 standard deviation to market standard
deviation (see footnote 2), Equation (3) can be rearranged to obtain

2 2
O1e 071

(1 - pl,m) . (4)

o3, o

Given that g—:n, like %, is decreasing much more strongly than p; ,,, which in turn tracks closely

p, it has to follow that idiosyncratic risk as a fraction of market volatility has decreased. The data

confirm this prediction, and the evolution of the ratio of idiosyncratic volatility to market volatility

follows closely the ratio of total portfolio volatility to the volatility of the rest of the market that
is plotted in Figure 3 (thick solid line).

2.4 Robustness checks

The decrease in the estimated market beta of value and small stocks might be the artifact of portfolio

formation procedures or, more generally, it can be a mechanical result with little economic content.



In order to investigate this possibility I perform a number of robustness checks.

The share of value and small stocks’ capitalization over total market size has changed over
time. This could have caused the decrease in these portfolios’ betas, by mechanically reducing
their weight in the market. I construct a portfolio that includes the highest B/M stocks up to a
certain share of market capitalization, which I keep constant over the entire sample. I try with
a market share of 2%, which is the average market share of the tenth decile portfolios, and with
other values as well (1%, 3%, 5%, and 10%). In all of these cases the beta of the resulting portfolio,
estimated with the rolling regression methodology described above, displays a comparable decrease
to the one for the original value portfolio. Similarly, I rank the stocks by size, and construct a
portfolio of small stocks that has a constant share of market capitalization. For different market
shares (0.1%, 1%, and 5%), the beta of this small stock portfolio is still decreasing.

Another change that occurred in the portfolio composition is the strong increase in the number
of stocks included in the portfolios. There were 42 companies in the value portfolio in July 1926
(52 in the small stocks portfolio), while this number was 480 in December 2000 (the number is 2502

4. The increased number of included stocks might have affected the

in the case of small stocks)
portfolio beta if it was combined with some change in the shape of the cross-sectional distribution
of betas. Hence, I form portfolios of high B/M and small stocks that have a constant number
of stocks throughout the sample period. These portfolios continue to display a decline in their
estimated betas, for all the number of stocks at which the composition is held fixed.

A related fact is the inclusion in the data set of Nasdaq stocks in 1973. This event was relevant
especially for the small stock portfolio, since Nasdaq stocks were in general smaller than NYSE
stocks. This inclusion could have affected the portfolio beta because the market index is heavily
tilted towards NYSE stocks. However, when Nasdaq stocks are excluded from the portfolios, the
trend in both the small stocks’ beta and the value stocks’ beta is unaffected.

Another objection that could be raised against the relevance of the fact under examination, is
that the industry composition of the value and small stocks portfolios might have changed over time

in such a way that these portfolios are now composed of firms belonging to industries that bear less

market risk. The first control that I perform is a within industry analysis. I construct the value and

4The reason why there are so many stocks in the lower size deciles is that size portfolios are formed using NYSE

capitalization break-points, and many Nasdaq stocks are small compared to NYSE stocks.



small stock portfolios using only stocks in one industry, and restrict the attention to industries that
presumably did not experience major technological changes, so that I control for industry effects.
For all the industries I consider (food, consumer products, clothing and oil), the betas of value and
small stocks significantly decrease over time. An alternative control for industry effects consists
of replacing the return of each stock in the portfolios with the return of the industry portfolio to
which the stock belongs . If the trend in beta is due to the B/M or size characteristics, as opposed
to industry effects, we should expect that the beta of these new portfolios does not trend down.
Consistent with this expectation, the resulting portfolios do not display the same decrease as the
original value and small stock portfolios. In the case of value stocks, for example, the estimated
trend in the portfolio constructed with industry returns is -0.03%, compared to the -0.10% of the
original value portfolio. I interpret the fact that there is still some decrease in the betas of the new
portfolios as due to the correlation between industries and the B/M characteristic.

The decrease in the market beta of value and small stocks could be the result of a decline in
the leverage of these companies. Lower leverage should lead to a smaller beta. To assess whether
this phenomenon is driving beta, Figure 4 plots the leverage series, defined as book value of debt
over market value of equity, for the value stock portfolio and for the rest of the market 6. The
figure shows that, if anything, there was an increase in the leverage of value companies over time,
so that leverage is not driving the decrease in beta. As leverage in the overall market is increasing,
one might be concerned with the evolution of leverage for the portfolios of interest relative to the
rest of the market. In fact, not even the ratio of value companies’ leverage to the leverage of the
rest of the market displays a decreasing trend. Similar results rule out a leverage effect for small
companies.

Other possible explanations of the observed decrease in the betas are linked to changes in the
informational flows in the market. Lo and MacKinlay (1990) note that the positive autocorrelation
of stock indices is mainly determined by cross-autocorrelations. In particular, large stocks tend to
lead small stocks, possibly because of non-synchronous trading. As noted by Scholes and Williams

(1977), if a stock is infrequently or non-synchronously traded, the standard estimate of beta is not

5T used the 17 industry portfolio classification that can be found on Ken French’s web site.
5The accounting data come from the Compustat annual dataset and they start in 1950. Debt is defined as the

sum of book value of current liabilities, long-term debt, convertible debt and preferred stocks. Portfolio leverage is

computed as value weighted average of company leverage.
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representative of its true sensitivity to the market. Hence, it is possible that changes in the pattern
of non-synchronous trading for small and value stocks determined the decrease in their beta. In
order to control for this possibility, I compute a corrected version of the sensitivity to the market as
the sum of the beta on the lagged monthly return and the standard beta (as suggested by Scholes
and Williams, 1977). This correction does not affect the size of the estimated negative trend in the
value and small stock portfolios” market sensitivity.

More generally, every explanation that relates to changes in the informational structure in the
market should have different implications at different frequencies of the data. In low frequency
data information has had more time to reveal itself than in higher frequency data. Hence, if the
decrease in the beta is related to some informational story, it should be less pronounced at lower
frequencies. Using quarterly and annual overlapping data, and extending the estimation window
to ten years in order to have enough data points, does not seem to give different results from the
ones obtained with monthly data. For values stocks, with all three data types the estimated beta
drops from about two to below one. Similarly, for small stocks the beta drops as much with annual
and quarterly data as with monthly data.

In summary, the drop in beta does not seem to depend on mechanical explanations relating
to portfolio formation procedure, nor does it depend on changes in leverage over time. Moreover,
changes in the patterns of non-synchronous trading do not seem to be relevant.

The next section, which relates the decrease in beta to macroeconomic conditions, is, I believe,
the most convincing reply to most doubts that still linger about the economic relevance of the

decline in beta of value and small stocks.

3 Relating beta to macroeconomic conditions

3.1 Time-varying betas and conditioning information

Several studies have produced evidence of time-varying betas for single stocks and for portfolios
(e.g., Ferson and Harvey, 1991, Ferson and Korajczyk, 1995, Braun, Nelson, and Sunier, 1995).
Shanken (1990) models the time variation of conditional betas as a linear function of predetermined
state variables. Later studies apply this approach to testing multi-factor pricing models (Ferson

and Korajczyk, 1995, Ferson and Harvey, 1999, Lewellen, 1999), and mutual fund performance
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evaluation (Ferson and Schadt, 1996).

In the context of this paper, modeling conditional betas as a function of state variables can help
identify the macroeconomic factors, if any, that are driving the decrease in the beta of value and
small stocks.

The rationale to believe that some economic state variables are related to the decrease in betas
is that the value and small characteristics supposedly denote companies that are in a condition of
relative distress 7. Hence, it is reasonable to believe that changing macroeconomic conditions affect
the severity of this condition of distress, and consequently the riskiness of these stocks’s payoffs, as
summarized by their market beta.

Suppose the following conditional one-factor model describes the excess portfolio return R; ;1

Rt = a; + B Rinpt1 + €igt1, (5)

where Ry, ;41 is the market excess return, and Ey(e14+1) = Ei(€441Rm,+1) = 0, which implies that
the unconditional expectations of the same expressions are also zero.
Following Shanken (1990), portfolio’s betas are assumed to be a linear function of a vector of k

state variables z;

Bir=boi+ bll,’izt + ;g (6)

While not imposing any constraint on the process of the market factor, the assumption that
conditional betas depend linearly on some lagged variables allows the second moments of the
conditional distribution of portfolio and market returns to change over time in a simple way. The
variables used to predict conditional betas are public information, and summarize the state of the
macroeconomy.

Using Equation (6) to replace for 3;,., Equation (5) can be rewritten as
Rigp1 = o +boiRmi1 + (b1 320) R + 05 Rinv1 + it (7)

Providing that n;, , is regressively independent of all the information at time ¢, the sum n; ; Ry, 141+
€it+1 can be considered as an orthogonal error term w1, and the regression in Equation (7) yields

consistent estimates.

"Chan and Chen (1991) show that small firms are more likely to have higher leverage, lower Returns-On-Equity,

and have cut dividends in the recent past.
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The estimates of by and b; from the time-series regression in Equation (7) allow us to obtain a
fitted value for f3;
Bix = bo + b2t (8)

which gives the benchmark series to which compare the observed decrease in the estimated betas

of value and small stocks.

3.2 Empirical implementation

The state variables that I use in the analysis are the ones that in previous studies proved to be
good predictors for expected returns and betas. They are: (1) the dividend yield on the S&P
Composite Index (see, e.g., Fama and French, 1988, Ferson and Harvey, 1999); (2) the one-month
T-bill rate (see, e.g., Shanken, 1990); (3) the growth rate of industrial production, computed as the
first difference in the logarithm of the monthly seasonally adjusted index of industrial production
provided by the Federal Reserve Board (see, e.g., Campbell and Mei, 1993); (4) the term spread
defined as the end-of-month difference between the yield on Aaa corporate bonds and the annualized
one-month T-bill rate (see, e.g., Fama and French, 1989, Ferson and Harvey, 1999); (5) the default
spread, defined as the end-of-month difference between the yields on Baa and Aaa corporate bonds
(see, e.g., Fama and French, 1989, Ferson and Harvey, 1999).

Panel B of Table 1 provides summary statistics for the state variables. Figures 5 and 6 graph
them, along with NBER, business cycle dates.

Fama and French (1989) give a thorough discussion of the cyclical behavior of the state variables.
Here I summarize the main points. The default spread, although showing some negative correlation
with the business cycle, displays major swings that go beyond the economic cycle (Figure 5). The
spread is high during the thirties and the early years of World War II, a period characterized by
major economic uncertainty. In the rest of the sample it is lower except for some blips in the
periods of recession during the seventies and early eighties. A similar behavior characterizes the
dividend yield (Figure 5), which is highly correlated with the default spread. What is peculiar
about the dividend yield is the drop that occurred during the bull market of the second half of
the nineties. The T-bill rate gravitates around zero in the 1933-1951 period that covers much of
the Great Depression and the period after World War II, when the Fed fixed T-bill rates. Outside

that interval the T-bill rate comes close to defining the business peaks and troughs identified by the
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NBER (Figure 6). Since the Aaa yield does not track the business cycle as closely as the T-bill rate,
the term spread, except for the 1933-1951 period, follows more closely the business cycle (Figure 6)
8. It is low at peaks, predicting recessions, and high at troughs, predicting recoveries. Finally, the
growth rate of industrial production is strongly mean-reverting, so that high growth rates are soon
followed by negative growth.

The estimation of the regression in Equation (7) for B/M and size portfolios produces estimates
of by and b; that can be replaced in Equation (8) along with the series of the state variables to
fit the path of these stocks’ beta. Figure 7 graphs the fitted beta for value stocks, along with the
series resulting from the rolling regressions estimation. The fitted series in the graph has been
constructed using two sets of estimates of by and b; coming from the 1926-1962 and the 1963-2000
subsamples. The series of the estimated beta is aligned with the end date of the five-year estimation
window. The tracking ability of the fitted beta (solid line) is striking. The estimated beta series
appears smoother than the fitted series, because the effect of one month of data is not relevant over
a five-year estimation horizon. However, the fitted beta follows closely all the main swings in the
estimated beta. The correlation coefficient between the estimated and the fitted series is 0.84. The
reader may be concerned that this high level of correlation is affected by a ‘spurious regression’
type of problem. To tackle this concern, I perform a test of unit root on the difference between the
two series. In other words, I test whether the estimated and fitted beta are cointegrated with a (1
-1) cointegration vector. If the high correlation is spurious, the test should detect a unit root in
the difference. In fact the correlation is authentic, as a Dickey-Fuller test on the difference in the
two series produces a test statistic of -7.2, which rejects the null hypothesis of unit root at the 1%
confidence level ?. The picture is very similar if by and by are estimated over the whole 1926-2000
sample. The correlation is 0.78, and again the two series are cointegrated at the 1% confidence
level.

Figure 8 plots the estimated and fitted beta series for small stocks. Although the fitted series

does not track so closely the estimated one as in the case of value stocks, still it captures the major

8The T-bill series and the term series in Figure 6 appear to have different volatility. This is a result of using
different scales for the two series. In reality they move together, being the term spread mainly driven by the T-bill

rate component.

9Notice that the Dickey-Fuller test does not reject the null hypothesis that the estimated beta series has a unit

root
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drop in the beta that occurred in the twenty years between the 1940 and 1960. The correlation
coefficient is in this case 0.63, suggesting that perhaps some relevant state variable has been left
out from the information set.

Table 3 reports the coefficients from the estimation of Equation (7) in the case of B/M portfolios.
Looking at the column for the tenth decile, we notice that in the whole 1926-2000 sample (Panel
A) the risk free interest rate has the highest predictive ability: a one-standard deviation increase
(0.25%) in the monthly T-bill rate would cause a decrease of about 0.25 in the conditional beta.
This coefficient decreases in absolute value as we move towards lower B/M deciles, consistent with
the theoretical constraint that the weighted sum of the by coefficients is zero (while the weighted
sum of the by coefficients is one). The default spread and the dividend yield have a similar predictive
power for the conditional beta of value stocks: an increase in both variables causes the conditional
beta to go up. For example, an increase of one percentage point in the annualized default spread
causes the beta of the tenth decile portfolio to rise by 0.1. In the whole sample the term spread is
generally not significant, while the growth rate of industrial production is significantly positively
related to conditional betas only for the higher deciles.

The analysis by subsamples (Panels B and C of Table 3) helps to further clarify the effect of
each conditioning variable. As far as the tenth B/M decile portfolio is concerned, the default spread
and the dividend yield take turns in explaining the conditional beta. The first variable is significant
only between 1926 and 1962, while the second one is significant only between 1963 and 2000. The
T-bill rate is always negative and significant, although more so in the first subsample. The term
spread is significant with a negative coefficient in both subsamples. The impact of the growth rate
of industrial production on the conditional beta changes from positive to negative. In general, as
we move towards lower B/M deciles the predictive power of the state variables drops, suggesting
that it is correct to focus the attention on the changes that affected value stocks.

The regression results for small stocks (first size portfolio in Table 4) are similar to the case
of value stocks. However, the predictive power of the state variables tends to drop in the second
subsample. This fact is in line with the reduced tracking ability of the fitted series in Figure 8.
Nevertheless, the major drop in small stocks’ beta occurs before 1960, and that is mostly captured
by the state variables.

Finally, other state variables turn out to be significant predictors of beta for both B/M and size
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portfolios. They have not been used for the plots in Figures 7 and 8, because their inclusion would
have increased the high frequency volatility of the fitted series, and decreased its ability to track
the smooth estimated series. The most important of these variables are the lagged excess market
return and the volatility of the T-bill rate, constructed like in Shanken (1990). A positive market
return predicts an increase in the beta of value and small stocks, whereas the effect of interest rate
volatility is positive in the first subsample and negative in the second one. The purpose of my
analysis was tracking the long run trend in the estimated beta series, but if the goal is predicting
the future evolution of beta, then one may want to include these instruments, which capture the

high frequency movements in the series of interest.

3.3 Discussion

As mentioned above, the connection between variables that summarize the state of the macroecon-
omy and the beta of value and small stocks can be drawn because these companies are more likely
to be in a situation of relative distress. The likelihood with which they actually are in distress can
reasonably depend on the general state of the economy. Hence, their riskiness, as summarized by
the market beta, can vary as a function of the business cycle and the general economic conditions.

In more detail, one can think of a model where distressed firms approach default, or move
away from it, depending on the evolution of economic conditions. When a company is closer to
the earnings cutoff point below which it defaults, the firm’s payoff distribution can become more
volatile, and so can its stock returns. Then, this model can yield the prediction that the beta of
distressed firms decreases when economic conditions improve, and vice versa.

The relationship between the macro variables and the beta of value and small stocks, that was
found in the previous subsection, seems to be in line with this model. Notice that the improvement
in business conditions that I refer to, can take place both along the business cycle, and over the
long run. In the first case the model describes the high frequency variation in beta. In the second
case, the result is the long-term decrease in beta that is the main focus of the paper.

Fama and French (1989) interpret the power of the dividend yield and the default spread to
predict increases in the expected return of stocks and bonds as related to the long-term evolution
of business risk. These two variables track some components of expected returns that are high

during periods like the Great Depression when business is persistently poor, and low otherwise.
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Consistent with their interpretation, I find that the measure of riskiness of some companies that
are a priori believed to be more exposed to changes in business conditions, their beta, follows
closely the evolution of these two variables. In particular, the decrease in the default spread and
the dividend yield that occurred after the war explains a large part of the decline in beta in that
period. Similarly, the drop in the dividend yield in the late nineties is responsible for the plunge
in beta over those years.

The term spread tracks more closely the business cycle. It is low at the top of the expansion,
and high at the end of a recession. I find that an increase in the lagged term premium predicts a
decrease in the beta of value and small stocks. This result is in line with the above interpretation,
because a high term premium predicts a recovery from a recession, from which distressed firms
should benefit. The significance of the term spread in the subsamples, and not in the whole period,
suggests that this variable captures the high frequency variation of beta, rather than the long run
trend.

The interest rate is highly pro-cyclical. However, like the default spread and the dividend yield,
it also tracks the long-term changes in business conditions that occurred starting from the early
fifties. Therefore, its relevance as a predictor of beta is due to both its long-term swings and its
cyclical movements. This fact is confirmed by the significance of the T-bill rate in whole sample
and in the subsamples.

The reason behind the predictive power of the growth rate of industrial production is more
dubious since its coefficient changes from positive to negative. The positive coefficient, that prevails
when the estimation is performed on the whole sample, would suggest that due to the strong mean
reversion of growth, a positive growth rate predicts a worsening of economic conditions in the
future.

The interpretation of the relation of these macro variables to the decline in beta that is proposed
here is also consistent with the evidence from the beta decomposition in Section 2.3. The general
improvement of macroeconomic conditions can have made these stocks, normally prone to distress,
less risky, and their volatility smaller relative to the volatility of the rest of the market.

The above analysis suggests a relation between a conditional CAPM approach and the Fama-
French three-factor model. The explanation of the link between these macroeconomic variables and

the beta of value and small stocks involves changes in the sensitivity to the overall discount factor.
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The effect of these changes shows up in the beta of these companies because they are presumably
more sensitive to business conditions. If this is the case, the loading on the market factor seems to
capture some of the risk sources, like distress risk, that Fama and French (1993) use to justify the
introduction of additional factors in the pricing model. Consequently, a conditional CAPM can be
more appropriate than a three-factor model in pricing portfolios other than value and small stocks,
for which the HML and SMB factors are bound to perform well.

Notice that the argument in favor of a conditional pricing model is consistent with the results in
Lettau and Ludvigson (2001). Similar to the evidence in my paper, they find that the correlation
value stocks’ returns with fundamental factors increases when risk or risk aversion is high. This
situation in turn occurs when economic conditions are poor, as signalled by their cay state variable.

Finally, it has to be acknowledged that the behavior of value stocks’ beta in the second half
of the nineties lends itself to a different interpretation from the one proposed so far. The drop in
beta that occurs in that period is entirely driven by the decline in the dividend yield, which in
turn depends on the surge of the price level during the bull market of the nineties. If a speculative
bubble was behind that price increase, then the explanation for the decline in beta cannot hinge
on the evolution of the stochastic discount factor. Hence, one may want to invoke a style investing
argument (Barberis and Shleifer, 2001). In such a scenario, beta could have dropped because the
returns of value and glamour stocks have become delinked, as a result of flows of funds moving
from one style of investment to the other. The investigation of this explanation is left for future

research.

4 A decomposition of market betas

4.1 Theoretical framework

If the interpretation of the link found in Section 3 between beta and the conditioning variables is
correct, the decrease in the beta of value and small stocks should be associated with a reduction in
the sensitivity of these companies’ cash flows to the factors that cause movements in the market.
The reason behind this prediction is that, according to the above interpretation, an improvement in
the distress condition of these companies makes their cash flows less volatile in response to shocks.

I use Campbell and Mei’s (1993) beta decomposition to address this issue.
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Campbell and Shiller’s (1988) log-linearized present value relationship allows one to express
unexpected excess returns, or excess return innovations, in terms of news about dividends, news
about excess returns and news about real interest rates. Following Campbell (1991), e;441 is
the (continuously compounded) excess return on portfolio ¢ over the (continuously compounded)
real return 7441 on a one-month T-bill, and d; ;41 is the (log) real dividend. Then, portfolio i’s

unexpected excess return €; 41 can be expressed as

o0 oo o0
Cigr1 =~ (B — Ey) Z A 145 — Z P ris1vg — Z P €145
=0 =0 j=1
= €dit+1 — Cri+1 — Ceit+1- (9)

The notation (E;+1 — E;) indicates a revision in the conditional expectation between times
t and t + 1. The constant p comes from the linearization process, and can be interpreted as a
discount factor. The value of p is assumed to be the same for all portfolios '°. The second equality
in (9) introduces simpler notation for dividend news €g4; 111, real interest rate news €, 441 and excess
return news €e; ¢41.

Equation (9) follows from an approximation of a present value identity after ruling out explosive
behavior of stock prices, and can be thought of as a consistency condition for expectations. It simply
states that, if unexpected returns are high today, then either there has been an upward revision
in the expectation of future dividends, or a downward revision in the returns that the stock is
expected to pay in the future, or both. The effect of future real returns is similar to that of future
excess returns.

The Appendix describes in detail how to obtain each component of the return innovations.
Briefly, the expected return on each portfolio is assumed to be a linear function of a vector of
predetermined state variables, one of which is the real interest rate. The residuals in these predictive
regressions represent the return innovations. The state variables are assumed to follow a VAR
process. It is therefore possible to compute the revision in the expectation of every future value

of the state variables, and take the discounted sum of these terms, which, combined with the

107 refer to the Appendix in Campbell (1991) for the derivation of Equation (9) and to Campbell and Shiller (1988)

for a discussion of its approximation accuracy. It turns out that p = where d — p is set to the average log

1
Tred—p>
dividend price ratio. Campbell and Mei (1993) argue that the assumption of a unique value of p across all portfolios

does not affect the results for plausible variations in p.
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parameters in the predictive regression, gives the expected return news component of returns. The
real interest news component is also obtained from the parameters of the VAR. The cash flow news
component is obtained residually using Equation (9) and the other two components.

As far as the cross-sectional aspects of the analysis are concerned, Campbell and Mei (1993)
define a portfolio beta using unconditional variances and covariances of portfolio and market inno-
vations. That is, beta is the unconditional covariance of the excess return innovation é; with the
market innovation €,,, divided by the unconditional variance of the market innovation

Cov(€é;,ém)
6i,m ~ :
Var(ém)

(10)

This beta is neither an unconditional beta (which would use returns themselves rather than
innovations) nor a conditional beta (which would use conditional moments). However, it would
coincide with a conditional beta if the conditional variance-covariance matrix of innovations had
constant elements, or at least elements that changed in proportion to one another.

The definition in (10) has the advantage that the portfolio beta can be expressed as the sum of

the market betas of the three news components. From Equations (9) and (10), it follows directly

that
3 _ Cov(égi, em) B Cov(éy, ém) B Cov(€eiy €m)
Lm T Var(én) Var(én) Var(én)
- ﬁdi,m - 57‘,7% - /Bei,mv (11)

where (4; ,, is the market beta of news about portfolio i’s cash flows, 3, ,, is the market beta of

r,m

news about future real interest rates, and 3 is the market beta of news about portfolio ¢’s future

ei,m
excess returns.

The assumption behind this analysis is that the vector of state variables represents entirely
investors’ information set. If this was not the case, the estimated dividend component of returns

would contain a reaction to changes in expected returns, which would undermine the interpretation

of the results.

4.2 Empirical Implementation

The first step in implementing the beta decomposition developed in Section 4.1 is to estimate the

return components. To this purpose one needs to estimate the VAR system (13), along with the
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predictive regressions in (12), and to replace the estimated parameters in the expressions given
in (15).

The VAR and the predictive regressions are estimated using OLS on each equation. In this
case, where all the equations have the same right-hand-side variables, the estimates coincide with
the ones obtained with a GMM procedure. Then, I combine the sample variances and covariances
of the estimated return components to obtain the betas.

The purpose of this analysis is to find out the source of the observed decrease in market beta
for value and small stock portfolios. Thus, I insert the beta decomposition methodology into the
rolling regression framework that I adopted to document the fact under consideration. The use
of annual data allows the state variables to have considerably higher predictive power in both the
VAR equations and the portfolio predictive regressions. This finding is consistent, for example,
with the results in Fama (1990), who argues that the predictive variables contain information that
pertains to several months of return data, creating an error in variable problem that is attenuated
in annual data.

However, the use of annual data reduces the number of available data points and this creates a
problem for the convergence of the estimated parameters. Therefore, I construct the annual data
from monthly data, so that two consecutive observations have a three quarter overlap. Each annual
observation spans the period up to the end of a quarter. Moreover, I use twenty-five-year estimation
windows, so that each regression is estimated using one-hundred overlapping annual data points.
The estimation window advances by one data point at a time, which means that one quarter of
new data is added to the right of the sample, and one quarter is lost on the left.

At this point a caveat is necessary. The Campbell and Mei (1993) procedure makes an implicit
stationarity assumption. The parameters of the VAR, as well as the variance-covariance structure
of the portfolio returns are assumed to be constant, not only throughout the estimation period,
but, as far as the VAR is concerned, over an infinite horizon. The facts that beta changes over
time, and that the estimated parameters of the VAR are not constant, might cast some doubt on
the validity of the analysis. However, the assumption of a constant beta can be considered as a
descriptive shortcut to look at the average beta over the estimation window, as it was the case
in Section 2, when the rolling window procedure was first introduced. Moreover, the instability

of the VAR should not considerably affect the results as long as the VAR coefficients vary at low
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frequencies, because in that case discounting should reduce the importance of the terms of the
present value formulas that are distant in the future.

The returns of interest are the continuously compounded returns on B/M and size portfolios,
from July 1926 to December 2000. For the definition of the vector of state variables I follow the
previous literature. As said before, the first two variables have to be the market return and the real
interest rate. Therefore I use the return on the CRSP value-weighted index, and the continuously
compounded return on the one-month T-bill, deflated by the change in the (log of the) CPI index.
Campbell and Mei (1993) also include the aggregate dividend yield, the inflation rate, and the
growth rate of industrial production, defined in Section 3. I use the dividend yield on the S&P
Composite Index, which turns out to have slightly more predictive power than the one constructed
from the NYSE universe. The inflation rate is the change in the log of the CPI index. In addition
to these variables I include the term spread, which is defined as in Section 3 (Table 1 provides
summary statistics for portfolio returns and the state variables). For this sample, consistent with
previous studies, a reasonable value for p is 0.96 in annual data and 0.9962 in monthly data.

I can provide some evidence on the increased predictive power allowed by the use of annual
data rather than monthly data. In my sample the average R? over the ten predictive regressions for
B/M portfolios in the whole 1926-2000 period is only 1.7% with monthly data (892 observations per
regression). Instead it is considerably higher, 10.6%, with overlapping annual data (291 observations
per regression).

The evidence on the sources of the decrease in beta comes from both a split of the main sample
into two major subsamples, and a rolling regression analysis.

The analysis by subsamples is presented in Table 5 for B/M portfolios. Each beta estimate
and the corresponding standard error have been obtained from OLS regressions of the appropriate
return component on the market innovation.

In Panel A the estimation period coincides with the entire 1926-2000 sample. The plausible
values of market betas in the first row testify that using innovations to define betas, as opposed
to returns themselves, does not significantly affect the results. The betas of high decile portfolios
(value stocks) are in general higher than those of low B/M deciles. This ranking differs from what
reported in previous studies, such as Fama and French (1993), because my sample starts much

earlier, in a time when value stocks used to have higher betas. The ranking in the overall betas
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seems to be determined entirely by the market sensitivity of the excess return news component
Bie.m» Which, especially for value stocks, is the most sizeable part.

In Panel B the sample covers the 1926-1962 period. The spread in the betas of value over the
beta of glamour stocks is even more pronounced than the one in the overall sample. Again, the
responsibility of the difference in the overall beta lies with the excess return betas, rather than the
cash flow betas.

The results in Panel C (1963-2000 sample), where the ranking in the overall betas is inverted
with respect to Panels A and B, reflect the empirical fact that has inspired this paper. The beta
of value stocks has decreased considerably over the years, while the opposite happened for glamour
stocks ''. From the comparison of Panels B and C it is clear that the source of the decrease in the
overall beta of value stocks is the decrease in (3,4 ,,,, namely the cash flow beta. The rolling regression
analysis will make it even more clear that the reduction in cash flow beta plays the dominant role.
The beta of real interest rates, which was not significant in Panels A and B, becomes negative and
highly significant in Panel C.

In order to further define the source of the decreasing trend in the value stock beta, I now
turn to the rolling regression analysis. A first graphic impression of the results is provided by
Figure 9, that graphs the evolution of the estimated beta of the tenth decile, along with its cash
flow component and the negative of its excess return component. It is evident from the picture that
the responsibility of the decreasing trend in the overall beta lies with the cash flow beta, which
drops from 1.11 in the twenty-five-year estimation window ending in June 1961, to -0.65 in the
window ending in December 1995. The excess return beta does not seem to have any apparent
trend. This impression is confirmed by the statistical tests that follow.

To quantify the evolution of the different beta components, 1 fit a trend line through each
of the beta series obtained from the rolling regressions. The results are reported in Table 7,
Panel A. As said above, I use overlapping annual data, and the estimation window advances by
one quarter per observation, so that the trend coefficients measure the change in the beta per
quarter. The t-statistics are computed using Newey-West estimator of variance which corrects for

the autocorrelation due to the use of overlapping windows in estimating beta. Equation (11) implies

"For market betas of innovations, as for normal betas, it holds that the weighted average of the population betas

of the different partitions of the market (e.g., B/M or size portfolios) is equal to one.
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that the trend in 3,4, , minus the trend in 3, ,,,, minus the trend in 3, ,, (-0.001), equals the trend
in the overall market 3, ,,,. The trend line is negatively sloped for the highest B/M deciles, and the
slope gradually becomes positive as we approach the portfolios of glamour stocks.

Table 7 provides detailed evidence on the sources of the decrease in the overall betas. The cash

flow betas of all portfolios trend down, and this effect is stronger for values stocks 2.

However,
in the case of glamour stocks this trend does not affect the overall betas, given that the negative
estimates of 3, ,,, become progressively bigger in absolute value. Instead, in the case of value stocks
the negative trend in the cash flow beta is much stronger (-0.007 per quarter for decile ten), and
it is not counterbalanced by a decrease in the excess return beta. Hence, I can conclude that the
decrease in cash flow beta is the source of the observed decrease in the overall beta.

The fact that the results presented in this section hinge on the cash flow news component, which
is estimated residually, might raise some concerns, which would be justified in case the VAR process
was misspecified. To tackle this issue, I follow Campbell and Mei (1993) and form a direct measure
of cash flow news by regressing annual log real dividend growth on the state variables, and using
the VAR process for the state variables to form revisions in expectations of future dividends (details
in the Appendix). Then, I can compute the cash flow beta series in the usual way, and fit a trend
line through the series of estimates. The results, not reported, confirm the picture presented above.
If anything, the decreasing trend in the cash flow beta for the value stock portfolio is stronger
(-0.012, with t-stat. = -3.36). Hence, the use of residual cash flow news does not seem to affect the
significance of the evidence presented in this section.

The picture for size portfolios largely resembles that for B/M portfolios, and small stocks play
the role of value stocks. Over the entire sample the major drop in the overall beta is again imputable
to a drop in the cash flow beta. However, after the beginning of the eighties the high frequency
movements in the overall beta depend on the decrease in the excess return beta.

Table 6 confirms the decline in the beta of small stocks and the corresponding increase in the
beta of large stocks. The market beta of the first decile portfolio, for example, is 1.60 between 1926
and 1962, and it drops to 1.36 in the 1963-2000 subsample.

The big drop in 3

ie.m that appears from the table, is not indicative of the global source of

12Notice that the beta components do not have to satisfy the constraint of adding to one across portfolios. Therefore

it is possible that the cash flow betas of all portfolios decrease over time.
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decrease in the overall beta, because it is affected by the last years of data. In fact Figure 10 shows
that (3, becomes very small in absolute value only around the end of the sample. Instead, the
graph indicates that over the entire 1926-2000 period the drop in the cash flow beta is the main
source of the decline in the market sensitivity of small stocks. Moreover, it is also evident from

Figure 10 that after the beginning of the eighties the overall beta follows the path of which

ie,;mo
declines in absolute value.

The analysis of the linear trends in the estimates from the rolling regressions procedure confirms
that the source of the drop in the overall beta of small stocks is the decrease in the cash flow beta.
Panel B of Table 7 shows that the overall beta of decile one portfolio, for example, has a linear
trend of -0.005, which is entirely imputable to the -0.008 trend in 3,4 ,,,. Notice, however, that if the
trend is computed using only the betas whose estimation window ends after January 1980, then the
-0.004 (t-stat. = -10.96) trend in the overall beta depends on the decrease in the absolute value of
the excess return beta (trend in 3,, ,,, equal to 0.010, with t-stat. = 8.64). The use of direct, rather
than residual, cash flow news, in the way described above, confirms entirely the results presented
so far.

So, as in the case of value portfolios, the evidence suggests that the observed instability in the
overall market betas of small stocks can be imputed to changes in the sensitivity of cash flow news
to market returns.

Overall, the evidence from the beta decomposition is consistent with the conclusions from Sec-
tion 3, which used conditional information to track the evolution of beta. That analysis suggested
that the decrease in the beta occurred because the general improvement in the economic conditions
has made the activities of these companies less risky. This section showed that, indeed, the decrease
in the beta is imputable to the fact that the cash flows of these firms are less sensitive to market

news.

5 Conclusions

This paper found a striking decrease in the market beta for portfolios of value and small stocks. In
the course of sixty years the beta of each of these portfolios decreased by about 75%. The maximum

estimated beta for value stocks was 2.2 in the early forties, and the minimum was 0.55 in the late
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nineties. The situation for small stocks evolved similarly.

The fact that the path of beta can be closely tracked using state variables that are related to
business conditions, such as the nominal interest rate, the default spread, the term spread, the
dividend yield, and the growth rate of industrial production, suggested the interpretation that a
change occurred in the structure of these companies’ cash flows. According to this argument, the
improvement of business conditions reduced payoff uncertainty for all firms, and especially for value
and small companies, which are believed to be more prone to distress, and therefore more sensitive
to the status of the economy. Support for this intuition came from the result that the source of
the decrease in the beta is the decline in the sensitivity of cash flow news to market news. This
interpretation generates the out-of-sample prediction that we should observe a rise in the beta of
these portfolios in conjunction we the recent economic downturn and the interest rate cuts.

Further research should extend different aspects of this paper. The interpretation of the link
between beta and the state variables was not tested directly, and it was not supported by some
economic model. Possibly, one should look into the evolution of the accounting and financial figures
of the companies in the portfolios of interest, and assess whether they conform with the change-
in-distress interpretation that was provided in the paper. Preliminary evidence suggests that a
measure of distress, such as the ratio of interest expenses to operating income, is not only higher in
the case of value and small companies, but it is also more positively related to recessions. Moreover,
the gap between the level of this ratio for the companies of interest and for the rest of the market
has been shrinking, consistent with the negative trend in the beta.

Another possible direction of research concerns the implications of the decrease in beta for the
perception of the riskiness of these stocks and the premium that they pay. Daniel and Titman
(1997), for example, argue that characteristics, rather than risk, are priced in equilibrium. They
suspect that investors consider these stocks more risky than they actually are. One could argue
that the large drop that occurred in the betas of value and small stocks could be the reason why
investors had a large perception of the riskiness of these stocks, even when their risk became lower.
The market could have tied its expectation of the price for risk to the high levels of beta, which
characterized these stocks until the early sixties, even after beta had experienced a major decrease.
This conjecture is explored in the framework of a rational learning model by Adrian and Franzoni

(2002).
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A Obtaining the news components of returns

This Appendix describes how the different components of excess return innovations in Equation (9)
are obtained. In this I follow, with some minor modifications, Campbell and Mei (1993), who
assume that expectations of portfolio excess returns are linear in a vector z; of state variables xy,
[l =1,..., L, which represent investor information set. The first element of this vector is the excess
return on the market, and the second one is the real return on a one-month T-bill, while the other
elements are variables known at the end of period t. Thus, the excess return on portfolio 7 can be
written as

€it11 = QiTs + €y (12)
for some portfolio specific L-element column vector of coefficients. The expected return on the
portfolio is thus a}z;, while the unexpected return is é; 111 = €; ¢4+1 — alz;.

Next it is assumed that the state vector follows a first-order VAR process
xpp1 = Hay + Tyqq, (13)

where the ;11 denotes the innovation in the state variables. The assumption of a first-order VAR
is not restrictive since a higher-order VAR can always be rewritten in first-order form (see, e.g.,
Campbell and Shiller, 1988). The L x L matrix II is known as the companion matrix of the VAR.

Given the VAR model, revisions in long-horizon expectations of x4, are
(Bep1 — By = WP T (14)

Further, I define the L-elements vectors ¢; and o to have a one in first and second position,
respectively, and zeros in all other positions. These vectors pick the excess return on the market
and the real interest rate out of the VAR. Thus, Equation (14) and the definitions of €g; ;41 and
€eit+1 in (9) imply that the components of portfolio ¢ return and of the market return can be

written as follows

Ceijr1 = paj(I— pIl) " Ty,
Eriv1 = 151 — pll) " Epp,
Caipr1 = Eipr1+ (15 + paj)(I — pl) ™ Fe 1,
Eemir1 = phII(I — pIl) "' Fpyy,
Eamit1 = Emit1 + (th+ pTI)(I — pIl) iy, (15)
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The discounted sum of the revisions in expectations for the vector of state variables at ¢t + 1
is (I — pIT)~'Z;, 1, where I is the L x L identity matrix. This term is translated into revisions of
forecast portfolio returns through the vector a;, which links the state variables to expected returns.
Finally, the revision in expected cash flows is determined residually from Equation (9).

The cash flow news component can also be computed directly under the assumption that the
state variables predict dividends as well. In particular, if ¢ is the vector of regression coefficients of
dividend growth on the state variables, and p,,, are the residuals from this regression, the direct

cash flow news is

€idyt4+1 = Hyp1 T pc (I — PH)flftH- (16)
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Table 1: Summary statistics. Panel A reports means and standard deviations of selected port-
folios returns, and the average share of market capitalization for these portfolios Panel
A also reports the correlation coefficient computed over all the stocks and years between
the size and B/M decile assignments. Panel B reports mean, standard deviations, and
sample autocorrelation coefficients (p) for: the one-month T-bill rate, the dividend yield
on the S&P Composite Index, the growth rate of industrial production, the term spread,
and the default spread. Panel C reports the correlation matrix for the state variables.

Panel A: Portfolio Returns
Mean St. Dev. Avg. mkt share

Sample: 1926-2000

BM decile 1 .93 5.82 .26
BM decile 10 1.37 9.35 .02
Size decile 1 1.44 10.49 .01
Size decile 10 .96 5.18 .62
Market .99 5.49

Avg. corr. of size and BM deciles -.33

Sample: 1926-1962

BM decile 1 91 6.42 27
BM decile 10 1.28 12.22 .02
Size decile 1 1.71 13.48 .002
Size decile 10 91 6.03 .67
Market .95 6.46

Avg. corr. of size and BM deciles =47

Sample: 1963-2000

BM decile 1 .95 5.18 .24
BM decile 10 1.46 5.30 .03
Size decile 1 1.19 6.43 .02
Size decile 10 1.01 4.20 .57
Market 1.03 4.37

Avg. corr. of size and BM deciles -.19

continued on next page
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Panel B: State Variables

Mean  Std. Dev. P1 P2 P3  Ps P12 P2

T-bill 31 .25 97 .95 94 93 87 .78
Div. Yield .042 .015 .98 .96 93 91 .73 .56
Growth I.P. .003 .019 .53 24 .08 -.02 -15 -.11
Term spr. 2.11 1.36 .84 7 7469 47 .21
Default spr. 1.13 .73 .97 .94 91 90 .75 .55

Panel C: Correlation matrix of State Variables

T-bill Term  Def. DY Gr. LP.

T-bill 1

Term -0.39 1

Def. -0.07  0.41 1

DY -0.29  0.09 0.56 1

Gr. LP. -0.07  0.05 -0.11 -0.11 1
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Table 3: Conditioning information (B/M portfolios). The table reports the coefficients by ;
and b1 ; from the estimation of Equation (7) in the text: Rji11 = i + boiRmt+1 +
(b’l’izt)Rth + i ¢4+1. The dependendt variables are the excess returns on B/M deciles
portfolios. The z; variables are the monthly T-bill rate (¢_bill), the dividend yield (div_y),
the growth rate of industrial production (gr_ip), the term spread (term), the default
spread (def). The data are at monthly frequency from 7/1926 to 12/2000. T-statistics
in parentheses.

Decile 1 4 7 10
Panel A: 1926-2000
bo 0.97 0.95 1.12 1.56
-(47.52) -(45.88) -(42.48) -(30.07)
t_bill 0.22 0.08 -0.41 -0.97
-(4.36)  -(1.58)  (-6.08)  (-7.27)
div_y -0.61 0.66 1.52 4.73
(-0.74)  -(0.79) -(1.42) -(2.23)
gr_p -1.01 0.39 0 3.36
(-2.68)  -(1.03) (0.00) -(3.49)
term 0.01 0.006 0.11 -0.04
-(1.02)  -(0.57)  (-0.48)  (-1.58)
def -0.02 0.08 0.09 0.1

(-1.61) -(4.74) -(5.01) -(2.18)
continued on next page
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Decile 1 4 7 10
Panel B: 1926-1962

bo 0.89 0.93 1.12 1.94
(28.89) (25.87) (21.98) (16.90)

t_bill 1.01 0.22 -0.46 -4.38
(4.24) (0.81) (-1.19) (-4.93)

div_y 0.02 0.49 0.09 -0.51
(0.03) (0.53) (0.08)  (-0.17)

gr_ip -1.01 0.53 -0.14 3.37
(-3.12)  (1.40) (-0.27) (2.78)

term 0.04 0.01 0.08 -0.35
(1.32) (0.45) (1.64) (-3.11)

def -0.04 0.08 0.07 0.31
(-1.89)  (3.15) (1.96) (3.54)

Panel C: 1963-2000

bo 1.01 0.85 1.44 2.09
(8.05) (7.18) (11.27) (11.11)

t_bill 0.15 0.24 -0.83 -1.58
(0.82) (1.32)  (-4.20) (-5.43)

div_y -0.54 1.63 10.06 22.31
(-0.22)  (0.70) (3.95) (5.96)

qgrap 2.76 -4.39 -3.17 -7.22
(1.12)  (-1.89) (-1.26) (-1.95)

term 0.02 0.02 -0.05 -0.07
(1.32) (1.54)  (-2.84) (-2.42)

def 0.01 -0.03 0.12 0.06
(0.22)  (-0.47)  (1.59) (0.57)
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Table 4: Conditioning information (Size portfolios). The table reports the coefficients by ;
and b1 ; from the estimation of Equation (7) in the text: Rji11 = o + boiRmt+1 +
(b’l’izt)Rth + ui¢+1. The dependendt variables are the excess returns on size deciles
portfolios. The z; variables are the monthly T-bill rate (¢_bill), the dividend yield (div_y),
the growth rate of industrial production (gr_ip), the term spread (term), the default
spread (def). The data are at monthly frequency from 7/1926 to 12/2000. T-statistics
in parentheses.

Decile 1 4 7 10
Panel A: 1926-2000
bo 1.53 1.24 1.17 0.94

(21.99) (35.71) (58.29) (101.95)

t_bill -0.80 -0.23 -0.18 0.00
(-4.47)  (-2.62) (-3.47)  (-0.04)

div_y -0.41 -5.07 -3.60 0.43
(-0.14)  (-3.55) (-4.35) (1.12)

gr_ip 8.15 3.46 0.75 -0.21
(6.32) (5.40) (2.03) (-1.20)

term -0.07 -0.01 -0.01 0.00
(-1.83) (-0.34) (-1.07)  (-0.92)

def 0.26 0.17 0.10 -0.01
(4.24)  (5.62) (5.40)  (-1.80)
continued on next page
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Decile 1 4 7 10
Panel B: 1926-1962

bo 1.88 1.45 1.33 0.92
(11.93) (20.92) (33.72) (74.10)

t_bill -4.31 -2.57 -1.74 0.29
(-3.54) (-4.80) (-5.68) (3.01)

div_y -4.24 -7.96 -5.70 0.94
(-1.04) (-4.44) (-5.59) (2.96)

gr_ap 8.29 3.59 0.79 -0.22
(5.01)  (4.90) (1.89) (-1.72)

term -0.37 -0.19 -0.13 0.00
(-2.39)  (-2.78) (-3.34) (0.23)

def 0.46 0.30 0.18 -0.02
(3.84) (5.73) (5.81) (-2.51)

Panel C: 1963-2000

bo 1.77 1.55 1.27 0.89
(6.62)  (9.14) (13.06) (13.77)

t_bill -1.07 -0.61 -0.28 0.06
(-2.59)  (-2.33) (-1.85) (0.60)

div_y 6.25 5.15 2.20 -1.25
(1.18)  (1.53)  (1.14) (-0.97)

qgrap -4.05 -6.69 -6.62 2.34
(-0.77)  (-2.01) (-3.46) (1.84)

term -0.10 -0.03 -0.02 0.00
(-2.29) (-1.22) (-1.36) (0.40)

def 0.15 0.00 0.05 0.02
(0.94)  (0.02) (0.76) (0.42)
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Table 5: Beta decomposition (B/M portfolios). Estimates from the following decomposition
of beta for B/M decile portfolios: 3; ,, = Byim — By — Beim- Bim i the portfolio beta
computed using portfolio and market excess return innovations. [;4,, is the dividend
news component of beta. 3, ,, is the expected return news component of beta. 3, ,, is
the real interest rate news component of beta. T-statistics in parentheses.

Decile 1 4 7 10
Panel A: 1926-2000
Bim 1.04 1.06 1.10 1.29
(52.06) (55.72)  (40.61) (27.93)
Bid.m 0.56 0.17 0.18 -0.10
(21.21) (4.36) (4.01) (-1.27)
Bie.m -0.49 -0.89 -0.93 -1.39
(-17.17) (-17.68) (-19.63) (-20.69)
Brm 0.01
(0.39)
Panel B: 1926-1962
Bim 0.95 1.14 1.20 1.44
(46.14)  (51.50)  (33.93) (22.65)
Bid.m 0.37 0.57 0.43 0.21
(8.00) (15.17) (7.59) (2.13)
Biem -0.64 -0.63 -0.83 -1.28
(-10.61) (-10.38) (-12.33) (-13.89)
Brm 0.06
(1.74)
Panel C: 1963-2000
Bim 1.15 0.98 0.89 0.85
(27.50)  (27.35) (20.29) (14.38)
Bid.m 1.15 -0.80 -0.32 -0.92
(12.59)  (-6.98) (-4.10) (-7.46)
Bie.m 0.28 -1.50 -0.94 -1.49
(3.47)  (-14.81) (-18.15) (-16.81)
Brm -0.28
(-16.68)
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Table 6: Beta decomposition (Size portfolios). Estimates from the following decomposition
of beta for Size decile portfolios: 8;,,, = Bgim — Brm — Beim- Bim 18 the portfolio beta
computed using portfolio and market excess return innovations. [;4,, is the dividend
news component of beta. 3, ,, is the expected return news component of beta. 3, ,, is
the real interest rate news component of beta. T-statistics in parentheses.

Decile 1 4 7 10
Panel A: 1926-2000
Bim 1.50 1.23 1.14 0.94
(29.05)  (44.07) (64.74) (105.13)
Bid.m 0.26 0.14 0.23 0.40
(3.47) (2.59) (5.94) (18.47)
Bie.m -1.25 -1.10 -0.92 -0.55
(-20.25) (-20.20) (-20.30) (-17.61)
Brm 0.01
(0.39)
Panel B: 1926-1962
Bim 1.60 1.27 1.14 0.93
(23.69) (39.67) (54.18) (136.41)
Bid.m 0.48 0.45 0.41 0.45
(4.57) (6.96) (8.12) (13.69)
Biem -1.18 -0.88 -0.80 -0.54
(-12.59) (-12.39) (-12.60) (-10.32)
Brm 0.06
(1.74)
Panel C: 1963-2000
Bim 1.36 1.23 1.14 0.93
(15.09) (22.58) (34.31) (44.62)
Bid.m 0.39 -0.33 0.06 0.08
(3.48) (-2.89) (0.94) (2.69)
Bie.m -0.69 -1.28 -0.80 -0.57
(-18.44) (-17.22) (-26.07) (-31.46)
Brm -0.28
(-16.68)
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Table 7: Linear trends in beta and its components. The table reports OLS estimates on the
time trend from the model 3, = v+ v trend; + ;. The series 3, comes from twentyfive-
year rolling regressions. (3, is in turn: the overall portfolio beta obtained from excess
return innovations (8, ,,), the dividend news component of beta (3;4,,), the expected
return news component of beta (8, ,,), the real interest rate news component of beta
(Br.m). The T-statistic (in paretheses) is computed using the Newey-West estimator with
99 lags of autocorrelation.

Decile 1 4 7 10
Panel A: B/M Portfolios
Bim 0.002 0.000 -0.002  -0.006
(7.40) (-0.12)  (-8.39) (-14.26)
Bid.m 0.000 -0.004 -0.003 -0.007
(-0.22)  (-7.63) (-4.72) (-12.56)
Biem -0.001 -0.003 0.000 0.000
(-0.85)  (-4.03) (-0.04)  (0.34)
Panel B: Size Portfolios
Bim -0.005 -0.002  -0.001  0.0003
(-14.83) (-10.20) (-4.24)  (2.34)
Bidm -0.009 -0.007  -0.004  -0.003
(-6.65)  (-9.39) (-8.29) (-3.55)
Biem -0.002 -0.004  -0.002  -0.002
(-1.97)  (-4.08) (-2.82) (-1.77)
trend in 3, = -.001 (-2.68)
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