
In recent years, researchers and policy makers have shown a rising interest 
in the study and interpretation of socio-economic processes at the meso- 
or regional level. From that perspective, the region is often considered 
to be the ‘place of action’, where micro-behaviour and macro-outcomes 
come together.
The present study offers a novel statistical analysis of the development 
of regional labour markets in Germany. The objective of the dissertation 
is to analyse their patterns and evolution, as well as the associated spatial 
disparities. In particular, Germany – with its large number of small 
geographical units (NUTS-3 districts in EU terminology) and complex 
socio-economic ramifications emerging from the reunification of 1990 
– is a textbook case for such spatial-economic analyses.
The first empirical part of the study concerns the spatio-temporal analysis 
of regional labour market aggregates. The focus is on two main issues: 
(a) the forecast of regional employment variations; and (b) the analysis 
of unemployment differentials in the presence of spatial autocorrelation. 
The second empirical part concerns the analysis of the diversification of 
journey-to-work trips. In particular, we focus on the investigation of the 
commuting flows’ heterogeneity/homogeneity and of the related level 
of ‘openness’ of regions. The results draw a fairly consistent picture of 
German regional labour markets and their hierarchies, in which spatial 
heterogeneity is persistent in time, and can be explained only in part by 
recent socio-economic trends or regional interactions.
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Chapter 1 
 

Introduction: Theoretical and Policy Aspects 
 
 
 
1.1  Motivation for the Study 
 
In recent years researchers and policy makers have become increasingly interested in the 
study and interpretation of socio-economic processes at the meso- or regional level. At the 
present time, the region is often considered to be the ‘place of action’, where micro-behaviour 
and macro-outcomes come together. From a scientific point of view, what used to be the 
major focus of mainstream economists – the analysis of larger areas such as nations – now 
increasingly gives way to the study of regional-economic systems. Although empirical studies 
are carried out at different geographic/political scales, ranging, for example, from the larger 
US states to the smaller EU regions, down to the municipality level, regions are attractive 
units of analysis to researchers for a number of reasons. While nations – with some partial 
exceptions due to trade agreements or more complex relationships such as the EU – can be 
seen as relatively closed economic systems, regions can easily be interpreted as small open 
economic systems (see, for instance, Blanchard 1991). They are often administrative areas 
with a certain competence for economic policy and planning. As such, regions may show high 
levels of heterogeneity and interaction with each other, based on local characteristics, 
mobility of production factors, common institutions and regulations and lack of trade barriers. 
These factors make for fascinating research questions, which are not strictly related to 
economic issues, but also allow (or, one might say, require) us to delve into spatial/regional 
economics, by taking into account – in an interdisciplinary perspective – geography, land use 
planning and resource management, and so on. In this context, the recent development of 
extensive data sets allows the application of sophisticated approximation and forecasting 
techniques. 

From a policy viewpoint, it is straightforward to understand the implications of a deeper 
knowledge of regional economic processes. Most national governments implement 
increasingly local policies to answer the populations’ diverse needs and characteristics. 
Similar concerns can be imagined, for example, for large firms, with regard to the localized 
demand for the goods and services they produce (Armstrong and Taylor 2000). 
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In this framework, the analysis of regional labour markets is also of great importance for 
their financial and socio-economic implications. Localized top-to-bottom labour policies may 
address more efficiently the specific problems of single regions or areas. Moreover, the 
funding for unemployment benefits or employment programmes is distributed, in countries 
such as Germany, on a regional basis. Being able to effectively forecast labour market 
aggregates, such as unemployment levels, is therefore critical. 

These aspects assume even greater relevance if we consider the wide disparities in the 
performance of regional labour markets that many countries experience (see, for instance, 
Elhorst 2003; Bayer and Juessen 2007). We can think of the differences between the northern 
and southern areas in Italy and between West and East Germany, or between urbanized and 
rural areas. Regional disparities are a conspicuous cost for the national economy: for instance, 
because of the welfare policies necessary to support underperforming areas, and because the 
phenomenon of long-term unemployment – frequent in high-unemployment areas – is often 
associated with problematic socio-political aspects (for example, criminality or political 
sclerosis), which add up to the aforementioned costs (see, for instance, Gilles 1998). Regional 
disparities may also slow down the economic performance of the country as a whole, because 
of the consequent inefficient allocation of resources. And, finally, a high heterogeneity among 
regions makes it difficult to provide accurate estimates of their reactions to national trends or 
shocks (Blanchard 2003). In such a scenario, the analysis of the evolution of regional 
disparities, in particular in the short run, is problematic, as many factors which may determine 
heterogeneity deserve thorough consideration. Just a few examples are: the concentration of 
capital due to positive agglomeration externalities; constraints in land use regulations; varying 
quality of infrastructure.  

In neoclassical economics, disparities among regions (for example, in per capita income) 
are expected to decline in the long run, as capital and labour tend to move towards lower- and 
higher-wage regions, respectively, until the equalization of the two factors’ productivity in all 
regions is reached (Armstrong and Taylor 2000). In addition, underperforming regions have 
the possibility of catching up with the richer ones in technology. However, in the short run, 
regional disparities do seem rather persistent (see, for example, Elhorst 2003). 

The present study is concerned with the statistical analysis of the economic indicators 
underlying the aforementioned disparities. Employing disaggregated data sets on German 
regions for our case studies, we analyse and model the heterogeneity in regional labour 
markets. In this context, the relevance of the space-time components is taken into account 
according to different methodological approaches. In addition, we examine regional labour 
mobility – by means of network theory – in order to better interpret the dynamic patterns of 
the dominant and marginal areas. 

The theoretical-methodological framework – and the related empirical research questions 
– supporting the above research agenda are outlined in the next sections. 
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1.2  Labour Markets and Economic Output 
 
The performance of labour markets depends on a number of factors (characteristics of the 
labour force, efficiency of the labour demand/supply match, mobility of labour and capital, 
and so on). Microeconomic processes based on individual utility functions, preferences and 
constraints (such as residential location and mobility choices or employment regulations) have 
been – and still are – widely studied from different perspectives (see, for example, White 
1977; Boyce et al. 1988; van Ommeren et al. 1999a,b, 2000). These micro-mechanisms 
determine the single individual’s choices and are at the basis of the aggregate economic 
results that we observe at the regional (and national) level (such as employment levels or 
commuting flows). The analysis of such phenomena is undoubtedly a sine qua non for 
understanding the inner functioning of labour markets (see, for instance, Fischer and Nijkamp 
1987; Topel 1994). On the other hand, the statistical modelling – let alone forecasting – of 
this type of economic process requires extensive data. 

Therefore, we may also look at aggregate labour market outcomes (such as regional 
(un)employment) from an alternative – yet complementary – perspective. In the 1960s, Arthur 
Okun described and interpreted a recurring empirical finding, according to which changes in 
unemployment are related to the growth of the GDP. In other words, this relationship, which 
is now known as Okun’s law (Okun 1970; Prachowny 1993),1 links economic output and 
unemployment. In more detail, it is suggested that the growth rate of per capita GDP is 
negatively correlated with simultaneous variations in unemployment. The actual extent to 
which GDP affects unemployment has been widely discussed in the literature (Paldam 1987; 
Prachowny 1993). Not only unemployment, but also employment variations are related to the 
aforementioned relationship. In fact, an increase in production levels corresponds – in the 
short run – to an increase in labour demand. This increase leads to higher employment levels 
and to a consequent decrease in the unemployment rate, since, assuming a conventional 
labour/capital production function, firms adjust to the need for increased production by hiring 
more personnel. 

The short-run increase of the labour factor in production is expected, because the 
additional adjustments to increased production need are long-run phenomena. Over a longer 
period, however, improvements in labour productivity are sought, by augmenting the share of 
capital in the production factors. With regard to labour, adjustments to increased demand may 
ultimately generate migration phenomena (depending on the efficiency of the real estate 
market). These medium- to long-term effects are not analysed in this study, as additional data, 
theories and analytical tools would be needed. 

We choose therefore to focus on short-term economic adjustments. At the national level, 
these adjustments – the effect of economic output variations on the labour market – may be 
                                                 
1  Prachowny (1993) actually elevates Okun’s ‘law’ to the level of ‘theory’, providing extended theoretical 

discussion and empirical tests on the validity of Okun’s hypotheses. 
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influenced by the business cycle, together with demographic and institutional factors (Kosfeld 
and Dreger 2006). The need for additional employees can then be absorbed not only by the 
unemployed, but also, for instance, by an increase in participation rates, as discouraged 
workers resume their search for a job. Similarly, in a scenario of a growing labour force, the 
decrease in the unemployment rate might be less than the related increase in employment. 

At the regional level, the above relations are further complicated by spatial matters. As 
regions are small open economies, they are not self-contained (which is most likely the case 
of nations), but are highly interactive. The aforementioned demographic phenomena seen for 
the national case are still relevant, but with the additional element of the interaction between 
regions. In this framework, one of the effects of an increase in labour demand in a single 
region is the increased mobility – towards that region – of the (potential) workers residing in 
neighbouring regions (that is, increased incoming commuting). Similarly, in a downward 
period, workers who are laid off may seek work opportunities in neighbouring regions. 

Additionally, regions may show consistently different levels (or growth rates) of 
economic output. These regional differentials in output are – following Okun’s law –reflected 
in the regional labour market aggregates; that is, employment and unemployment. On the 
basis of the above discussion, we can stress that the observation of such aggregates provides 
us ‘with a signal of where the [regional] economy stands’ (Blanchard 2003, p. 29). In other 
words, changes in regional labour markets, such as an increase in unemployment rates, can be 
interpreted as an indication (a proxy) of the changes in the levels of regional economic 
activity (for example, per capita regional GDP). Evidence of the existence of the relationship 
between per capita regional GDP and unemployment rates can found in the literature (see, for 
example, European Commission 1996). On the other hand, others are more critical of the 
consistency of this relationship over time, because of concerns about the stationarity of the 
series observed (Elhorst 2003). These concerns are, however, related to full employment 
conditions implicit in Okun’s law and can be considered to be particularly relevant in an 
unemployment/regional GDP regression framework and in the medium to long run. 
 
1.3  Regional Interactions and Persistence of Heterogeneity 
 
As mentioned above, in the short run the main adjustments to changes in the level of 
economic activity arise in labour demand. These changes in output levels are due to 
increased/decreased demand for the goods and services produced in the area concerned. A 
distinction should be made at this point, as to what is the final destination of the output. It is 
safe to assume that a share – the extent of which varies from case to case – of the production 
is consumed within the domestic market, while the remaining quantity of goods/services 
produced is destined for export. 

Setting aside the internal consumption of goods, which depends largely on population size 
and income levels, we can consider two examples of the trade of goods and services. At the 
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national level, the exchange of output will happen over country boundaries. The extent of the 
cross-country trade and, in particular, the finding of a positive or negative balance show 
whether a country is an importer or an exporter or resources. For instance, the USA has had a 
negative international trade balance for more than two decades, while smaller countries such 
as the Netherlands tend to have a positive trade balance (CBS 2007). More generally, with 
some notable exceptions such as the USA, richer countries will have positive trade balances, 
and poorer countries will have negative ones. In principle, the same can be expected on a 
regional basis. On the other hand, the analysis of regional trade poses additional obstacles 
than in the case of nations, the major one being the lack of official statistics measuring the 
flows of goods and services between regions (Armstrong and Taylor 2000; Polenske and 
Hewings 2004). The relevance of this aspect appears to be greater if we consider that regions 
are more open systems than nations. In open systems, interregional trade can be expected to 
absorb a larger share of the total output; more generally, interactions between regions have a 
greater role in the socio-economic development of each single region. It has been observed 
that only geographically small countries, such as the Netherlands, rely on trade as much as 
single regions within a larger country, such as the UK. 

The nature and extent of the economic flows between regions is important in our context 
for two main reasons: 

 
(a) The aforementioned Okun’s law refers to closed economic systems (Okun 1970; 

Prachowny 1993), where the increased demand for labour is absorbed internally. This 
is – for the most part – the case of nations, though one might argue that rather small 
countries like San Marino or Luxembourg rely on the open nature of their economies. 
The assumptions of fixed endowment of production factors – one being labour – and 
of constant returns of scale, which are key assumptions of conventional trade models 
such as Heckscher-Ohlin’s (Ohlin 1933), are increasingly undermined by the 
abatement of capital and labour mobility barriers (we can think of free-trade areas and 
the Schengen agreement). Such assumptions also seem to be restrictive when 
considering small open systems such as regions, where an increased demand for 
labour in a particular region may not be sufficiently satisfied internally and is 
complemented by intensified labour mobility (that is, incoming commuting from the 
neighbouring areas). As a consequence, the difference between closed and open 
systems – in particular with regard to regional labour markets – deserves further 
investigation for its implications on the Okun framework described in the previous 
section. 

(b) A second reason for interest in regional trade is related to regional convergence (Barro 
and Sala-i-Martin 1991, 1992). The concept of convergence refers to the economic 
process by which poorer regions tend to catch up over time – for example in per capita 
income – with the richer ones. Though the data employed in the present study do not 
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allow us to verify long-term adjustments and trends (see Chapter 3), it is still possible 
to investigate medium-range (5–10 years) tendencies to regional convergence. In this 
regard, the investigation of convergence in the economic output of regions would 
require knowledge of the interregional exchange of goods and services (flows of 
resources). In particular, because such data, as stated above, are not available at the 
required level of detail, it is not possible to shed light on the network of economic 
interrelations that would favour convergence between regions. An alternative approach 
is therefore necessary. 

 
In light of the above discussion, we can again exploit and reinterpret the framework 

provided by Okun’s law. In the preceding section we argued that labour market aggregates, 
such as unemployment rates, provide information on where the economy stands. Likewise, we 
now argue that the daily flows of workers across regions (interregional commuting) are a 
proxy for (a direct and indirect consequence of) the flows of economic resources between 
regions. Following our speculation, regions with a prevailing outward movement of resources 
will show high rates of incoming workers from the neighbouring regions. Accordingly, 
regions which mainly ‘import’ resources will be providers of labour force.2 In other words, 
the degree of interdependence among regions is expected to be determined by commuting 
flows.  

The significance of labour mobility (often comprising migration phenomena) as an 
indicator of interregional flows, in particular as an implication of open systems with regard to 
regional convergence, is discussed in the recent literature. Magrini (2004) discusses 
interregional interactions in terms of both trade and labour mobility. In an analysis of the 
Chicago metropolitan area, Hewings et al. (2001) come to a conclusion which also seems to 
support the above approach. The authors find that journey-to-work flows, rather than regional 
trade, generate a closer interdependence among regions. The level of interdependence among 
regions is crucial in determining the extent and duration of differentials among them (in terms 
of economic performance). As Arbia et al. (2002, p. 25) stress, in the presence of strong 
regional interdependence, ‘a region experiencing growth propagates positive effects onto the 
neighbouring regions thus producing an acceleration of the convergence process’. Further, on 
the basis of their experiments concerning Italian regions, the authors find that, by taking into 
consideration – by means of spatial econometric techniques – the levels of regional 
interdependence, a significantly higher degree of convergence is found. 

If the extent of the aforementioned regional interdependencies may be an indicator of the 
interaction externalities, the distribution and persistence over time of these interregional 
liaisons are also important, since they show the direction towards convergence or divergence. 
In view of the commuting flows analogy described above, the distribution of labour mobility 
                                                 
2  The existence of more specific phenomena such as the ‘dormitory districts’ can instead be attributed to 

distortions caused by zoning/land-use policies, real estate prices and so on. 
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can tell rather different stories: Do regions which are already economically advanced tend to 
receive increasing or decreasing shares of mobility over time? Do regions evolve from being 
providers of resources to being attractors of resources? Do mobility patterns which are stable 
over time imply a lack of convergence? 

The evolution of the mobility network caused by economic activity can provide a dynamic 
outlook on this convergence process (or on the lack of it). Its study, together with the analysis 
and interpretation of regional differentials in labour markets, may allow the questions listed 
above to be answered. 

Finally, it should be remarked that, while the theoretical links between labour markets and 
economic output outlined here, as well as those made in the preceding section, are at the basis 
of the motivations for the present study, our aim is not to test or prove the validity of Okun’s 
law or other economic theories. We limit our scope to the statistical description and 
interpretation of the labour market-related variables discussed above. 

 
1.4  Objectives of the Study 
 
The aim of the present study is the statistical analysis of regional labour market developments 
and disparities in Germany. In particular, our analysis is carried out following two distinct – 
but interrelated – research questions. 

The first research question concerns the statistical analysis and forecast of the key 
variables that characterize the functioning of regional labour markets, notably employment 
and unemployment. In particular, we are interested in selecting and applying appropriate 
novel methodological tools in order to take into account the complex spatio-temporal 
relationships among regions. Hence, as well as using conventional analytical tools such as 
spatial econometrics, we pay considerable attention to neural networks (NNs) and spatial 
filtering techniques. The NN approach provides advantages over conventional statistical 
techniques, in that NNs are nonlinear methodologies which are able to autonomously learn – 
from the data – functional relationships between the variables employed. We aim to integrate 
in a forecasting framework – through the internal complex interactions of the NN paradigm – 
the various forces that drive regional labour market developments. A further step is taken with 
the use of spatial filtering techniques. This approach allows us to take explicitly into account 
the spatial dependence among regions and to generate more appropriate estimates for the 
labour market variables studied. 

The second research question is concerned with the spatial mobility associated with 
regional labour market developments addressed in the first empirical task. By studying 
commuting flows between regions and their evolution over time, we aim to integrate evidence 
from conventional spatial interaction and urban-economic approaches with statistical methods 
emanating from recently developed network analysis frameworks, such as those related to 
scale-free networks and the concept of ‘hubs’. The integration of such approaches allows us to 
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further investigate patterns of regional disparity. In particular, we explore the emergence and 
the stability of ‘hubs’ of mobility and, consequently, of regional development. In light of our 
findings, a discussion of the mechanisms which drive regional change is offered. 

Together, the experiments related to our two research questions aim to provide novel 
approaches to regional labour market forecasting and modelling. The two-step approach of 
geography-based econometrics and spatial network modelling offers tools for both 
observing/analysing spatial correlation between regional labour markets and interpreting the 
underlying workers’ mobility levels as an indicator of regional interaction. 

 
1.5  Structure of the Study 
 
The present dissertation gathers a number of empirical studies, which provide a progressively 
closer and in-depth analysis of regional disparities in the labour market (see Figure 1.1). In the 
context of the theoretical framework and of the research questions outlined in the previous 
sections, we employ a varied set of methodologies which are described briefly in Chapter 2. 
As a background specific to the case study of this thesis – the German regional labour markets 
– Chapter 3 provides a concise overview of the recent (post-reunification) economic history of 
Germany, as well as of the research carried out with regard to the aforementioned German 
regional disparities, before finally describing in detail the data employed in the study. The 
first three chapters of this study form Part A of the thesis. 

The empirical studies contained in the dissertation can be divided in two main parts. The 
first empirical part (Part B) is concerned with the first research question outlined in the 
previous section, and involves the utilization of novel econometric approaches for forecasting 
and modelling regional labour market changes. We first deal with regional labour market 
forecasts by means of neural networks, while subsequently employing spatial filtering 
techniques in order to accommodate spatial heterogeneity in regional labour market 
aggregates. The second and last empirical part of the thesis (Part C) is concerned with our 
second research question, and deals with the integration of recently developed network 
theories with conventional spatial interaction modelling. 

Part B of the dissertation includes the first four empirical chapters. In the first three of 
these chapters (4–6) we discuss and test the use of neural network (NN) techniques for the 
forecast of variations in regional labour markets. Several factors make NNs a desirable 
approach in this matter, such as: (a) the imbalance emerging from the availability of data 
which are wider horizontally (that is, the geographical disaggregation) than vertically (that is, 
number of observations in time); and (b) the specification constraints and assumptions typical 
of several conventional econometric techniques and further issues such as model 
identification and multicollinearity. NNs offer an alternative approach, since they bypass all 
the above problems, offering a data-driven, unstructured and nonlinear tool. Using German 
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data at the NUTS-3 level of disaggregation3 and full-time employment as a dependent 
variable, Chapter 4 introduces and tests NNs as a forecasting tool, its specific application to 
panel (space-time) data, and the results obtained for a set of basic NN models. 

 

 
Figure 1.1 – Structure of the study 
 

Chapter 5 enriches the preceding analyses by introducing additional NN models, which 
aim to improve the understanding of the causes of regional variations in economic entities. In 
particular, a mixed NN-shift-share analysis (NN-SS) approach is presented and tested. 

                                                 
3  For a description of the data employed in the thesis, see Chapter 3. 
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Components derived from different shift-share analysis paradigms are introduced in the 
models, and these comprise a recently developed ‘spatial’ extension of shift-share analysis. 
As a further level of analysis, Chapter 6 presents a sensitivity analysis, testing the robustness 
of NN models with regard to varying computing parameters. 

In the remainder of Part B, we start off from the analyses of the three preceding chapters, 
and then extend the spatial connotation of our analyses, which was hinted at with the use of 
the spatial shift-share decomposition, in order to take into account the persistent disparities 
observed for the German regional labour markets. These spatial disparities have been recently 
studied employing spatial econometric techniques. In this framework, convergence (or the 
lack of it) between German regions has also been investigated in recent years. We propose the 
use of a novel technique: namely, spatial filtering, in order to investigate time-invariant spatial 
patterns of economic variables, such as unemployment and wages. Subsequently, common 
spatial patterns can be recognized and utilized in an econometric framework. Using German 
regional data on unemployment rates, Chapter 7 presents the computation, description and 
interpretation of time-invariant regional geographic patterns (namely, spatial filters). 
Subsequently, we select new spatial filters, based on the introduction of additional socio-
economic variables (full-time employees, average daily wages and working-age population), 
in order to estimate a simple unemployment model and to compare its statistical results and 
estimates with those emerging from conventional spatial econometric techniques. 

Part C of the dissertation aims to complete the empirical tasks previously carried out, by 
providing a novel integration with spatial interaction analyses. As mentioned in Section 1.3, 
regional interactions are relevant for understanding differences between regions. In particular, 
commuting flows can provide a picture of the exchanges, across administrative boundaries, of 
the labour factor. Journey-to-work trips have long been modelled by means of spatial 
interaction models. We propose the integration of this established approach with novel 
developments emerging from network theory, in order to find the most suitable indicators of 
tendencies towards regional heterogeneity. In this framework, Chapter 8 investigates the 
distributional properties of commuting flows between regions and attempts an interpretation 
of such flows according to spatial interaction functions. Finally, Chapter 9 presents statistical 
results related to the two above approaches – involving space and networks – and analyses 
them in an integrated and systematic fashion. As a final step, we attempt to assess the 
relevance of network effects for identifying regional ‘hubs’ of economic activity. 

Lastly, Chapter 10 summarizes the empirical applications and the related findings 
pertaining to our research questions, and offers suggestions for future research. 

 



 

 

 
 

Chapter 2 
 

Methodological Background 
 
 
 

2.1  Introduction: Progressively Accounting for Spatial and Time Disparities 
 
The main aim of this study is to offer an in-depth statistical analysis of regional labour 
markets in Germany. The emphasis is not on the development of new theory, but on the use of 
advanced and modern statistical tools for analysing the actual evolution of these labour 
markets. Thus, the main idea is: ‘let the facts speak for themselves’. Hence, the present study 
is mainly exploratory in nature and not based on a deductive economic methodology. 

We have already outlined the main motivations for the present study in Chapter 1. The 
main objective of the study – the statistical empirical analysis of disparities in regional labour 
markets – is addressed, over the course of the applied chapters of the thesis (Chapters 4–9), 
following the research questions stated in Section 1.4. These research questions outline the 
importance of analysing spatio-temporal processes and the consequent emerging patterns, 
such as network structures. 

In particular, the focus – in our experiments – on space and time is highlighted by the 
utilization of three main analytical approaches – neural network forecasting techniques, 
spatial econometrics, and network theories. We intend to analyse the evidence of spatial 
correlation and networks in regional labour markets and their performance indicators. The 
choice of the methodologies adopted – and the order in which they are presented in the study 
– is motivated as follows: 

 
(a) Step 1: Neural networks (NNs) are recently developed computation techniques which 

aim to overcome the limitations of conventional (linear and nonlinear) methods by 
means of a data-driven approach. As such, they represent a fascinating tool for 
analysing or forecasting complex functional relationships like those that can be 
expected for the case of a large set of small, contiguous regions. 

(b) Step 2: Spatial econometrics explicitly acknowledges the influence of geographical 
proximity on the value of (georeferenced) variables. The use of contiguity matrices 
allows us to extend conventional econometric models, while the computation of 
statistics such as Moran’s I or the Geary ratio provides synthetic indicators of the 
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extent of spatial autocorrelation (SAC) in the data. In this framework, spatial filtering 
techniques, such as the one employed in this study, aim to discern map patterns in 
georeferenced data and account for large- and small-scale spatial effects. 

(c) Step 3: Network analysis is employed in the study of regional commuting flows. 
Examining home-to-work trips from a conventional ‘spatial interaction’ perspective, 
and from the novel perspective provided by recently developed network theories 
allows us to investigate complementary aspects of labour mobility and to reinterpret 
the spatial relationships between regions and the different performances of their labour 
markets. 

 
The remainder of this chapter briefly describes these three methodological approaches and 

discuss the added value of each of them for our analyses and the research questions 
investigated. 
 
2.2  Neural Networks 
 
2.2.1  Forecasting Regional Employment with Neural Networks 
 
The need for accurate forecasts of modern socio-economic (regional and national) systems 
has been growing in recent years (for a discussion of the importance of forecasting, see, 
among others, Daub 1984). Most economic interventions, such as the distribution of federal or 
EU funds to less favoured regions, require adequate policy preparation and analysis, usually 
made well in advance, and, often, at a disaggregated level. In this context, an emerging 
problem is the increasing level of disaggregation for which economic data are collected, and, 
hence, the imbalance between the number of disaggregated (regional) figures to be forecasted, 
and the quantity of observations (usually years) available. Although conventional econometric 
techniques can be useful in this respect (see, for example, Bade 2006), it is well known that, 
in addition to the many constraints and hypotheses that these econometric models have to 
cope with, such as the use of fixed regressors, the choice of the model specification – and, 
most important, of the explanatory variables to be used – is crucial. These econometric tools 
all have their own merits, and have contributed to significant progress in the understanding of 
complex labour market dynamics. However, the great abundance of data that has emerged in 
the recent years has presented new challenges to both researchers and policy makers. 
Researchers have to be selective regarding the choice of a method that is suitable for analysis 
and forecasting, while policy makers have to be alert to the results – and in particular the 
robustness – of predictions offered to them. 

A new approach to this problem of large data sets in complex spatial economic systems 
that is able to overcome some of the aforementioned limitations of conventional econometrics 
– especially in the framework of short-term forecasts – is provided by neural networks (NNs), 
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a family of nonlinear statistical optimization methods, which can override such restrictions 
(see, for example, Cheng and Titterington 1994). The NNs’ capacity to learn from the data, 
and to find functional relationships among variables, makes it possible to forgo strict 
statistical assumptions and specification problems, and to process data by means of a flexible 
statistical tool. The present use of complex forecasting models is made possible by the 
dramatically increased computational power of computers, which can now handle large data 
sets. 

Chapters 4–6 of the present study are concerned with the use of NNs in order to forecast 
regional employment change. Employment data are necessary in economic and regional 
policy analysis. Pension systems, social security reforms and annual policy-making tasks, 
such as the establishment of budget allocations, require detailed employment forecasts. 
Focusing on the evolution of labour markets in Germany, our NN experiments focus on short-
term employment forecasts. 

The aim of our experiments is not to validate the use of an NN in itself (nowadays NNs 
are widely used in different research fields in many disciplines), but to explore an NN’s 
ability to forecast changes in economic variables in a panel data framework, with particular 
attention to regional labour markets. This is, however, not a straightforward procedure: 
applications of NNs to time series data – or to other pattern recognition settings – are rather 
frequent, while contributions on NNs dealing with panel data are very limited. The high 
number of cross-sections in panel data such as the ones employed in our study and the limited 
number of years for which the information is available are a problematic issue for 
conventional econometric techniques. Here lies the rationale underlying our methodological 
choice of NN techniques. 
 
2.2.2  Neural Forecasting 
 
Forecasting is one of the main functions of NNs (see, for example, Werbos 1974; Lapedes and 
Farber 1987; Weigend et al. 1990). With regard to economics, several reviews of the use of 
NNs in business/financial applications can be found (we refer, for example, to Herbrich et al. 
1999; Vellido et al. 1999), while a wider look at neural forecasting is provided by, amongst 
others, Zhang et al. (1998). For a historical review of the NN methodology we refer to, 
amongst others, Taylor (1997). 

Neural forecasting is attractive to researchers and practitioners in economics for a number 
of reasons, one being the weaknesses of both linear methods (which are meant to forecast 
future values which are linearly related to previous observations) and nonlinear methods 
(which can indeed incorporate richer data information but were developed for specific 
problems: for example, logit models are used for discrete choice problems). The nature of the 
data-generating process is indeed a critical issue, in particular concerning whether it has linear 
or nonlinear characteristics, which defines which statistical (forecasting) tool is most suitable 
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(see Chapter 4). Additional issues pushing towards the utilization of NNs in forecasting relate 
to data quality. Multicollinearity (in a panel data framework) and noise in the data can 
invalidate the results of conventional regression analyses. 

A wide literature is available that examines the (possible) advantages of NNs and draws 
comparisons with conventional statistical methods (see, amongst others, Cheng and 
Titterington 1994; Swanson and White 1997a,b; Baker and Richards 1999; Sargent 2001). For 
example, Nijkamp et al. (2004) compared NNs with logit and probit models in an analysis of 
multimodal freight transport choice. The evaluation of the effectiveness of NNs shows quite 
some variety in the literature: with respect, for example, to variables such as employment, 
industrial production, or corporate profits, as different authors have either made positive 
observations (Swanson and White 1997b; Adya and Collopy 1998) or have come to negative 
conclusions (Stock and Watson 1998). Stock and Watson (1998) concluded that NNs, and 
nonlinear methods in general, mainly perform worse than linear methods. On the other hand, 
Swanson and White (1997b, p. 459) suggest that it could be possible to improve 
macroeconomic forecasts ‘using flexible specification econometric models’, whose 
specification ‘is allowed to vary over time, as new information becomes available’. Finally, 
Adya and Collopy (1998) found that, most of the time, NNs seem to provide better forecasts 
than the models with which they are compared. Examining a string of studies which 
developed NNs for business forecasting, they find that, of the studies correctly validating and 
implementing the NN models, 88 per cent show that the NNs have a superior performance. 

NNs have been extensively used in economic fields, as well as elsewhere, ranging from 
pattern recognition to transportation (Himanen et al. 1998; Reggiani et al. 2000). In the labour 
field, NNs have been employed in the study of labour productivity (Sonmez and Rowings 
1998; Lu et al. 2000), or in the analysis of market segmentation (Gaubert and Cottrell 1999). 
Longhi et al. (2005a,b) have studied the application of NNs in a panel and cross-sectional data 
framework. 
 
2.2.3  The Neural Network Method 
 
NNs are solid statistical validation tools, even though they are often referred to as a ‘black 
box’ approach. Though they are regarded as such particularly in the social sciences, because 
of their no-theory modelling characteristics, NNs are not an obscure tool. The internal 
functions that process the information inputs, as well as the algorithms that determine the 
direction and the degree of interaction of the factors, can be clearly explained formally and 
mathematically. On top of this, they can be proven to be consistent with standard goodness-
of-fit conditions (see, for example, Schintler and Olurotimi 1998). The main characteristic of 
NNs is their ability to find numerical solutions when the relationships between the variables 
are not fully known. Thus, they are particularly useful when one has a limited knowledge of 
the phenomenon examined. 
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NNs originate from the scientists’ interest in the development of techniques that could 
replicate the type of simultaneous information processing and data-driven learning seen in 
biological networks. Since Rosenblatt’s first introduction of an artificial NN (Rosenblatt 
1958) and the works of Werbos (1974), who provided a proper mathematical framework, and 
those of Rumelhart and McClelland (1986), who developed the most commonly used error-
correction algorithm (backpropagation – see Chapter 4), many developments have been made 
in the NN framework. 

Similarly to what happens in the human brain, calculation in NNs is distributed over a 
number of processing units (neurons), which work in parallel. These units are distributed in 
‘layers’ and are internally connected through a set of weights. The layers are made up of units 
which represent the input variables, the output variables, or intermediate (hidden) 
computational units. In feedforward NNs, the most popular family of NN methods, the units 
of each layer are unidirectionally connected and transfer information only to units of the 
succeeding layer. 

Following Fischer (2001b, p. 23), we define the generic processing unit ui,n as: 
 

 , 1 1φ( ) [ ( )],i n n nu f− −= = ℑu u  (2.1) 

 

where { }1 1, 1 , 1,...,n n k nu u− − −=u  is the preceding layer of units, and the transfer function φ  can 

be decomposed into two separate functions: the activation function ,ℑ  and the integrator 

function f. The integrator function is used to aggregate the data entering the processing unit 
ui,n into a single input. The integrator function is a weighted sum: 
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where uj,n – 1 is the jth unit connected to unit ui,n, and wij,n−1 is the weight connecting the two 
units (Fischer 2001a). The activation function – most often a sigmoid/logistic function – 
computes the unit’s output and can be represented as (Fischer 2001b, p. 24): 
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where β defines the slope of the curve. The value of β can be selected a priori or, for example, 
by means of sensitivity analysis. It is worth noting that, in NNs, all the input variables are 
rescaled to the (0, 1) interval. Accordingly, the outputs of the algorithm – as suggested, for 
example, by the use of sigmoid functions – are also in the same interval. These are 
subsequently rescaled to the output numerical interval observed in the sample data. 
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A recursive modification of the weights employed in Equation (2.2) guides the ‘learning’ 
process (see Chapter 4 or, for instance, Rumelhart and McClelland 1986) of an NN. This 
recursive weight computation is often carried out by means of the backpropagation algorithm 
(BPA). The BPA – as does every other ‘supervised’ NN algorithm – uses input examples and 
their corresponding outputs (provided by the analyst) in order to map out and replicate the 
data-underlying behaviour. Two parameters – ‘learning rate’ and ‘momentum’, which are 
discussed later in the study – define, respectively, the extent and the duration (in terms of 
iterations) of the corrections. 

For our experiments concerning regional employment forecasts, we employ conventional 
feedforward NNs. Chapters 4–6 detail the particular settings used (for example, for the 
calculation of the NN weights) and the implementation of the NN models for our case study. 
Additional methods (instrumental to NNs), such as genetic algorithms or shift-share analysis, 
are also described. 
 
2.3  Spatial Econometrics and Spatial Filtering 
 
2.3.1  Spatial Econometrics for Regional Labour Market Analysis 
 
The neural network (NN) method outlined in Section 2.2 is employed in our study as a tool to 
forecast the development of regional labour markets. Although NNs provide a nonlinear 
response to the different stimuli that influence the performance of the single regions, they do 
not take into explicit consideration the fact that noise and shocks in regional labour markets 
are not symmetrically distributed in space. Similarly, small open systems such as regions can 
be expected – as stated in Chapter 1 – to have a great level of interaction between them and, 
consequently, to influence each other’s economic performance (for example, regional 
spillovers). Correlation ‘in space’ among regions is evident, for example, in Germany, most 
evidently in its still-existing East/West economic divide. Although in Chapter 5 we attempt to 
(partially) answer the need to consider the above effects by enhancing NN models with 
(spatial) shift-share analysis components, the issue remains an open one, which conventional 
econometric techniques also cannot resolve. 

A systematic detection of these spatial structures in the data and their inclusion in 
econometric models is necessary in order to correctly assess economic relationships: for 
example (as observed in our case study), the one between unemployment rates and a set of 
explanatory variables. We are therefore interested in the application of a set of techniques and 
models known as ‘spatial econometrics’ (see, for example, Anselin 1988). These methods 
take into account within econometric models – by means of a geographic weights matrix – the 
proximity relations of regions, with regard to both the variable being analysed and the 
explanatory variables. 
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Spatial econometric techniques appear to be of particular use, for example, with respect to 
the case of unemployment, for which a persistence of regional disparities has been observed 
(see, for example, Suedekum 2005). Persistent regional differentials contradict the idea that 
residential and labour mobility act as a balancing device until the disparities themselves 
become less. Differentials in unemployment can therefore be associated with, for example, the 
level of amenities of the regions, which generate, as economic compensation, higher/lower 
wages and lower/higher unemployment for disadvantaged/advantaged locations (Elhorst 
2003). 

More generally, it is a demanding task to include in an econometric model all the factors 
that may determine regional unemployment differentials and the observed spatial patterns. 
These factors may be socio-economic or locational: spillover effects, and rigidities in the 
labour markets (highly unionized workers) or in mobility (high real estate prices). 
Consequently, in modelling labour market dynamics the analyst may choose to focus on a few 
main explanatory variables relating to labour demand and supply, such as employment, 
population, or wages, in order to explain – as in our case study – unemployment variations. 
The effects of the remaining (excluded) factors – in particular if related to location – might 
identify a set of spatial structures. We propose the use of spatial filtering techniques: namely, 
the ones developed by Griffith (1996, 2000, 2003), in order to account for spatial structures 
due to unobserved/omitted variables. The inclusion of what is called a ‘spatial filter’ in an 
econometric model aims to provide correct estimates of the functional relationships between 
the dependent variable (unemployment) and its identified covariates. 
 
2.3.2  Spatial Econometrics and the Spatial Filtering Method 
 
It is common to refer to the extent of the aforementioned spatial structures in the data as a 
problem of ‘spatial autocorrelation’ (SAC). SAC is defined as the correlation, amongst the 
values of a georeferenced variable; that is attributable to the proximity of the objects to which 
the values are attached. Consequently, positive autocorrelation implies that the geographical 
proximity of two objects tends to produce similar values of the variable examined for the two 
(Cliff and Ord 1981). This phenomenon is often observed in reality, especially in economics. 
On the contrary, negative spatial autocorrelation is seldom observed and studied, though a 
renewed interest in this particular phenomenon emerged recently (see, for example, Griffith 
2006). The most common indicator of spatial autocorrelation is the Moran statistic (Moran’s 
I, hereafter abbreviated to MI). This is calculated as follows: 
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where, in the case of a set of N regions analysed, xi is the value assumed by the generic 
variable x in region i, and wi,j is the cell (i, j) of a geographic weights matrix W, indicating the 
proximity of each pair of regions i and j. Proximity is often defined by means of a geographic 
connectivity matrix W, of dimension N x N. Binary matrices are often used, containing only 1 
and 0 values, depending on whether the regions to which each cell is associated are, or are 
not, neighbours. Different types of matrices are available in the literature, based on different 
standardization procedures. Chapter 7 briefly discusses possible modifications of geographic 
weights matrices. 

From a statistical analysis point of view, the spatial structures highlighted by the spatial 
autocorrelation measures are problematic, since they make standard statistics, such as 
correlation coefficients or ordinary least squares (OLS) estimates, potentially inappropriate 
(see Chapter 7). 

Among the variety of spatial econometric techniques for the statistical analysis of 
georeferenced data, spatial autoregression (see, amongst others, Anselin 1988) is commonly 
employed. Recent examples of its application to the case of Germany are, amongst others, 
Elhorst et al. 2002; Niebuhr 2003; Longhi and Nijkamp 2006. Spatial autoregressive 
techniques take into account spatial effects using geographic weights matrices. These matrices 
measure the spatial linkages (dependence) between the values of a georeferenced variable. A 
general notation of the spatial autoregressive model, which is known as a Cliff-Ord-type 
model, has been proposed by Anselin (1988): 
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Models of this type can be estimated either by (quasi-) maximum likelihood (ML), as 

described in Anselin (1988, 2001) and Lee (2004), or by the generalized method of moments 
(GMM, also known as 2SLS, 3SLS or IV estimation; Kelejian and Prucha 1998, 1999; 
Anselin 2001). These estimators assume that the autocorrelation pattern can be 
combined/concentrated in one or two parameters and that the spatial weights matrix W 
describes the spatial interdependence adequately. 

An alternative approach to spatial autoregression is the use of spatial filtering techniques, 
such as the ones described in Getis (1995) or Griffith (2003). The main advantage of these 
filtering procedures is that the studied variables (which are – initially – spatially correlated) 
are split into spatial and non-spatial components. These components can then be employed in 
an OLS modelling framework. In addition, filtering out spatially autocorrelated patterns 
enables one to reduce the stochastic noise normally found in the residuals of standard 
statistical tools such as OLS. This conversion procedure requires the computation of ‘spatial 
filters’. 
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Applications of spatial filtering techniques, using the one developed by Griffith (2003), 
have recently been carried out by Kosfeld, Dreger and Eckey (Kosfeld and Dreger 2006; 
Kosfeld et al. 2006a) for the case of Germany. These contributions deal with German regional 
labour markets, exploiting the spatial filters in order to improve understanding of different 
phenomena, such as the Beveridge curve or (un)employment thresholds. Applications 
applying Getis’s (1995) approach can be found as well in Badinger and Url (2002), who 
analysed the Austrian regional labour markets, and in Mayor and López (2006) for the case of 
Spain. 

For the experiments presented in this study, relating to regional labour markets, the 
approach developed by Griffith is to be preferred to the one by Getis, which requires variables 
with a natural origin and positive value. Consequently, rates, percentage changes, and so on, 
can not be used in the Getis approach. 

To compute the spatial part of variables, spatial filtering techniques rely on the 
computational formula of the MI. The methodology uses eigenvector decomposition 
techniques, which extract orthogonal and uncorrelated numerical components from a 
geographic weights matrix of dimension N x N. Details on the computation of the spatial filter 
components are provided in Chapter 7. This approach may be compared to that of principal 
components analysis (PCA), as in fact both methodologies generate orthogonal and 
uncorrelated new ‘variables’ that can be employed in a regression analysis framework. 
However, while the PCA components may have an economic interpretation (eigenvectors are 
used to construct linear combinations of attribute variables), spatial filters are linear 
combinations of the eigenvectors themselves and represent the latent SAC (or redundant 
information due to spatial interdependencies) of a georeferenced variable, found according to 
the given geographic weights matrix. Moreover, the single eigenvectors can be observed to 
represent specific spatial patterns tied to administrative/economic/social factors. 

When employed as additional regressors in an otherwise non-spatial regression equation, 
the computed eigenvectors (usually a subset of the whole set) may function as proxies for 
missing explanatory variables, and account for the residual spatial correlation in the data. 
Notably, the top two eigenvectors that are computed often identify map patterns along the 
cardinal points, that is, major North-South and East-West patterns (for example, the German 
East/West divide), while the subsequent eigenvectors display map patterns at a smaller scale. 
In this framework, the advantage implied by the orthogonality of the eigenvectors is that 
partial correlations and multicollinearity issues do not arise. Each eigenvector selected for 
inclusion is considered to be part of a ‘spatial filter’ for the dependent variable. If this is 
regressed on its own spatial filter, the regression residuals constitute the spatially filtered part 
of the variable. Additionally, a (presumably) smaller set of eigenvectors can be computed, 
including further covariates in the analysis. In this case, the selected eigenvectors will account 
for the SAC in the dependent variable and in the covariates. This approach would allow non-
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spatial regression models (either linear or nonlinear) to be implemented by incorporating the 
appropriate spatial filter computed. 

 
2.4  Network Analysis 
 
2.4.1  Investigating Labour Mobility Networks 
 
We have pointed out in the preceding sections that spatial econometrics and the spatial 
filtering methodology outlined above do provide a systematic way of including – in an 
econometric framework – spatial relations between regions. In particular, spatial filtering 
allows us to observe what the main spatial patterns underlying georeferenced data are. The 
map patterns visualized through the spatial filter components are a useful tool for econometric 
computation (for example, they do not require complex estimation methods) and can be 
interpreted visually. 

However, spatial econometrics cannot guide the analyst beyond the observations and 
acknowledgement of such spatial structures inherent in data. The further step which is 
required in the analysis of the evolution in space and time of these spatial patterns is their 
interpretation. Even if new theories or empirical regularities are not investigated, being able 
to ‘read the data’ more in-depth is essential to a successful spatial economic analysis. Our 
case study on regional labour markets in Germany is no exception to this rule. Consequently, 
we need to inspect the regional labour dynamics more thoroughly. 

In Chapter 1 we stated that interactions between regions contribute to generating spatial 
associations and, more generally, patterns of development (whatever the economic variable 
observed), as shown by spatial econometrics. We then stressed that commuting flows can be 
employed as a proxy for the levels of regional interaction. If we analyse regional labour 
mobility (in time and space), we can observe that the aggregate flows of workers between 
their place of residence and their place of work underlie to a (mobility) network. Spatial 
interaction theories (Wilson 1967; Sen and Smith 1995) have long been employed in 
explaining such patterns of mobility, including by means of established analytical tools such 
as the four-step transport model. Recent theoretical and empirical developments link mobility 
and employment in general to further phenomena, such as agglomeration (see, for example, 
Fujita et al. 1999; Fujita and Thisse 2002) or spatial mismatch (Brueckner and Zenou 2003). 

In particular, a growing literature is available that studies commuting in a spatial or 
network framework. Spatial job-matching processes have been widely studied in a social 
network framework (Montgomery 1991), while job mobility has been investigated in both an 
urban and a regional network context (for example, see Thorsen et al. 1999; van Nuffel and 
Saey 2005; Russo et al. 2007). Russo et al. (2007) use commuting flows in Germany to 
identify ‘entrepreneurial cities’ in Germany. Van der Laan (1998) and van Nuffel and Saey 
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(2005) investigate – on the basis of commuting flows – the emergence of local and regional 
multi-nodality for the Netherlands and the Flanders area, respectively. 

On the basis of the aforementioned developments, we propose the use of network 
theories4 in order to assess the relevance of the connectivity and topology of the German 
commuting network, in addition to the economic variables that influence the volume and 
distribution of these flows. The reason for studying commuting in a network perspective is the 
idea that the network distribution of mobility can help to explain other relevant economic 
phenomena, such as variations in key labour market indicators or production levels. It is also 
possible to observe how the network topology – and its changes over time – affects the 
dynamic trajectory of the geographic commuting network and its hierarchies. 

For this aim we employ recently developed network theories, which emerged in the works 
by Barabási and Albert (1999). The following section briefly describes recent contributions to 
complex network theory. 

 
2.4.2  Network Theory and Scale-free Networks 
 
This section briefly reviews the main issues related to recent network theories in the social 
sciences, and in particular their implications for commuting and transportation networks. 
Networks have had considerable attention in the past years in regional and spatial science (for 
a review, see, for example, Casti 1979; Batten et al. 1995; Nijkamp and Reggiani 1998). In 
graph theory, research had been carried out some 40 years ago by Erdös and Renyi (1960), 
whose major assumption was an underlying random network structure. However, because of 
insufficient computational power and suitable data, for most of the 20th century, these random 
theories formed the basis for the most common methods of network simulation in social 
sciences, although they were not adequately challenged (Barabási 2001). Recently, Albert and 
Barabási (2002) offered stronger foundations and applications to network theory in the social 
sciences, by developing the new framework of ‘scale-free networks’,5 in contrast to random 
networks (in this regard, see also Jackson and Rogers 2007). In particular, these authors found 
that several (large) networks were behaving according to three main characteristics: 
 

(1) Short average path length; 
(2) High level of clustering; 
(3) Power-law and exponential degree distributions. 
 

                                                 
4  A network can be defined as ‘an ordered connectivity structure … which is characterized by the existence of 

main nodes which act as receivers or senders (push and pull centres) and which are connected by means of 
corridors or edges’ (Nijkamp and Reggiani 1998, p. 132). 

5  Scale-free networks are characterized by the presence of a few nodes (the ‘hubs’) with a high number of links 
(a high ‘degree’), while the remaining nodes have only a limited (and fast-decreasing) number of links. 



24 Chapter 2 

 

In detail, ‘short average-path length’ indicates that any two nodes on a network can be 
reached with a limited number of hops. High clustering, on the other hand, occurs because of 
nodes locating topologically close to each other in cliques that are well connected to each 
other. This property had been formalized by Watts and Strogatz (1998). Finally, the frequency 
distributions of node density (or, more generally, number of connections) are called ‘degrees’ 
and can follow power-law and exponential distributions. This third property implies 
connections that cut across the graph, directly linking different clusters of vertices. These 
direct links between clusters bring an increased level of efficiency – in terms of number of 
hops – to the network. This result shows the limits of the Erdös and Renyi models, in which 
the exponential decay of the degree distribution does not imply a higher number of 
connections available to the most important nodes. The novelty in the Barabási-Albert 
approach is incorporating an additional component: network growth. Consequently, not only 
can the number of nodes in the network increase but new nodes are found to have a higher 
probability of connecting to other nodes that are already well-connected (preferential 
attachment). 

A certain amount of literature is now available on the analysis of transportation networks 
– even though not on commuting – in terms of network theory (Reggiani and Schintler 2005). 
Because of their short average path length, airline networks have been considered by Amaral 
et al. (2000) as a ‘small-world’ network,6 referring to the model presented by Watts and 
Strogatz (1998). On the other hand, the same authors note that the structural limitation of 
airline networks, such as the limited space available in the airports, may hinder the emergence 
of scale-free properties. Other authors have found similar results. This could also be thought 
to be the case for commuting networks, as the number of nodes in the networks (the regions) 
and the transport infrastructure are not subject to dramatic changes. In other transport-related 
studies, Latora and Marchiori (2002) analysed the Boston subway network, while Schintler 
and Kulkarni (2000) observed congested road networks. Both articles found small-world 
network properties in the analysed networks. The suitability of transport networks for an 
evolution in time towards a scale-free structure, as well as the implications of such networks, 
are discussed in Chapter 9. 

The experiments carried out on German labour mobility test the relevance of the above 
network theories for our case study. We investigate the importance of connectivity in 
identifying the most ‘active’ and ‘mobile’ regions in Germany, and in explaining the regional 
hierarchies observed and – most importantly – their evolution. 

A description of the data sets employed in our empirical analyses, as well as a brief 
discussion of the socio-economic context in Germany, is presented in the next chapter. 

 

                                                 
6  Small-world networks can be described as rewired and highly clustered networks, which also exhibit small 

average shortest-paths. 



 

 

 
 

Chapter 3 
 

Context and Data Description 
 
 
 
3.1  Post-Reunification Germany 
 
Germany is the largest economy in Europe. Because of its economic size, local shocks in 
Germany are likely to have repercussions for the entire European Union (EU), and in 
particular for those countries which share borders or have strong commercial liaisons with 
Germany. In this framework, the most relevant – and we might say ‘exogenous’ – socio-
economic shock in the last decades has been the reunification of the formerly separate West 
and East Germany. 

The economic reunification of Germany occurred on 30 June 1990, shortly before the 
actual political/administrative reunification, which took place on 3 October of the same year. 
With the economic merger of the West and the East, free movement of capital and labour, as 
well as of goods, was introduced. The German reunification process can be considered, from 
many perspectives, a successful operation, as the East has effectively restructured its legal 
system, preserved its cultural heritage, and adjusted its standards to the Western ones in terms 
of attention to the environment and to higher education (Berg 2005). 

However, the considerable progress experienced in East German society in recent years 
has not been matched by a similar degree of economic progress. The economic reunification 
of West and East Germany has in fact been highly problematic from the very first moments, 
when the newly unified markets for consumption goods generated, almost immediately, a 
demand crisis and a consequent rise of unemployment rates in East Germany. The growing 
desire for Western-produced goods and the more efficient production standards of the West 
represented a huge problem for the East German firms, of which only 8 per cent were able to 
competitively adjust to the new reality (Akerlof et al. 1991). Evidence of such decay in 
Eastern production levels is provided by the employment figures for the area (see Figure 3.1: 
ratio between the employment levels of 2004 and 1993). The strong migration towards the 
West of the country, as well as the more-than-proportional counterurbanization7 (and loss of 

                                                 
7  ‘Counterurbanization’ is defined as a trend of population movement from urban towards rural areas (Berry and 

Cohen 1973). 
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employment) of the agglomerated areas (Kiehl and Panebianco 2002) are further indicators of 
the reduced economic opportunities of East Germany. 

 

Legend
German NUT-3 districts
Employment ratio 2004/1993

0.43 - 0.71

0.72 - 0.82

0.83 - 0.92

0.93 - 1.06

1.07 - 1.28

 
Figure 3.1 – Full-time employment trends in Germany, 1993–2004 (ratio of 2004 and 1993 

employment levels) 
 
As a result of the reunification process, Germany experienced – in the 1990s – low 

economic growth and high unemployment rates, while other countries such as the US showed 
(under the Clinton administrations) high development rates. On the one hand, this difference 
in performance can be attributed to the more rigid German labour regulations and institutional 
and policy structures. On the other hand, attempts to introduce the New Economy (a transition 
from a manufacturing-based economy to a service economy: see, for example, Stiglitz 2004) 
in East Germany were not entirely successful (Bonin and Zimmermann 2000). Although the 
number of individuals employed in research-and-development (R&D) increased greatly, and 
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evidence has been found, for the 1990s, of a positive correlation between economic growth 
and start-up rates (Audretsch and Fritsch 2003), this happened for the most part in the 
Western areas of the country. 

In recent times (the 2000s), the employment statistics have shown an overall decline in 
employment for Germany in 2002 and 2003. Confident hopes for a trend turn were fuelled in 
2004 by a positive spike, only to be shattered by a negative result for 2005. Accordingly, the 
long-term unemployment rates – which could be interpreted as an indicator of labour market 
rigidity – were found in 2005 to be even higher than in countries such as Italy. In the 
meantime, the quality of jobs has also changed: in 2005, part-time employment represented 
about 25 per cent of the total employment (40 per cent for women), showing a growth in its 
share – over five years – of more than 4 per cent. However, the number of working hours per 
person decreased by 2.2 per cent in the corresponding period (European Commission 2006). 

After more than 15 years since the reunification, the East is still struggling economically 
(Wunsch 2005). Local employment rates are low, intense migration to the West – in particular 
by highly skilled and educated workers – is observed, as well as a lack of medium-size 
businesses and entrepreneurship initiatives (Berg 2005). Unemployment in East Germany has 
risen from 10 per cent (in 1991) to 20 per cent (in 2004) (Wunsch 2005) and the employment 
gap between the East and the West has widened still further (Kiehl and Panebianco 2002). 

In addition to these disappointing results for the East, the reunification process brought 
severe difficulties for the West as well. Nowadays, solidarity transfers to the East amount to 
€70–80 billion per year, with an estimated total cost of the reunification around €1.5 trillion. 
As the reunification costs amount to about 4 per cent of the annual German GDP, and the rate 
of economic growth is considerably below 4 per cent, it has been underlined in government-
related documents how the economic base of Germany is being undermined by this process. 
Visible effects can also be observed with regard to West Germany, which is also experiencing 
levels of high and persistent unemployment.8 The next section contains a brief discussion of 
the German-wide regional differentials and persistent patterns of unemployment. 
 
3.2  Regional Labour Market Disparities 
 
Regional (economic and labour market) disparities are not a phenomenon unique to Germany. 
Plenty of examples of regional differentials can be found all over Europe. These have been 
extensively studied at an intermediate aggregation scale (NUTS-2: see Section 3.3.2), in 
particular with regard to the effects of the massive structural funds provided by the EU in 
favour of disadvantaged regions. This topic became even more critical with the recent entry of 
less-developed countries in the enlarged EU. But, even on a single-country scale, wide 

                                                 
8  It should be pointed out that generally higher unemployment rates have been observed in the same years in 

most of Europe, therefore making a case for a possible upward shift of the equilibrium unemployment rates 
(Taylor and Bradley 1997). 
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disparities can still be observed. For example, Italy had, in 2006, the widest differential in 
employment rates between regions. With regard to our case study, while these differentials 
have been reducing in Italy, they have been increasing in Germany (European Commission 
2006). 

This is particularly relevant in the light of the German Constitution (Basic Law for the 
Federal Republic of Germany, Article 72), which states the equity principle of ‘equal living 
conditions throughout the federal territory’ (see also Eckey et al. 2007). It is therefore 
considered a crucial policy objective to alleviate regional disparities, in particular with regard 
to the East-West (EW) differentials. While the debate continues on whether or not an actual 
economic convergence process has started between the German regions and is the subject of 
several studies (see, for example, Niebuhr 2001; Juessen 2005; Kosfeld et al. 2006a; Eckey et 
al. 2007), disadvantaged regions in Germany still benefit from the EU structural funds and 
from the joint task ‘Improving Regional Economic Structures’ (Gemeinschaftsafgabe 
Verbesserung der regionalen Wirtschaftsstruktur, GRW). Nevertheless, despite the subsidies 
aimed at pushing the East German economy towards the standards of West Germany, wide 
differences still exist, and not only on the East-West axis (see, in particular, Chapter 7 of the 
present study).9 

In September 2004, German regional unemployment rates varied from 4 to 27 per cent 
(Blien et al. 2005). Bonin and Zimmermann (2000) attribute the high unemployment rates 
observed in the East mainly to labour supply. The authors point out that the employment 
levels of the East have actually converged to almost those of the West, but, in the context of a 
different demand structure; that is, the East has not developed into a service economy (as 
pointed out in the preceding section). The continuing out-migration of educated workers to 
the West contributes to the shortage of part-time, service and independent jobs. A summary of 
the labour market characteristics of different German areas is provided by Blien et al. (2005, 
Table 4). 

More generally, in Taylor and Bradley (1997) additional causes for spatial differentials 
amongst regions can be: 

 
(a) the periodic cycles in regional production levels; 
(b) real wages in excess of the corresponding productivity levels (unemployment can be 

expected to be lower in highly productive regions); 
(c) an unfavourable regional production mix. For example, northern regions such as 

Niedersachsen and Schleswig-Holstein and generally East Germany have suffered 
from the decline of their heavy manufacturing industry, while, conversely, Baden-
Wurttemberg and Bayern have benefited from the composition of their industrial mix; 

                                                 
9  For a discussion of the determinants of high unemployment rates and regional differentials, see, for example, 

Taylor and Bradley (1997) and Elhorst (2003). 
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(d) the mix of urban and rural areas. It is expensive for firms to operate and expand in 
congested areas (see, for example, McCann 2001). Consequently, small- and medium-
sized firms tend to experience faster growth in less urbanized areas, and foreign direct 
investment (FDI) for new production plants tends to concentrate in Greenfield sites.10 

 
Accordingly, with reference to the latter point, agricultural regions in Germany tend to have 
lower unemployment rates. Unemployment is positively correlated with job density, while it 
is negatively correlated with the size of the labour market (in terms of number of jobs); that is, 
larger agglomerations offer more work opportunities, therefore shortening the job search time 
(Taylor and Bradley 1997). 

Still, the former EW divide is the most relevant spatial structure in defining regional 
inequalities. With regard to per capita GDP, in 1992 all eastern districts but three (Berlin 
being one) appear in the lower third of the full distribution of German regional GDP. In 2001 
80 per cent of East German districts (compared with 97 per cent in 1992) were still in the 
poorest group (Colavecchio et al. 2005). 

While these data imply a certain catching-up of the East German districts – in particular 
with the emergence of a few higher-income districts – a case could be made about the 
persistence of the (low) economic status of most eastern districts. However, evidence of 
economic convergence in Germany is also presented by Juessen (2005) for the period 1992–
2002 (the income convergence process being driven mostly by the catching-up Eastern 
regions) and by Kosfeld et al. (2006b) for the years 1992–2000. They find, for 133 labour 
market areas, convergence in income and productivity. On the other hand, other authors 
struggle to identify the economic/modelling explanations for East Germany’s low 
productivity levels (Smolny 2003), while Eckey et al. (2007) suggest – as a possible solution 
– the computation of local/regional (beta)-convergence parameters.11 

The aforementioned analysis hints that an ongoing convergence pattern for the eastern 
regions might be supported with regard to the recent EU enlargement. Regions with shared 
boundaries with new or recent EU members, such as Poland, might benefit from cost 
advantages in trading – because of spatial proximity. This view may be supported, for 
example, in the new economic geography (NEG) framework, in which such regions could 
become more attractive to businesses, thereby pushing agglomeration – and the consequent 
economic growth – towards the bordering areas (Niebuhr and Stiller 2004). 

Despite the above discussion and results, long-run forecasts by Juessen (2005) and Eckey 
et al. (2007) suggest that the differences between regions and in particular a significant gap 
between the North and the South of Germany – with Bavaria being the most prosperous area – 

                                                 
10 A greenfield site is an area previously used (if at all) for agricultural purposes. 
11 See Section 1.3 in Chapter 1. 
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will persist.12 In view of this, highly disaggregated labour market data, for the entire German 
territory, are employed in the empirical analyses of the present study. The next section 
discusses the choice of the data disaggregation level and details the characteristics of the data. 

 
3.3  Data and Geographical Disaggregation 
 
3.3.1  Data Disaggregation 
 
The data available for the experiments carried out in the present study concern district units in 
the former West Germany and East Germany. All data employed (described in detail in 
Section 3.3.2) are at the same geographically disaggregated level; that is, NUTS-3.13 This 
disaggregation level corresponds, in Germany, to administrative units, the kreise, which can 
be classified in-between the Länder (the German states, NUTS-1) and the municipalities 
(NUTS-4, now renamed LAU-1). 

The choice of our disaggregation level involves a multitude of aspects that should be 
considered for any economic analysis. In addition to aforementioned administrative units such 
as NUTS-1, NUTS-3 and LAU-1, further geographic aggregation levels may be employed, 
such as NUTS-2 (an aggregation of NUTS-3 districts which does not correspond to official 
regional boundaries) or functional areas.14 In particular, local labour markets (LLMs) – an 
aggregation compatible with Länder (upwards) and kreise (downwards)15 – are employed by 
the Ministry of the Economy within the Federal government as the official unit for 
distributing funds. On the other hand, as they are not formal administrative areas, the LLMs 
do not manage these financial resources, which are instead redistributed locally at the 
administrative level (NUTS-3). This observation/redistribution asymmetry causes policy 
analysis concerns, as socio-economic directions are driven by elected representatives in 
administrative areas (Panebianco 2005). Further, LLMs are redefined every four years on the 
basis of current policy objectives, which further complicates the construction of a data set of 
time-space analyses. 

More generally, the use of the larger (aggregated) analysis areas may tend to blur the 
variability between them (see, for example, Colavecchio et al. 2005) or bring ecological 
fallacy problems (Ertur and Le Gallo 2003). On the other hand, data concerning purely 

                                                 
12 At present, only a limited number of studies have analysed convergence for all German regions, while most 

contributions focus on the convergence between the East and the West, or – and this is the most general case – 
only employ data on West Germany. 

13 NUTS stands for ‘Nomenclature of Territorial Units for Statistics’, which is a coding standard, developed by 
the European Union, for referencing geographically-referenced variables within countries. The reference 
number in NUTS-1, 2 or 3 refers to the level of (increasing) geographical disaggregation considered (see 
http://europa.eu.int/comm/eurostat/ /ramon/nuts/home_regions_en.html). 

14 For a comprehensive discussion of different administrative and functional areas in Germany and their 
comparability, see OECD (2002). 

15 Note that the German city-states of Berlin, Hamburg and Bremen have a particular aggregation, as they stand 
alone, being simultaneously states, LLMs (for more particularities in this case, see OECD 2002) and kreise. 
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administrative areas such as NUTS-3 could be biased (for example, in terms of spatial 
autocorrelation patterns; Eckey et al. 2007) by the type and degree of urbanization and 
agglomeration, and could therefore generate spurious results, because of the subdivision of 
otherwise homogeneous areas (Ertur and Le Gallo 2003). We can consider, for example, the 
impact of the choice of the aggregation level on the analysis of commuting flows, which tend 
to be observed mainly within metropolitan areas. Therefore, any subdivision of these areas 
into smaller ones would generate different patterns of mobility, whose cause should be 
acknowledged. 

However, the most frequent criterion for the choice of a data disaggregation level is data 
availability. In most cases, in fact, appropriate data are only available at formal aggregation 
levels, such as NUTS-3, and extensive data set construction would be necessary in the case of 
aggregation to, for example, functional areas such as LLMs. Consequently, administrative 
areas are often used for labour market analysis (Cörvers and Hensen 2003). Therefore, we 
choose to employ, for the analyses carried out in the present study, data disaggregated at the 
NUTS-3 level. These are described in the subsequent section. 
 
3.3.2  The Data Employed 
 
The analyses presented in this study employ different types of data, all aggregated at the 
NUTS-3 level; that is, the equivalent of the German districts (kreise). The data cover the 
entire German territory and are concerned with various aspects of the labour markets. The 
number of districts under analysis is 326 for West Germany and 113 for East Germany, 
providing a total of 439 districts. 

The variables employed in our case study and the time periods covered are summarized 
here: 

 
• Employment: 1987–2004 for West Germany and 1993–2004 for East Germany; 
• Unemployment: 1996–2002; 
• Working-age population (age 15–65): 1987–2005; 
• Wages: 1987–2004 for West Germany and 1993–2003 for East Germany; 
• Journey-to-work flows: 1995, 2004 and 2005;16 
• Type of district urbanization/agglomeration: 9-point index. 
 
In the author’s view, the above data provide a time-consistent overview of the evolution of 

German regional labour markets and represent a solid basis for the analyses presented in this 
study. A more detailed description of the data set follows. 

                                                 
16 Additional data on journey-to-work flows for the year 2002, kindly provided by Prof. Gunter Haag (STASA, 

Stuttgart, Germany), are employed in Chapters 5 and 7. 
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The main variables employed in the empirical analyses presented in Chapters 4–6 (with 
regard to neural network forecasts) concern employment and wages. As shown above, these 
data are not available for the same time period for West Germany (1987–2003/4) and East 
Germany (1993–2003/4), since East German data only became available after the 
reunification. In practical terms, we have two data sets, organized as panels of regions, which 
are more extensive horizontally (regional disaggregation) than vertically (time 
disaggregation). However, the length of the data sets – in particular for West Germany, 
considering the richness of the regional information – can be considered to be acceptable. All 
data are collected for social security purposes by the (German) Federal Employment Services 
(Bundesanstalt für Arbeit, BA). As these data, provided by the German Institute for 
Employment Research (Institut für Arbeitsmarkt- und Berufsforschung, IAB), are directly 
collected for administrative purposes and at the single-firm level, they are expected to have 
rather low and non-systematic measurement errors. The panel data set on employment is 
drawn from quarterly statistics and includes information on the number of full-time workers 
employed every year on 30 June. The wages information refers to the average (regional) daily 
wages earned by full-time workers. In particular, the data on the number of employees are 
subdivided into nine economic sectors, obtained by aggregating 12 industries:17 

 
(1) primary sector; 
(2) industry goods; 
(3) consumer goods; 
(4) food manufacturing; 
(5) construction; 
(6) distributive services; 
(7) financial services; 
(8) household services; 
(9) public services. 
 
In addition to employment, data on unemployment and working-age population (that is, of 

age 15–65) are used in the empirical analyses (concerning spatial econometrics) presented in 
Chapter 7. The unemployment panel data set – available for the period 1996–2002 – contains 
yearly information on the number of unemployed individuals and the relative (regional) 
unemployment rates. These data were also collected by the (German) Federal Employment 
Services (BA). The information on working-age population is instead available for the years 
1987–2005. Both variables were provided by the IAB. 

                                                 
17 It should be noted that, because of a recent change in the sectoral classification of firms, a percentage of 

employees cannot now be allocated to a specific industry classification. The missing data amount to about 2 
per cent of the total in 2003, and to about 3–4 per cent in 2004. A study aiming to find a solution to this 
problem is currently in progress within the German Ministry of Labour. 
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In Chapters 8 and 9, which study commuting networks, we employ data on regional 
journeys to work, that is, information on the employees’ place of residence and of work, on a 
district-to-district basis. As a result, we have an origin-destination (O-D) matrix, of size 439 x 
439, which contains, for each cell (i, j), the number of workers residing in district i and 
working in district j. The journey-to-work data are available for the years 1995, 2004 and 
2005, and they were provided by Prof. Franz-Josef Bade (University of Dortmund, Dortmund, 
Germany). The data (collected in this detail since 1993) cover approximately 75–80 per cent 
of the total working population. Government officials, public servants, the self-employed, 
insignificant employees and family workers are not included, as they do not require social 
security (Papanikolaou 2006). It should also be noted that, while in the years 1995 and 2004 – 
the years used in Chapter 8 – Berlin is included as two separate districts (along the former 
West and East Berlin border), the city is included in the data set for 2005 as a single all-
comprehensive district. A similar caveat should be made about the Hannover area, where the 
main city district and its surrounding region are kept separate in the 1995–2004 data set, 
although they are joint as one district in the 2005 data. As a consequence, the number of 
districts considered in 1995 and 2004 is 441, against the 439 considered in 2005. In Chapter 
9, we employ 1995 and 2005 data, where the year 1995 is readjusted for the district merges as 
well. 

Finally, a classification variable, concerning the type of urbanization and agglomeration of 
the German NUTS-3 districts, is now available and is employed in both our neural network 
forecast experiments and in the study of commuting networks. This district classification by 
the Bundesanstalt für Bauwesen und Raumordnung (BBR) (Böltgen and Irmen 1997) 
subdivides the NUTS-3 districts as follows: 

 
(1) Central cities in regions with urban agglomerations; 
(2) Highly urbanized districts in regions with urban agglomerations; 
(3) Urbanized districts in regions with urban agglomerations; 
(4) Rural districts in regions with urban agglomerations; 
(5) Central cities in regions with tendencies towards agglomeration; 
(6) Highly urbanized districts in regions with tendencies towards agglomeration; 
(7) Rural districts in regions with tendencies towards agglomeration; 
(8) Urbanized districts in regions with rural features; 
(9) Rural districts in regions with rural features. 
 
The variables described in the present section are the basis for the empirical applications 

that follow. Part B of this study starts off in Chapter 4 by presenting an application of neural 
network techniques for forecasting regional employment variations. 
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Neural Networks for Forecasting Regional 
Employment 

 
 
 

4.1  Introduction18 
 
Key economic variables such as (un)employment have always been considered important 
indicators of the performance of labour markets, at both the local and the national level (see, 
for example, Longhi 2005). Shocks to labour demand, which eventually lead to permanent 
changes in employment, are likely to be region- rather than country-specific (see, for instance, 
the theoretical models by Krugman, 1998, and the empirical evidence by Blanchard and Katz, 
1992, and by Decressin and Fatás, 1995). To allow policy makers to allocate public 
expenditures efficiently among regions, labour market forecasts at the regional level are a 
necessary complement to forecasts at the national level. Their performance is the result of a 
complex (multi)-regional force field, while their functioning is decisive for a balanced growth 
of a regional system. 

Accordingly, the first research question of the present study, stated in Chapter 1, revolves 
around the statistical analysis and forecast of key labour market variables. Therefore, the first 
step we take in this regard – in the present and the subsequent chapter – is to introduce a set of 
forecasting models, which we develop for the estimation of short-term regional employment 
variations. The particularity of the models presented here is that they employ a non-
conventional forecasting technique – that is, neural networks (NNs) – rather than standard 
time series or panel approaches. The present chapter describes the practical issues in 
developing such NN models and presents the main statistical results obtained. Subsequently, 
in Chapter 5 we introduce further NN forecasting models based on the use of shift-share 
analysis techniques. In addition, a sensitivity analysis concerned with testing varying NN 
configurations is offered in Chapter 6. 

With the development of NN forecasting models in the regional labour market context, we 
aim to take into account (that is, include in our models) the socio-economic complexity 
involved in regional/spatial systems. This is made possible by the peculiar characteristics of 

                                                 
18 The present chapter is based on Patuelli et al. (2007a), forthcoming in Environment & Planning B. 
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NNs, which are statistical approximation techniques able to ‘learn from the data’. The 
increased computational power of current computers allows multiple experiments to be 
carried out with such tools. The ‘good old days’ of statistics and econometrics, which were for 
researchers a ‘serious play to estimate one model a day’ using standard ordinary least squares 
techniques, have long gone. The range of model specifications that we can now estimate, 
under different background conditions, with a large set of sensitivity tests and with the help of 
different aggregation levels of endogenous variables is illustrated, for example, by the title of 
an article by Sala-i-Martin (1997): ‘I Just Ran Two Million Regressions’. Such advancements 
in forecasting techniques – and the emergence of the NN techniques – are of particular value 
in our case study. 

Most econometric methods commonly used at present to compute forecasts require the 
availability of long time series of (national) aggregates. However, when forecasts at a highly 
disaggregated regional level are needed, the data available for the analysis are likely to 
include – as in the case of the German labour market – a high number of cross-sections and a 
small number of time periods. In addition to this, regional data are often characterized by 
spatial heterogeneity. As underlined in Section 3.2, Germany is a clear example of significant 
disparities among regional labour markets. Such disparities are visible not only between 
regions located in the former West Germany and those in the former East Germany, but also 
within each of the two parts of the country. For example, the southern part of West Germany 
is developing faster than the rest of the country (see, for instance, Bade 2006; Bayer and 
Juessen 2007). The availability of panel data allows us to correctly identify similarities and 
differences across regions and obtain more reliable regional employment forecasts. 

In this regard, the adoption of a suitable functional form is also critical. The choice 
between models that impose linear behaviour and models that allow for nonlinear behaviour 
of the relevant variables is extensively discussed in the forecasting literature, though mostly in 
the context of time-series analysis. Linear methods have been extensively used over the years 
because of their easy implementation and interpretation, although many empirical problems 
involve nonlinear behaviour (Granger and Teräsvirta 1993), in particular when longer 
forecasting periods are concerned (Zhang 2001). A number of authors (for instance, Swanson 
and White 1997a,b and Stock and Watson 1998) have compared the performance of linear and 
nonlinear methods – time-series regression versus NNs, genetic algorithms, or fuzzy logic – 
in forecasting variables such as national employment, industrial production or corporate 
profits, and have come to various conclusions (see Section 2.2.2). 

Attempts to compute labour market forecasts for German regions using linear techniques 
have been made by several authors, amongst others, Blien and Tassinopoulos (2001) and 
Bade (2006). Blien and Tassinopoulos compute short-term employment forecasts for West 
German regions by combining a top-down and a bottom-up approach. Their forecasts take 
into account regional autonomous trends that are then combined with expectations about the 
development of single industrial sectors by means of an entropy-optimizing procedure. Bade 
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forecasts the long-term development of regional shares in national employment by means of 
an extended ARIMA approach. Both methodologies require a number of constraints and 
economic, as well as econometric, assumptions. A nonlinear non-conventional approach may 
help to overcome such constraints, in particular if the nonlinear nature of the data represents a 
problem.19 

In the present chapter, starting from previous research by Longhi et al. (2005a,b), we 
propose statistical techniques that exploit the panel nature of the data. By means of NN 
models, we compute short-term forecasts (2-years ahead) of employment at the regional level 
(all the 439 German NUTS-3 regions), for East and West Germany. We assume an 
autoregressive relationship, in which future developments of employment are the result of its 
past developments. We further exploit the panel nature of the data by modelling region-
specific characteristics. 

Modelling panel data in the context of NNs is not straightforward. Nevertheless, NNs 
have some advantages over conventional techniques. For example, the asynchronic nature of 
the regions’ business cycles may make conventional econometric models rather complicated, 
imposing constraints that would limit the scope of the analysis. The advantage of NNs is their 
flexibility and the absence of strong underlying modelling hypotheses; this makes them 
suitable for our empirical purposes. On the other hand, their no-modelling hypothesis could 
be considered a drawback, because of the lack of theoretical economic (or behavioural) 
interpretation, which forces the analyst to accept the data-driven results of the NN models ‘as 
they are’. However, the limited possibilities of interpretation of the results are less relevant 
when the aim is, as in our case, to produce forecasts, rather than to explain the relationships 
between the driving factors. In fact, our aim is not to validate the use of NNs per se – in fact, 
nowadays, they are employed in a wide range of disciplines – but to evaluate the NNs’ ability 
to forecast regional labour market change in a panel data framework. 

The remainder of the chapter is structured as follows. Section 4.2 briefly illustrates the 
main characteristics of the NN method and issues related to what is called ‘neural 
forecasting’. Section 4.3 describes the further optimization of NNs by means of genetic 
algorithms. Section 4.4 describes the empirical application carried out – that is, the practical 
steps involved in formulating NN models – while Section 4.5 presents the results obtained. 
Section 4.6 provides some final remarks and conclusions. 
 

                                                 
19 Linearity tests in the univariate case (time series) have been developed in the literature (see, for example, 

Granger and Teräsvirta 1993). However, tests for panel data are still recent and difficult to implement. 
Consequently, at this stage, we consider random walk and ordinary least squares (OLS) as naïve linear 
extrapolation models. The statistical performance of the (nonlinear) NN models is then compared with that of 
these (linear) models. Future research will then address the use of panel linearity tests, such as the one recently 
developed by Hjellvik et al. (2004). 
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4.2  Neural Network Models 
 
4.2.1  The Neural Network Framework 
 
As outlined in Section 2.2.3, NNs are algorithms which are able to find goodness-of-fit 
solutions to empirical problems when the information on the (dependent/independent) 
variable interactions is limited or unknown. While traditional statistical models require an 
identification process for the set of regressors employed, as well as a specification of the 
relationship between dependent and independent variables, these steps are not necessary in 
NNs, therefore bypassing the aforementioned issues, which are so familiar in conventional 
econometrics. In addition, NNs are also more robust against statistical noise, since they store 
redundant information. Because of their relatively simple application, NNs are attractive in 
various fields of socio-economic application. It could be generally underlined that NNs enjoy 
great scalability properties, as they can be applied to problem-solving related to practically 
any application area. Reviews of NNs used in several fields can easily be found in the 
literature. Many examples could be listed, as well as academic journals entirely dedicated to 
NN-related studies. A very concise and non-exhaustive selection of these is shown in Table 
4.1. 
 
Table 4.1 – Some illustrative reviews of NN applications in different fields, and in various 

NN journals 
Field Authors 
Atmospheric sciences Gardner and Dorling 1998 
Business and finance Wong et al. 1997; Wong and Selvi 1998; Chatterjee et 

al. 2000 

Classification of medical data Dreiseitl and Ohno-Machado 2002 
Economics Herbrich et al. 1999 
Environmental modelling Maier and Dandy 2000; Shiva Nagendra and Khare 

2002 
Medical imaging and signal 
processing 

Miller et al. 1992 

Transportation Himanen et al. 1998 
IEEE Transactions on Neural 
Networks 

– 

Neural Computing & Applications – 
Neural Computing Surveys – 
Neural Networks – 
Neural Processing Letters – 
 

The NN typology used in our empirical analysis – namely, ‘supervised’ NNs – aims at 
iteratively maximizing the fit between example cases of input and output variables provided 
by the analyst. The obtained NN parameters may then be employed for out-of-sample 
estimations (that is, cases for which the output variable was not provided). As described in 
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Section 2.3.3, structurally, NNs are organized in layers of processing units (the ‘neurons’). 
The input layer contains as many units as the input variables. Likewise, the output layer refers 
to the output variable(s). Intermediate (‘hidden’) processing layers are also often used. Sets of 
‘weights’ connect the units in each layer to all units of the succeeding layer, while units 
belonging to the same layer process information in parallel. In feedforward NNs (see Figure 
4.1), the transfer of information between layers is unidirectional (that is, from the input layer 
towards the output layer), as opposed to what happens in recurrent neural networks, where the 
connections between units and layers form a directed circle (for example, see Hagan et al. 
1996). 

With regard to the number of layers used, if no hidden layers are present, input and output 
units are directly linked, and the NN can be referred to as a ‘linear NN’ or as a 1-layer NN 
(see, for example, Chandrasekaran and Manry 1999), since no computation is carried out at 
the input layer level. Similarly, an NN with one hidden layer is called a 2-layer NN. More 
generally, an N-layer NN implies the computation of N sets of weights between the layers. 
 

 
Source: The image licence is held by Creative Commons (http://creativecommons.org/ 
/licenses/by/1.0). 
Figure 4.1 – A graphical illustration of a feedforward neural network 
 

In Section 2.2.3, we defined the generic processing unit ui,n as: 
 

 , 1 1φ( ) [ ( )];i n n nu f− −= = ℑu u  (4.1) 

 

that is, a function of the preceding layer of units { }1 1, 1 , 1,..., ,n n k nu u− − −=u  given the transfer 

function φ,  resulting from the activation function ℑ  and the integrator function f. In 

particular, the integrator function f aggregates the data entering the processing unit ui,n. The 
weights w employed in this function, which can be written as: 
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 , 1 , 1 , 1( ) ,i n n ij n j n
j

v f w u− − −= =∑u  (4.2) 

 
have a critical role in the ‘learning process’ of the NN. The backpropagation algorithm (BPA: 
see Rumelhart and McClelland 1986) is a commonly used method for driving the iterative 
modification of the above-mentioned weights. The BPA requires the analyst to provide input 
examples and their correct – and known – outputs (from this comes the term ‘supervised’). 
The sample data allow the NN to identify the behaviour underlying the data and to replicate it. 
The actual learning process is given by the comparison of the output generated from the 
current weight configuration20 with the correct output, by means of a backward propagation of 
the obtained error through the network. The error term is often computed as the mean of the 
single units’ squared errors. In our experiments, the error is computed as: 
 
 (1 )( ),j j j j je y y d y= − −  (4.3) 

 
where the error term ej is a function of the actual output yj, and of the difference between the 
expected and the actual output of the model, dj.21 This process is repeated for each record of 
the sample, with a consequent readjustment of the weights, which are defined, for the generic 
wij,n, as: 
  

 ).(mlr)m1( **
,

*
,,

*
,, nijnijnijnijnij wwxeww −+⋅⋅−+=  (4.4) 

 
In this equation, lr and m are an NN’s learning and momentum (see Chapter 6); xi,n is the 

input value of the computational unit concerned; and *
,nijw  and **

,nijw  are the previous values of 

the same weight (one and two steps before, respectively). 
The cycle’s stopping condition can be decided by the analyst on the basis of, for example, 

computing time, error level or number of iterations. A number of drawbacks of the BPA have 
been outlined in the literature: for example, McCollum (1998) noted that the algorithm ‘will 
never exactly learn the ideal function, but rather it will asymptotically approach the ideal 
function’. In addition, local-minima problems can arise.22 The BPA is governed by the values 

                                                 
20 The starting set of weights is usually randomly defined, so that a large error is generated at first (Cooper 

1999). On the other hand, Ripley (1993, p. 50) points out that the initial values ‘should be chosen close to the 
optimal values, so as to seek the correct values are used’. Since, in our case, the optimal value of the weights is 
unknown, a set of random weights is used. 

21 Note that in NN computation, all inputs are converted to the (0, 1) interval. Outputs belong to the same range, 
but are subsequently rescaled as a final step. 

22 In detail, a shortcoming of the BPA is that the algorithm is only expected to reach a stationary error, which can 
indeed be the result of a non-global (local) minimum (Ripley 1993). On the other hand, Fahlmann (1992, as 
reported in Ripley 1993) stresses that, although NNs do fall into local minima, these are often the ones that the 
analyst wants to reach. He also points out that, in some cases, local minima are blamed for problems which are 
in fact the result of other causes. 
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of two parameters: namely, the learning rate and momentum. NNs have been shown to be 
sensitive to changes in such values, as well as to the choice of the activation function used 
(Klimasauskas 1991; Hagan et al. 1996). 

In this chapter, with regard to our NN models, which employ a BPA, the learning rate and 
momentum parameters are set to 0.9 and 1, respectively, and, for reasons of comparison, are 
kept fixed during the iterative process. A sigmoid/logistic activation function is used. An in-
depth discussion and empirical testing of adaptive learning rates, multiple learning parameter 
values and activation functions can be found in Chapter 6. 

A further noteworthy aspect of NN models concerns the balance between network 
simplicity and complexity (in terms of the number of layers and computational units). An 
overly simple NN will not learn the relationship between the input and output variables, and 
therefore it will generate large errors (Fischer 2001a). On the other hand, an NN that is too 
complex will lead to generalization problems (overfitting), causing high variance and 
unreliable forecasts. For a discussion of the model selection problem with NNs, see, for 
instance, Fischer (2000). Many techniques have been proposed to tackle the problem of 
overfitting. Here we use one of the most common methods: namely, ‘early stopping’ (see 
Sarle 1997), which consists of stopping the learning process (iterations) when the 
performance indices (the error computed) start to worsen. The NN model concerned then runs 
for the number of iterations previously selected by means of the early stopping method. 

Additional issues regarding the application of NNs to forecasting should be discussed, 
such as the inclusion of time or the nature of the data-generating process. These are discussed 
in the next section, together with recent developments in neural forecasting. 

 
4.2.2  Neural Forecasting Issues 
 
This section provides a brief discussion of three issues of particularly interest in the 
framework of forecasting with NNs: (a) the nature of the data-generating process; (b) the size 
of the data set used; and (c) the inclusion of time in NNs. These aspects of neural forecasting 
deserve consideration in the perspective of the originality of the NN experiments carried out 
here; that is, the use of panel data. 

As previously pointed out in Section 2.2, the nature of the data-generating process, in 
particular whether this has linear or nonlinear characteristics, is of critical relevance for the 
case of NNs in the motivation itself for employing neural techniques. However, NNs can also 
be suitable tools in the presence of underlying linear processes. Zhang (2001, p. 1199) 
analyses the suitability of NNs for approximating linear data-generating processes and finds 
that NNs ‘have the competitive ability for linear time-series modeling and forecasting’. 
Furthermore, (non)-linearity tests are only developed for specific functional forms, and it is 
therefore difficult to test multiple possible nonlinear relations. NNs allow us to bypass the 
process of choosing the functional form of the model. This is particularly true when 
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sufficiently long series of data are employed. In this case, as shown by Balkin and Ord 
(2000), NNs are able to detect possible nonlinearity in the data and to outperform linear 
methods. 

On the other hand, for the case of linear processes, NNs could be thought to 
overcomplicate forecasting. However, if we consider – in a (highly disaggregated) panel data 
forecasting problem such as ours – the number of specific characteristics of single regions, we 
can expect these diverse characteristics to show up in economic data as outliers, which deviate 
from the average national trend. Furthermore, NNs have been found to provide a 
comparatively better performance than linear time-series models when the data show more 
statistical noise or when specification/multicollinearity problems occur (Markham and Rakes 
1998, in Zhang 2001). Though this finding was obtained in a comparison based on time-series 
data, we should consider it to be particularly valuable with regard to the objectives of the 
present study, which is concerned with highly disaggregated regional forecasts. 

In addition to the nature and distributional properties of the data, a further aspect should 
be considered when discussing neural forecasting; that is, the extension of the data sets 
employed and the forecasting horizon. Balkin and Ord (2000) suggest that a long-enough data 
series must be available in order for NNs to outperform simpler methods. Unfortunately, the 
authors do not provide additional information supporting this claim. However, Tkacz (2001) 
also suggests that NNs are more useful for larger data sets. Furthermore, the author stresses, 
on the basis of multiple time-series-based experiments, that NNs provide a forecasting 
accuracy advantage when forecasts are carried out for longer time horizons (the author tested 
a single-quarter and a four-quarter forecast horizon). 

This discussion has shown that NNs are particularly helpful, as a forecasting technique, 
when complex and large data sets are employed. A further issue to be addressed here is the 
inclusion of time (serial correlation) in NNs. Van Veelen et al. (2000) review the different 
solutions applicable to NNs dealing with time-series data. The authors present two main 
approaches to the inclusion of time information in NNs: (1) explicit representation of time 
(which is used in the present study); and (2) dynamic NN models. The latter NN paradigms – 
we refer, for example, to time-delay neural networks (TDNNs) – have been extensively 
applied to time-series forecasting, though, according to van Veelen et al. (2000, p. 4), ‘they 
lost some attention in the last few years’. The authors also stress that such models are not free 
of problems. TDNNs, for example, make it challenging to employ a BPA, and are found to 
have poor heuristic properties. Other dynamic NN methods (for a review, see Hagan et al. 
1996) resort to the ‘recurrent’ NN paradigm, starting with the introduction of the Hopfield 
neuron (Hopfield 1982). 

The alternative approach of explicitly including time information has also been criticized 
(see van Veelen et al. 2000), since it does not include a dynamic framework. This 
shortcoming may possibly result in the incapacity of NNs to locate hidden time trends. But it 
should be pointed out that, in most cases, trends or temporary shocks can be accounted for by 
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including one or more counters or a periodic variable in an NN. This type of approach is 
adopted in our experiments, in which multiple observations per year are processed by the NN, 
and recognizing specific temporal shocks appears to be critical for maximizing the 
generalization power of the NNs. However, this approach does not account for serial 
correlation between single region observations, which is instead included in the models by 
means of lagged variables. The operationalization of the approach discussed above is 
described in detail in Section 4.4.1. 

 
4.3  Implementation of Genetic Algorithms in Neural Networks 

 
The previous discussion has highlighted, among other issues, the difficulty of finding the best 
NN structure. The high number of choices that have to be made in order to obtain the final 
forecast generally requires the supervision of an expert analyst. In this chapter, we test 
whether automatic procedures, such as genetic algorithms (GAs), can be a suitable substitute 
for ‘manual’ – and therefore subjective – techniques used to identify the best NN structure. 
GAs are used here as optimization procedures to choose the best NN structure and 
parameters; we should then expect GAs to provide better generalization properties and to 
reduce the time and work needed in the fine-tuning of NN models. 

GAs are optimization tools belonging to the class of evolutionary algorithms. They mimic 
natural biological evolution dynamics (of the ‘survival-of-the-fittest’ type: see Holland 1975) 
and are nowadays widely adopted in the scientific literature for various purposes (see, for 
example, Fischer and Leung 1998; Reggiani et al. 2000, 2001). Formally, GAs are stochastic 
search methods, which aim to solve an optimization problem that can be expressed as follows 
(Fischer and Leung 1998; Nag and Mitra 2002): 

 

 ( ){ }max ,g ∈Ωs s  (4.5) 

 
where g is a fitness function and s  is a single ‘individual’ (candidate solution to the 
optimization problem) belonging to a ‘population’ Ω of d-dimensional binary vectors called 
‘strings’. These strings are used to represent nature’s genotypes, which contain the genetic 
information (referred to as the ‘structure’) of an individual. 

In our empirical application, the fitness function is an objective function to be minimized 
on the training set.23 The strings include two types of information: (a) the NN learning 
parameters (learning rate, momentum and input noise – a small, randomly distributed 
disturbance effect); and (b) the NN configuration. The NN configuration string contains the 
total number of layers and the number of computational units in each hidden layer. In detail, 
the algorithm tests NN structures with up to two hidden layers, comprising a default 
                                                 
23 Fischer and Leung (1998) show how an objective function can be recoded into a fitness function. 
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maximum of 30 and 10 units in the first and second hidden layer, respectively. A larger 
number of units per layer can be considered to be superfluous – if not harmful – for NN 
generalization.24 

Figure 4.2 shows the functioning of a GA (Fischer and Leung 1998; Riechmann 2001). 
The GA starts from an initial – randomly chosen – set of NN structures, 0.m  Each structure is 

evaluated by means of the fitness function. Here we use the mean square error (MSE) 
computed over the input/output examples set. Genetic operators (namely, ‘selection’ and 
‘recombination/crossover’; for more details, see Rumelhart and McClelland 1986; Riechmann 
2001) subsequently generate a new structure, leading to the successive ‘generation’ of NN 
structures. Lastly, a final operator (‘mutation’, see Fischer and Leung 1998) introduces an 
exogenous, stochastic change in the structures. 
 
t := 0 
Creation of First Population 0m  
Evaluation of 0m  
while Stopping Condition not Met 

t := t + 1 
Selection from 1−tm  and Reproduction into tm  
Recombination on tm  
Mutation on tm  

 
 
 
 
 

Evaluation of tm  
End 

Source: Riechmann (2001). 
Figure 4.2 – Structure of a standard GA 

 
In our experiments, all the structures tested are selected for reproduction/recombination, 

so as to generate new sets of parameters. Here the mutation operator is limited to 10 per cent 
of the structures for each generation. Once the newly generated structures tm  have been 

computed, they are substituted for the old ones 0( ),m  and their fitness is computed. The 

process continues until a stopping condition is met. In the present chapter, the stopping 
condition is set at ten iterations. At the end of this process, the best-fitting structure obtained 
in the last iteration is adopted as the NN architecture. At each iteration three structures were 
generated and evaluated, resulting in three final ‘optimized’ NN configurations to choose 
from. Although three structures and ten iterations might at first seem insufficient, they 
nevertheless seem to be enough for our empirical analysis. A combination of 100 iterations 

                                                 
24 As an implicit rule, the second hidden layer will always contain a smaller number of units than, or an equal 

number of units to, the first hidden layer. 
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and a population size of 100 structures did not improve our results, while greatly increasing 
computation time. 
 
4.4  Empirical Analysis: Forecasting Regional Employment in West and East Germany 
 
4.4.1  The Neural Network Models Developed 
 
In this and the subsequent sections we propose, on the basis of the methodologies described 
above, a number of NN models that can be used for our forecasting purposes. The data 
employed in our experiments are listed below, though they were more extensively described 
in Section 3.3.2. The aim of our experiments is to compute short-term forecasts (2-years 
ahead) of employment at the regional level for East and West Germany, for the years 2001–
04.25 The independent variable in all our NN models is the biannual (between t – 2 and t) 
growth rate of regional full-time employment observed in each district. Because of the 
different span of the data for West Germany (1987–2004) and East Germany (1993–2004), 
we develop separate NN models for the two areas. 

To exploit the panel structure of our data, we use what we indicate as a ‘time’ variable. 
This can be done in two different ways. The first consists of using a periodic variable 
identifying the year to which the data refer. The variable is rescaled to the interval (0, 1) and 
might resemble a trend variable in a time-series model.26 The second way to include time 
consists of adding a set of dummy variables (one dummy per year). The use of dummy 
variables to identify time periods might be compared to a ‘time fixed effects’ approach in a 
conventional panel modelling framework (Longhi et al. 2005b). Both approaches allow us to 
identify a year-specific mean (common to all the districts) for the output variable. 

A second group of variables can be added to capture the correlation across the 
observations belonging to the same – or a similar – district. First, a counter ranging from 1 to 
326 in West Germany and from 1 to 113 in East Germany is added to model district-specific 
characteristics. The variable is substituted for the more commonly used – when working with 
panel data – regional dummies (fixed effects), which would require the computation of an 
overly large number of weights. In panel data modelling, such an ‘incidental parameter 
problem’ can be avoided by using the ‘within transformation’ (see, for example, Hsiao 2003). 

                                                 
25 In order to provide forecasts more years ahead, there are two possibilities: (1) recursively feeding, for 

example, the results of a (t, t + 2) NN forecast in a new NN model in order to obtain forecasts for (t + 2, t + 4). 
This aspect might be investigated in the future, but goes beyond the objectives of the present study; and (2) 
increasing the forecasting period (for example, (t, t + 4)). However, this approach is not desirable, given the 
relatively short time span of the data sets, in particular in the case of East Germany. It is therefore not 
considered. 

26 The commercial software used for carrying out our experiments, Neuralyst, enables non-numeric (string) input 
and output variables to be used. The software processes such variables by associating their values with 
numeric values between 0 and 1. The interpretation and mapping of the relationship between the numeric and 
non-numeric variables are automatically taken care of by a built-in algorithm. 
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However, this solution does not seem appropriate in our case, since the most important input 
– sectoral employment – is added as growth rates. We call this variable the ‘district identifier’. 

Alternatively, we may assume that regions with a similar degree of urbanization or 
agglomeration behave in similar ways, ceteris paribus. Consequently, the variable ‘type of 
district’ (also described in Section 3.3.2) can be added to the independent variables either as a 
counter, ranging from 1 to 9, or as a set of nine dummy variables. Similarly to the time 
dummies, the type-of-district dummies identify – for each district type – a different mean 
(common to all years). 

Finally, selected models are enhanced with a further input variable: the lagged biannual 
growth rate of average daily wages earned by full-time workers. The rationale for the 
inclusion of this variable is the possible relationship between wages and employment. 

In total, we compute nine different NN models, whose equation can be generically 
represented by the following relationship: 

 
 ],,,...,,,[ ,,9,,1,2, titititi weedistrictTfe ΔΔΔ=Δ +  (4.6) 

 
where Δei,t + 2, the percentage variation of employment in region i in the period (t, t + 2), is a 
function of: (1) the time variable T; (2) district characteristics (either the district identifier or 
urbanization/agglomeration types); (3) lagged employment variations in the nine economic 
sectors (Δei,1,t,…, Δei,9,t); and (4) lagged variation in average daily wages, Δwi,t. 

The models can then be grouped according to the input variables used (see also Tables 
4.A1 and 4.A2 in Annex 4.A): 

 
• Model A and all subsequent models starting with the letter A include sectoral 

employment and time as dummy variables (time fixed effects). 
• Model B and all subsequent models starting with the letter B include sectoral 

employment and time as a periodic ordinal (trend) variable. 
• The following models were developed, on the basis of Model A and Model B, as 

follows: 
o Model AC also includes the variable ‘district identifier’, to capture region-specific 

characteristics, while 
o Model AD and Model AE also include the variable ‘type of district’ as a counter 

(Model AD) or as dummy variables (Model AE), in order to capture differences 
across districts with different urbanization/agglomeration characteristics. 

o Model BD also includes the variable ‘type of district’, similarly to Model AD. 
• Finally, Models AW, ADW and BW (ending with the letter W) use average daily 

wages as a further input. These models may be seen as extensions of Models A, AD 
and B, respectively. 
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The next section describes the validation process followed for all models, as well as the 
introduction of genetic algorithm-enhanced NN models (NNGA). 
 
4.4.2  The Validating and Testing Procedure 
 
4.4.2.1  The validation phase 
As mentioned above, our NN models use the employment growth rates for the time period     
(t – 2, t) in order to forecast the growth rates for the period (t, t + 2). Since the data for West 
and East Germany start from 1987 and 1993, respectively, the first available forecasting 
periods are 1989–91 and 1995–97. In the remainder of the chapter we refer to the generic           
(t, t + 2) interval using the end year of the period (for example, 1989–91 is referred to as 
1991). 

The first test phase of our NN experiments – referred to as the model validation phase – is 
summarized in Table 4.2. This phase is concerned with the evaluation of a set of alternative 
NN configurations (see, for instance, Fischer 1998) and the selection – for each NN model – 
of the most suitable architecture and training threshold. For this phase, we employed data for 
up to and including the year 2000. The NN models concerning West Germany were validated 
on the basis of their performance for the years 1999 and 2000. The NN models for East 
Germany were instead validated using the year 2000 only, because of the shorter time span of 
the data set used. The use of a double validation set for the NN models for West Germany – 
and the consequent computation of average statistical results – is expected to provide a more 
reliable validation of the NN models, as their performance tends not to be uniform across test 
sets, and to reduce the effect of time-specific shocks on the model validation. 

 
Table 4.2 – Data utilization in the model validation phase 
Models Training Validating 
West Germany 1991–98 1999–2000 
East Germany 1997–99 2000 

 
In the validation phase, for every NN model we tested five configurations. First, a 1-layer 

NN was tested, and then three 2-layer models containing 5, 10 and 15 hidden units, 
respectively (in one hidden layer). Finally, a 3-layer model was tested, using 5 units in each of 
the two hidden layers.27 

                                                 
27 The rationale for proceeding in ‘jumps’ of a few computational units in validating NN structures is in the 

lengthy testing process, and is supported in the empirical literature on NNs. Future experiments may address 
the behaviour of NNs for intermediate structures (for instance, using 4 or 7 hidden computational units), and 
will focus on 2-layer NN structures, since empirical evidence has proven that an NN with one hidden layer 
(that is, a 2-layer NN) can approximate nearly any type of function (Cheng and Titterington 1994; Kuan and 
White 1994). 
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The NN models, trained as described above, were evaluated by means of two statistical 
indicators: MSE and MAE.28 Given the panel structure of the data, these indicators have been 
calculated on the basis of the ex post forecasts computed by district. Hence, contrary to their 
usual time-series interpretation, these indicators summarize the error of the forecasts across 
districts, rather than over time. On the basis of the above indicators, the best-performing 
structure of the validation phase was selected for each model, and was then employed in the 
subsequent test phase. The statistical performance of each NN structure was tested for an 
increasing number of iterations (training epochs), in order to find the optimal training period 
(after which the performance of the algorithm tends to deteriorate or to reach a plateau). 

Subsequently, an additional NN structure, obtained by means of a GA optimizer (see 
Section 4.3), was selected for each model previously developed. In addition to varying 
architectures, each of these models – which we call NNGA – also employs an alternative set 
of learning parameters (learning rate, momentum, and an additional input noise component), 
which have a constant and equal value in the manually-developed NN models (see Section 
4.2.1). Tables 4.A1 and 4.A2 in Annex 4.A summarize the input and network structure of the 
models developed for West and East Germany, respectively. All NNGA models are identified, 
in the remainder of the chapter, by the GA suffix. 
 
4.4.2.2  The test phase 
The present section describes the test phase for our NN models. Generally, we can define a set 
of basic rules for the test and comparison of NNs. The following requirements are derived 
from Collopy et al. (1994): 
 

• Comparison with widely-accepted ‘conventional’ models. Forecasts from the NN 
models should be at least as accurate as those generated by a naïve extrapolation, such 
as a random walk. 

                                                 
28 The statistical indicators employed in the validation of the NN models – and more in general in the forecasting 

literature – are commonly used for the evaluation of both time-series and NN forecasts (see, for example, 
Zhang et al. 1998) and are computed as follows: 
Mean Square Error: 2MSE 1/ * ( ) ;f

i ii
N y y⎡ ⎤= −⎣ ⎦∑  

Mean Absolute Error: MAE 1/ * ;f
i ii

N y y⎡ ⎤= −⎣ ⎦∑  

Mean Absolute Percentage Error: MAPE 1/ * *100 / ,f
i i ii

N y y y⎡ ⎤= −⎣ ⎦∑  

where yi is the observed value (target); f
iy  is the forecast of the model adopted (NN); and N is the number of 

observations. The MAPE is used in place of the MAE in the statistical evaluation of the ex post forecasts, 
since the forecasting error is computed, in this case, with the employment levels resulting from the estimated 
growth rates. 
Different and non-symmetrical statistical indicators (or, more generally, cost functions) might be considered 
for the evaluation of the NN models’ performance. However, it might be argued that over- and under-
estimation of regional employment levels – which are used by governments for fund allocation – would 
generate similar problems: on the one hand, scarcity of resources; on the other hand, inefficient allocation of 
funds that were needed elsewhere. 
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• Test of the models’ out-of-sample performance. The results of out-of-sample forecasts 
should be used in comparing different methodologies. 

• Use of an adequate sample size. The size of the sample has to allow for statistical 
inference. 

 
The above rules are respected in our experiments (see the present and the subsequent 

section). Additional rules may also apply with regard to the actual implementation of NN 
models. These requirements define the correct execution of NN modelling experiments, and 
the presentation of their results. Here, we refer to the requirements formulated by Adya and 
Collopy (1998): 

 
• Provision of the in-sample performance of the models. Sample data provide the basis 

for the learning process (see Section 4.2.1), and are a benchmark for the evaluation of 
the generalization properties of the NN models. 

• Generalization. The level of similarity between in- and out-of-sample performance 
provides an indication of the generalization potential of the models. In this regard, a 
generalization estimator has been proposed and computed by Patuelli et al. (2003). 

• Stability. Similar performance over different data sets allows the stability of the 
forecasting tool, and its reliability, to be assessed. 

 
On the basis of the above criteria, in our test phase, the evaluation of the structures 

selected in the validation phase was provided by out-of-sample, ex post forecasts carried out 
for the years 2001–04, in order to assess the statistical performance of the NN models 
developed above.29 This involves computing forecasts for four different years separately.30 
Table 4.3 summarizes the data which were used at this stage. In this phase, the weights were 
reset to random initial values (between 0 and 0.1) for each out-of-sample forecasting year, and 
the models were retrained, for each forecasting year, until the preceding year (that is, training 
until 2000 if 2001 is the ex post forecasting year, until 2001 for 2002, and so on). 
 
Table 4.3 – Data utilization for the test phase 
Models Training Testing 
West Germany 1991–2000/2003 2001/2004 
East Germany 1997–2000/2003 2001/2004 

 

                                                 
29 The in-sample performance of the NN models is not reported here, but can be found, for selected years, in 

Patuelli et al. (2006a,b), 
30 Longhi (2005) suggests the use of a ‘rolling’ training data set, which would eliminate the first year of data 

employed when data for a new year become available or are utilized. In our case, when switching from 2001 
to 2002–03–04 ex post forecasts, the first years of our data sets would exit the NN training sample. This 
practice deserves future testing because of its clear computational advantages, and for the diminishing 
influence that early years have on economic variables as years go by. 
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The comparison of the 2001–04 ex post forecasts with the actual data allows us to 
statistically evaluate the models’ generalization properties. The statistical performance of the 
models is summarized and compared by means of the MSE and MAPE indicators (see 
Footnote 27). Further, the models can be compared – pairwise – by using forecast equality 
tests,31 in particular, the Morgan-Granger-Newbold (MGN) test (Granger and Newbold 1977) 
and the sign test (ST) (Lehmann 1998). 

Following Diebold and Mariano (1995), we compute the MGN test as: 
 

 ,)1()ρ̂1(ρ̂MGN −−= N  (4.7) 

 
where ρ̂  is the estimated correlation between the sum S and the difference D of the forecast 

error vectors (N x 1) of the two models compared; and N is the number of districts for which 
forecasts are carried out. The null hypothesis is that of equally accurate forecasts (no 
correlation between S and D) and follows a Student’s-t distribution with (N – 1) degrees of 
freedom. The MGN test relies on the assumption of absence of serial correlation and of 
deviations from normality in the forecasting errors, both of which have been shown to 
significantly influence the reliability of the test (Tkacz 2001). At this stage, we consider the 
assumption of no serial correlation to be feasible. In fact, in our panel forecast experiments, 
forecasts are not carried out over time, with a series of time-progressive (autoregressive) 
forecasts, but over regions instead. The assumption of the MGN test would imply, in our case, 
horizontal correlation; that is, pairwise correlation between (the forecasts for) region 1 and 
region 2, regions 2 and 3, 3 and 4, and so on. On the contrary, what we attempt to capture 
with the NNs developed in the present chapter is the specificity of each single region. 

Alternatively, the ST is based on the following idea: if two models, 1 and 2, are equally 
accurate, the number of forecasts of Model 2 which have a bigger error than that of Model 1 
will be expected to be 50 per cent of the total number of forecasts obtained. Consequently, 
Model 1 will be considered superior to Model 2 if Model 2 has higher forecasting errors (than 
Model 1) in more than 50 per cent of the cases. The test statistic is then computed as: 

 

 ,
21

2ST
N

NC −=  (4.8) 

 

                                                 
31  It may be argued that an assessment of the models’ performance should ideally be carried out by means of 

resampling techniques, or Monte Carlo simulations. In our case, the focus is on forecasting German 
employment variations for all districts and for the most recent years available. Consequently, resampling 
experiments – in particular in a jackknife context – are the most appropriate solution, implying the repeated 
selection of data subsamples for testing. However, such an approach involves the development of repeated 
subsample-selection-and-NN-estimation procedures. This task may be explored in future research. With regard 
to the case study concerned, the forecast equality tests allow us to infer findings from the statistical results 
found, and we can therefore consider them an acceptable compromise. 
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where C is the number of times in which Model 2 shows higher errors than Model 1, and N is, 
again, the number of forecasts carried out (in our case, the same as the number of districts 
concerned). The ST statistic follows a normal distribution N (0, 1). 

Finally, as benchmarks to our NN models, we present two random walk (RW) models and 
an OLS model. These are illustrated in the subsequent section. 

 
4.4.3  Benchmark Forecasting Models 
 
For comparison purposes, we propose random walk (RW) models and OLS panel regression. 
These techniques were chosen for their easy and fast implementation. Also, a comparison 
with RW models is the first step in the evaluation of any proposed econometric technique 
(Collopy et al. 1994); that is, a proposed methodology should be at least as accurate as a naïve 
extrapolation. On the other hand, RW models clearly have shortcomings: for example, they do 
not exploit the potential explanatory power of covariates. In our work, we employed two 
types of RW models, which are defined as follows: 
 

(a) Random Walk Nat.: this model assumes that the number of employees in each district 
in year (t + 2) is equal to the number of employees in year t. For example, the forecast 
for 2001 equals the number of employees in 1999, and the regional growth rates are 
equal to zero. 

(b) Random Walk G.R.: this model assumes, for the period (t, t + 2), the same regional 
growth rates recorded (district-by-district) for the period (t – 2, t). Consequently, the 
regional growth rates of employment between 1999 and 2001 will be equal to those 
recorded between 1997 and 1999. 

 
In addition to the RW models, we propose OLS regression models as additional 

benchmarks for the NNs. As for the NN models presented in Section 4.4.1, we developed 
separate regression models for West and East Germany, employing the same basic variables 
as those in the NN models; that is, the lagged (t – 2, t) biannual growth rates of regional full-
time employment observed in nine economic sectors. Additionally, time fixed effects 
(dummies) are added to account for year-specific shocks that affect all districts. No intercept 
was estimated, for comparability purposes. Because of the above settings and specification, 
the OLS models are particularly comparable to Model A. Following from Equation (4.6), the 
model estimated can be written as follows: 

 
 ,... 10,9,9,1,12, ttititi vbebebe +Δ++Δ=Δ +  (4.9) 
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where vt represents the dummy variable for year t. Additional regression models could be 
carried out in a similar fashion, for direct comparability with each NN model. In particular, 
one might argue that the best possible model – or the current standard – should be employed 
as a benchmark. While such as approach is highly desirable and should be explored in-depth 
in the future, we limit our present comparative analysis to the above models because of 
practical space limitations. 

The next sections present our empirical findings with regard to both the NN and the 
NNGA models. First, Sections 4.5.1 and 4.5.2 show the results obtained for the former West 
and East Germany, respectively. Subsequently, Section 4.5.3 concludes the discussion of our 
empirical experiments, focussing on the differences in the statistical performance of NN and 
NNGA models. 
 
4.5  Regional Employment Forecasts for West and East Germany 
 
4.5.1  Estimation of West German Employment 
 
As indicated in the previous sections, nine NN models were developed and tested for each 
data set (West and East Germany). On the basis of the NN structures selected (as described in 
Section 4.4.2.1), we obtained ex post forecasts for the years 2001–04. The pooled statistical 
indicators emerging from these experiments (see Section 4.4.2.2), and computed on the 
forecasts of full-time employment for each West German district, are presented in Table 4.4. 
 
Table 4.4 – Pooled statistical error of the NN models; West Germany, years 2001–04 
West MSE MAPE MGN: Model BW ST: Model BW 
Model A 23920356 (7) 4.6679 (8) *** *** 
Model AC 20475032 (5) 4.0083 (4) ** *** 
Model AD 25353851 (9) 4.6487 (6) *** *** 
Model ADW 20322345 (4) 4.6525 (7) *** *** 
Model AE 20746758 (6) 4.3881 (5) *** *** 
Model AW 24543855 (8) 4.8889 (9) * *** 
Model B   6772694 (2) 2.7517 (3)  *** 
Model BD   7806311 (3) 2.7580 (2) *** *** 
Model BW   6069135 (1) 2.6472 (1) – – 
RW Nat. 15756094 3.5188 *** ** 
RW G.R. 59799512 3.6069 *** *** 
OLS (Model A) 18885393 3.7585 *** * 
Note: The ranking of the NN models is shown in brackets. 
*** Rejection of forecast equivalence at the 99 per cent level. 
**   Rejection of forecast equivalence at the 95 per cent level. 
*     Rejection of forecast equivalence at the 90 per cent level. 

 
The statistical results shown in Table 4.4 can be read as follows. The main result is that 

the models of type ‘B’ outperform the models of type ‘A’, as all of the top results are 
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obtained by the former class of models In particular, Model BW appears to be the best-
performing one for the four years examined. A second finding is that the inclusion of 
information on the district classification (D- and E-models) or wages (W-models) does not 
seem to significantly (or uniformly) improve the forecasting potential of the models: for 
example, while the introduction of wages improves the performance of Model B, it does not 
do so for Model A. Similarly, the D-models do not improve on their respective basic models’ 
performance. Such evidence suggests a predominance of the autoregressive effect in 
determining employment growth rates. 
 

Legend
German NUT-3 districts
Pooled error

-10.14 - -4.70

  -4.68 - -3.02

  -2.97 - -1.55

  -1.51 -  0.23

   0.31 -  3.68

 
Figure 4.3 – Pooled growth rate estimation error of the three B-type NN models, 2001–04 

 
In addition to providing the pooled statistical results, Table 4.4 also provides summary 

results of the forecast equivalence tests, carried out to investigate whether the winning model 
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– Model BW – is significantly more accurate than the competing models. The tests confirm 
the dominance of the model, as most tests are highly significant. Therefore, the inclusion in 
the model of the wages variable appears to be critical in the special case of forecasting West 
German employment. Overall, the ‘B-type’ models appear to also outperform the benchmark 
models (RW models and OLS panel regression), which, however, can be preferred, in this 
context, to the ‘A-type’ models. Note that the OLS regression is directly comparable only to 
Model A. 

Because of the statistical variability of the results of the NN models shown in Table 4.4, 
we also considered, as a main performance indicator, the error generated by the pooled 
(averaged) forecast of our ‘B-type’ NN models, as suggested in Granger and Newbold 
(1986).32 A map visualization of these results – which also includes the error levels found for 
the subsequent East Germany analysis – is presented in Figure 4.3 above. The map shows a 
general tendency towards an overestimation of employment growth rates, while 
underestimation seems to be more frequent for the case of East Germany. Further 
investigation of the average NN error, which suggests an overestimation around 2 per cent, 
will be considered in future research. 

 
4.5.2  Estimation of East German Employment 
 
The data set for East German employment contains information on the number of employees 
in 113 districts, for the period between 1993 and 2004. The data set has a smaller number of 
districts and is six years shorter than the one for West Germany. Consequently, only four 
years could be used for training and validating the models. One year, 2000, was used for the 
test (see Table 4.2, Section 4.4.2.1). 

The selected NN models were subsequently trained, similarly to the West German case, 
employing the years 2001–04 as ex post testing periods, while the years up to these 
aforementioned years acted as training periods (for example, 1997–2000 is the training period 
for the 2001 ex post forecasts; see Table 4.3). Table 4.5 contains the pooled results of the 
aforementioned 2001–04 out-of-sample forecasts, in addition to the results concerning the 
benchmark models and the forecast equivalence tests. 

Table 4.5 confirms the results found for the West German NN models (see preceding 
section). The ‘B-type’ models again outperform both the ‘A-type’ models and the benchmark 
models. However, differently from the case of West Germany, Model BW is not the best 
performer. Model B and Model BD provide lower error levels, though it is not clear, from the 
above results, which model should be preferred between the two. While the use of the pooled 
results of the B-BD Models could be a suitable solution, here the forecast equivalence tests 
introduced in Section 4.4.2.2 are used again, in order to distinguish between the two 

                                                 
32  It should be noted that Granger and Newbold originally referred to experiments based on time series data. 
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competing models. Table 4.5 shows that Model B significantly dominates – if compared 
pairwise – all the other NN and benchmarking models (although the results of the MGN test 
are less conclusive). The present finding is confirmed by inverse testing (Model BD versus 
the other models; not reported here), which shows an insignificant result in comparison with 
Model B and generally lower significance levels. Overall, the limited relevance of the 
inclusion – in all models – of socio-economic variables also confirms the initial intuition of a 
general dominance of the autoregressive temporal component in the data employed. The 
pooled errors for the NN models of type B are shown in Figure 4.3 above. 
 
Table 4.5 – Pooled statistical error of the NN models; East Germany, years 2001–04 
East MSE MAPE MGN: Model B ST: Model B 
Model A   7746408 (4) 3.7744 (5)  *** 
Model AC 14073715 (6) 3.9274 (7)  *** 
Model AD 18843351 (9) 5.2501 (9)  *** 
Model ADW 17263920 (7) 4.2827 (8)  *** 
Model AE 12706553 (5) 3.7889 (6)  *** 
Model AW 18546697 (8) 3.6246 (4)  ** 
Model B   6971273 (2) 3.0883 (1) – – 
Model BD   5315250 (1) 3.2494 (2) *** *** 
Model BW   7685641 (3) 3.3986 (3) *** *** 
RW Nat. 26400993 7.2101  *** 
RW G.R. 11347151 4.6095 *** *** 
OLS (Model A) 27612412 7.1411  *** 
Note: The ranking of the NN models is shown in brackets. 
*** Rejection of forecast equivalence at the 99 per cent level. 
**   Rejection of forecast equivalence at the 95 per cent level. 
*     Rejection of forecast equivalence at the 90 per cent level. 

 
The NN models presented in this and the preceding section were subsequently compared 

with GA-enhanced otherwise-identical NN models. The next subsection summarizes the 
results obtained. 
 
4.5.3  NN Models vs NNGA Models 
 
In this section we present a summary of the results obtained by enhancing our NN models 
with a GA-based structure and parameter optimization (NNGA models: see Section 4.3). The 
experiments discussed here refer only to the year 2001. Therefore, the extent of the analyses is 
in this case limited. However, the focus here is on ‘within-model’ comparison (an NN model 
against itself) rather than on the reliability of a model over time. Table 4.6 summarizes our 
findings. 



58 Chapter 4 

 

Table 4.6 – Comparative statistical performances of NN and NNGA models: ex post forecasts 
for the year 2001 

 Model 
A 

Model 
AC 

Model 
AD 

Model 
ADW 

Model 
AE 

Model 
AW 

Model 
B 

Model 
BD 

Model
BW 

West Germany 
MSE Y N N N Y N N N N 
MAPE Y N N Y Y Y N N N 
MGN ***       **  
ST ***   **  *    
East Germany 
MSE Y N N Y Y Y N N N 
MAPE N Y Y N N N Y Y Y 
MGN **    ***     
ST  *** ***    *** *** *** 
Y: NNGA model has lower error than corresponding NN model. 
N: NNGA model has higher error than corresponding NN model. 
*** Rejection of forecast equivalence at the 99 per cent level. 
**   Rejection of forecast equivalence at the 95 per cent level. 
*     Rejection of forecast equivalence at the 90 per cent level. 
 

To compare these additional models with the previously-developed NN models, Table 4.6 
first identifies which NNGA models show lower MSE or MAPE than their corresponding NN 
model. For each NNGA model, we test the equivalence of the ‘new’ (NNGA) and ‘old’ (NN) 
forecasts by means, again, of the MGN and sign (ST) tests. 

The comparison of NN and NNGA models shows that, for the year 2001, the NNGA 
models perform ambiguously compared with the conventional NN models. Only one model 
(model AGA, for West Germany) improves the statistical reliability of its baseline model for 
both statistical indicators, while the average error levels of the NNGA models are greater than 
those of conventional NN models. The MGN and sign tests – comparing each NNGA model 
with its baseline NN model – confirm the above result, since only a limited number of tests 
were statistically significant. These tendencies are also visible at an aggregate level (for a 
graphical visualization of the average NN and NNGA aggregate forecasts for the year 2001, 
see Figures 4.4 and 4.5), which suggests that the inclusion of GA in the NN model-setting 
process does not lead – in our case study – to conclusive statistical results. 

Trying to explain the above differences between NN and NNGA models is indeed the 
most difficult part. Nevertheless, we can make a number of hypotheses on the basis of our 
results. First, the stochastic nature of the choice of the NNGA structures might play a role in 
determining a higher variance in the models’ performance. The GA-enhanced models develop 
more heterogeneous structures than the simpler NN models, which were set by means of a 
manual procedure (see Section 4.4.2.1). The settings chosen for the NNGA models may be 
expected to provide improved performance, because of the optimization procedure that 
generates them. This automated process also relieves the analyst from the lengthy process of 
manual choice of the network parameters and configuration. 
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Figure 4.4 – West Germany’s ex post forecasts for the year 2001 
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Figure 4.5 – East Germany’s ex post forecasts for the year 2001 
 

Secondly, it might be seen as beneficial to allow the GA to go through a greater number of 
iterations than are used in the present chapter, in order to have a wider set of alternatives 
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examined by the software (this issue was briefly discussed in Section 4.3). On the other hand, 
a shortcoming of the NNGA approach is that computing time increases significantly, in 
particular for wide data sets such as ours. 

A balance between the optimization and the computational time aspects of GAs should 
then be sought, in particular when database size becomes relevant. 

 
4.6  Conclusions 
 
The aim of this chapter was to produce 2-years-ahead forecasts of the number of individuals 
employed in the 439 (NUTS-3) districts in Germany. Several models based on neural network 
(NN) and genetic algorithm (GA) techniques were developed. Because of data availability, 
the East and West German districts were analysed separately, and comparable sets of neural 
models were applied to Eastern and Western districts. The models were developed and 
configured both manually (NN models) and by means of GAs (NNGA models). The results of 
ex post forecasts for the years 2001–04 (2001 only for NNGA models) were evaluated by 
means of MSE, MAPE, and of forecast equivalence tests: namely, the Morgan-Granger-
Newbold (MGN) test and the sign test (ST). 

From the empirical point of view, we observed varying levels of statistical error, for both 
the West and East Germany models. The variability in the results can be mostly attributed to 
the different performance of the ‘A’-type models, which use time dummies for temporal 
correlation, and of the ‘B’-type models, which use a unique rescaled time variable. The ‘B’ 
family of models obtains the lowest error levels in all cases, and therefore outperforms the 
‘A’-type family. Our first conclusion is, therefore, that, with regard to our NN forecasting 
framework for regional unemployment, a time correlation approach by means of dummy 
variables is not suitable. A second conclusion that can be drawn from the results presented in 
Tables 4.4 and 4.5 is that the inclusion of additional socio-economic variables does not seem 
to carry improved statistical explanatory power. The exception is the case of Model BW for 
West Germany. The results of the forecast equivalence tests carried out for the winning NN 
models (Model BW for the West and Model B for the East) reinforce the above findings and 
indicate the clear dominance of the analysed models over the remaining models. The ability to 
actually choose one NN model over the others should be considered – because of its relevance 
for policy purposes – as a value added of our analysis. 

From a methodological viewpoint, the enhancement of the NN models with GAs (Table 
4.7) did not seem to significantly improve the NNs’ performance, showing mixed results in 
our case study of labour market forecasting. Increased iterations subsequently carried out did 
not bring any better results, suggesting that the NN structure and – in particular – the learning 
parameters (that is, the settings which are modified by the GA) deserve further investigation 
to facilitate the optimization of our NN models’ performance. 
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Finally, concerning the policy issue of generalization, because the West German data set 
is much wider, both spatially and temporally, than the East German, the results obtained for 
the former might be considered to be more reliable and suitable for benchmarking 
considerations. 

In conclusion, our experiments show that NN (and NNGA) models for forecasting 
regional German employment have different levels of reliability, depending on the data sets 
used and the socio-economic background. This is certainly caused by the different time spans 
of the data sets for West and East Germany. It should also be remarked that our empirical 
analysis has been based on two main explanatory variables (employment and wages), and thus 
it cannot be comprehensive with regard to the many variables that may come into play when 
employment and social conditions are involved. Further, in order to assess the relative 
advantage of the NN models, these should be ideally compared – one-by-one – with 
benchmark models utilizing the same set of variables, while the OLS regressions used here 
can be directly associated only with Model A. The next chapter aims to fill one of the gaps 
indicated here – the lack of additional socio-economic explanatory variables – by modelling 
regional and industry specificities in NNs. This is done by introducing shift-share analysis in 
a joint modelling framework with NNs. Subsequently, in Chapter 6, we test the robustness of 
NN models to changes in the learning parameters (as suggested above), so as to finally 
provide a more comprehensive overview of the improvement limits of the models developed 
here. 
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Annex 4.A  Details of Model Experiments 
 
The NN models used in the present chapter were computed using the network parameters 
shown in the table below. 
 
Table 4.A1 – Parameter values of the NN models adopted: the case of West Germany 
Models Inputs IU HU Epochs LR M IN 

NN Models 
Model A Employment (GR), time (dummies) 22 10   900 0.9 1 0 
Model AC Employment (GR), time (dummies), 

district identifier 
23   5   600 0.9 1 0 

Model AD Employment (GR), time (dummies), 
district type (ordinal) 

23 10   600 0.9 1 0 

Model AE Employment (GR), time (dummies), 
district type (dummies) 

31 10   200 0.9 1 0 

Model AW Employment (GR), time (dummies), 
wage (GR) 

23   5   750 0.9 1 0 

Model ADW Employment (GR), time (dummies), 
district type (ordinal), wage (GR) 

24 15   900 0.9 1 0 

Model B Employment (GR), time (periodic) 10   5(1stL), 
  5(2ndL) 

  650 0.9 1 0 

Model BD Employment (GR), time (periodic), 
district type (ordinal) 

11 10   300 0.9 1 0 

Model BW Employment (GR), time (periodic), 
wage (GR) 

11   5(1stL), 
  5(2ndL) 

1600 0.9 1 0 

NNGA Models 
Model AGA Employment (GR), time (dummies) 22 24(1stL), 

  5(2ndL) 
  250 0.8279 0.2252 0.0071

Model ACGA Employment (GR), time (dummies), 
district identifier 

23 29   350 0.9492 0.1246 0.0101

Model ADGA Employment (GR), time (dummies), 
district type (ordinal) 

23 27   600 0.9575 0.5977 0.0175

Model AEGA Employment (GR), time (dummies), 
district type (dummies) 

31 24(1stL), 
  8(2ndL) 

  200 0.6892 0.0515 0.0198

Model AWGA Employment (GR), time (dummies), 
wage (GR) 

23 29(1stL), 
  9(2ndL) 

  350 0.6002 0.4409 0.0028

Model ADWGA Employment (GR), time (dummies), 
district type (ordinal), wage (GR) 

24 24(1stL), 
10(2ndL) 

  300 0.8294 0.1348 0.0076

Model BGA Employment (GR), time (periodic) 10   0   400 0.9013 0.3330 0.0118
Model BDGA Employment (GR), time (periodic), 

district type (ordinal) 
11   0   500 0.7982 0.2698 0.0164

Model BWGA Employment (GR), time (periodic), 
wage (GR) 

11   0 1800 0.8416 0.2774 0.0187

Notes: IU = input units; HU = hidden units; GR = growth rates; 1stL = first hidden layer; 2ndL 
= second hidden layer; LR = learning rate; M = momentum; IN = input noise. All models 
have only 1 output unit; the activation function is always a sigmoid. 
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Table 4.A2 – Parameter values of the NN models adopted: the case of East Germany 
Models Inputs IU HU Epochs LR M IN 

NN Models 
Model A Employment (GR), time (dummies) 16 10   100 0.9 1 0 
Model AC Employment (GR), time (dummies), 

district identifier 
17 10   300 0.9 1 0 

Model AD Employment (GR), time (dummies), 
district type (ordinal) 

17   5   300 0.9 1 0 

Model AE Employment (GR), time (dummies), 
district type (dummies) 

25 15   300 0.9 1 0 

Model AW Employment (GR), time (dummies), 
wage (GR) 

17   5(1stL), 
  5(2ndL) 

  200 0.9 1 0 

Model ADW Employment (GR), time (dummies), 
district type (ordinal), wage (GR) 

18   5(1stL), 
  5(2ndL) 

  200 0.9 1 0 

Model B Employment (GR), time (trend) 10   5(1stL), 
  5(2ndL) 

  900 0.9 1 0 

Model BD Employment (GR), time (trend), 
district type (ordinal) 

11 15 1100 0.9 1 0 

Model BW Employment (GR), time (trend), wage 
(GR) 

11   5 1000 0.9 1 0 

NNGA Models 
Model AGA Employment (GR), time (dummies) 16 26(1stL), 

  8(2ndL) 
  300 0.5685 0.799 0.0022

Model ACGA Employment (GR), time (dummies), 
district identifier 

17 14   200 0.6385 0.0994 0.0019

Model ADGA Employment (GR), time (dummies), 
district type (ordinal) 

17 16   200 0.9573 0.1433 0.0129

Model AEGA Employment (GR), time (dummies), 
district type (dummies) 

25 16   100 0.9443 0.0666 0.0061

Model AWGA Employment (GR), time (dummies), 
wage (GR) 

17   8   200 0.5705 0.0272 0.0170

Model ADWGA Employment (GR), time (dummies), 
district type (ordinal), wage (GR) 

18   6   100 0.8544 0.0764 0.0034

Model BGA Employment (GR), time (periodic) 10 19 1700 0.6878 0.3651 0.0230
Model BDGA Employment (GR), time (periodic), 

district type (ordinal) 
11 29 1000 0.7201 0.4295 0.0196

Model BWGA Employment (GR), time (periodic), 
wage (GR) 

11 13   200 0.6973 0.4033 0.0004

Notes: IU = input units; HU = hidden units; GR = growth rates; 1stL = first hidden layer; 2ndL 
= second hidden layer; LR = learning rate; M = momentum; IN = input noise. All models 
have only 1 output unit; the activation function is always a sigmoid. 
 





 

 

 
 

Chapter 5 
 

Joint Shift-Share and Neural Network Approaches 
for Regional Employment Forecasting 

 
 
 

5.1  Introduction33 
 
The preceding chapter presented a series of statistical procedures – and the resulting empirical 
findings – aimed at forecasting, by means of neural network (NN) models, regional variations 
in German employment. The novel aspect of carrying out such forecasts is in that out-of-
sample estimates are obtained in a panel data framework (rather than in a time-series 
framework); that is, we forecast the development of all concerned regions at a given time, by 
fully exploiting the full temporal depth of the data set. 

The results presented in Chapter 4 for several NN models showed that the main factor in 
determining their statistical performance is the treatment of the time-specific shocks: in 
econometric terms, of the time fixed effects. The inclusion of socio-economic variables 
concerning district urbanization or wages did not appear to provide a consistent improvement 
to the NN models. 

Consequently, the objective of the present chapter is to evaluate possible alternative 
economic variables in order to enrich the data set information and, consequently, to improve 
the fit between the dependent and the independent variables. In this regard, we propose the 
incorporation of shift-share analysis (SSA) in NN models. We introduce several variants of 
SSA, including some recent specifications, known as spatial shift-share and shift-share 
regression (SSR). This class of methods is integrated with the NN methodology previously 
employed, ideally providing a balance between a data-driven technique like NNs and a solid 
well-known research method like SSA. Ex post forecasts are used – with regard to our 
objective – to evaluate the statistical performance of the new NN models. 

The present chapter is organized as follows. Section 5.2 introduces various classes of 
shift-share techniques. Section 5.3 first recalls the main steps in the implementation of the NN 
models, illustrates the new additional ones, and, subsequently, reviews the statistical results of 

                                                 
33 The present chapter is based on Patuelli et al. (2006b), published in Spatial Economic Analysis. The original 

publication is available at www.springerlink.com. 
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the empirical application, which aims to estimate employment variations in the former West 
and East Germany for the years 2001–04. A contribution to NN analysis is offered by 
embedding SSA components. The results of these newly developed NN models are evaluated 
– in comparison with the winning models found in Chapter 4 – by means of appropriate 
statistical indicators, forecast equivalence tests, and map visualizations. Finally, Section 5.4 
offers some conclusions and sets future research directions. 
 
5.2  Shift-Share Analysis for Regional Growth Analysis 
 
5.2.1  The Conventional Shift-Share Analysis Identities 
 
Shift-share analysis (SSA) has, since its inception in the 1960s, been a popular analytical tool 
among regional scientists, and not only for improving the understanding of changes in 
economic variables, such as employment or GDP, at the regional level. SSA can be usually 
employed in four ways: (a) in forecasting; (b) in strategic planning (that is, observing the 
weight of the effects); (c) in policy evaluation (before-and-after analysis); and (d) in decision 
making (Dinc et al. 1998; Loveridge and Selting 1998). 

SSA was first introduced by Dunn (1960), and subsequently formalized by Fuschs (1962) 
and Ashby (1964). In SSA, the growth shown by economic variables is decomposed into 
several components. Using employment as an example, the conventional shift-share 
decomposition can be written as: 

 
 [ ( ) ( )] ,ir i ir i ire G G G g G eΔ = + − + −  (5.1) 

 
where eir is the employment observed in region r for sector i; G is the overall national 
employment growth rate; Gi is the national growth rate of sector i; and gi is the growth rate of 
region r in sector i. The employment growth rate ireΔ  is therefore decomposed into three 

components: 
 

(1) the ‘national effect’ G; 
(2) the ‘sectoral effect’, given by the difference between the sectoral and overall national 

growth rates, Gi and G; 
(3) the ‘competitive effect’, given by the difference between the local and nationwide 

sectoral growth rates, gi and Gi. 
 
Each of the three components can be calculated for each region, over all the sectors, and 

nationwide. In particular, when summed nationwide, the sectoral and competitive effects sum 
to zero. This property is usually referred to as the ‘zero national deviation’ (ZND) property. 
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The above SSA identity has been studied and modified by several authors over the years. 
Alternative formulations of SSA also include, for instance, an industry-structure approach 
where, in place of growth rates, industrial structures are compared (Ray 1990). 

However, perhaps the most popular SSA extension is the one developed by Esteban-
Marquillas (E-M) (1972): 

 

 ).)(()()( h
iririir

h
iriiririirir eeGgeGgeGGGee −−+−+−+=Δ  (5.2) 

 

In this SSA formulation, h
ire  is the homothetic employment of sector i in region r. Homothetic 

employment is calculated as ,h
ir ire eE E=  that is, region r’s employment in sector i, as it 

would be if the sector had the same structure as the nation. The homothetic competitive effect 
(third component) measures ‘a region’s comparative advantage/disadvantage in [sector] i 
relative to the nation’ (Esteban-Marquillas 1972, p. 43). The fourth and last component is 
called the ‘allocation effect’, as it is the product of the expected employment and the 
differential which measures a region’s competitive advantage in sector i. The claim of this 
model is that it isolates the competitive effect from its relationship with the sectoral effect. 
Critiques of the E-M model can be found in Stokes (1974) and in Haynes and Machunda 
(1987). The E-M extension is not considered in our experiments, since the competitive effect 
is computed in the same way as in conventional SSA, the only difference being that it is 
multiplied by the homothetic employment. 

More generally, according to Loveridge and Selting (1998), the main criticisms of SSA 
concern: 

 
- its lack of theoretical content. In order to fill this gap, there have been attempts to link 

SSA to neoclassical microeconomics and factor demand for labour; 
- aggregation problems. Finer categories increase the weight of the sectoral effect and 

shrink the competitive effect. On the other hand, it has to be remembered that other 
techniques are also sensitive to aggregation issues; 

- weighting bias. It is not clear whether it is more convenient to use the base or the 
terminal year. Alternatively, the average of the two or a middle year could be used, or 
a ‘dynamic shift-share’ formulation (see Wilson 2000); 

- instability of the competitive effect. This instability makes employment projections by 
means of SSA somewhat precarious. On the other hand, this issue does not exclude the 
use of SSA in forecasting, particularly in the framework of NNs; 

- interdependence of the sectoral and competitive effects. 
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A number of new SSA specifications have been developed over the years,34 on the basis 
of the first technical advances described above, often focusing on the elimination of 
dependence among shift-share components, or trying to solve other deficiencies of SSA. 
However, the application of newer methodologies has often deprived the models of their 
contribution to understanding local phenomena (Loveridge and Selting 1998). While all types 
of decomposition can be obtained by adding and subtracting variables, all of them can be 
shown to be rooted in the simple SSA decomposition (Nazara and Hewings 2004). 
Consequently, the basic models and a few other modifications, widely accepted as standards, 
are still preferred by most analysts, because of their intuitive and simple specifications. 

Despite the above considerations, the development of new SSA extensions still goes on. 
One of the most recent developments in this matter is the extension proposed by Nazara and 
Hewings (2004), also called ‘spatial shift-share’ by the authors, and described in the next 
subsection. 

 
5.2.2  Spatial Shift-Share 
 
The development of the recent shift-share extension termed ‘spatial shift-share’ is justified by 
the fact that spatial issues, such as spillovers and spatial competition, have not been 
considered in the application of SSA. There is, therefore, a need for the introduction of an 
element that accounts for the spatial structure of a particular region. If we consider that 
regions are – as seems logical – interdependent and they influence each other, we note, in fact, 
that horizontal-influence relationships (that is, region to region: we refer to such relationships 
in particular in Chapter 9) are not enclosed in the traditional SSA formulation, while only 
hierarchical ones are accounted for (that is, nation to region). 

Starting from this consideration, Nazara and Hewings modified the conventional shift-
share identity in: 

 
 ,)]()([ iririririr eggGgGe II −+−+=Δ  (5.3) 

 
where irgI  is sector i’s growth rate in the regions that are neighbours to region r, and is 

formulated, for a generic (t, t + n) period, as: 
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34  For a review of SSA identities, see Loveridge and Selting (1998), and Dinc et al. (1998). 
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where N is the number of regions, and the employment levels of the neighbouring regions are 

weighted according to a row-standardized weight matrix ,W�  which defines the intensity of 

the neighbours’ interaction with region r. This interaction can be defined in many ways: for 
instance, on the basis of geographical contiguity or economic flows. A simplified version of 
the weight matrix is employed in this chapter, where the neighbours of a given region are 
empirically defined as the three regions that provide the highest number of individuals 
commuting towards the region considered.35 In practical terms, the weight matrix employed 
here is an asymmetric matrix with only three identical values differing from 0 for each region 
considered (that is, for each row or column of the matrix). The overall employment growth 
rate of the neighbours is subsequently computed. 

As a consequence of the new variable presented in Equation (5.3), the sectoral and the 
competitive components change in meaning. In detail: 

 
- The sectoral component now identifies the difference between the growth rate of 

region r’s neighbours in sector i and the national all-sector growth. 
- The competitive component is the difference between sector i’s growth rate in region r 

and in its neighbouring regions. 
 
This recent decomposition is already the subject of further study and expansion. Mayor 

Fernández and López Menéndez (2005) developed a mixed Nazara-Hewings/E-M model, 
which employs both homothetic employment and the spatial connotation given by a 
geographic connectivity matrix. The interest in the SSA framework also goes beyond its 
deterministic nature. The next section describes a stochastic shift-share approach termed 
‘shift-share regression’. 

 
5.2.3  Shift-Share Regression 
 
One of the main critiques of SSA is the lack of hypothesis testing, which is due to shift-
share’s deterministic nature. A stochastic approach, based on regression techniques equivalent 
to shift-share, has been developed by Patterson (1991), and subsequently used by, amongst 
others, Möller and Tassinopoulos (2000), Blien and Wolf (2002), and Suedekum et al. (2006) 
in the analysis of employment patterns in Eastern Germany. 

The model proposed by Patterson is rather simple, and strictly related to the conventional 
SSA approach: 

 
 α λ ε ,irt i t r irte kΔ = + + +  (5.5) 
                                                 
35  The data on commuting flows used in Model SSN were kindly provided by Günter Haag (STASA, Stuttgart, 

Germany), and refer to the year 2002. Future research would ideally also look at changes in the commuting 
patterns, so as to also have a ‘dynamic’ definition of ‘neighbours’. 



70 Chapter 5 

 

where irteΔ  is the regional employment growth rate in sector i during period (t, t + 1); αi is the 

effect of sector i; λt incorporates time period t (period effect); kr is a locational effect specific 
to region r; and εirt is stochastic noise. The aforementioned authors proposed extensions of 
this specification, incorporating additional variables, such as structural adjustment, region-
type indicators and qualification level of employees. Equation (5.5) suffers from perfect 
multicollinearity, and is therefore estimated by introducing a set of constraints (see Blien and 
Wolf 2002). A Weighted Least Squares (WLS) estimation procedure is suggested in order to 
reduce the impact of outliers. 

This Shift-Share Regression (SSR) approach is replicated, in this chapter, in a simplified 
version. We are interested in introducing shift-share components in NNs in order to forecast 
overall regional employment. Therefore, we only employ the locational effects regressors, 
which are region-specific, as explanatory variables in NN models. In our case, the dependent 
variable is ,rteΔ  that is, the overall employment change of region r. Equation (5.5) is 

therefore simplified as follows: 
 

 ε .rt r rte a kΔ = + +  (5.6) 

 
In Equation (5.6), a is the intercept, while εrt is the stochastic noise for region r at time t. 

In this case, the locational effects variable is computed as the competitive effects used in 
conventional SSA. Consequently, there is a set of locational effects regressors: one for each 
sector. The model was estimated, by means of WLS,36 for each 2-year period. We found most 
of the locational effect variables to be statistically significant (for details, see Tables 5.A1 and 
5.A2 in Annex 5.A). The multiple per-year estimations seem logical in the NN forecasting 
framework. The estimation of a single regression coefficient per sector would only change the 
scale of the independent variables introduced in an NN model, as they are multiplied by the 
corresponding regression coefficients. Computing a regression for each 2-year period enables 
what could be seen as a ‘fine tuning’ of the locational/competitive effect variables, the 
regression coefficient being different for each year. However, the correctness of this 
procedure – from a methodological viewpoint – will certainly have to be examined more in-
depth. 

On the basis of the considerations of this and of the preceding sections, several mixed 
NN-SSA (which hereafter we refer to as NN-SS) models were developed, using conventional 
and ‘spatial’ SSA formulations, as well as SSR. The next section provides details of the NN 
models developed and their results. 
 

                                                 
36 The weights are computed, in our case, as the ratio between the regional and the national overall employment 

levels, in a base year. 
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5.3  Introduction of Shift-Share Analysis in Neural Network Models 
 
5.3.1  Forecasting Employment by Means of Neural Networks 
 
This section focuses on the description of the new NN models developed in this chapter for 
our forecasting purposes and employing SSA components. As explained in more detail in 
Chapter 4, the main inputs of our models are the growth rates of the number of workers 
regionally employed in the nine economic sectors. The aim of the models is to produce 2-
years-ahead (t, t + 2) ex post employment forecasts for the German regional labour markets 
(at the NUTS-3 level). 

In our previously developed NN models, a ‘time’ variable – inserted in order to exploit the 
panel nature of the data – was identified in the models in two different ways: (1) as a set of 
dummy variables (‘A-type’ models), resembling ‘time fixed effects’ in panel econometric 
models (Longhi et al. 2005b); and (2) as a periodic ordinal (trend) variable (‘B-type’ models). 
On the basis of the conclusions reached in our previous analysis (see Section 4.6), in this 
chapter, we rule out the time dummies approach (that is, the A-models), focusing on the 
winning family of B-type models. 

We refer to the NN models employing SSA-computed variables as NN-SS models. They 
use Model B as a basis (Section 4.4.1), and they are otherwise specified as follows: 

 
- Model BSS: this NN model contains nine additional explanatory variables, which are 

the competitive effect coefficients calculated, for each sector, in the framework of a 
conventional SSA. As a result, for each German district and each year, we have nine 
coefficients expressing regional competitiveness.  

- Model BSSN: similarly, this model employs the competitive effect coefficients, this 
time deriving from the Nazara and Hewings spatial shift-share extension. 

- Model BSSR: the present model embeds variables computed in the SSR framework. 
The variables employed are the multiplicative product of the competitive effect 
variables used in Model BSS and their regression coefficients, as found in the analysis 
explained in Section 5.2.3 (for details on the coefficient values, see Tables 5.A1 and 
5.A2 in Annex 5.A). 

 
The three previously developed NN-SS models of the ‘B-type’ family are employed in the 

next sections for purposes of comparison: (1) Model B; (2) Model BD – has the same inputs 
as Model B, plus the variable ‘type of district’ as a counter; and (3) Model BW – also has the 
same inputs as Model B, with the inclusion of average daily wages as an input variable. The 
characteristics of all the models presented are summarized in Annex 5.B. 

All the models adopted use, as input variables, the regional growth rates of sectoral 
employment. The data used in our NN-SS models started from 1991 (1989–91) for West 
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Germany and from 1997 (1995–97) for East Germany. The data set available for West 
Germany is six years longer and allows for longer training and testing periods. Consequently, 
we formulate separate West and East German NN-SS models. 

The models were developed (validated and tested) following the procedure in Section 
4.4.2. In summary, the data set years concerned are: 

 
(a) Validation phase: for West Germany, 1991–2000; for East Germany, 1997–2000. 
(b) Test phase: for West Germany, 1991–2004; for East Germany, 1997–2004. 
 
The objective of this procedure was to obtain ex post, out-of-sample forecasts for the years 

2001–04 (year-by-year) that could be compared with the actual data, in order to evaluate the 
models’ generalization properties. 

The next sections explain and discuss the empirical findings from our experiments. First, 
the results obtained for West Germany are shown and examined (Section 5.3.2), followed by 
those found for East Germany (Section 5.3.3). 
 
5.3.2  Estimation of West German Employment 
 
As indicated in the previous section, three NN-SS models were developed and tested for each 
data set. Here the NN-SS models are compared with the three winning NN models of Chapter 
4 (with Model BW having been the winner in our previous more comprehensive analysis). 
The statistical indicators emerging from these experiments for the case of West Germany are 
presented in Table 5.1. These results assess the statistical performance of the NN and NN-SS 
models. 
 
Table 5.1 – Statistical performances of the ex post forecasts for the years 2001–04: the case of 

West Germany 
West MSE MAPE MGN: Model BSS ST: Model BSS 

NN Models 
Model B 6772694 (4) 2.7517 (5) *** *** 
Model BD 7806311 (6) 2.7580 (6) *** *** 
Model BW 6069135 (1) 2.6472 (3) *** *** 

NN-SS Models 
Model BSS 6446501 (2) 2.5465 (1) – – 
Model BSSN 6709151 (3) 2.6812 (4) *** *** 
Model BSSR 6993894 (5) 2.6370 (2)   
Note: The ranking of the NN models is shown in brackets. 
*** Rejection of forecast equivalence at the 99 per cent level. 
**   Rejection of forecast equivalence at the 95 per cent level. 
*     Rejection of forecast equivalence at the 90 per cent level. 
 



 Joint Shift-Share and Neural Network Approaches for Regional Employment Forecasting 73 

 

The results presented in Table 5.1 show that the new (NN-SS) models seem to provide 
promising results, improving on the performance of the simpler Model B (on which they are 
based). Moreover, Model BSS seems to challenge the dominance, seen in Chapter 4, of Model 
BW. Forecast equivalence tests carried out for Model BSS confirm the preliminary 
observation of Table 5.1. We find that Model BSS significantly outperforms – and is therefore 
preferable to – all three NN models (B, BD and BW) and Model BSSN. Inverse testing on 
Model BW returns non-significant results in the comparison with the NN-SS models (that is, 
Model BW does not outperform the NN-SS models). 
 
5.3.3  Estimation of East German Employment 
 
The analysis presented in the preceding section is repeated here for the NN and NN-SS 
models carried out for East Germany. The corresponding statistical results – for the 2001–04 
ex post forecasts – are presented in Table 5.2. 

 
Table 5.2 – Statistical performances of the ex post forecasts for the years 2001–04: the case of 

East Germany 
West MSE MAPE MGN: Model BSS ST: Model BSS 

NN Models 
Model B 6971273 (4) 3.0883 (1) ***  
Model BD 5315250 (1) 3.2494 (5) *** *** 
Model BW 7685641 (6) 3.3986 (6) *** *** 

NN-SS Models 
Model BSS 6696829 (3) 3.0950 (2) – – 
Model BSSN 6460406 (2) 3.1101 (3)  *** 
Model BSSR 7464860 (5) 3.1174 (4) ** *** 
Note: The ranking of the NN models is shown in brackets. 
*** Rejection of forecast equivalence at the 99 per cent level. 
**   Rejection of forecast equivalence at the 95 per cent level. 
*     Rejection of forecast equivalence at the 90 per cent level. 

 
The results shown in Table 5.2 are fairly consistent with the ones obtained for the West 

German NN and NN-SS models, presented in Table 5.1. The NN-SS models, particularly 
Model BSS, suggest an enhanced generalization power compared with the benchmark models 
used (the NN models). The NN models that were winning in our previous analysis of Chapter 
4 still win in this case, but the NN-SS models provide most of the best estimates, ranking 
amongst the top models with respect to both statistical indicators. Usual forecast equivalence 
tests were carried out in order to investigate a possible significant preference between Model 
B and Model BSS. Neither of the two models consistently outperforms the other, as the only 
significant result comes from the MGN test (on the dominance of Model BSS on Model B). 
While this finding suggests a general equivalence between the two models, we observed that 
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Model BSS actually increases generally the levels of significance of the tests; that is, it 
outperforms the remaining models to a greater extent. 

The consistent results between the West/East German NN and NN-SS models lead to 
interesting considerations. Our main finding is that the inclusion of SSA components (spatial 
or non-spatial, and, to a lesser degree, shift-share regression) in NN models clearly increases 
their forecasting reliability. A second finding is that Model BSS (employing components from 
conventional SSA) emerges in the analysis for both West Germany and East Germany as the 
winning model. The above results confirm the importance of including region-specific 
information, but also the problem of which region-specific information is relevant. In the case 
of the NN-SS models, it is sector/region/year-specific information. 
 
5.4  Conclusions 
 
In the present chapter, we presented an empirical analysis of the performance of NN models 
developed for regional employment forecasting. We extended the analyses first presented in 
the preceding chapter, by evaluating a joint shift-share analysis/NN approach. We developed 
three new NN models (NN-SS), utilizing components from different SSA approaches as 
inputs, and we carried out ex post forecasts for four out-of-sample time periods (2001–04). 

We found that the NN-SS models further improve the statistical performance of the basic 
‘B’-type model. Overall, Model BSS, employing conventional SSA components, proved to be 
the most reliable and was shown to outperform the remaining models. This finding shows the 
effectiveness of a simple deterministic tool such as SSA, moving in the direction of 
integrating linear and nonlinear methods and, in the case of Model BSSN, spatial information. 
In this particular regard, the incorporation in the NNs of information on the performance of 
the ‘neighbours’ allows us to fill – or start filling – one of the gaps of conventional SSA, and 
maybe of NNs, that is, that they do not include information regarding the spatial 
characteristics of the data. 

In this regard, spatial econometrics methods, such as spatial filtering (Griffith 2003), are 
discussed in the last chapter of Part B. Future research should ideally study the 
implementation of spatial NN models, potentially employing – as input – spatial econometric 
output, in order to alleviate the weakness of the NN algorithms in such matter. Grounds for 
additional improvement should also be sought in the experimentation of NN parameters 
alternative to the ones used until now in this study. This task is carried out in the next chapter. 
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Annex 5.B  Details of Model Experiments 
 
The NN models used in the present chapter were computed using the network parameters 
shown in the table below. In addition, the following parameters were used: LR: 0.9; 
momentum: 1; input noise: 0. 
 
Table 5.B1 – Parameter values of the NN models adopted; the case of West Germany 
Models Inputs IU HU Epochs

NN Models 
Model B Employment (GR), time (periodic) 10   5(1stL), 

  5(2ndL) 
  650 

Model BD Employment (GR), time (periodic), district type 
(ordinal) 

11 10   300 

Model BW Employment (GR), time (periodic), wage (GR) 11   5(1stL), 
  5(2ndL) 

1600 

NN-SS Models 
Model BSS Employment (GR), time (periodic), SSA regional 

component 
19 15   100 

Model BSSN Employment (GR), time (periodic), SSA spatial 
regional component 

19   5   400 

Model BSSR Employment (GR), time (periodic), SSA modified 
competitive effect 

19   5   900 

Notes: IU = input units; HU = hidden units; GR = growth rates; 1stL = first hidden layer; 2ndL 
= second hidden layer. All models have only 1 output unit; the activation function is always a 
sigmoid. 
 
Table 5.B2 – Parameter values of the NN models adopted; the case of East Germany 
Models Inputs IU HU Epochs

NN Models 
Model B Employment (GR), time (periodic) 10   5(1stL), 

  5(2ndL) 
  900 

Model BD Employment (GR), time (periodic), district type 
(ordinal) 

11 15 1100 

Model BW Employment (GR), time (periodic), wage (GR) 11   5 1000 
NN-SS Models 

Model BSS Employment (GR), time (periodic), SSA regional 
component 

19   5(1stL), 
  5(2ndL) 

  200 

Model BSSN Employment (GR), time (periodic), SSA spatial 
regional component 

19   5(1stL), 
  5(2ndL) 

  300 

Model BSSR Employment (GR), time (periodic), SSA modified 
competitive effect 

19   5(1stL), 
  5(2ndL) 

  300 

Notes: IU = input units; HU = hidden units; GR = growth rates; 1stL = first hidden layer; 2ndL 
= second hidden layer. All models have only 1 output unit; the activation function is always a 
sigmoid. 





 

 

 
 

Chapter 6 
 

Sensitivity Analysis of Neural Network Models for 
Regional Employment Forecasting 

 
 
 

6.1  Introduction37 
 
In the preceding chapters we presented methodological and empirical approaches aimed at the 
development of neural forecasting models, with the particular objective of estimating short-
term regional variations in German employment. On the one hand, we have shown that the 
inclusion of proper economic variables improves the forecasting power of the NN models, in 
particular with the implementation of the shift-share-analysis-enhanced ‘NN-SS’ models (see 
Chapter 5). On the other hand, the experiments on ‘NNGA’ models carried out in Chapter 4 
showed that the genetic algorithm-enhancement of the NN models did not provide added 
statistical reliability, which prompts us to carry out a thorough investigation of the sensitivity 
of our models to varying parameters of the NN algorithm. This analysis appears to be 
particularly useful and necessary, since NNs have been shown to be sensitive to the choice of 
the parameters implemented within the algorithms used (see, for example, Hagan et al. 1996). 

Therefore, the objective of the present chapter is to investigate the sensitivity of the NN 
models to different model specifications and to changing parameter values, with the final aim 
being to maximize the forecasting potential of the models under consideration. The statistical 
performance of the NN models is evaluated by means of ex post forecasts and appropriate 
statistical indicators, in line with the analyses of the preceding chapters. 

The present chapter is organized as follows. Section 6.2 presents the sensitivity analysis 
that was carried out. We test different combinations of learning parameters and internal 
functional forms. We then review the changes in the performance of the NN models, after the 
findings of the sensitivity analysis are implemented. Subsequently, Section 6.3 provides 
conclusions and future research directions in the light of both the experiments presented in 
this chapter and, more generally, of Part B of the present study. 
 

                                                 
37 The present chapter is based on Patuelli et al. (2006c). 
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6.2  Sensitivity Analysis 
 
6.2.1  Preface 
 
This section is concerned with describing – and testing – the main parameters and functions 
that are used internally in NNs. We do not repeat here a general description of the NN 
methodology, nor the specification details of the NN models used. This information can be 
traced, with regard to the NN paradigm and the basic models used, in Chapter 4, and, with 
regard to the NN-SS models, in Chapter 5. We focus on the discussion of NN setting 
parameters. It is relevant to deal with concepts such as learning rate or activation function, 
since they greatly influence the performance of NN models (see, for example, Hagan et al. 
1996). In our case, the objective is to find the optimal combination of parameters in order to 
increase the forecasting potential of our models. 

Sensitivity analyses of NN learning parameters or activation functions have been carried 
out previously. Srinivasan et al. (1994) experimented with different activation functions 
(symmetrical and non-symmetrical) and learning parameters, in the context of electrical load 
forecasting. However, no detailed results which emerge from their analysis are presented. 
Gorr et al. (1994) used a grid search procedure for choosing learning rate values (jointly with 
the number of iterations), but did not test the suitability of alternative activation functions; 
neither do Sharda and Patil (1992). Generally, more attention is focused on the choice of NN 
learning parameters, rather than on the choice of the activation function. 

The sensitivity analysis illustrated in the following sections aims to evaluate the use both 
of different combinations of learning parameters (Section 6.2.2) and of varying activation 
functions (Section 6.2.3), so as to provide a more complete overview of NN setting issues. 
Model B, first presented in Chapter 4 of this study, is used hereafter as a baseline model for 
the analysis. 

 
6.2.2  Learning Rate and Momentum 
 
6.2.2.1  Description 
The backpropagation algorithm (BPA) (see Section 4.2.1) can be seen as a gradient steepest 
descent method, an optimization method based on the search for local minima of functions 
(Zhang et al. 1998; see also Weisstein 2006). In order to use a gradient descent algorithm, a 
step size – that is, a scaling parameter – is necessary. In NNs, this is called the ‘learning rate’ 
(LR), which, together with the ‘momentum’ parameter, is crucial in determining the NN 
learning curve in terms of potential, stability, and computing time. Different combinations of 
the values given to the two parameters can generate significantly different results. Simply put, 
an NN’s LR determines the magnitude of the correction that is applied, during the learning 
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phase, when adjusting the weights of the computational units; and the momentum defines how 
long the corrections applied will last; that is, for how many iterations they will survive. 

Learning rates take positive values, which range from 0 to 1. On the one hand, large 
values imply that the NN learns quickly. On the other hand, values that are too large may 
cause the NN to be unstable, by nullifying the learning carried out at previous iterations. 
Generally, unstable behaviour can be avoided for LR values smaller than 0.25. The drawback 
of using such small LR values is the longer computing time required for training. 

The tricky nature of the LR parameter calls for empirical testing. In fact, the BPA is 
known to suffer from slow convergence, inefficiency and lack of robustness (Zhang et al. 
1998). Furthermore, it can be very sensitive to the choice of the LR. Ideally, one should 
experiment with different values of LR, in order to find the most suitable one for the data at 
hand. Amongst others, Gorr et al. (1994) propose using a search grid in order to test different 
LR values. Although automated optimization procedures can be used in this regard (we refer, 
for example, to the discussion of adaptive LR in Section 6.2.2.3), a more conservative 
approach may be to manually adjust the LR values, starting from low values, which can be 
increased if the learning process is slow. 

The performance of the BPA can be improved by including an additional parameter, viz. 
momentum. The momentum parameter determines the lifespan of the corrections made to the 
NN weights during the training process. Its aim is to allow for greater values of the LR, 
therefore speeding up convergence, while reducing the fluctuations of the BPA. The 
momentum parameter takes values greater than (or equal to) 0, but smaller than 1.38 On the 
one hand, momentum values that are close to 1 will increase the influence that previous 
corrections to the weights have on the current corrections. On the other hand, an NN with a 
momentum close to 0 will mainly (or ‘only’, in the case of a value of 0) rely on the current 
corrective term, at each stage of the training. For example, a momentum value set at 0.5 
means that 50 per cent of the weight adjustment, at each stage, will be on the basis of the 
current error, while the remaining 50 per cent will be due to the adjustment applied in the 
previous iteration. As a result, any weight adjustment will have a continuing effect, following 
an exponential decay. 

The ‘smoothing out’ effect of this process is the main benefit of the momentum parameter, 
since it prevents outliers from forcing learning in an undesirable direction. By using 
momentum, weight changes in the training of the NN are channelled in the same direction as 
the preceding iteration. This is particularly true when higher momentum values are used. In 
such a case, high momentum tends to accelerate convergence, giving it, as the word suggests, 
‘momentum’ (Hagan et al. 1996). Alternatively, lower momentum values may be suitable for 
                                                 
38  The momentum parameter cannot assume the value of exactly 1. The reason for this caveat is easily shown by 

an example. If the momentum was set at 1, 100 per cent of the previous error adjustment would be used at 
each stage of the training. Because no previous adjustments are present at the very first training iteration, the 
first weight adjustment would be 0. But the same adjustment (0) would be repeated at each iteration, since the 
current error is not considered, resulting in no training whatsoever. 
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data which are more regular or smoother, or when the functional relationships to be learned 
are relatively simple. In general, experimenting with different values of momentum might be 
necessary, as in the case of LR, in order to find the appropriate value for the problem 
concerned, unless more sophisticated methods are employed in order to determine the right 
momentum value (see, for example, Yu et al. 1995). These methods can also be linked to the 
use of adaptive LRs. 
 
6.2.2.2  Sensitivity analysis 
When testing for values of LR and momentum, an exhaustive search of the (0, 1) interval for 
both parameters, including all their possible combinations, would be rather time-consuming. 
Sharda and Patil (1992) suggest a simpler strategy, based on the use of three values (0.1, 0.5, 
0.9) for each parameter. The resulting nine combinations can be tested separately, with no 
excessive computation, while covering most of the spectrum of possible values. 

The same approach was followed in our experiments. The sensitivity of the NNs to 
different LRs and momentums was tested for the above nine combinations of values. Model B 
(see Chapter 4) was chosen as a basic model for testing, because of its simple application and 
the stable performance previously observed. For all NN models, the ideal training time was 
identified by means of early stopping (see Section 4.2.1). Table 6.1 shows the results 
obtained, in our preliminary analysis, for 2004. Statistical errors may be computed as MSE 
and MAPE. 

In Table 6.1, the stochastic variability that is inherent to NNs generates different degrees 
of statistical performance for the West and East German NN models, and for the two error 
indicators used. However, upper-right combinations of LR and momentum (0.9, 0.1) seem to 
provide a consistently low statistical error (second-best in all cases).  

Our finding is that a high LR, matched with a low momentum, leads to better performance 
for the case of regional employment forecasts. A NN model employing such parameters is 
expected to show greater weight corrections – and a potentially faster convergence – between 
iterations. This higher volatility of the NN would be offset by the low momentum, due to 
which the corrections computed would not have a lasting effect through the course of the 
iterations. The utility of a low momentum is greater when the NN meets outliers or falls into 
local minima. 
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Our results can be compared with the ones by Tang et al. (1991), who found that high LRs 
are adequate for use with less complex data, while lower values (and higher momentum) are 
appropriate for more complex data. Whether or not our findings accord with these 
considerations relies on whether our data should be considered ‘complex’. Generally, Tang 
and Fishwick (1993) state that, for each series of data, a set of NN parameters can be found 
which performs significantly better than the rest. This consideration stresses once again the 
crucial role played by the learning parameters in the performance of NNs. The inconsistent 
results in the literature regarding the search for ideal values of the learning parameters (see, 
for example, Chakraborty et al. 1992; Sharda and Patil 1992) are blamed by Zhang et al. 
(1998) on the (minimum) search inefficiencies of the BPA. 

 
6.2.2.3  Adaptive learning rate 
We pointed out in Section 4.2.1 that the BPA has flaws, that is, it can have slow convergence 
(if any) (Kuan and Hornik 1991) and, most importantly, can get trapped in local minima. 
Several techniques have been developed in order to solve the problem of slow convergence. 
In addition to this, the BPA is also sensitive to the initial conditions chosen and can show 
oscillations in the computational units’ output (Sarkar 1995). While the momentum parameter 
can be seen as – and mostly is – a regulator of the oscillations and of the local minima 
problems (and involving the LR parameter), its value is chosen a priori, and is therefore not 
tied to the actual progress of the NN iterations.  

In order to overcome these limitations, the use of the adaptive learning rate (ALR) has 
been proposed. In the ‘bold driver’ method (Vogl et al. 1988), the LR – as defined in Section 
6.2.2.1 – is augmented by a factor ρ when the error computed at iteration i is greater than the 
one previously found at iteration i – 1. Otherwise, the LR is diminished by a factor σ when the 
error decreases.39 A further step in the application of ALR techniques is the implementation of 
NNs that have multiple ALRs. In the ‘SAB’ method (self-adaptive backpropagation), each 
weight can have its own LR, which is computed as the partial derivative of the learning error 
estimator. The method is based on the idea that the same LR may not be appropriate for all the 
weights of the NN. Moreover, in the ‘SuperSAB’ method, it is suggested that the ρ and σ 
factors that modify the multiple LRs should be also different in value, and that the decrease in 
the LR caused by the σ factor should be greater (see Jacobs 1988; Tollenaere 1990). 
Tollenaere concludes that the SuperSAB algorithm considerably speeds up learning. 

The ALR approaches listed above provide a somehow faster learning for NNs. On the 
other hand, Park et al. (2000) advise that these methods can not completely avoid the 

                                                 
39  The momentum parameter can also be modified: that is, it can be forced to 0 when the error increases and 

brought back to its value in the opposite case (Hagan et al. 1996). In addition, Yu et al. (1995) propose a 
dynamically adaptive method for the optimization of the LR, which employs derivative information. 
Moreover, Plagianakos (1999) suggests an acceptability criterion for the modification of the LR, based on the 
previous M computed errors. This approach seems to speed up the convergence of the NNs and to make them 
more robust against oscillations. 
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algorithm from stalling in slow convergence plateaus. This is because this class of methods 
uses the same search direction that is used in the conventional BPA. Consequently, we want 
to test the statistical performance of the ALR algorithm, in comparison with the NNs using a 
fixed LR. We consider two NN models, based on Model B, for 2004: the first model employs 
an LR of 0.9, while the second model uses the ALR algorithm. Both models have a 
momentum of 0.1, as found in Section 6.2.2.2. 

With regard to the implementation of the ALR, this is implemented as follows: 
 
- The LR is modified at this training iteration. The extent of its recalculation is based on 

the error computed at the previous iteration. 
- If the error decreases as a result of the last iteration, the LR drops in proportion to the 

error decrease. If the error increases, the LR also increases proportionally. 
- The training of the NN models ends once the stopping condition is satisfied. 
 
Our first question is whether the ALR algorithm provides, in our case, a faster 

convergence, which requires us to observe the evolution of the training error. When plotting 
the error against the number of training epochs, the NNs with an ALR seem to reach a stable 
training error (converge) faster than the ones with a fixed LR. This ‘informal’ result is 
consistent with the literature. The subsequent question is, therefore, whether the algorithm can 
improve the statistical performance of the models. Table 6.2 reports the error of the 
conventional fixed LR models, as well as of the ALR models. 

 
Table 6.2 – Sensitivity analysis for the adaptive learning rate: Model B, West and East 

Germany, year 2004 
 West Germany East Germany 
 MSE MAPE MSE MAPE 
Fixed LR (0.9) 2080340 (2) 1.8102 (1) 1124118 (2) 2.6624 (2) 
Adaptive LR 2078876 (1) 1.8232 (2) 1102830 (1) 2.6494 (1) 
Note: The ranking of the NN models is shown between brackets. 
 

Table 6.2 shows a rather similar statistical performance for the fixed and adaptive LR 
models compared. This result is found for both data sets – West and East German – and the 
differences in the statistical error can be considered of limited relevance when compared with 
the variability shown in the LR/momentum and activation function analyses. 

On the basis of the analyses carried out in this section, we can conclude that, in our 
forecasting experiments, ALR did not provide relevant approximation advantages, but only a 
faster convergence of the algorithm, consistent with the literature. It should be pointed out 
that such a result may be greatly relevant when computational issues arise. 
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6.2.3  Activation Function 
 
6.2.3.1  Description 
The greater benefit of using NNs is their nonlinear behaviour, which allows them to 
approximate nearly every type of function. The nonlinearity is introduced in NNs by means of 
the activation function. Ideally, any differentiable function can be used as an activation 
function. Practically, only a few nonlinear functions are usually considered for NNs; that is: 
 

- sigmoid (logistic) functions; 
- augmented ratio functions; 
- Gaussian functions; and 
- hyperbolic (tangent) functions. 

 
As a special case, we also consider: 
 

- linear functions, 
 
whose use is sometimes suggested in NNs (see below). The sigmoid function is, in fact, the 
most widely used activation function. It is a smooth function, which returns nearly 
proportional outputs for intermediate values, while smoothing out values at the extremes of 
the spectrum. The augmented ratio function and the hyperbolic function are mostly similar to 
the sigmoid function, but, in the augmented ratio function, small values are rounded to 0, 
while the hyperbolic function is negatively oriented, tending to force extreme values of the 
distribution to either 1 or –1. The Gaussian function forces small values to 1, and extreme 
values to 0. The augmented ratio function looks like an inverted Gaussian function. 
Differently from the functions described above, a linear function proportionally rescales the 
values within the (0, 1) interval. 

While any of the described functions can be implemented in NNs, there are no clear rules 
on how to select the most appropriate activation function. Some heuristic rules have been 
proposed in the literature in order to select a suitable function, such as in Klimasauskas 
(1991). The author suggests the use of sigmoid functions for classification problems (for 
example, with binary outputs) and of hyperbolic functions for forecasting problems; that is, 
when learning about deviations from the average is involved. A different function can ideally 
be used for each computational unit in the NN (for example, Wong, 1991, uses both linear and 
sigmoid functions). While the usual NN models found in the literature employ the same 
activation function for all units, examples can also be found of NNs in which a different 
function is selected for the output units. Sigmoid functions are mostly used in the input and 
hidden layers, while there is no agreement on what activation function should be employed 
for the output units. In this latter regard, Zhang et al. (1998) and Rumelhart et al. (1995) 
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suggest the use of linear functions. Zhang et al. cite a set of studies following the same 
procedure (see, for example, Srinivasan et al. 1994; Kuan and Liu 1995), which, according to 
the authors, provide no clear results on whether linear or nonlinear activation functions should 
be preferred for the implementation in the output units. 
 
6.2.3.2  Sensitivity analysis 
A sensitivity analysis of the performance of NNs with different activation functions would 
ideally require a full exploration of the possibilities available, and also of the mixed 
approaches discussed above. In the present study, we are limited to testing NNs employing 
the same activation function for all layers of units.40 

The activation functions that are tested here are: (1) sigmoid; (2) augmented ratio; (3) 
Gaussian; (4) hyperbolic; and (5) linear, as outlined in the previous section. While we pointed 
out above that the linear function is normally used only in the output layer, our experiments 
aim to test its implementation in a whole NN. All models are based on Model B and carried 
out for the year 2004. Table 6.3 presents the results obtained for both the West and the East 
German models. The statistical error is computed as MSE and MAPE. 
 
Table 6.3 – Sensitivity analysis for activation functions: Model B, West and East Germany, 

year 2004 
West Germany Sigmoid Aug. Ratio Gaussian Hyperbolic Linear 
MSE 2080340 (2) 2597494 (5) 2493604 (4) 2166504 (3) 2038430 (1)
MAPE 1.8102    (3) 1.9628    (5) 1.9018    (4) 1.7984    (2) 1.7927    (1)
East Germany Sigmoid Aug. Ratio Gaussian Hyperbolic Linear 
MSE 1124118 (2) 1121622 (1) 1224547 (3) 1483758 (4) 1569152 (5)
MAPE 2.6624    (2) 2.7024    (3) 2.6540    (1) 2.7754    (4) 2.8157    (5)
Note: The ranking of the NN models is shown between brackets. 
 

The statistical results shown in Table 6.3 generally confirm the results found in the 
literature. The NN models employing a sigmoid activation function show a stable and good 
statistical performance, for both West and East Germany. This finding is in line with the 
general consensus on the use of the sigmoid function, and confirms our initial choice of 
activation function (see Chapter 4). However, more in-depth explorations should be carried 
out in the framework of alternative multi-function NN specifications and, in particular, with 
regard to the relative performance of the hyperbolic function. It should be noted that the linear 
activation function provides the best statistical result for West Germany, while its results for 
East Germany are not satisfactory. This finding suggests that the West German data have a 
tendency towards linearity. The full reasons for the differences in the performance of the 
linear function should be further investigated, in order to better grasp the relationship between 
data complexity and the ideal (linear or nonlinear) approximation function to use. As for our 

                                                 
40  The software used for our experiments does not allow multiple simultaneous functions to be selected. 
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case study, as linearity tests were not carried out here, it might be suggested, on the basis of 
our result, that ideally experiments should be made with both the sigmoid and the linear 
function. 

The statistical results of the sensitivity analysis carried out above call for further testing. 
In particular, we are interested in verifying which changes can be observed in the performance 
of the models employed in Chapter 5 once the new NN settings are in place. Therefore, the 
next section presents a numerical comparison of NN and NN-SS models developed before and 
after the sensitivity analysis. 
 
6.2.4  Evaluation of the Sensitivity Analysis Empirical Findings 
 
In light of the findings of the sensitivity analysis carried out in the preceding sections, we 
want to evaluate how the use of a different NN specification influences the results obtained in 
Chapter 5. As a preliminary comparison, Table 6.4 presents the statistical results computed, 
for all models, in 2004 (that is, the 2002–04 forecasting period). The word ‘Old’ identifies the 
NN models carried out before the sensitivity analysis, where the LR is 1, and the momentum 
is 0.9. The word ‘New’ identifies the NN models carried out according to the findings 
emerging from the sensitivity analysis, where the LR is 0.9, and the momentum is 0.1. All 
models employ sigmoid (logistic) activation functions. 

The statistical performance of the models, shown in Table 6.4, suggests the following 
results. Concerning the West German NN models: (a) amongst the ‘New’ models, carried out 
after the sensitivity analysis, Models B and BD seem to slightly improve their performance, 
while the other models do not show similar or consistent results; (b) in terms of the ranking of 
the models, Model B moves from fourth to first. On the other hand, it should be noted that the 
newly obtained Model B does not outperform the previous best results (pre-sensitivity 
analysis), which were obtained by Model BSSN. 

Concerning the East German models, our results are less clear. It appears that the new 
learning parameters implemented did not bring a uniformly better performance for any NN 
model. 

In summary, the statistical results of Table 6.4 suggest that more investigation is needed 
with regard to the influence of the new set of parameters on our NN models. In particular, 
attention should be focused on whether the models employ more or less rich data and 
specifications. It should also be pointed out that the findings presented above are related to a 
sensitivity analysis carried out for Model B only. It could be argued that, in order to improve 
the performance of alternative models, such as Model BSS (which exploits a richer data set), 
additional sensitivity analyses should be carried out, which might lead to different 
conclusions. The extension of the sensitivity analysis to the entire time spectrum considered 
in Chapters 4 and 5, though time-consuming, is also desirable, in order to strengthen the 
reliability of our results. 
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6.3  Conclusions 
 
In the present chapter, we extended the experiments on neural forecasting of regional 
employment, previously carried out in Chapters 4 and 5. We carried out a sensitivity analysis, 
investigating the effect of varying learning parameters and functional forms on the NN 
models’ forecasts. The performance of our NN and NN-SS models (see Chapter 5) was then 
re-evaluated in the light of the sensitivity analysis findings. 

Our analyses showed that, in the specific case of Model B, a particular combination of 
learning parameters (high LR values and low momentum) tends to improve the forecasts of 
the model. We also found that the sigmoid (logistic) function used is appropriate for the 
forecasting problem concerned, even if a linear activation function seems to be more suitable 
for the case of West Germany (in 2004). This result calls for much needed testing on the 
linearity of the employment data. In our final undertaking, a comparative analysis of the 
findings of the sensitivity analysis showed that a statistical performance improvement is 
indeed achieved to some degree, while more sensitivity tests, concerning the type of data used 
in NN models, should be undertaken. 

The analyses illustrated in the present and preceding chapters can be expanded by carrying 
out further research in several directions. From an empirical viewpoint, a longer (and more 
up-to-date) data span (for example, comprising data for 2005 and 2006) would allow us to 
increase the years of testing of the NNs and, consequently, the reliability of the average 
(pooled) statistical results. The development of further NN models, utilizing new variables 
(such as unemployment or migration) could also be desirable, as well as a comparison of the 
accuracy of forecasts for the (t + 1) and (t + 2) periods. Finally, the sensitivity analysis carried 
out in the present chapter would benefit from being extended to more out-of-sample testing 
periods (as seen in Section 5.3), as well as to more model specifications. 

From a methodological viewpoint, it might be desirable to carry out more elaborate NN 
models, such as time-delay NNs (Waibel et al. 1989), or multi-function NNs. In particular, the 
testing of linear functions integrated within NNs should be a main objective. Fulfilling such a 
task would make it possible to combine the benefits of both families of methods in a more 
complete approach to labour market analysis. This could, therefore, be exploited in the NN 
forecasting. 

A further conclusion, pertaining to the first research objective of the present study, should 
be made. The NN-SS models developed in Chapter 5 have highlighted the importance of 
understanding the ‘complexity’ involved in regional forecasting. The introduction of SSA 
allowed us to take a first step in this direction. Further, a more in-depth analysis of the spatial 
interactions among districts might help to better understand the regional phenomena. While 
district (kreise) interactions are discussed in Part C of this study with regard to commuting, 
the incorporation, in Model BSSN, of information on the (employment) performance of the 
‘neighbours’ was a preliminary attempt at modelling the interactions of small open systems 
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such as the German kreise districts. A further step in this direction is exploiting the potential 
of spatial econometric methods for the analysis of developing spatial/regional variables. In 
particular, the application of ‘spatial filtering’ methods (Griffith 2003) will be examined. The 
next chapter is devoted to this task. 

 





 

 

 
 

Chapter 7 
 

Spatial Filtering and Eigenvector Stability: 
The Space-Time Structure of German 

Unemployment Data 
 
 
 

7.1  Introduction41 
 
The preceding chapters (4–6) provided an assessment of the suitability of neural network 
models for forecasting regional employment variations. In this regard, one of the main 
conclusions reached was that it is desirable to include, in our modelling efforts, additional 
aspects, pertaining to the relevance of space/geography and regional interaction. In order to 
widen the analyses concerning our first research question – concerning the statistical analysis 
of key regional labour market variables – the present chapter focuses on the spatial aspect 
(regional interactions are treated in-depth in Chapters 8 and 9). We propose the use of spatial 
econometric techniques: namely, spatial filtering, in order to capture spatial (and temporal) 
variations in regional unemployment patterns. 

Spatial matters are of critical importance when considering socio-economic (and other) 
phenomena (see, for example, Bockstael 1996; Weinhold 2002), partly because of their 
implications for policy making (Lacombe 2004). To account for the presence of spatial 
structures that influence (positively or negatively) observable economic entities, such as 
unemployment or trade, requires a rigorous and systematic assessment of their impact and 
extent. The concept of ‘spatial autocorrelation’ (SAC) (Cliff and Ord 1981) is commonly used 
to represent the correlation – in space – between the values of a single georeferenced variable. 
Phenomena of SAC are often observed in socio-economic data, particularly for the case of 
positive SAC; that is, a positive association between georeferenced values. The phenomenon 
of negative SAC is, in fact, more limited (see, for example, Griffith 2006). 

The introduction of the SAC concept was a departure from the classical assumption of 
independence of the observations constituting a single variable. SAC also complements the 
concept of temporal autocorrelation, which has been extensively studied and dealt with in 

                                                 
41 The present chapter is based on Patuelli et al. (2006d,e). 
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time-series econometrics. SAC measures, such as Moran’s I or Geary’s ratio, are used to 
quantify the nature and degree of the spatial correlation within a variable, or to test the 
assumption of independence or randomness. 

From a statistical analysis viewpoint, spatial correlation patterns are problematic, since 
they make standard statistics, such as correlation coefficients or ordinary least squares (OLS) 
estimates, potentially inappropriate. In particular, spatially correlated values of a variable 
make the estimator of the error variance – in an OLS framework – biased. This is the case 
when we analyse regional labour market variables such as unemployment. The persistent 
differentials of regional unemployment observed in Germany (see for example, Taylor and 
Bradley 1997; Bayer and Juessen 2007) may be caused by spatial effects that concern the 
variable itself. As a result, a linear, non-spatial model, such as OLS, that studies German 
unemployment (as a dependent variable) would have biased regression parameters. In spatial 
econometrics, ‘spatial lag’ models are used to accommodate this problem (we employ such a 
modelling framework later in the chapter for purposes of comparison). If spatial effects were 
to be related to significant unobserved variables – thus causing SAC in the model’s error term 
– the test statistics of the coefficients would be invalid. In this case, a ‘spatial error’ model can 
be employed. A more general spatial econometric specification is the Cliff-Ord-type model, 
presented in Equation (2.5), Chapter 2 (for a taxonomy of spatial econometric models, see, for 
example, Anselin 1988). 

This chapter aims to provide an assessment of how important spatial effects are in 
explaining unemployment levels in Germany, and, in particular, to show that these (or, more 
precisely, a subset of these) patterns are consistent over time. The definition of stable and 
recognizable spatial patterns enables systematic differences in regional unemployment to be 
observed. Such findings can have implications for policy evaluation and strategic planning. 
As an alternative to conventional spatial econometric modelling, this chapter presents 
analyses carried out by means of a semi-parametric ‘spatial filtering’ technique (described in 
Griffith 2003), which is based on the decomposition of geographic weights matrices. In our 
analysis, these matrices are defined, for 439 German districts (kreise), according to both 
topological and distance-based criteria – such as shared boundaries or centroid distance – and 
economic flows. In this regard, journey-to-work flows are employed as a proxy for economic 
linkages. 

At present, only a limited number of applications of the spatial filtering techniques to 
regional labour markets can be found. Badinger and Url (2002) apply spatial filtering to the 
study of Austrian regional unemployment. Kosfeld and Dreger (2006) and Kosfeld et al. 
(2006a) investigate – by means of the same spatial filtering method proposed here (Griffith 
2000) – the spatial patterns of German regional labour markets, for periods ranging from 1992 
to 2004. However, their approach involves computing spatial filters for each year within the 
framework of a spatial seemingly unrelated regression (SUR) model. Our approach differs 
from theirs in that we focus on the search for a set of spatial filters that are significant and 
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consistent over time, and can therefore be employed for the entire time period considered (that 
is, 1996–2002). Moreover, we employ data at a finer level of disaggregation (439 districts 
versus 180 regions), which enables a more detailed analysis of the underlying spatial patterns. 

The remainder of the chapter is structured as follows. Section 7.2 provides a brief 
overview of the spatial filtering method, as well as a discussion of the possible coding 
schemes for geographic weights matrices. Section 7.3 illustrates the spatial filtering analysis 
of unemployment rates. Section 7.4 presents additional results based on the introduction of 
socio-economic covariates in the spatial filtering framework. Finally, Section 7.5 offers some 
summary information and concluding remarks, which also concern the present research 
objective. 
 
7.2  Spatial Filtering: An Overview 
 
7.2.1  Preface 
 
As outlined in the preceding section, a wide array of methods, as well as several dedicated 
‘spatial’ econometric procedures (see, for example, Anselin et al. 2004) for the statistical 
analysis of georeferenced data are available in the literature. These techniques are useful 
when analysing regional unemployment data, as in our case study, and, particularly, when the 
final aim is to develop forecasting models for some regional scale. Of the conventional spatial 
econometric methods, spatial autoregression (see, amongst others, Anselin 1988; Griffith 
1988) is a powerful method commonly employed. In order to take spatial effects into account, 
spatial autoregressive techniques use geographic weights matrices that provide measures of 
the spatial linkages (dependence) between the values of georeferenced variables. Because of 
the aforementioned regression bias issues, statistical efficiency concerns and the normality 
assumption, ordinary least squares (OLS) should not be carried out with such data. 
Furthermore, maximum likelihood (ML) or generalized method of moments (GMM) 
estimators of spatial regression models (such as those by Kelejian and Prucha 1998, 1999) are 
based on restrictive assumptions. 

An alternative approach to spatial autoregression is the use of spatial filtering techniques, 
such as the ones described in Griffith (1981), Haining (1991), Getis and Griffith (2002), and 
Tiefelsdorf and Griffith (2007). The advantage of these filtering procedures is that the 
variables studied (which, initially, are spatially correlated) are split into spatial and non-
spatial components, which can be employed in an OLS modelling framework. Filtering out 
spatially autocorrelated patterns also makes it possible to reduce the stochastic noise in the 
residuals of conventional statistical methods such as OLS. This conversion procedure requires 
the computation of ‘spatial filters’. The approach developed by Griffith (1996, 2000) is briefly 
described here. This approach is preferred in our case study to the one by Getis (1990, 1995) 
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which requires variables with a natural origin. This constraint would not allow us to analyse 
patterns in employment growth rates, which will be the subject of future research. 

The spatial filtering technique introduced by Griffith is based on the computational 
formula of Moran’s I (MI) statistic. This coefficient is the most common, and oldest, indicator 
of SAC. It is calculated as: 
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where N is the number of cases; xi is the value of the variable X at location i; and wi,j is the 
cell (i, j) value of the geographic weights matrix W (see Section 7.2.2). Positive SAC 

))1(( 1−−−> NI  implies that geographical proximity tends to produce similar values of the 

variable examined. This is a phenomenon that is often observed in reality, especially in 

economics. On the other hand, negative SAC ))1(( 1−−−< NI  is a much rarer phenomenon. 

The spatial filtering methodology employed here exploits eigenvector decomposition 
techniques, which extract orthogonal and uncorrelated numerical components from an N x N 
matrix (Tiefelsdorf and Boots 1995). In this regard, this method is often compared to principal 
components analysis (PCA), since both methodologies generate orthogonal and uncorrelated 
new ‘variables’ that can be employed in regression analyses. However, the components 
derived in PCA have an economic interpretation, since the PCA eigenvectors are used to 
construct linear combinations of attribute variables. On the other hand, a spatial filter is a 
linear combination of the eigenvectors themselves, and as such it should be regarded mostly 
as a pattern of independent spatial dimensions. Accordingly, the single eigenvectors can be 
seen as independent map patterns, and represent the latent SAC of the georeferenced variable 
concerned, according to the given geographic weights matrix. They also can be interpreted as 
redundant information due to spatial interdependence, in the framework of standard 
regression equations. 

Formally, these orthogonal components are the computed eigenvectors of the modified 
geographic weights matrix: 

 

 T T( ) ( ),N N− −I 11 W I 11  (7.2) 

 
where W is the given geographic weights matrix; I is an identity matrix of dimension N x N; 
and 1 is an N x 1 vector containing 1’s. The eigenvectors of the modified matrix are extracted 
in sequence, so as to maximize the sequential residual MI values. The first computed 
eigenvector, E1, is, therefore, the one whose numerical values generate the largest MI value 
amongst all eigenvectors (of the modified matrix). Similarly, the second eigenvector, E2, is 
the set of numerical values that, again, maximize the MI value, while being uncorrelated with 
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E1. The eigenvector extraction process continues until N eigenvectors have been computed. 
This is the complete set of all possible (mutually) orthogonal and uncorrelated map patterns 
(Getis and Griffith 2002). When employed as regressors, these eigenvectors may function as 
proxies for missing explanatory variables. 

However, employing all N eigenvectors in a regression framework is not desirable for 
reasons of model parsimony and statistical significance, and is altogether impossible in a 
cross-sectional framework, since the number of explanatory variables would be equal to or 
greater than the number of observations. A smaller set of ‘candidate’ eigenvectors can then be 
selected from the N eigenvectors, on the basis of their MI values. A pre-specified threshold 
value can be used in this regard. Since the eigenvectors are both orthogonal and uncorrelated, 
a stepwise (linear) regression can be used to achieve this end. In this framework, the 
advantage implied by the orthogonality of the eigenvectors is the absence of partial 
correlations and, therefore, of multicollinearity issues. 

The residuals obtained with the stepwise regression constitute the spatially filtered 
component of the georeferenced variable examined. Each eigenvector selected for inclusion is 
considered to be part of a ‘spatial filter’ for the dependent variable. The top two eigenvectors 
computed (E1 and E2) have a special role, since they often identify map patterns along the 
cardinal points; that is, major North-South and East-West patterns. Eigenvectors with 
intermediate values of MI tend to display regional map patterns, whereas eigenvectors with 
smaller values of MI display local map patterns. A linear combination of the above 
eigenvectors can be defined as the spatial filter for the variable examined. 

Also relevant to the use of the eigenvector decomposition process is the choice of the 
geographic weights matrix to be used, in particular with regard to: (a) the definition of 
proximity; (b) the variable chosen (if any) to indicate proximity; and (c) the coding scheme 
employed in the calculation of the matrix. While points (a) and (b) are discussed later in the 
chapter, the latter point is just briefly addressed in the subsequent section. 
 
7.2.2  Coding of Geographic Weights Matrices 
 
The spatial filters presented in the previous section are computed on the basis of a modified 
geographic weights matrix. Formally, a geographic weights matrix is a (squared) N x N matrix 
containing, most often, binary values (0 and 1). A value of 1 for the generic cell (i, j) implies 
that the two georeferenced objects (for example, regions) i and j are neighbours. The opposite 
applies for the value 0. It is straightforward that the choice of the matrix to be used is critical 
in defining the set of spatial filters. Many coding techniques for geographic weights matrices 
can be found in the literature (Tiefelsdorf et al. 1999; Getis and Aldstadt 2004). The main 
factor that discriminates between the different schemes is the way in which each scheme 
treats the spatial links between georeferenced objects. 
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Generally speaking, we can define a family of coding schemes based on the following 
expression (Tiefelsdorf and Griffith 2007, with details in Chun et al. 2005): 
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where W is a binary geographic weights matrix, and qD  is a diagonal matrix that contains the 

q
id  components ( 1 ,...,q q

Nd d ), belonging to vector ,= ⋅d W 1  and representing the degree of 

‘linkage’ of the spatial object i. Different coding schemes are obtained by varying the q 
parameter. In particular, the following schemes can be obtained: 
 

- q = 0: C-coding (globally standardized). This scheme is commonly used in spatial 
statistics, and tends to emphasize spatial objects with a greater degree of linkage. The 
C-coded matrix is symmetrical. 

- q = –0.5: S-coding (variance stabilized). This scheme tends to even out the variation 
levels of weights assigned to spatial objects. 

- q = –1: W-coding (row-sum standardized). This scheme is mostly used in 
autoregressive response and simultaneous spatial autoregressive model specifications, 
and, contrary to the C-coding scheme, tends to emphasize the weight of objects with 
small spatial linkages. The scheme produces an arithmetic average of the neighbouring 
values in the original W matrix. 

 
Different spatial patterns may well result from the calculation of the eigenvectors of the 

above coded matrices. For instance, a W-coded matrix can be expected to show more 
‘extreme’ values along the edges of a study area, while, on the other hand, a C-coded matrix 
is expected to present stronger patterns in the inner study area. Figure 7.1 presents an 
illustrative example, for the case of German unemployment, of the first two eigenvectors 
generated from the adjacency matrix coded in the different coding schemes. 
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Figure 7.1 – Eigenvector variation for different coding schemes, the case of German 

unemployment 
 

The choice of coding scheme, and therefore of the geographic weights matrix, not only 
determines the set of eigenvectors out of which the spatial filters are selected, but is also a 
factor from the perspective of the utilization of its results in a spatial econometric or spatial 
statistics framework. With regard to the empirical application presented in this chapter, both 
W-coding and C-coding are employed in Section 7.3. A single coding scheme (C-coding) is 
then selected for further analyses, presented in Section 7.4. The results of a correlation 
analysis of the geographic weights matrices used are also presented, in order to compare the 
different approaches. 

 
7.3  Computation and Choice of Spatial Filters for German Unemployment 
 
7.3.1  Preface 
 
The above spatial filtering techniques are now illustrated empirically. This chapter presents 
results based on the analysis of German unemployment data (unemployment rates). The data 
set, described more fully in Chapter 3, consists of a panel of 439 German districts (kreise), for 
which the years from 1996 to 2002 are available, while the level of aggregation of the data set 
is NUTS-3. In particular, the NUTS-3 aggregation level enables a more detailed examination 
of ‘local’ unemployment patterns. In fact, data at the NUTS-2 level would only have 41 
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regions (Regierungsbezirke). Alternatively, an intermediate approach is proposed by Kosfeld 
and Dreger (2006), who carry out a spatial filtering analysis of German regional labour 
market data, using 180 regional labour market areas (Eckey 2001). 

Additionally, in Section 7.4, we employ information at the same aggregation level on: (a) 
regional daily wages of full-time workers; (b) number of full-time employees; and (c) 
working-age population. For the analysis presented in this chapter, we employ these three 
variables over the period of 1994 up to and including 2001 (see Chapter 3 for a complete 
description of the variables used). 

A further spatial relationship matrix, concerning German commuting flows, is employed 
in our analysis. For each pair (i, j) of NUTS-3 origin and destination (O-D), the data consist of 
the number of employees who are residents of district i and work in district j. We can treat 
these flows as home-to-work trips. The data used in this chapter refer to the year 2002, and 
are employed in the computation of an ‘economic flows’ geographic weights matrix (see 
Section 7.3.2). Commuting data for one year only are employed in our analysis, since varying 
commuting data would generate different geographic weights matrices, and, consequently, 
different sets of eigenvectors. Furthermore, we can assume some spatio-temporal persistence 
with respect to the local commuting patterns. The daily commuting flows between two 
districts are transformed to satisfy the statistical symmetry requirement of spatial weights 
matrices. Consequently, this transformation models the daily to-work and back-home flows. 

 
7.3.2  Geographic Weights Matrices: The Different Approaches Used 
 
As mentioned above, the spatial filtering methods employed in this analysis are based on the 
decomposition of a geographic weights matrix. Therefore, it is important to carefully 
consider, in addition to matrix computation methods (see Section 7.2.2), the concept of 
proximity that is used and its consequences. 

In our case study, we present a set of different definitions of the geographic weights 
matrix: 

 
- economic flows: based on patterns of commuting flows; 
- shared boundaries: based on geographical contiguity, which by definition is 

symmetric; 
- distance: based on symmetric distances separating district centroids. 
 
The definitions highlighted here enable us to observe the influence of different operational 

definitions of proximity on the final results. First, commuting flows are employed as a proxy 
for the economic interdependence between districts (as outlined in Section 1.3). Second, 
shared boundaries utilize the topology of NUTS-3 administrative boundaries (kreise) in 
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defining proximity. Third, distance-based matrices calculated using the centroids of the same 
districts define proximity in terms of geographical distance-decay relationships. 

A total of five geographic weights matrices are employed in this chapter. The matrices are 
as follows: 

 
a) A journey-to-work flows matrix, computed according to the q = –1 coding scheme 

(W-coding). This matrix is based on the location-to-location commuting data 
described above.42 

b) Two matrices based upon shared boundaries, constructed by defining contiguity 
according to the ‘rook’ rule, and then computed according to the C- and W-coding 
schemes. Results from the application of a ‘queen’ contiguity rule (which also 
considers contiguity on vertices) are not considered here, since the two specifications 
of adjacency differ only by 25 neighbour links. 

c) Two distance-based matrices derived from a spatial interaction model (SIM);43 the 
variables used for the estimation of the model are district full-time employment data 
and the distance (as the crow flies) between the centroids of each district:  
a. First, a distance-decay (deterrence) exponent of –2.7 is obtained from the 

estimated SIM and then converted into the W-coding scheme. 
b. Second, this distance-decay (deterrence) exponent is increased to –6.3 in order to 

obtain the same number of candidate eigenvectors that are obtained with the shared 
boundaries W-coding scheme. 

 
The unconstrained SIM that follows was used to describe the journey-to-work flows and 

to estimate the deterrence parameters: 
 

 γα β ε ,ijd
ij i j ijT KO D e−= +  (7.4) 

 
where Tij is the quantity of flows between the areal units i and j; Oi is the number of workers 
residing in the origin areal unit i; Dj is the number of jobs located in the destination (place of 
work) j; K, α, β and γ are parameters; and εij is a random error associated with the flows 
between the origin i and the destination j. 

The estimated deterrence parameter, γ̂,  was used, in order to define the W-coding 

scheme, as follows: 
 

                                                 
42 On the one hand, the journey-to-work matrix might be closely related to the different levels of urbanization of 

the districts. On the other hand, it might be argued that endogeneity should be considered as a potential issue, 
in particular if covariates are added to the current autoregression approach. 

43  For details about the estimation of spatial interaction models, see, amongst others, Sen and Smith (1995), and 
Haynes and Fotheringham (1984). 
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where wij is the value of the generic cell (i, j) of the geographic weights matrix W. 

Next, γ̂  was incrementally increased until the matrix (WT + W)/2 yielded the same 

number of prominent eigenvectors that were obtained with the (WT + W)/2 matrix 
constructed as the row-standardized version of the (topological-based) binary contiguity 
matrix. Note that the eigenvectors for all W-coding schemes are extracted from (WT + W)/2 
in order to convert the matrix from an asymmetric to a symmetric one. 

On the basis of the geographic weights matrices described above, the next section 
describes the spatial filter selection process followed. 
 
7.3.3  Computation and Selection of the Spatial Filters over Time 
 
The first step in the construction of a spatial filter to be applied to the variable of study (in this 
case, German regional unemployment rates) is the computation of the eigenvectors of the 
geographic weights matrix, followed by the choice of a set of candidate eigenvectors from 
which a selection is made. Eigenvectors are selected for inclusion on the basis of their MI 
values and their correlation with our georeferenced data. A minimum MI/max(MI) value of 
0.25 has been used, in our case, to identify the candidate set. The results of this process, 
carried out for the matrices presented in the preceding section, are presented in Table 7.1. 
 
Table 7.1 – Candidate eigenvectors selected and maximum MI values 
Geographic weights matrix Number of candidate eigenvectors max(MI) 
Journey-to-work flows matrix   78 2.92 
Rook matrix (S-coding) 130 1.07 
Rook matrix (C-coding)   98 1.24 
Distance-based matrix (β = –2.7)   36 0.97 
Distance-based matrix (β = –6.3)   97 1.02 

 
Once the five sets of ‘candidate’ eigenvectors shown in Table 7.1 have been selected, the 

statistical significance of each set as an explanatory variable for regional unemployment rates 
has to be established. This process was carried out by means of a stepwise logistic regression 
analysis. The stopping condition employed is a 10% level of significance for inclusion and 
retention of the eigenvectors. In addition to the stepwise regression analysis, a further manual 
backward elimination of regressors was carried out through the sequential estimation of a 
generalized linear model coupled with a binomial distribution. A marginal eigenvector was 
excluded if its χ2 value remained non-significant. 
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This process was repeated for all available years of unemployment data – from 1996 to 
2002 – and for each geographic weights matrix. As a result, seven sets of ‘significant’ 
eigenvectors (one set for each year) were selected, for each of the employed matrices. These 
are the ‘spatial filters’ uncovered for each year and matrix. 

Next, for each geographic weights matrix, we aim to pinpoint a subset of eigenvectors that 
is common to all the years (1996–2002). The results of the analyses described above are 
summarized in Table 7.2. Details about the eigenvectors selected in each context and year are 
shown in the Table 7.A1, Annex 7.A. Of particular note, in Table 7.A1, is that the sum-of-
squared prediction error (SSPE) divided by the mean squared error (MSE) in all cases is 

roughly 1 (that is, SSPE MSE ); in other words, a jackknife type of cross-validation 

assessment of the selected eigenvectors yields a prediction error that is almost identical to the 
OLS error minimization results. This validates the constructed spatial filters. 

 
Table 7.2 – Amount of variance explained by the selected eigenvectors, and the number of 

common eigenvectors, 1996–2002 
Geographic 
weights 
matrix 

Common 
eigenvectors 

Pseudo-
2R  

1996 

Pseudo-
2R  

1997 

Pseudo-
2R  

1998 

Pseudo-
2R  

1999 

Pseudo-
2R  

2000 

Pseudo-
2R  

2001 

Pseudo-
2R  

2002 
Journey-to-
work flows 
matrix 

14 0.3004 0.2911 0.3305 0.3142 0.3379 0.3453 0.3285 

Rook 
matrix 
(S-coding) 

17 0.6477 0.6821 0.7293 0.7453 0.7945 0.8022 0.7909 

Rook 
matrix 
(C-coding) 

15 0.5929 0.6425 0.6846 0.7068 0.7483 0.7683 0.7549 

Distance-
based 
matrix 
(β = –2.7) 

  6 0.6215 0.5968 0.6519 0.6930 0.7296 0.7448 0.7382 

Distance-
based 
matrix 
(β = –6.3) 

11 0.6233 0.6067 0.6501 0.6818 0.7247 0.7442 0.7331 

 
The results summarized in Table 7.2 show that we found sets of eigenvectors (that is, 

spatial filters) that are statistically significant, as explanatory variables of German regional 
unemployment, over the entire time period considered. Of note here is that all the proposed 
contiguity approaches (that is, economic flows, shared boundaries, and distance) enable us to 
define sets of common spatial filters. 

In terms of statistical relevance, the amount of variance explained by the spatial filtering 
regressors is fairly consistent over the years (reasonably, unemployment patterns do not 
change much from year to year), and at comparable levels, for all the geographical contexts 
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(that is, shared boundaries and distance). The adjusted pseudo-R2 values found for these 
analyses are around 0.60–0.80, with the S-coded rook matrix approach being the most 
significant. The results obtained for the commuting flows matrix approach are, however, not 
as encouraging. The amount of variance explained by the model, in this case, is only in the 
0.29–0.35 range. 

 

(a) (b)

(c) (d)  
Figure 7.2 – Spatial filters computed for the rook matrix (S-coding): (a) = E2; (b) = E3; (c) = 

E5; and (d) = E6 (see Table 7.A1, Annex 7.A) 
 
As mentioned in Section 7.2, the constructed spatial filters can be interpreted not only as 

potential explanatory variables substituting for missing ones but also as map patterns. A 
graphical visualization of the spatial filters uncovered by our analysis provides an example of 
the map features embedded in the eigenvectors’ values. Figure 7.2 above shows the four 
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eigenvectors with the largest MI values computed for the rook adjacency matrix S-coding 
scheme, and that are also common to all the years examined. 

As noted previously, the first two eigenvectors for adjacency matrices usually show East-
West and North-South patterns. Spatial filter component (a) (E2) in Figure 7.2 seems, in fact, 
to be characterized by a North-South pattern. When we observe the subsequent spatial filter 
components (b, c and d), the geographic patterns mapped relate to characteristics of smaller 
geographic scale, showing patterns that can be categorized first as ‘regional’, then as ‘local’. 
Although they may contain some common map patterns (for example, North-South and East-
West patterns), spatial filters computed with different geographic weights matrices will vary 
to some degree. Meanwhile, an assessment of the statistical significance of the spatial filters 
(shown in Table 7.2) enables us to assess the utility of the different proximity approaches 
employed. 
 
7.3.4  Discussion of the Results of Different Proximity Approaches 
 
The preceding section reveals that all the definitions employed in this chapter in order to 
operationalize proximity have been found to generate sets of eigenvectors (whose linear 
combinations are spatial filters) that are statistically significant for all the years examined. 
Consequently, our focus is on observing similarities and differences in the statistical 
performance of the different definitions used. 

In order to understand the descriptive performance associated with different geographic 
weights matrices, we need to compare the matrices themselves. Therefore, a correlation 
analysis of the matrices employed here has been carried out. The results of this analysis 
appear in Table 7.3 (for details on the computation of matrix correlation, see Oden 1984, and 
Tiefelsdorf 2000). 

Several features of Table 7.3 are noteworthy. The most conspicuous result pertains to the 
correlations between the journey-to-work flows matrix and the remaining matrices (that is, of 
the shared-boundaries and distance-based types). The low correlation values found are 
plausible and, to a certain degree, to be expected. The flows matrix differs from the other 
matrices in that it is not based on topology, but is a proxy for the economic links between the 
German districts. These links are, in fact, not fully limited by geographical contiguity, and 
they embrace hierarchical components of the geographical landscape as well. With regard to 
the remaining matrices, they all seem to have fairly high correlations, which would be 
consistent with the similarities we observed in the statistical performance of their spatial 
filters (see Table 7.2). Also of note is that: 

 
- Matrices based on more similar definitions tend to be more strongly correlated with 

each other than with those based on less similar definitions. 
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- The correlation between the two rook adjacency-based matrices is higher than that 
between the two distance-based matrices, in spite of the different coding schemes 
employed. 

- Both distance-based matrices, which have been constructed with the W-coding 
scheme, seem to be more strongly correlated with the S-coded than with the C-coded 
rook matrix. 

 
Table 7.3 – Correlations of geographic weights matrices 

Distance- 
based 
matrix 

Distance-
based  
matrix 

 Journey-to-work 
flows matrix 

Rook matrix
(S-coding) 

Rook 
Matrix 
(C-coding)

(β = –2.7) (β = –6.3)
Journey-to-work 
flows matrix 

1.0000 0.5641 0.5102 0.4919 0.5949 

Rook matrix 
(S-coding) 

0.5641 1.0000 0.9152 0.6892 0.7923 

Rook matrix 
(C-coding) 

0.5102 0.9152 1.0000 0.6533 0.6879 

Distance- 
based matrix 
(β = –2.7) 

0.4919 0.6892 0.6533 1.0000 0.8775 

Distance- 
based matrix 
(β = –6.3) 

0.5949 0.7923 0.6879 0.8775 1.0000 

 
These findings call for a more in-depth analysis of the issues related to the choice of a 

coding scheme, particularly in view of the type of data patterns that a spatial analyst wants to 
emphasize (different coding schemes accentuate different kind of patterns). The discussion of 
such problems goes beyond the scope of this chapter; however, an interesting treatment can be 
found in Tiefelsdorf et al. (1999). 
 
7.3.5  A Spatial Autoregressive Panel Model for German Unemployment 
 
The preceding sections focused on computing and selecting, for different geographic weights 
matrices, sets of eigenvectors that are commonly significant for all the years examined (1996–
2002). In this section, we exploit these findings by estimating a spatial autoregressive panel 
model in order to evaluate the explanatory power of a time-invariant spatial filter. We employ 
a generalized linear mixed model (GLMM), which we develop for the case of the rook 
geographic weights matrix using the C-coding scheme.44 The 15 common selected 

                                                 
44  Clearly, any of the geographic weights matrices developed in the preceding sections could be employed. 

However, aside from the case of the journey-to-work flows matrix, which showed less reliable statistical 
results, we might expect rather similar results from the remaining matrices, as suggested by the close values of 
Table 7.2, and by the high correlation levels shown in Table 7.3. 



 Spatial Filtering and Eigenvector Stability 107 

 

eigenvectors (see Section 7.3.3) were entered as regressors in a generalized linear model 
(GLM) with a binomial distribution for the response variable, together with a normal-
distributed random effects intercept variable, in order to handle temporal correlation. In a 
GLMM, the intercept will be a geographically-varying random variable, which accounts for 
the serial correlation in short time series such as that employed in our case study. This random 
effects intercept also supports inferences beyond the surface partitioning and the set of points 
in time concerned. 

Table 7.4 presents summary results regarding the spatial autocorrelation accounted for by 
this model. 

 
Table 7.4 – Spatial autocorrelation measures for German unemployment, based upon the rook 

(C-coding) geographic weights matrix 
Fitted values Spatial filter residuals Year 

MI zI Geary ratio MI Geary ratio 
1996 0.6651 21.9 0.3213 0.2107 0.6161 
1997 0.7320 24.1 0.3268 0.2004 0.6627 
1998 0.7596 25.0 0.2869 0.1999 0.6389 
1999 0.7854 25.8 0.2492 0.2057 0.6128 
2000 0.8324 27.4 0.2222 0.2454 0.5862 
2001 0.8537 28.1 0.2088 0.2653 0.5701 
2002 0.8500 28.0 0.2140 0.2713 0.5632 
Spatial filter 1.1358 – 0.1459 – – 
Note: zI denotes the z-score for MI. 

 
The statistical results presented in Table 7.4 show that the spatial filter (linear 

combination of the common set of eigenvectors employed) accounts for a large share of SAC, 
though not all of it (a perfectly random map pattern, free of SAC, has an MI of –0.0023 and a 
Geary ratio of 1). A graphical visualization of the spatial filter appears in Figure 7.3. In terms 
of goodness-of-fit, the model has an adjusted pseudo-R2 of 0.9425, and all the eigenvectors 
employed are significant. We can note that, while the model fits the data fairly well, this is 
true, in particular, when information on the previous years is fed into the model. 

While the estimation described above provides comforting results, a further level of 
analysis is necessary in order to carry out more detailed experiments on the dynamics of 
unemployment patterns. In this regard, the limitation of the experiments presented earlier is 
that they refer to an unemployment autoregression. Therefore, we propose the utilization of 
additional explanatory variables in the model. 
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Figure 7.3 – Graphical visualization of the spatial filter obtained in the case of the rook 

geographic weights matrix (C-coding) 
 
The joint employment of spatial filters and socio-economic explanatory variables involves 

further attention to the mechanics of spatial filtering. Eigenvectors that are significant both to 
the explained and to the explanatory variable(s) also imply filtering of the latter. This issue is 
addressed in the next section. 

 
7.4  Inclusion of Explanatory Variables in Spatial Filtering 
 
7.4.1  Selection of the Spatial Filters for the Unemployment Models 
 
The next step in our analysis is to further the autoregressive analysis presented above by 
including covariates with clear socio-economic meaning. By doing so, we fulfil two main 
objectives: (a) we go beyond the limit of the previous analyses, which accounted only for the 
purely geographical distribution of the variable concerned (German unemployment rates); and 
(b) we exploit fully the potential of spatial filtering, as we compute new (reduced) spatial 
filters. This procedure allows us to obtain non-distortionary estimates of the regression 
parameters relating to the real covariates employed. 
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With this objective in mind, we include in our analysis three explanatory variables: (a) the 
number of full-time employed individuals; (b) average daily wages of full-time employees; 
and (c) working age population (age 15-65). All data are available for all German regions and 
at the same level of disaggregation as the dependent variable (that is, NUTS-3). As outlined 
earlier in Section 2.3.1, we develop a simple three-variable unemployment model rather than 
a more exhaustive one employing a large number of covariates. In fact, the focus is not on 
testing a particular theory or model, but rather on exploring the impact and potential of the 
spatial filtering technique discussed above in the case where covariates are included. The 
model estimated is therefore: 

 
 , 1 , 1 , 1 ε ,it i t i t i t itunempl wage empl pop− − −= Δ + Δ + Δ +  (7.6) 

 
where unemplit is the unemployment rate of region i at time t; Δwagei,t – 1 is the variation of 
wages in the same region in the period (t – 2, t – 1); Δempli,t – 1 and Δpopi,t – 1 are the 
corresponding variations in full-time employment and working-age population for the same 
period; and εit is the error term. Longer lags, in particular with regard to population variations, 
could ideally be used (see, for example, Carlino and Mills 1987), but are not considered in our 
experiments because of the limited period of data availability. 

In our model, the wages and employment variables refer to the labour demand factors that 
influence unemployment. On the other hand, the population variable can be seen as an 
indicator of both labour supply and demand factors, as it aims to account for several aspects, 
such as migration and changes in the age structure of the pool of workers. The expected signs 
for the covariates are positive for wages and negative for employment. The case of population 
is less straightforward in terms of sign, because of its ambivalent aspects. 

Clearly, the model could be estimated in terms of unemployment rate variations. 
Although this solution would make more sense in economic terms (relating variations in the 
explanatory variables to variations in the dependent variable), we choose to proceed, as in 
Section 7.3, with the analysis of (static) unemployment rates. As a result, the spatial filters 
obtained for this model specification are comparable to the ones found in the autoregressive 
case of Section 7.3. The differences between the new and the old spatial filters may be caused 
by the inclusion in the model of the covariates, for which the spatial filters previously selected 
were a surrogate. With the inclusion of spatial filter components (eigenvectors of the modified 
geographic weights matrix), Equation (7.6) becomes: 

 
 , 1 , 1 , 1 ε ,it i t i t i t i itunempl wage empl pop sf− − −= Δ + Δ + Δ + +  (7.7) 

 
where sfi is the linear combination – for region i – of the selected spatial filter components. 
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The first step in estimating Equation (7.7) is therefore to find the appropriate spatial filters 
for this empirical case. Again, we employ the C-coded rook geographic weights matrix 
selected in Section 7.3.5. We start from the set of 98 candidate eigenvectors previously 
presented in Table 7.1 and follow a spatial filter selection procedure similar to that employed 
above. We employ a forward stepwise logistic regression of Equation (7.7), where the socio-
economic covariates are the initial regressors included (and therefore cannot be dropped), and 
the subsequent inclusion of single eigenvectors as additional regressors is decided on the basis 
of the model’s Akaike information criterion (AIC).45 The stepwise selection concludes when 
the current model has the lowest AIC score (no further regressor included). 

For each year (1996–2002), we compute the spatial filter concerning jointly the dependent 
and the independent variables. As shown in Table 7.5, we find spatial filters comprising 
between 23 and 30 eigenvectors each. The adjusted R2 values of the models are significantly 
higher than those found in Section 7.3.3: they range from 0.78 to 0.87. The improved 
statistical power of the analysis (with respect to the autoregression range: 0.59–0.76) is a 
reasonable finding, since we introduced ‘real’ explanatory variables. With regard to the 
spatial filters, the set of eigenvectors common to all years that we find is smaller (10 
eigenvectors) than that previously found (15 components), as the inclusion of the covariates 
‘eats up’ a share of the variance to be accounted for in the data. A map visualization of the 
four common eigenvectors with the largest MI values is shown in Figure 7.4. 

With regard to the covariates employed (wages/employment/population), we observe, in 
Table 7.6, that: 

 
• The related regression parameters are mostly significant. While a comparison model 

comprising only the covariates showed just three non-significant parameters, the 
significance levels of the spatial filter model are still satisfactory, as they generally 
confirm the relevance of the variables. 

• The signs of the wages and employment covariates are as expected, and constant over 
the years (aside from one case). However, the stable result of a negative parameter for 
the population growth variable deserves further investigation in order to be fully 
interpreted in this context. 

 

                                                 
45  The Akaike information criterion (AIC) was proposed by Akaike (1974) and is a goodness-of-fit measure 

based on the concept of entropy. The AIC takes into account the trade-off between model complexity and 
model fit. It is calculated as: 

 2 2 ln( ),AIC k L= −  
where k is the number of estimated parameters and L is the likelihood function of the estimated model. 
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(a) (b)

(c) (d)  
Figure 7.4 – Spatial filters computed for the rook matrix (C-coding): (a) = E2; (b) = E6;        

(c) = E9; and (d) = E11 (see Table 7.5) 
 
The results presented in Tables 7.5 and 7.6 assess the statistical power of our spatial filter-
enhanced models. We next present the results of the models with regard to SAC. We analyse 
the SAC of the models’ residuals, in order to evaluate to what extent the spatial filters – both 
the single-year filters and the filter common to all years – account for the residual 
(unexplained) spatial patterns in unemployment rates. Table 7.7 summarizes our empirical 
findings. In the table, we can note that, if our naïve unemployment model is carried out 
without including the spatial filter components, the regression residuals obtained (by OLS or 
logistic regression) for each year range between 0.28 and 0.71, therefore implying rather high 
SAC. The re-computation of the models with the inclusion of the spatial filters decreases 
SAC, in the range from –0.02 to 0.13. Further, if we re-run our logistic regression models by 
including, together with the covariates, only the set of common eigenvectors for 1996–2002, 
we find residual SAC varying between 0.20 and 0.31, implying a loss in the SAC abatement 
power of about 0.20 between the full yearly spatial filters and the time-invariant spatial filter. 
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This is, therefore, the compromise we accept by selecting a common spatial filter for the 
entire data set. 
 
Table 7.7 – Spatial autocorrelation of model residuals, 1996–2002 

1996 1997 1998 1999 2000 2001 2002  

MI Pr MI Pr MI Pr MI Pr MI Pr MI Pr MI Pr 

OLS 0.5628 0.0000 0.5206 0.0000 0.5345 0.0000 0.5993 0.0000 0.7093 0.0000   0.3990 0.0000 0.3340 0.0000
GLM 0.5472 0.0000 0.5082 0.0000 0.5316 0.0000 0.5980 0.0000 0.6863 0.0000   0.3577 0.0000 0.2806 0.0000
GLM-SF 0.1316 0.0000 0.0921 0.0000 0.0155 0.0160 0.0061 0.0370 0.0058 0.0380 −0.0150 0.2023 0.0292 0.0226
GLM-SF(red) 0.3141 0.0000 0.2801 0.0000 0.2977 0.0000 0.2762 0.0000 0.2782 0.0000   0.2094 0.0000 0.1985 0.0000

Notes: 
OLS and GLM (logistic regression) use only the three economic covariates. 
GLM-SF uses the economic covariates and the selected eigenvectors. 
GLM-SF(red) uses the economic covariates and the set of eigenvectors common to the seven 
years. 

 
Given the above results, the next necessary step is to exploit the time-invariant spatial 

filter found in Table 7.5 in a ‘dynamic’ modelling framework. The results emerging from this 
task are presented in the next subsection. 

 
7.4.2  A Spatial Filtering Panel Model for German Unemployment 
 
The analyses carried out on the joint inclusion, in a logistic regression framework, of our 
socio-economic explanatory variables and the spatial filter components showed that 
acceptably low levels of SAC can be reached by narrowing down the spatial filters separately 
computed for each year to one spatial filter common to all years. The advantage of employing 
this reduced set of eigenvectors (see Table 7.5) is that it can be employed in the generalized 
linear mixed model (GLMM) framework previously outlined in Section 7.3.5. 

As in our first GLMM approach, the German regional unemployment rates are the 
dependent variable, while our three economic covariates (wages, employment and 
population), as well as the spatial filter selected in the preceding section, serve as explanatory 
variables. The results of our new GLMM estimation are presented in Table 7.8, while a 
graphical visualization of the emerging spatial filter can be seen in Figure 7.5. 

Not surprisingly, the map visualization of the spatial filter emerging from our GLMM 
estimation outlines a clear contrast between the former West and East Germany. This finding 
was to be expected, since our analysis is concerned with the levels of regional unemployment, 
rather than with variations in it. As a result, the spatial filter takes into account the stock of 
unemployment that is not explained by recent labour market trends (that is, it is acquired prior 
to the period examined). 
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Table 7.8 – GLMM parameter estimates, 1996–2002 
Parameter Estimate t Value 
b0   3.0336     3.72 0.0002 
logsig −1.5078 −31.45 0.0000 
Wages   1.2965     3.97 0.0000 
Employment −2.3272 −10.42 0.0000 
Population −4.2187   −4.84 0.0000 
E2   7.1327   27.34 0.0000 
E6  −2.2255   −8.53 0.0000 
E9   1.5373     6.08 0.0000 
E11 −0.8196   −3.18 0.0016 
E15 −1.9668   −7.69 0.0000 
E16   0.8015     3.17 0.0016 
E18   1.0849     4.23 0.0000 
E24 −0.9567   −3.76 0.0002 
E39   0.9020     3.55 0.0004 
E74 −0.5897   −2.32 0.0210 
Notes: α = 0.0036; p(S-W) = 0.0043; and logsig = ln(σα) = −1.5078. 

 
With regard to the estimation of the model parameters, Table 7.8 shows that the employed 

covariates are statistically significant, with regard to both the economic variables and the 
spatial filter components. The signs of the former are as expected and consistent with the 
findings of the separate year-by-year analyses. Again, the negative sign for the population 
growth variable requires further investigation in order to be correctly interpreted. The share of 
variance explained by the GLMM in each year can be read, by means of the adjusted R2, in 
Table 7.9. 
 
Table 7.9 – GLMM fitting, 1996–2002 
Year 1996 1997 1998 1999 2000 2001 2002 
Pseudo- 2R  0.9219 0.9574 0.9592 0.9656 0.9647 0.9272 0.9536 

 
The results found for the GLMM estimation can now be compared with those of 

benchmark models. For purposes of comparison, we carry out three alternative models, each 
employing, as explanatory variables, the growth rates of wages, employment and population: 

 
- a simple OLS regression; 
- a spatial lag panel model; 
- a spatial lag panel model with time fixed effects. 
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Figure 7.5 – Graphical visualization of the spatial filter obtained in the case of the rook 

geographic weights matrix (C-coding) with the inclusion of covariates 
 

A spatial lag model is computed as follows: 
 

 
ρ ,
(0, ),

y y u
u

β= + +
Ω

W X
∼

 (7.8) 

 
where the values assumed by the dependent variable y are explained by spatial autoregressive 
values defined according to a row-standardized geographic weights matrix W, and by the 
values of the covariates. We choose to compute a spatial lag panel model on the basis of a set 
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of specification tests (see, for example, Anselin 1988), carried out year-by-year,46 a summary 
of which is presented in Table 7.B1, in Annex 7.B. The spatial-lag time-fixed-effects 
specification is an expansion of the spatial lag model illustrated above, in that it also employs 
year dummies to take into account temporal shocks. The three models provided the following 
results, shown in Table 7.10. 
 
Table 7.10 – Statistical results of benchmark models, 1996−2002 
Model (Pseudo-) 2R  Lag coefficient 
OLS 0.3276 − 
Spatial lag 0.7528 0.57*** 

Spatial lag w/ time fixed effects 0.7934 0.57*** 
*** 99 per cent significant. 

 
It is easy to note, in Table 7.10, that the fitting levels of the models above are lower than 

those found for the GLMM estimation (which has an average adjusted R2 of 0.95). The signs 
of the covariates were found to be consistent with those previously observed (see Tables 7.6 
and 7.8). 

Given the above results, we can conclude that the GLMM estimation provides a 
satisfactory statistical performance, showing higher fitting than the benchmark models and 
providing parameter estimates consistent with the literature. However, it would be possible to 
implement better comparison models, which mirror the serial correlation captured by the 
GLMM, as well as the geographically-varying effect of the GLMM intercept. This need for 
further computations is reflected in the conclusions to this chapter. 
 
7.5  Conclusions 
 
In this chapter, we have presented an analysis of German regional unemployment by means of 
‘spatial filtering’ techniques. The analysis presented in Section 7.3 enabled us to uncover 
spatial structures underlying the georeferenced unemployment data by selecting sets of 
‘spatial filters’ that significantly explain geographic variations in the data (unemployment 
rates). In addition, we have observed subsets of spatial filters that (partially) define the spatial 
structures of the data over time. The spatial filters selected in this case are the ones that were 
common to the analyses carried out for each year in the 1996–2002 period. 

Several definitions of the geographic weights matrix have been employed to 
operationalize spatial linkages according to contiguity and non-contiguity criteria. All of these 
definitions have yielded sets of time-invariant spatial filters, though at different levels of 
statistical significance. In the shared boundaries- and distance-based approaches, the spatial 

                                                 
46  Single specification tests could ideally be carried out for the entire time range. We resorted to cross-sectional 

diagnostics, since the software employed (Geoda, http://www.geoda.uiuc.edu) did not provide such a 
possibility. 
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filters computed explain 60 to 80 per cent of the total variance when employed as the sole 
regressors of unemployment rates in a generalized linear regression model. But the ‘economic 
flows’ approach, based on a journey-to-work flows matrix, failed to produce the same 
encouraging results. This finding might be caused by the artificial nature of the data used 
(logical connections between districts) and by the lack of a more suitable measure of regional 
economic proximity. A correlation analysis of the geographic weights matrices showed that 
the journey-to-work matrix seems to be much less correlated with the topological-based 
matrices than the other matrices are correlated with each other. This result is consistent with 
the varying statistical performance of the spatial filters computed. 

If shown as graphical visualizations, the spatial filters found in our analyses provide 
certain indications of the geographical distribution of unemployment trends. Using Figure 7.2 
as an example, map (a) can be interpreted as the visualization of a North-South divide, while 
map (b) seems to distinguish Southern Bavaria from the rest of the country. Maps (c) and (d) 
both suggest differences between East and West Germany. Additional eigenvectors (not 
shown here) show smaller scale patterns of the regional/local spatial dependency structure. 

The analysis illustrated above was then repeated, in Section 7.4, by introducing in the 
autoregression framework three explanatory variables with socio-economic meaning: namely, 
wages, employment and population. Taking a single matrix specification as an example, we 
selected new sets of spatial filters, which, in this case, are the result not only of the analysis of 
the dependent variable, but also of the covariates. We showed that in this case also, it is 
possible to select a time-invariant spatial filter subset which accounts for spatial structures in 
all the years of data analysed. Subsequently, a generalized linear mixed model (GLMM) was 
used in order to model unemployment rates by means of the covariates and the spatial filter 
components jointly. We showed that the GLMM estimation provides a high level of statistical 
reliability, as well as parameter estimates consistent with the literature. 

With regard to the research objective pursued in Part B of the present study, the analyses 
presented in this chapter have highlighted the relevance – and most importantly the 
persistence – of spatial structures in German regional unemployment rates (and, we could 
generalize, in the corresponding labour markets). Our finding of common spatial filters for 
different years is a reflection of this general stability. The spatial filtering technique employed 
here is therefore one of several useful tools that can be deployed in the analysis of regional 
disparities. 

However, further research along these lines is needed. On the empirical side, a better 
proxy for economic proximity than commuting flows should be employed. In addition, the 
analysis of unemployment levels should be more formally concerned with the joint analysis of 
factors pertaining to labour supply and demand. While the introduction in the analysis of our 
three covariates is a first step, future investigations need to address this issue. A full spatial 
filter analysis of the covariates proposed is also desirable, for comparison reasons. 
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On the methodological side, a comparison of the performance of the spatial autoregressive 
approach with more sophisticated spatial econometrics methods than those used, as well as 
with nonlinear approaches, such as neural networks, is desirable. Mixed neural 
networks/spatial filtering approaches also should be tested, as a continuation and final 
integration of the two methodological approaches that have been followed in Part B of the 
study. 

Finally, from a policy perspective, a more thorough examination of the spatially-filtered 
residuals resulting from the analysis should be carried out, in order to fully grasp the benefits 
of the methodology applied. 
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SPATIAL INTERACTIONS AND NETWORKS 

FOR COMMUTING 
 





 

 

 
 

Chapter 8 
 

Network Exploration of German Commuting 
Patterns 

 
 
 

8.1  Introduction47 
 
The willingness to travel further and longer has led to complex commuting patterns which 
have extended in geographic scale over the past decades. As a consequence, home-to-work 
trips have adopted multi-regional network configurations and have thus led to complex 
interactive networks. We have stressed in Section 1.3 that labour mobility patterns can be 
seen as an important cause of interdependences between regions (see, for example, Hewings 
et al. 2001). The extent of such regional interdependences is at the basis of the existence (and 
persistence) of regional disparities. In Part B of the present study, we proposed – with regard 
to our first research objective – empirical approaches aimed at coping, in statistical analyses 
and forecasts, with the relevance of (persistent) regional differentials in labour markets. We 
showed that neural forecasting models may benefit from the inclusion of region-specific 
information, and that, by means of spatial filtering methods, a stable spatial configuration of 
regions can be identified. 

Given the above results, the present and subsequent chapter (Part C of this study) focus on 
our second research objective, originally stated in Chapter 1, which deals with the “spatial 
mobility associated with [the] regional labour market developments” previously analysed. 
Here, our intent is to integrate the conventional spatial interaction approach to commuting 
with novel network analysis approaches, the final aim being to further investigate regional 
disparity patterns. In particular, this chapter (Chapter 8) provides a first exploration – in a 
network perspective – of German regional commuting data, as well as of the results of 
differently specified spatial interaction modelling (SIM) approaches. Subsequently, Chapter 9 
offers a more comprehensive analysis of commuting patterns, according to spatial and 
network perspectives. 

                                                 
47 The present chapter is based on Patuelli et al. (2007c), forthcoming in Networks and Spatial Economics. The 

original publication is available at www.springerlink.com. 
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The focus on commuting, in this part of the study, is justified by the rising relevance of 
this phenomenon, also in the light of its implications for economic interactions between 
regions (see Chapter 1). Labour mobility has become an important field of study in 
geography, transportation science and regional science (see, for instance, Rouwendal and 
Nijkamp 2004). However, commuting has long been studied, particularly in terms of 
forecasting and approximating flows (see, amongst others, White 1977; Fotheringham 1983; 
White 1986). Recent works include the application of models such as the one developed at 
STASA (Haag et al. 2001). A growing literature is available that studies commuting in a 
‘spatial’ framework. Rouwendal (2004) introduces search theory and spatial behaviour in 
commuting choice modelling, while Ma and Banister (2005) analyse the relationship between 
urban spatial structure decentralization and average commuting distance. Commuting has 
been investigated in both an urban and a regional network context (for example, see Thorsen 
et al. 1999; van Nuffel and Saey 2005; Russo et al. 2007), and it has been used in order to 
study functional relationships between regions (Cörvers and Hensen 2003). 

However, fewer efforts have been made in studying the network properties of commuting 
patterns. Network concepts have received remarkable attention in spatial economics in recent 
decades. Examples are the well-known ideas of the network economy (Shapiro and Varian 
1999) and the knowledge economy (Cooke 2001). Networks are based on the existence of 
interactions – at multiple levels/layers – between agents operating in a network, giving rise to 
synergy effects. Clearly, interactions between regions can be seen in such a context. The 
effects of these interactions are often investigated and modelled by considering, amongst 
other things, network externalities or spillover effects (Yilmaz et al. 2002), although without 
the study of a real ‘network’.48 The labour market literature is no exception to this trend: for 
instance, spatial job matching processes have been widely studied in a social network 
framework (Montgomery 1991). Similarly, there have been a number of experiments 
employing network-modelling approaches to the analysis of commuting flows. Thorsen et al. 
(1999) examined the effects of transportation infrastructure and spatial structure on 
commuting flows in a network of cities. Russo et al. (2007) used commuting flows in 
Germany to identify ‘entrepreneurial cities’ in Germany. Van der Laan (1998) and van Nuffel 
and Saey (2005) investigated – on the basis of commuting flows – the emergence of local and 
regional multi-nodality for the Netherlands and the Flanders area, respectively. Further 
examples include the studies by Sheffi (1985) and Sohn (2005), who investigate commuting 
at the urban level, and by Binder et al. (2003), who propose a graph theory approach. 

In the present chapter, we propose the use of novel network approaches, mainly 
formulated by Barabási and Albert (1999), in addition to conventional spatial-economic 
approaches, as an analytical framework for investigating the heterogeneity/homogeneity of 
German commuting patterns. Here, our objective is to investigate the changes that occur over 

                                                 
48  See Section 2.4.1 for a definition of ‘network’. 
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time (1995–2004) in the commuting network, as well as the associated relationships with the 
underlying network configuration. This is done by considering commuting networks as 
graphs, where flows of commuters between two locations (seen as nodes in the network) 
represent a logical link between them. Our purpose is to compare the network models of 
Barabási and Albert with conventional SIMs and with the observed (real) flows. In addition to 
the above analysis, we also propose an analysis of the main German road network, by means 
of a shortest-path algorithm, and subsequently compare the structural properties found – for 
the road network – with those found for the real data and the simulation models. 

The chapter unfolds as follows. Section 8.2 briefly describes recent developments in 
network analysis, on which the subsequent empirical analyses are based. In Section 8.3, we 
discuss two SIM formulations employed in the chapter, as well as their interpretation in terms 
of preferential attachment. Section 8.4 describes the empirical application that was carried 
out. First, in Section 8.4.1, the statistical properties of the German commuting network are 
analysed in a graph theory perspective. Secondly, in Section 8.4.2, we analyse the network 
structure of commuting flows in Germany from the viewpoint of network spatial interaction. 
In this context, in Section 8.4.3 we try to identify the appropriate deterrence form inherent to 
spatial interaction modelling, by carrying out two functional specifications concerning an 
unconstrained SIM: (a) a power-law function; (b) an exponential function. Finally, in Section 
8.5, a discussion of these findings with respect to the ones obtained by an analysis of the 
physical German road network is presented. Lastly, in Section 8.6, we draw some conclusions 
on the basis of our findings. 

 
8.2  New Network Analysis Perspectives 
 
This section briefly discusses recent developments related to the analysis of networks and, in 
particular, their implications for regional networks. We focus on recent discoveries by Albert 
and Barabási (2000, 2002). Their approach radically changed the pre-existing frameworks of 
analysis of (large) networks, with the introduction of the concept of ‘scale-free (SF) 
networks’, which revisits the ‘small-world network’ approach conceived by Watts and 
Strogatz (1998). 

The novelty in the approach of Albert and Barabási (2002) is the hypothesis that 
connections between the nodes are not random. In this context, SF networks are characterized 
by the presence of a few nodes (the ‘hubs’) with a high number of connecting links (a high 
‘degree’ – see Section 2.4.2), while the remaining nodes have only a limited (fast-decreasing) 
number of links (the term ‘scale-free’ refers to this property). These hubs emerge because 
nodes tend to connect to well-connected nodes. As a result of this process, the probability 
distribution of the nodes’ degree x for SF networks tends to decay following a power function, 
of the type: 
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 Pr( ) ,aX x x−= ∼  (8.1) 

 
where a value of the exponent a between 2 and 3 implies a ‘hierarchy of hubs’ (Barabási and 
Oltvai 2004), while a = 2 suggests the existence of a hub-and-spoke network, centralized on a 
major super-connected node (see, for example, O’Kelly 1998). 

According to Adamic (2000), a direct relation follows, from Equation (8.1), between the 
power law and Zipf’s law (1932), a distribution relating the degree of the nodes to their rank 
(in the full list of nodes sorted by their degree). According to Zipf, the relation between these 
two variables is as follows: 

 

 ,bx r−∼  (8.2) 

 
where r is the rank of the node concerned. The exponent b is expected to be equal to 1. Again, 
in Adamic (2000), Equation (8.2) will have the same exponent as a Pareto distribution, which 
explains the rank r by means of the degree x; that is, the axes are inverted, if b = 1. Following 
from the mathematical relation of the Pareto and power-law distributions, any process having 
a Zipf’s distribution will have a power-law density function. In this context, Adamic shows 
that the relation between Equations (8.1) and (8.2) is given by: 
 
 1 1 .a b= +  (8.3) 

 
On the basis of the above considerations, we consider and apply − in our empirical 

experiments − Equations (8.2) and (8.3). 
In addition to the aforementioned properties, SF networks are also characterized by high 

clustering (related to the concept of small-world networks) and short average-path lengths, as 
the hubs in the networks allow for direct links between clusters. In the SF framework, the 
structural importance of a randomly selected node is likely to be rather limited, while the few 
‘hubs’ of the network are critical for its functioning. These characteristics lead to higher 
network efficiency, for which the emergence of SF networks is to be preferred in many cases. 

In contrast to Barabási’s work, it is worth mentioning long-established random network 
(RN) theories originally developed by Erdös and Renyi (1960). In an RN, connections (links) 
between agents (nodes) of the network are supposed to arise randomly. As a result, the 
distribution of the number of links per node (the degree) follows a Poisson distribution, that 
is, most of the nodes have a similar number of links (close to the average degree) and, 
consequently, a similar importance. The probability distribution of the degree decays 
exponentially for a large-enough number of nodes. 

In our empirical applications we test whether our commuting network shows SF or 
random network characteristics. In order to be consistent with Equation (8.2), in the case of 
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RN patterns we adopt the exponential Equation (8.4), where x is the degree distribution sorted 
in decreasing order and r is the rank of each node: 

 

 β .rx e−∼  (8.4) 
 
As briefly discussed in Section 2.4.2, in recent years great interest has arisen for the 

analysis of transportation networks in the framework of the recent developments discussed 
here. Case studies have been carried out by Amaral et al. (2000) for airline networks, as well 
as by Latora and Marchiori (2002) for the Boston subway, and by Schintler and Kulkarni 
(2000) with regard to congested road networks. However, generally, it might be argued that 
transportation networks are less prone to evolve into an SF structure over time, given the fact 
that they tend to be planar. In these networks, the maximum number of connections for a 
single node can be limited by the physical space available (to connect it to other nodes), 
therefore making it difficult to obtain the large number of connections needed for finding SF 
properties. 

SF networks have many implications, but a far-reaching consequence of their unique hub 
structure is that they are very fault tolerant and – at the same time – also susceptible to attack 
(Albert et al. 2000). Specifically, an SF network remains connected even when up to the 80 
per cent of nodes are randomly removed from the network. On the other hand, when the most 
connected nodes are removed, the average path length of the network increases rapidly, 
doubling up when the top 5 per cent of nodes are removed (Albert et al. 2000). 

Starting from the considerations made above, the next section presents the SIMs that were 
modelled as approximations of preferential attachment, in order to compare them – in the 
framework of spatial mobility – with an SF model inspired by the theories described above. 

 
8.3  Spatial Interaction Models as an Approximation of Preferential Attachment 
 
8.3.1  Spatial Interaction Models for Identifying Commuter Flows in the German Labour 

Market Network 
 
Spatial interaction models (SIMs) are arguably one of the most common methods employed 
and studied for estimating commuting flows (see, recently, Thorsen and Gitlesen 1998; 
Johansson et al. 2003; Jörnsten et al. 2004). Generally, SIMs have long been a popular 
technique for describing and explaining behavioural, demographic and economic phenomena 
in space (Reggiani et al. 2006; for an extensive presentation of the family of methods, see Sen 
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and Smith 1995).49 The main reason for the widespread utilization of SIMs is their simple 
mathematical form, in addition to the intuitive assumptions underlying the approach. 

The common form of an SIM (here presented as double-constrained) is as follows: 
 

 (β, ),ij i j i j ijT KA B O D f c=    for 1,..., ; 1,..., ,i I j J= =  (8.5) 

 
where: 
 

 1 (β, ) ,i j j ij
j

A B D f c= ∑  and (8.6) 

 1 (β, ).j i i ij
i

B AO f c= ∑  (8.7) 

 
Tij measures the flow of interaction between the origin i and the destination j, depending on 
the stock variables Oi and Dj, as well as on the deterrence function f (β, cij), on the balancing 
factors Ai and Bj (see Reggiani 2004) and a scaling factor K. Ai and Bi correspond, in a 
Poisson estimation framework, to the coefficients of the origin and the destination dummy 
variables, respectively (see, for example, Flowerdew and Aitkin 1982). 

The deterrence function in Equation (8.5) depends on the deterrence factor β and the 
interaction costs cij. The variable cij might also be considered as generalized costs. In our 
experiment, distances were used as a proxy for the interaction costs (such as congestion), 
because of the analysis’s geographic scale (German NUTS-3 level, kreise). The functional 
form of the deterrence function is also a relevant issue. While in its first formulations the 
distance deterrence function was shaped as a power-law function – as used in the Newtonian 
formula – Kulldorf (1955) showed that an exponential deterrence function seemed to better fit 
migration phenomena. Subsequently, the exponential deterrence form emerged 
mathematically from the entropy maximization approach developed by Wilson (1967). 

In our analysis, both the power-law and exponential specifications were used, in order to 
draw a parallel with the network distributional properties illustrated in Section 8.2. We aim to 
investigate the network properties resulting from the two SIM specifications. We expect the 
power-law form to show a larger number of flows – compared with the exponential form – in 
the presence of long distances or travel times. In addition to the shape of the deterrence 

                                                 
49  The most common specification of SIM has its origins in an analogy with Isaac Newton’s law of universal 

gravitation. The idea of utilizing models derived from this theory had already been introduced, in the 19th 
century, in the field of social sciences by Carey (1858) and Ravenstein (1885), and subsequently 
mathematically formalized by Stewart (1941). Remarkably, SIMs have been shown to have theoretical 
justification in entropy theory and in utility maximization/cost minimization (see, for example, Nijkamp 1975; 
Nijkamp and Reggiani 1992). While Isard (1960) first suggested the use of SIMs in regional science, the 
entropy root of SIMs introduced by Wilson (1967, 1970) and, subsequently, the micro-economic derivation 
introduced by McFadden (1974, 1979) contributed to make SIMs more suitable to interpret spatial-economic 
phenomena. 



 Network Exploration of German Commuting Patterns 133 

 

function, the value of the β deterrence factor was researched for both specifications (see 
Section 8.4.3). In detail, we adopted two unconstrained50 SIM forms, specified as follows: 

 

 β ;ij i j ijT KE E d=  (8.8) 

 β .ijd
ij i jT KE E e=  (8.9) 

 
In Equations (8.8) and (8.9), the flows Tij are the employees commuting from the origin 

district i to the destination district j. They are a function of the number of persons Ei and Ej 
employed51 in the two districts, as well as of the distance dij between the two. The models that 
we propose are, of course, overly simple. For example, Ei and Ej should have exponents, so as 
to indicate their proportionality to the flows Tij. However, what is most relevant for our 
experiments is not the exact estimation of the German commuting flows, but the structure of 
the network that underlies the numerical data (see Section 8.4.2). 

When employing an SIM for estimating inter-urban commuting flows, additional issues 
should be cited. One of them is the treatment of internal commuting: in particular, the distance 
between the working and living areas, by definition, is counted as null (although travel time 
or costs would not necessarily be). This issue is sometimes solved by assigning an arbitrary 
value to the distance for internal commuting. Alternatively, the flows assigned to internal 
commuting can be omitted in the analyses. A number of additional ways to treat internal 
commuting are available in the literature. The method suggested by Thorsen and Gitlesen 
(1998) starts from the consideration that intra-commuting might imply different transportation 
means, such as biking or walking. The authors suggest an additional component to be added 
to the deterrence function exponent. This component would represent – depending on the case 
– either a start-up (generalized) cost for commuting between different zones, or a premium, 
expressing the benefit of intra-commuting. An example model with these characteristics, 
reminiscent of the Champernowne deterrence function (see Sen and Smith 1995), is presented 
by Thorsen and Gitlesen (1998, p. 279) for a double-constrained specification. Alternatively, 
the authors suggest that labour market characteristics might be used to influence the elements 
on the diagonal of the O-D matrix. 

In our case, the elements of the diagonal are omitted from the analysis. This choice was 
taken mainly as a result of our network approach to commuting. As we analyse the properties 
of the German commuting network, the measure of the number of commuters within a certain 

                                                 
50  We are aware that a doubly-constrained model would be a more suitable specification of Equations (8.8) and 

(8.9). However, we used it as a simple, naïve approximation in our experiments, since the focus is not on 
forecasting the exact flows, but rather on the network properties deriving from the fitted values. Future 
research will contemplate the use of the doubly-constrained SIM. 

51  It should be noted that the use of Ej is formally correct according to spatial interaction theory, since it is 
proportional to the inflows Dj. Concerning the outflows Oi, the use of the variable Ei is a necessary 
approximation due to data availability. Endogeneity implications should be considered in future applications, 
if no proper outflows variable is employed. 
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district would not add additional information about the network, apart from the 
‘socio/economic weight’ of a certain node, and it would create ‘loops’ – that is, links 
revolving on the same node – which represent added complications from a network 
perspective. On the other hand, the total number of employees in each district already 
embraces this aspect. 

 
8.3.2  Interpretation of Spatial Interaction Behaviour as Preferential Attachment 
 
The usual practice in the use of SIMs, when dealing with commuting flows, is to employ the 
models in forecasting future flows, given certain conditions. In our experiments, we propose 
the utilization of the simple power-law-specified SIM shown in Equation (8.8) as a tool for 
approximating the connectivity and structural properties of a commuting network, as opposed 
to the more mainstream and studied exponential specification (Equation 8.9). In particular, we 
want to verify if an SIM can allow for preferential attachment behaviour. In the models 
introduced by Barabási and Albert, nodes have a higher probability of connecting to other 
nodes that are already well-connected. The hypothesis that we test in the next section is that 
commuting networks follow a similar preferential attachment-based behaviour in terms of 
connectivity and structure. They would not be the first transportation network to be referred to 
in these terms. In fact, hub-and-spoke networks operated by airlines are a well-known 
example of preferential attachment behaviour (see, for example, Bowen 2002, and, most 
importantly, Wojahn 2001). 

An additional reason for the consideration of commuting networks in such a framework 
can be found if we think of preferential attachment as a maximization of utility levels. The 
idea is that utility is maximized by connecting to the most-connected nodes of the network. If 
so, this hypothesis would be consistent with the theoretical basis of utility maximization that 
justifies the use of SIMs. In particular, the hub-and-spoke network might – conceptually – be 
interpreted as a network tree consistent with a nested logit/hierarchical SIM structure (for the 
compatibility between the nested-logit and double-constrained SIM, see Nijkamp and 
Reggiani 1992). 

Given these premises, the next three sections present the empirical application undertaken 
in this chapter. We first carry out a statistical exploration of the data (Section 8.4.1). This is 
followed, in Section 8.4.2, by a network analysis of the commuting data and the SIM results. 
Finally, an analysis of the results of the SIMs is presented in Section 8.4.3. 
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8.4  Empirical Analysis: Commuting Networks over Time 
 

8.4.1  A Statistical Comparison of Commuting Flows for 1995 and 2004 
 
The primary data employed in the analyses presented below consist of information on German 
commuting flows between NUTS-3 districts. While the data are described more in detail in 
Section 3.3.2, they can now be briefly described, for each origin-destination (O-D) pair (i,j), 
as the number of workers commuting to district j. As stated above, internal commuters are not 
included in our analyses. The home-to-work data employed in this chapter refer to the years 
1995 and 2004. 

A first step in our network analysis is to statistically explore the commuting data 
available. In particular, we focus our attention on the statistical comparison of the 
observations collected for the first and the last year of the data set. 

The four graphs in Figure 8.1 show the distribution of the commuter flows, for both 1995 
and 2004, at different scales. While the top-left graph shows the entire range of the flows, the 
remaining graphs reduce the visualization to flows less than 70,000, 10,000 and 1,000 
commuters (bottom-right), respectively. A high correlation between the observations for the 
two years can be observed. This result might imply a certain stability in the relationships 
between centres, or the absence of dramatic changes in transport infrastructure over the period 
considered, which are amongst the prime determinants of variations in commuting patterns. 
However, as we observe the smallest ranges of commuters, more spreading starts to be seen. 
The R2 obtained by regressing the data for the year 2004 on those for 1995 decreases from 
0.975 to 0.898, when considering the whole range of flows or only those with fewer than 
1,000 commuters. 

In the top-left graph of Figure 8.1, the most visible outlier, which has the highest number 
of commuters, represents the commuting flows between the two formerly-separate East and 
West Berlins. Workers who live and work on opposite ‘sides’ of Berlin seem to have 
increased in the 9-year period, which seems to be a reasonable and somehow expected 
finding, considering that the data for the first year considered, 1995, were collected only five 
years after reunification. Therefore, it makes sense to expect a gradual redistribution of 
residential and business location choices on both sides of Berlin, This might be particularly 
true for relocations into the formerly-Soviet side of the city, where rents are, or were, 
supposedly cheaper (see, for example, Kemper 1998). As explained in Section 3.3.2, the two 
Berlin districts are kept separate in this data set. On the one hand, it could be considered 
unrealistic to separately analyse areas that, as a matter of fact, belong to the same city; further, 
by doing so, we reintroduce, for the case of Berlin, intra-district commuting flows that have 
been excluded by the analysis for all the other districts. On the other hand, this allows us to 
observe the huge amount of mobility that has been generated, within the city, since 
reunification. 
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Note: Overall R2 (top left) = 0.975; R2 for flows below 1,000 (bottom right) = 0.898. 
Figure 8.1 – Scatterplot of commuting flows in 1995 and 2004, at different scales 

 
Following our previous remarks (see Section 3.3.1), a more general observation can be 

made here with regard to the spatial demarcation of the districts used in our analysis, in that 
our results are influenced by the level of geographic aggregation used (NUTS-3). For 
instance, a different distribution of the flows – most likely eliminating the major outliers in 
our data – could be obtained if we employed labour market areas (LLM), which minimize 
commuting within major metropolitan areas. The investigation of the effects of geographic 
scale on our results is a possible direction for future research. 

In addition to the above considerations, a more in-depth exploration of the data is 
necessary. Table 8.1 summarizes the statistical results obtained for the two data sets. The 
summary statistics show the change in the commuting flows over the years. Consequently, the 
total number of commuters also increased, by 15.41 per cent. The average number of 
commuters per O-D pair increases from about 108 to about 119. However, the large increase 
in the commuting flows within Berlin suggests that the 15.41 per cent increase may not be 
distributed uniformly over the network. In particular, the difference between the mean and the 
median of the ratio statistics for the two data sets – they stand at 1.67 (mean) and 1.21 
(median) – seems to suggest a Poisson distribution. 
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Table 8.1 – Statistical exploration of the commuting flows data sets, for 1995 and 2004 
Year Maximum 

value 
Sum Mean Mean 2004/1995 

ratio 
Median 2004/1995 
ratio 

1995 flows 156999 8616362 107.59
2004 flows 226700 9944326 118.53

1.670 1.214 

 
Having statistically explored the data, the next section examines, from a network 

perspective, the implications and properties of the logical links derived from the data set 
analysed. 
 
8.4.2  Network Analysis: The Results 
 
As stated in Section 8.1, we want to examine the network structure underlying the commuting 
flows data. In order to do so, we may consider each O-D pair (i,j) as a link between nodes i 
and j, within our commuting network. The nodes of the network are, therefore, the districts 
the commuters travel to and from on the network. 

The commuting flows are translated into a network structure by means of a simple 
procedure. Each O-D pair that has at least a given number of commuters (for example, 1) 
contributes to generate a vertex index, which is a counter of the number of links that attach to 
one or another node of the network. The final product of this operation is a ranked list of the 
nodes (districts) in the network, ordered according to the number of connections they enjoy. 
For example, the presence of commuters on the link between Munich and Rostock increases 
by 1 the number of connections (the ‘degree’) of both districts. The threshold for the 
minimum number of flows to be observed on each link in order to be valid is, of course, 
subjective. The higher the threshold, the fewer the long-distance routes identified will be, 
therefore emphasizing the relevance of local mobility (sub-)networks. Once the vertex list is 
complete, a graph software such as Pajek52 can visualize the resulting network. Figure 8.2 
shows the graphs obtained, in preliminary research, for commuting flows observed in the year 
2002, as well as for a simulated SF model and for the power-specified SIM shown in 
Equation (8.8). In this case, a threshold of at least 100 commuters per O-D pair was set for 
computational reasons. 

While the SIM in Figure 8.2 was formalized as described in Section 8.3.1, the SF model 
created for comparison was based on a network having a 0.3 connectivity probability, an 
alpha parameter also of 0.3, and an initial three districts to connect to. The relative position of 
the nodes (the districts) in the graph is not based on geographic coordinates, but on their 
topological role; that is, on how central or peripheral they are to the network. From a visual 
inspection of the three networks, the SIM comes closest to replicating the German commuting 
network, though lacking the same level of interconnectivity seen in the real data. The SF 

                                                 
52  Pajek is publicly available at http://vlado.fmf.uni-lj.si/pub/networks/pajek. 
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model shows even less interconnectivity, since most connections go directly to the hubs rather 
than being found between the spokes – as seen in the data. 

 
Source: Gorman et al. (2007, p. 177). 
Figure 8.2 – Network Visualization of the Network BA Model, Spatial Interaction Network 

Model, and German Commuting Network 
 

The topology of networks can also be investigated by examining their distributional 
properties; that is, by means of a ranked plot of the number of connections (degree) by 
district. Figure 8.3 is the plot of the degree distribution concerning the 1995 and 2004 data, as 
well as of the values fitted – for 2004 – by means of our SIMs (for both the power and the 
exponential specifications). The degree decay of both the data and the SIM-estimated values 
seems to be better interpolated by an exponential distribution, rather than a power law. A 
large number of nodes seem to enjoy connections to all other nodes in the network (that is, 
they are fully connected). If we consider a list of the most- and the least-connected districts 
for the two years (see Annex 8.A, Table 8.A1), and if we follow the BBR district 
classification (Böltgen and Irmen 1997) previously employed in Chapter 4, we see that most 
of the districts with the highest number of connections belong to type 1; that is, they are 
‘central cities in regions with urban agglomerations’. Conversely, the least connected districts 
are mostly classified as types 8 or 9, which refer to regions with rural features. However, the 
connections are still quite high even in the rural regions, showing a rather good connectivity 
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structure over the entire network. The high value of the connectivity shows that we are indeed 
dealing with more general connectivity rather than just daily commuting. 
 

 
Notes: R2 values refer to the exponential and power functions fitted to the observed data. 
SIM: power-law SIM. 
SIMEXP: exponential SIM. 
Figure 8.3 – Log-log plot of the connections of German districts, for observed (1995 and 

2004) and estimated data (2004) 
 

The findings presented here – a high number of fully-connected districts and a slow decay 
of the number of connections – can be explained by the limited number of nodes (districts) in 
the network, and by one of the conditions considered in the Barabási and Albert framework: 
network growth. In our case, no new node can be added to the network over time, unless new 
districts are introduced. 

The network analyses presented in this and the preceding section showed the distribution 
of the commuting data from two points of view: numerical and structure-wise. It is also 
interesting, at this point, to explore the network’s characteristics (that is, homogeneity of the 
network) from the perspective of the deterrence function in the commuting flows. In other 
words, it is worth examining, by means of appropriate models, like SIMs, whether the 
network under analysis shows – in its deterrence function – an exponential function, reflecting 
a homogeneous network, or alternatively a power function – reflecting a hub structure. 
Therefore, the next section investigates how the SIMs introduced earlier fit the data and, most 
importantly, which specification (power or exponential) is more suitable to approximate the 
deterrence form of the commuting network. 
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8.4.3  Spatial Interaction Models: The Results 
 
The last steps in our analysis are: (a) the calibration of the SIMs for 2004; and (b) the test of 
the distributional properties of the commuting network in Germany, in the light of its 
impedance function. Concerning the calibration phase, it should be recalled that the SIMs 
were calibrated in the unconstrained specification, in their log-linear form. The zero-flows in 
the O-D matrix were excluded, as they represent an almost unresolvable econometric problem 
in the estimation procedure. Additionally, if no flow threshold is used – as in our case – the 
O-D matrix is far from sparse (zero-flows represent only about 30 per cent of the matrix), and 
includes, for the most part, values close to 0.53 A value of –1.658 was estimated for the β 
deterrence factor of the power-law specification (Equation 8.8), while a value of –0.006 was 
computed for the exponential specification (Equation 8.9). The results of the power-law SIM 
calibration are consistent with the findings of Olsson (1980) for Sweden. From this first 
analysis, the power-law coefficient seems more appropriate than the exponential coefficient, 
since the latter suggests a rather low propensity towards mobility in the German commuting 
network. 

Concerning the test phase, we are interested in comparing the connectivity structure 
emerging from the real data with the results of the SIMs from the O-D perspective. This is 
achieved by first ranking the observed and estimated data in decreasing order of commuters 
per O-D pair. We can now analyse the decay of the flows and fit a curve to the data. Table 8.2 
shows the results obtained when fitting both a power-law and an exponential distribution to 
the data, while Figure 8.4 provides a ‘partial’ visualization of the distribution of the two data 
sets and models, on a log-log scale. 

 
Table 8.2 – Fitting exponential and power-law distributions to commuting flows observed and 

estimated for 2004 
Parameter estimates Distributions R2 

Constant b1 
Observed flows 

Power 0.972 97636479.740*** –1.589*** 
Exponential 0.839             92.631*** –0.00006*** 

Estimated flows (power-law-specified SIM) 
Power 0.934 28033260.494*** –1.405*** 
Exponential 0.908           123.979*** –0.00005*** 

Estimated flows (exponential-specified SIM) 
Power 0.901   1290073.530*** –1.176*** 
Exponential 0.941             47.716*** –0.00004*** 
Note: All parameters are significant at the 99 per cent level (***). 

 

                                                 
53 A number of solutions have been suggested in the literature for dealing with zero-flows, such as adding 0.5 to 
all cells of the O-D matrix. Since the discussion of this issue is beyond the scope of our experiments, which 
represent a preliminary exploration, we refer to Sen and Smith (1995) and Fotheringham and O’Kelly (1989). 
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Notes: Visualization limited to the top 32,000 observations of the data sets, according to a 
decreasing rank order of the number of commuters per O-D pair. 
SIM: power-law SIM. 
SIMEXP: exponential SIM. 
Figure 8.4 – A partial visualization of the observed and the estimated commuting flows for 

the year 2004 
 
According to the results shown in Table 8.2, the distribution of the observed flows fits a 

power-law distribution better than an exponential distribution, from both a statistical and 
spatial-economic viewpoint. However, from a purely statistical viewpoint, both functions 
could be suitable. In this context, refinements of these two functions might be adopted, for 
example, by means of a Box-Cox transformation (Box and Cox 1964) and other functional 
forms (see, for example, de Vries et al. 2004). The two SIMs specified earlier – Equations 
(8.8) and (8.9) – seem to better fit the respective functions (power-law and exponential) at the 
basis of their computation, although with lower R2 values. Two considerations may be made 
regarding the SIMs. On the one hand, the modelling results tend to be smoothed out in 
comparison with the observed data. The model data show a lower R2 and a lower exponent for 
the power-law function, although its implications are not straightforward (for a discussion of 
power-law exponent values, see, for example, Albert and Barabási 2002). On the other hand, 
fitting a power-law function implies aiming at a more-than-proportional concentration of 
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commuting flows over a few routes, with the number of commuters for the other O-D pairs 
decreasing rapidly afterwards. This does not seem to happen with the real data.54 

Next, by ranking the number of connections (degree) per district emerging from the SIMs 
(Figure 8.3), it can be seen that the exponential-specified SIM better approximates the 
commuting network’s connectivity structure, as it shows a cut-off, for the less-connected 
districts, that is more similar to the one of the observed data. This can be explained by the fact 
that the data themselves fit an exponential distribution better (see also Russo et al. 2007). 
Further, our finding of a slow decay of connections can also be considered to be a 
consequence of trends, more or less recent, due to the overcrowding of the main cities, such as 
the tendency to suburbanization, which causes an increase in commuting. 

 
8.5  Structural Analysis of the Physical Commuting Network by Means of a Shortest-

Path Algorithm 
 

In addition to studying the flows of commuters between cities, it is also possible to study the 
structure of the infrastructure they utilize. The economic flows of commuters and the physical 
links of infrastructure are intrinsically connected, but belong to two very different network 
structures. Commuting flows belong to logical networks, which are non-planar in nature, 
since the fact that two links intersect does not mean a node actually exists at their intersection. 
A flow in the commuter network could therefore be between Frankfurt and Munich with only 
two nodes and one link, even though the physical path goes through Stuttgart. The physical 
network, on the other hand, is planar; the intersection of two links creates a navigable 
intersection. In order to travel from Munich to Frankfurt, several intermediate nodes have to 
be traversed. Commuting data represent the flows across the physical network, but the two 
networks are quite different in nature and structure. 

As an exploratory analysis in the direction of addressing the relationship and differences 
of these networks, we analysed, in preliminary research (Gorman et al. 2007), the physical 
road network of Germany. Unlike the commuting flow network, it is straightforward to 
visualize what the road network looks like with a simple map. Figure 8.5 provides a map of 
the German road network. 

                                                 
54  We can visualize the distribution of the flows estimated by the power-law SIM by plotting them against the 

data observed for the year 2004 (see Figure 8.B1 in Annex 8.B, the scales are the same as in Figure 8.1). It is 
evident that, although the data employed refer to the same year, the clear correlation patterns found in Figure 
8.1 are not matched in these new plots. It can be noted, in the top-left graph, that three observations in 
particular are wrongly estimated by the SIM. The model underestimates the commuting flows between 
Hannover and its surrounding region, while it again overestimates the flows between the cities of Munich and 
Bamberg and their respective surrounding districts. Overall, the R2 obtained by regressing the observed data 
on the SIM results is 0.415. Similarly to the discussion above for the years 1995 and 2004, the R2 decreases (to 
0.405) when only observations with less than 1,000 commuters are considered. The bottom-right plot of 
Figure 8.B1 confirms the wide spread of the data. Generally, a more marked tendency to underestimation can 
be seen for mid-range flows (bottom-left graph). 
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Source: Gorman et al. (2007). 
Figure 8.5 – The German road network 
 

While the map visualized in Figure 8.5 does illustrate the layout of the road network, it 
does not give much insight into its structural properties. In order to gain some perspective on 
the structure of the road network, a routing frequency analysis was performed.55 The road 
network was first partitioned into nodes and links, and then shortest paths were calculated to 
and from all nodes in the network. Links were then assigned a frequency count, based on the 
number of times the link was utilized in all possible link combinations. This provided a 
structural analysis of which links, in the German road network, are potentially most critical 
and heavily utilized in all possible travel combinations. To visualize these results Figure 8.6 
was constructed. 

In Figure 8.6, the height and colour (lighter to darker) of the peaks is determined by the 
number of routes that use a particular link in the road network. The higher the frequency of 
routes, the higher the peak. The routes that connect through the middle of the country are 
particularly utilized, especially the routes that appear to connect Berlin to Frankfurt and 

                                                 
55 An additional way to explore the network properties of the road infrastructure involves the use of a contiguity 
matrix (see Chapter 7). In particular, the principal eigenvector of the geographical contiguity matrix contains 
information on the topological accessibility of the network nodes. This approach – in combination with recent 
network analysis developments described above – will be explored in future research. 
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Stuttgart. The routes connecting Berlin to Munich and Hamburg are also prevalent. In general, 
it can be noted that the routes in Western Germany have a higher frequency than the ones in 
Eastern Germany. 
 

 
Source: Gorman et al. (2007). 
Figure 8.6 – German road network route frequency analysis 
 

In spite of the results obtained, it should, however, be remarked that this analysis was 
simply based on shortest-path frequency and, consequently, does not take into account socio-
economic dimensions such as population or employment levels. Therefore, we cannot address 
– at this stage – questions such as: Are the highest flows of commuters also utilizing the main 
structural links? How well does the physical structure of the network match the economic 
flows across it? In this regard, a desirable further development of the present analysis is the 
implementation of a multi-layered GIS approach, which would allow us to merge: (a) the road 
network; (b) the regional boundaries; and (c) the commuting flows information. 
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8.6  Conclusions 
 
The present chapter has provided an overview of the network properties found for home-to-
work commuting patterns in Germany. We analysed flows between German districts (kreise) 
at what is called the NUTS-3 geographic aggregation level. First, an exploration of the 
commuting data was carried out, showing a significant increase of flows on the network, with 
a tendency to a more pronounced skewness. Second, a network analysis was considered in 
order to investigate the connectivity properties of the network. The analysis highlighted, by 
means of an investigation of the distributional properties of the number of connections per 
district (degree) (Figure 8.3), a rather slow decay in the degree of the districts. Over the period 
considered (1995–2004), the number of average connections per district increased, showing a 
denser net of reciprocal connections between cities. A tendency towards somewhat of a hub 
process – with reference to the connectivity aspect – is inhibited by the constrained-growth 
condition of the network (the number of nodes in the network is fixed), which hinders 
significant topological changes (this was also evident from the graph visualization of Figure 
8.2). In this regard, not only does the number of districts not grow: it actually decreases, since 
a few districts have been amalgamated over time (this is the case of the Hannover and Berlin 
areas).56 The general conclusion that can be drawn from our analysis is that the German 
transportation network can be compared to a rather homogeneous network. As a consequence, 
the least-connected districts also still enjoy connections to the majority of the nodes in the 
network (see Annex 8.A, Table 8.A1). Consequently, the increase in commuting over the 
years can be attributed to a better efficiency of the transportation network already in place. 

In addition to the network analysis, two SIMs (alternatively using a power-law and an 
exponential deterrence function) were utilized in order to detect the network structure 
underlying the flows. While the SIM modelling results for the flow variables were quite 
ambiguous (see Footnote 54), most probably because of the simplicity of the models 
employed (unconstrained SIMs), the network connectivity structures generated by the two 
SIMs seem to favour the use of the exponential specification of Equation (8.9), highlighting 
the homogeneity of the observed data. 

An additional analysis was subsequently presented, concerning the German physical road 
network. This analysis of the road infrastructure visually showed which points, according to a 
shortest-path routing algorithm, are (theoretical) critical points in the German road network; 
that is, central to the routes calculated over the network. 

Further research should investigate the network properties of commuting by employing 
better specified, doubly-constrained SIMs, which would fully account for the total flows on 
the network, using a more suitable proxy for the travel opportunity cost than distance (for 
example, travel time or cost). In addition, it is desirable to go beyond the purely logical 
                                                 
56  At this stage, however, these mergers are not considered in our analysis. They are, however, indeed considered 

in the analyses presented in the next chapter. 
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analysis of connections carried out here, by considering the real routes that, in the case of 
surface transportation, commuters have to follow. This could be done by expanding the 
implementation of the road-network shortest-path analysis presented in Section 8.5, by 
weighting the network with the commuting flows. Alternatively, rail routes could be 
observed. From an empirical viewpoint, a careful consideration of the level of spatial 
aggregation used should also be pursued. In fact, a recombination of smaller districts into 
‘macro-districts’ might significantly influence the network structure found in this chapter. A 
final interesting analysis, from a policy viewpoint, might be the investigation of pre- and post-
reunification mobility patterns, as well as the effects of the occasional merging of districts. 

Given the above finding of a homogeneous pattern of the German infrastructure network, 
it is worthwhile analysing whether specific economic variables may highlight more 
diversified patterns and trends in the commuting flows. In this framework, a suitable variable 
can be the ‘openness’ of the German districts; that is, the potential mobility of each district. 
This is the focus of Chapter 9, which analyses that aspect from both a conventional (spatial) 
perspective and a network perspective. Here, more up-to-date data are employed, with the 
final aim to identify the most ‘open’ and ‘connected’ German regions. 
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Annex 8.A  Most- and Least-Connected Districts 
 
Table 8.A1 – Classification of most- and least-connected districts, years 1995 and 2004 

1995 2004 
District District 

type 
Degree District District 

type 
Degree

Most connected districts 
Hamburg, Freie und 
Hansestadt (W) 

1 440 Hamburg, Freie und 
Hansestadt (W) 

1 440 

Hannover, Stadt (W) 1 440 Hannover, Stadt (W) 1 440 
Cologne, Stadt (W) 1 440 Düsseldorf, Stadt (W) 1 440 
Frankfurt am Main, 
Stadt (W) 

1 440 Bonn, Stadt (W) 1 440 

Stuttgart (W) 1 440 Cologne, Stadt (W) 1 440 
Munich, Stadt (W) 1 440 Frankfurt am Main, 

Stadt (W) 
1 440 

West Berlin, Stadt (E) 1 440 Offenbach (W) 2 440 
East Berlin, Stadt (E) 1 440 Stuttgart (W) 1 440 
Dresden, Stadt (E) 1 440 Esslingen (W) 2 440 
Düsseldorf, Stadt (W) 1 439 Karlsruhe (W) 1 440 
Offenbach (W) 2 439 Mannheim (W) 1 440 
Esslingen (W) 2 439 Munich, Stadt (W) 1 440 
Bremen, Stadt (W) 1 438 Munich (W) 2 440 
Munich (W) 2 438 Nuremberg, Stadt (W) 1 440 
Nuremberg, Stadt (W) 1 438 West Berlin, Stadt (E) 1 440 
Main-Kinzig-Kreis (W) 3 437 East Berlin, Stadt (E) 1 440 
Leipzig, Stadt (E) 1 437 Dresden, Stadt (E) 1 440 

… 
Least connected districts 

Sonneberg (E) 8 259 Regen (W) 9 263 
Straubing, Stadt (W) 9 257 Stralsund (E) 9 261 
Kaufbeuren, Stadt (W) 9 252 Kaufbeuren, Stadt (W) 9 254 
Regen (W) 9 251 Emden, Stadt (W) 8 249 
Emden, Stadt (W) 8 243 Kusel (W) 7 249 
Pirmasens, Stadt (W) 6 243 Pirmasens, Stadt (W) 6 248 
Lüchow-Dannenberg 
(W) 

9 228 Freyung-Grafenau (W) 9 240 

Freyung-Grafenau (W) 9 227 Zweibrücken, Stadt (W) 6 235 
Zweibrücken, Stadt (W) 6 220 Wismar (E) 8 231 
Wismar (E) 8 214 Lüchow-Dannenberg 

(W) 
9 225 
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Annex 8.B  Comparison of Observed and Estimated Commuting Flows 
 

 

 
Figure 8.B1 – Scatterplot of observed and estimated (power-law SIM) commuting flows, year 

2004, at different scales 
 



 

 

 
 

Chapter 9 
 

Network Evolution and Spatial Dynamics of 
German Commuting 

 
 
 

9.1  Introduction57 
 
The preceding chapter offered a first exploration of a data set concerning home-to-work 
mobility in Germany. Until now, we have focused on the total flows observed over all origin-
destination (O-D) pairs (say, for example, Berlin-Munich), irrespective of the direction of the 
flows. The implications of such flows were considered from a network viewpoint. We found 
the (logical) commuting network to be rather homogeneous and stable, within a general 
picture of increased interconnection levels between the German NUTS-3 districts. 

In the present chapter, also in the light of the second research objective of this study, we 
further deepen our analysis of German commuting, by focusing on the directionality of 
mobility. Consequently, our attention shifts to the analysis of the hierarchies of the regions, in 
terms of the extent to which they are capable of attracting or pushing commuters. Similarly to 
Chapter 8, we analyse the network structure underlying the commuting flows, but here we 
match the network framework with the conventional spatial iteration framework. 

When considering the direction of commuting flows, clear implications with regard to 
urban shape and regional network of cities arise. Commuting has for a long time been studied 
in these perspectives, in particular concerning locational/development trends leading to either 
of the following: (a) the monocentric (central) city; and (b) the polycentric city (for a more 
extensive review of urban economic theories, see Button 2000; Hall and Pain 2006). The 
latter perspective has been developed by observing the various deconcentration trends 
observed in many major cities (for example, see Fujita et al. 1999; Bar-El and Parr 2003). 
These trends are now increasingly found at a larger spatial scale leading, for example, to the 
idea of ‘network cities’ (Batten 1995). In this context, horizontal relations between cities tend 
to emerge (Wiberg 1993; van der Laan 1998). This also results from the improvements in 
transportation systems and accessibility, which diminish the importance of distance. 
Remarkably, Papanikolaou (2006) suggests that spatial structure alone does not strongly 

                                                 
57 The present chapter is based on Patuelli et al. (2007b). 
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account for different commuting distances. As a result of the ongoing process described 
above, local hierarchies – originally consistent with monocentric theories – are subject to 
constant change and exhibit more decentralized urban regions (examples are the Randstad 
area in the Netherlands – see Clark and Kuijpers-Linde 1994 – or the emergence of edge 
urban areas (edge cities) – see Phelps and Parsons 2003). In particular, van der Laan finds that 
more horizontal (non-hierarchical) relations emerge for regions with modern manufacturing 
systems, while the (hierarchical) status quo is preserved for peripheral, less advanced regions. 

On the basis of the aforementioned developments, in the present chapter we aim to assess 
how network topology – and its changes over time – affects the dynamic trajectory of the 
geographic commuting network and its hierarchies. The reason for studying the commuting 
network in a connectivity perspective is inspired by the idea that the network distribution of 
mobility can help explain other relevant economic phenomena, such as variations in key 
labour market indicators or production levels, and is therefore relevant with regard to the 
objectives of the present study. The remaining parts of the chapter are structured in the 
following way. Section 9.2 illustrates a spatial analysis of commuting flows in Germany, 
while Section 9.3 presents the results of the network modelling experiment undertaken. 
Section 9.4 then presents a comparative multicriteria analysis that addresses the change in 
hierarchies in the main German districts. Finally, Section 9.5 concludes the chapter with some 
final remarks and suggestions for future research, as well as with a number of considerations 
concerning the research objective followed in Part C of this study. 
 
9.2  Dynamics of Commuting: Spatial Data Exploration 

 
In the preceding chapter (Section 8.2) we illustrated recent developments in the analysis of 
networks. These tools, in particular with reference to the work of Barabási (2002), are, again, 
amongst the central ones considered in our study for exploring changes in the characteristics 
of the German commuting network topology. Before analysing the network properties of 
spatial commuting patterns, we present the German database from a regional/spatial 
perspective. 

The data employed in our analysis refer to the residence and workplace of all dependent 
workers in Germany, and are the same as the ones employed in Chapter 8, except for two 
aspects: (a) the years considered here are 1995 and 2005 (instead of 2004); and (b) the 
number of NUTS-3 districts decreases from 441 to 439, because of the Berlin and Hannover 
areal unit mergers described in Section 3.3.2. Consequently, we have an origin-destination 
(O-D) matrix of dimension 439 x 439 containing in each cell the number of home-to-work 
trips. Here, we also employ a district classification by the BBR (Bundesanstalt für Bauwesen 
und Raumordnung) (Böltgen and Irmen 1997) regarding levels of urbanization and 
agglomeration (again, see Section 3.3.2). 
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In order to show the propensity to mobility of the districts, we employ indicators of 
incoming and outgoing mobility, which we refer to, adapting from van der Laan (1998), as 
inward and outward ‘openness’. The ‘inward openness’ of a district indicates to what extent it 
attracts workers from outside, and is computed as the percentage of local jobs absorbed by 
non-residents of the given district.58 Similarly, the ‘outward openness’ can be defined as the 
percentage of residents who commute outside of their district. Finally, as a synthetic indicator 
of mobility (openness), we compute the average of inward and outward openness. Figure 
9.1a,b and Figure 9.2a,b present a visualization of the change of district inward and outward 
openness, respectively, within Germany between 1995 and 2005. 

Concerning the inward mobility, for both 1995 and 2005, greater inward openness tends to 
be observed for the central cities (of types 1 or 5). These are overrepresented among the most 
open districts. While the districts of types 1 or 5 are only 72 out of 439 (16 per cent of the 
total), they account for 46 per cent of the districts when considering an inward openness 
greater than 0.50. Therefore, central cities appear to truly function as small regional open 
systems. This result could be accentuated by the limited area of such districts. In fact, the 
German kreise (NUTS-3) classification has rather small districts for the main cities, whereas 
larger districts surround them (for example, districts of type 2). The above findings are 
consistent with what is conventional in regional and urban economics and spatial interaction 
modelling. Overall, though not a central city, the district – of type 2 – surrounding Munich 
(Landkreis München) emerges as the most open (inwards), as workers residing outside the 
district take up 70 (1995) to 76 (2005) per cent of the local jobs considered. As seen from 
these shares, the trend is towards a further accentuation of this peculiarity. A particular case, 
however, is that of Berlin, which, because of its economic and population size, generates large 
flows in absolute terms, both inwards and outwards, but, on the other hand, has rather low 
inward openness (11 per cent in 1995 and 20 per cent in 2005). 

As far as the evolution of the indicators is concerned, we can observe, over the ten years 
of the data set, a generalized increase in mobility. In particular, the area surrounding Berlin 
seems to attract, in 2005, a higher share of commuters than in 1995. As the first year of our 
data set (1995) is only a few years after the German reunification, we might consider the 
higher propensity to mobility in 2005 to be the result of the reintegration of Berlin as the 
capital of Germany, from which a number of positive economic (economic/employment) 
externalities can be assumed (the German parliament and government restarted operations in 
Berlin in 1999) (see, for example, Burda and Hunt 2001). 

 

                                                 
58  The inward openness is computed, for a generic district j, as the ratio between the number of employees of the 

district j residing in other districts and the total number of employees of the district. If eij is the number of 
individuals living in i and working in j, the inward openness of district j is equal to: .ij iji j i

e e
≠∑ ∑  

Similarly, the outward openness of district i is equal to: .ij ijj i j
e e

≠∑ ∑  
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Figure 9.1 – Maps of inward openness per district, 1995 and 2005 
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Figure 9.2 – Maps of outward openness per district, 1995 and 2005 

 
The evolution of openness can also be grasped in Table 9.1, which shows the openness of 

the nine types of districts. The overall dominance of the central city districts as regional 
mobility poles is also exemplified here. Central cities (of types 1 and 5) appear to have great 
inward mobility (ranging from 37 to 53 per cent in 1995 and 2005, respectively) compared 
with their surrounding districts of types 6 and 2 (22 to 37 per cent). This hierarchy is reversed 
when considering outgoing commuters. Highly urbanized districts (of type 2) show the 
greatest share of commuters leaving their districts for work (39 to 45 per cent in 1995 and 
2005, respectively), followed by the urbanized districts of type 3 (38 to 45 per cent in 1995 
and 2005). In summary, the central cities show a ‘pull’ effect, while the urbanized districts 
display a ‘push’ effect (see also Figures 9.1 and 9.2), in agreement with the transport 
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economic generation/attraction models. The remaining typologies of districts show 
intermediate values, within a general increase – over the years – in the levels of mobility. 

 
Table 9.1 – Inward, outward and total openness by type of district urbanization 
District Urbanization* Inward Outward Openness 
 1995 2005 1995 2005 1995 2005
Central cities in regions with urban 
agglomerations (1) 37.4 45.6 20.1 27.4 28.8 36.5
Central cities in regions with tendencies towards 
agglomeration (5) 44.2 53.3 22.2 30.0 33.2 41.7
Highly urbanized districts in regions with urban 
agglomerations (2) 29.9 37.4 38.7 44.6 34.3 41.0
Highly urbanized districts in regions with 
tendencies towards agglomeration (6) 22.4 28.2 33.6 40.0 28.0 34.1
Urbanized districts in regions with urban 
agglomerations (3) 25.1 32.5 38.2 45.2 31.6 38.9
Urbanized districts in regions with rural features 
(8) 27.0 33.9 30.0 36.8 28.5 35.4
Rural districts in regions with urban 
agglomerations (4) 23.1 31.5 37.4 48.7 30.3 40.1
Rural districts in regions with tendencies towards 
agglomeration (7) 18.9 24.7 29.3 36.8 24.1 30.7
Rural districts in regions with rural features (9) 18.1 23.9 25.9 33.1 22.0 28.5
Totals 29.8 37.1 29.8 37.1 29.8 37.1
* See Böltgen and Irmen (1997). 

 
After observing the distribution of inward and outward openness, we can use – as an 

indicator of the overall ‘openness’ of the districts – the average of the two above indicators. 
This synthetic openness measure represents the capacity of a district to be ‘mobile’ and, 
consequently, ‘active’. Van der Laan (1998, p. 238) identifies high values of openness as 
possible signs of a ‘multi-nodal urban region’. In Figure 9.3, which maps the openness values, 
a specific group of cities emerges as the most ‘active’ in both years. These are mainly central 
cities (of type 1) and highly urbanized districts (of type 2), with the Munich Landkreis 
resulting in both 1995 and 2005 as the most ‘open’. Their higher concentration of population 
and economic activities (located within, or in the surroundings of, the city) – or even the 
characteristics of a mobile population exploring new opportunities instead of the conventional 
jobs – might explain this result (van Oort 2002). Exceptions with rather low openness values, 
such as Berlin and the city district of Munich (a separate entity from the aforementioned 
surrounding Landkreis), should be noted. The reason for these exceptions should be sought in 
the fact that the districts to which these cities belong are larger than other central city districts, 
but still have a high density. Consequently, commuting (for example, from the city periphery 
to the CBD) seems to be carried out within the district boundaries. Over the 10-year period we 
observe a generalized increase in the propensity to mobility, while a more than proportional 
variation can be found for the area surrounding Berlin. In this context, it could be interesting 
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to explore whether the most ‘open’ cities seen above are also connected together in a city-
network pattern. 
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Figure 9.3 – Maps of openness of districts, 1995 and 2005 

 
In summary, given the mobility characteristics of the districts, it might be relevant to 

explore how these patterns are affected by the underlying connectivity networks, taking into 
account the findings on multi-nodality59 presented by van Nuffel and Saey (2005) for the case 
of the Flanders region, and by Batten (1995) for the Netherlands and Japan. This aspect is 
investigated in the next section. 
 
9.3  Dynamics of Commuting: Network Data Exploration 
 
9.3.1  Preface 
 
The following sections present a set of analyses carried out from a network connectivity 
viewpoint, in order to investigate the distributional properties of German commuting. Section 
9.3.2 aims to show how incoming and outgoing flows per district – and district-to-district 
connections – are allocated over the country. Subsequently, Section 9.3.3 presents aggregate 
indices concerning the commuting network, while indicating its centralization (dispersion) 
and interconnectivity. 
 

                                                 
59  Van Nuffel and Saey (2005) find indications of ‘multi-nodality’ (defined as van der Laan’s integration of 

commuting systems with a high intensity of local ‘non-nodal’ horizontal relations) for the area of Ghent-
Hasselt. Batten (1995) discusses the existence of ‘network cities’, of which local and regional multi-nodality 
(van Nuffel and Saey 2005) can be considered as special cases. 
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9.3.2  Connectivity Distribution 
 
An initial analysis of the network underlying the commuting activities can be carried out by 
considering – as previously done in Chapter 8 – the statistical distribution of the mobility 
observed between districts. We concentrate on inward and outward commuting separately, in 
order to identify the attractiveness and propensity to mobility of the districts, respectively. 
Two exploratory approaches are adopted here. First, following the formulation of Zipf’s law – 
see Equation (8.2) – the number of inward connections per district (referred to hereafter as 
‘indegree’; see de Nooy et al. 2005) is examined; that is, from how many districts commuters 
come. From this viewpoint, it is relevant if there is commuting between two districts i and j 
(whatever its extent). We are therefore looking at logical topology.60 Secondly, we examine 
the inward openness of the districts (as defined in Section 9.2). In this case we consider the 
weights tied to the links; that is, the inflows. In detail, the total inflows of each district are 
standardized by the number of jobs available there. The distributions of incoming connections 
and inward openness, for 1995 and 2005, are plotted in Figures 9.A1 and 9.A2, Annex 9.A. 

We next interpolate the related data for 1995 and 2005 with two types of nonlinear 
functions: a power and an exponential function (see Section 9.2, Equations (9.2) and (9.4)). 
The resulting R2 coefficients, as well as the values of the exponents of the functions, are 
shown in Table 9.2. 

 
Table 9.2 – R2 values and exponents for power and exponential interpolations of incoming 

connections (indegree) and inward openness, 1995 and 2005 
Indegree Inward openness Year 

Power-law Exponential Power-law Exponential 
1995 0.7002 0.9739 0.8027 0.9871 
(exponent) (0.2442) (0.0022) (0.4623) (0.0039) 
2005 0.6046 0.9316 0.7820 0.9859 
(exponent) (0.2589) (0.0025) (0.4000) (0.0034) 

 
For the case of the indegree distribution (incoming connections per district), it is easily 

observable that an exponential distribution fits the degree decay rather well, an exception 
being a sharp cut-off at the end. The R2 for the exponential function decreases slightly over 
time, from 0.97 to 0.93. The R2 for the power function is lower – around 0.70 – and is also 
decreasing over time (to about 0.60). If we follow Adamic’s (2000) suggestion and transform 
the indegree power-law coefficient according to Equation (9.3), we can see that we obtain 
coefficients much greater than 3, thus suggesting random network characteristics 
(homogeneous pattern). Overall, these findings suggest the existence of a highly 
interconnected commuting network, with a few districts that can be considered more 

                                                 
60  Logical topology is the (virtual) network configuration emerging from the O-D matrix. When the (real) 

physical infrastructure network is considered, we talk about physical topology. 
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peripheral in network terms. However, these ambiguous results between exponential and 
power-law suggest that no clear agglomeration-pattern can be inferred in the case of the 
indegree distribution. 

As in the case of the indegree distribution, the results for the distribution of the inward 
openness in the two years remain fairly stable. As observed for the indegree distribution, the 
exponential function better interpolates the data (the R2 being 0.99). However, the power 
function also has a high R2 of 0.78–0.80. In addition, the exponent values for the power 
interpolation are now higher (0.40–0.46). In this case also, the transformed power-law 
coefficients are greater than 3. Overall, this preliminary data exploration shows that the 
exponential function is a better fit to both the indegree and the inward openness distributions, 
suggesting an equilibrated network for these variables. The reason for these results with 
regard to the indegree coefficients could be attributed to the lack of network growth and 
rewiring, two critical factors in pushing the emergence of scale-free properties in networks. 
On the other hand, the results for the inward openness distribution could be attributed to the 
constrained values assumed by the variable analysed (between 0 and 1) after standardization. 
The results for the non-standardized inflows values can be found in Table 9.5. 

 
9.3.3  Network Indices 
 
After exploring the data and their distribution, we provide a set of synthetic indices, which 
describe three principal aspects in order to explore the dominance of nodes under different 
perspectives, which are: (a) centralization; (b) clustering; and (c) variety/dispersion. The first 
of these indices, ‘network centralization’, is an aggregate assessment of the centrality of each 
node belonging to the network. The centrality of a node can be defined as a measure of its 
structural importance (the relative importance of a node within a graph). Various centrality 
indices have been developed over the years (see, for example, Sabidussi 1966; Freeman 
1977), which take into consideration different aspects of centrality. The centrality index 
presented here can be called ‘indegree centralization’, and is based on the concept of the 
relative degree centrality of nodes. This measure deals with the ‘visibility’ of a node (in our 
case, a district). Visibility can be linked to the ‘hub’ concept (Latora and Marchiori 2004), 
since the most visible node can be considered as a hub. The particularity of this index, 
compared with other indices described in the literature, is that it only considers direct 
connections (indirect connections cannot be considered in our case study of commuting, 
unless the transportation infrastructure is included in the analysis). In our case, only inward 
connections are considered (hence, the denomination ‘indegree centralization’), in order to 
show the nodes’ attractiveness for outside workers. The indegree of a node is seen, in social 
network analysis, as a measure of ‘prestige’. In our case, it can be considered as a dominance 
index. Relative indegree centrality (rici) is computed, for each node i, as the ratio between the 
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observed and the maximum possible number of connections of a node (N – 1), where N is the 
total number of nodes: 
 
 indegree /( 1),i iric N= −  (9.1) 

 
while the aggregate network indegree centralization (NIC) index is computed, similarly to 
Freeman (1979), as: 
 

 *( ) ( 2) ,i
i N

NIC ric ric N
∈

= − −∑  (9.2) 

 
where ric* is maxi (rici). 

The second index computed refers to ‘network clustering’. Network clustering coefficients 
have previously been used by Watts and Strogatz (1998) in order to search for small-world 
networks (see Section 8.2). We consider clustering coefficients in order to determine the level 
of interconnectedness of the network. In order to compute a clustering coefficient for a node, 
we need to define its neighbourhood. The neighbours are identified – if first-order relations 
are considered – by the nodes directly connected to the node concerned. Consequently, a first-
order clustering coefficient for node i is computed as the ratio of the number of links existing 
between the nodes of its neighbours and the maximum number of links that may exist 
between the same nodes: 

 

 * ,i i ic l l=  (9.3) 

 

where il  and *

il  are the actual and possible number of links in node i’s neighbourhood, 

respectively. In a fully connected network – where each node is connected to each of the other 
nodes – all nodes will have a clustering coefficient of 1. A synthetic network clustering 
coefficient is then computed as the average of the single nodes’ coefficients. Clearly, if k-
order neighbours are considered, a node’s neighbourhood is represented by all the nodes that 
can be reached in k hops. Consequently, a clustering coefficient of k-order will be computed. 
In this latter case, the observation of a high level of clustering suggests a highly 
interconnected network. 

As a final index for describing, from the viewpoint of the ‘variety/dispersal’ of centres, 
the network’s connectivity, we use the entropy formulation. Entropy is a concept originally 
derived from information theory (Shannon 1948) and widely used in spatial-economic 
science, thanks to Wilson’s (1967, 1970) studies from a statistical perspective. Entropy has 
recently been applied by several authors in order to identify ‘hidden’ order in urban sprawl 
(Sun et al. 2007), in urban traffic (Haynes et al. 2006), and in industrial economics (Frenken 
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2006). In our context, entropy is employed as an indicator of the probability that the flows 
observed are generated by a ‘stochastic spatial allocation process’ (Nijkamp and Reggiani 
1992, p. 18). The higher the entropy, the more dispersed the flows are over the network. The 
indicator is computed as: 

 

 ,ln∑−=
ij ijij ppE  (9.4) 

 
where 
 
 .iijij Otp =  (9.5) 

 
In Equation (9.5), tij is the number of commuters between districts i and j, while Oi represents 
the outflows of district i. 

The results computed for the German commuting network, according to the three indices 
described above, are presented in Table 9.3. Years 1995 and 2005 are again taken into 
consideration. Although no dramatic changes seem to occur over the ten years, the network 
shows two distinct trends. On the one hand, the centralization of the network decreases – at 
least as far as inward connections are concerned − and the entropy increases. These results 
imply a more distributed structure of the network. On the other hand, the clustering 
coefficient of the network grows, suggesting a tendency towards greater interconnectivity. 
These results seem to confirm the findings emerging in our spatial analysis (Section 9.2), 
highlighting the network’s tendency towards a multi-nodal structure (van der Laan 1998). 
 
Table 9.3 – Descriptive indices for the German commuting network, 1995 and 2005 
Indices 1995 2005 
Indegree centralization 0.33 0.31 
Clustering 0.59 0.63 
Entropy 8.23 8.38 

 
A graphical representation of the multi-polar tendency in the commuting network 

structure – in our case, from an ‘inward connections’ viewpoint – can be obtained, for 1995 
and 2005, on the basis of the ‘k-core’ concept (Figure 9.4a,b). 61 A k-core is a subgraph (or 
more than one) in which each included node has a minimal degree (in our case, indegree) of k; 
that is, each node in the k-core has direct connections with at least k other nodes in the same 
subgraph (Holme 2005). For a more meaningful computation and a readable graph, we have 
selected a subsample of the data consisting only of those commuting flows above an arbitrary 

                                                 
61  Core computations have been carried out by means of the freely available software Pajek (http://vlado.fmf.uni-

lj.si/pub/networks/pajek). 
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threshold of 1,000 individuals. We find − for both 1995 and 2005 − k-cores of level 4 (4-
cores), comprising 13 and 33 districts, respectively. 
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64336414

64367315
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Figure 9.4 – ‘4-cores’ in the commuting network: (a) 1995; (b) 2005 
 

For the year 1995, we find a small core of 13 districts, identifying a heavily 
interconnected – and local – network headed by Düsseldorf and Dortmund. Each node 
(district) appearing in our 4-core receives at least 1,000 commuters from at least 4 other nodes 
in the same core, showing in this case intense horizontal (local) relations. The fact that other 
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districts do not appear in the 4-core does not mean that they do not have reciprocal flows of 
commuters with the core districts. Simply, these other nodes do not feature the minimal levels 
of interconnectedness and number of commuters of the core nodes, although they can show 
several district-to-district flows greater than 1,000 individuals. Frankfurt is the most evident 
example. This city was not selected for the 1995 core, but when the year 2005 is considered, a 
larger and denser graph is found, composed of 33 districts. While the Düsseldorf/Dortmund 
cluster increases and is still the main body of the core, it is noteworthy to cite the function of 
Frankfurt (code 6412), which is now included in the 4-core and acts as a hub, connecting a 
local cluster of its own to the main Düsseldorf/Dortmund cluster. Of course, as these are 
logical topology results, here it is not implied that Frankfurt is physically implicated in 
interconnecting nodes belonging to the two parts of the core cluster. 

The results of the network analysis carried out in the present section seem to confirm the 
multi-nodality structure of the German commuting network (especially at the local level), 
while also suggesting increased connectivity between the major centres (Berlin, Stuttgart, 
Munich, and so on) − centrality decreases over time − and, consequently, a tendency towards 
two layers of multi-nodality: (a) at the local level (see, for example, the Düsseldorf/Dortmund 
cluster); and (b) at the regional level (city-network level). As also seen by van Nuffel and 
Saey (2005, p. 326) and by van der Laan (1998, p. 244), these relations between the main 
centres do not overshadow local links (which still carry most of the mobility) but complement 
them. 

As a next step of this research endeavour, it is worthwhile to map – within this multi-
nodality structure – the hierarchies of the districts and their persistence over time, in order to 
identify the main relevant centres from both a spatial and a network viewpoint. In order to 
offer a ‘synthetic’ measure of the multiple spatial and connectivity dimensions – with 
reference to the dynamics of the districts under analysis – we use a multidimensional method, 
well-known in the spatial-economic literature, called ‘multicriteria analysis’. This method 
may serve to identify the most prominent configurations in Germany. 

 
9.4  Multidimensional Assessment: Application of Multicriteria Analysis 
 
9.4.1  The Network of the ‘Open’ and Connected Districts 
 
The present section aims to provide a synthetic assessment of the district characteristics 
observed – by means of both a spatial and a connectivity approach – in Sections 9.2 and 9.3, 
for the purpose of defining a dominance ranking of the main districts concerned. We are also 
interested in investigating changes in this ranking over the period 1995–2005. 

The subsample of districts (‘alternatives’) employed in our multicriteria analysis (MCA) is 
selected on the basis of a synthetic connections-flows (CF) index, computed as follows for 
each district i: 
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 ( ) [ max ( )]*[ max ( )],i i i i i i iCF C C F F=  (9.6) 

 
where Ci and Fi are the number of incoming connections (the indegree) and the inward 
openness of district i, respectively. The index is the product of the two normalized indicators 
Ci and Fi, and it ranges from 0 to 1. It aims to provide a balanced assessment of the openness 
and connectedness of the districts, that is, from a conventional spatial interaction perspective 
and a network perspective, respectively. On the basis of the CF index, we were able to select 
26 districts, which are common to the top 30 districts for both 1995 and 2005. Such a stable 
group of ‘open’ districts (26 of 30) over a 10-year period suggests an overall stability between 
the upper tier and the rest of the districts. If we consider the ‘district urbanization’ index 
shown in Table 9.1, we find that the districts, with only a few exceptions, are urban districts – 
that is, central cities of types 1 and 5. 

The MCA is carried out on the basis of two aggregate assessment criteria (macro-
criteria):62 spatial mobility (comprising inward and outward openness – see Footnote 58) and 
connectivity (comprising relative indegree centrality and clustering coefficients – see 
Equations (9.1) and (9.3)). We now proceed in two steps: first, by carrying out an MCA for 
each macro-criterion (consisting of the single criteria described above); and, second, by 
carrying out a final MCA which synthesizes the two previous analyses. 

With respect to the MCA based on spatial-economic indicators, the results show that – out 
of the main cities included – Munich (Landkreis) persistently occupies the first position 
(Table 9.4). Moreover, the ranking of the top districts is rather stable over the two years 
concerned. It is noteworthy that further well-known cities such as Frankfurt, Stuttgart and 
Düsseldorf do not perform as well as Munich. The results of the second MCA, based on 
connectivity criteria, provide – in 1995 – a rather different ranking. In the connectivity 
ranking the main cities are dominant. As seen in Section 9.3.3 for the k-core results, 
Düsseldorf emerges as important from a network perspective. Other large cities such as 
Frankfurt, Stuttgart and Munich follow. It is interesting to observe that in 2005 some centres, 
most notably Wiesbaden (a district in the Frankfurt metropolitan area and capital of the state 
of Hesse) and Karlsruhe, attain higher positions in the ranking. We can also note that, with the 
exception of Munich, the districts that headed the spatial MCA rankings only perform at an 
intermediate level in the connectivity MCA. 
 

                                                 
62  The regime multicriteria method (and software) was used (Hinloopen and Nijkamp 1990). In particular, three 

scenarios were considered at all stages: (a) equal weights to all criteria; (b) ascending weights; and (c) 
descending weights. A further MCA of the resulting rankings provides the final results. 
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The final results, which synthesize the two preceding analyses by employing the results of 
the spatial and connectivity macro-criteria, can be summarized as follows. The district of 
Munich (Landkreis) emerges as the most dominant for both 1995 and 2005, while a 
reshuffling in the ranking of the districts can be observed over the 10-year period. Some 
dynamic districts seem to emerge. In particular, these are: Wiesbaden (from 7th to 2nd), 
Mannheim (14th to 6th), Frankfurt (12th to 8th), Stuttgart (15th to 11th), Düsseldorf (18th to 
13th) and Karlsruhe (21st to 14th). The observed progress of such districts is mainly due to 
the connectivity macro-criterion. Clearly, their high clustering coefficients show that the 
above districts are oriented towards agglomeration patterns, in addition to their openness. 

The districts emerging in the above analysis are the most ‘open’ and ‘active’, but they still 
cannot be considered as the main ‘attractors’. If we want to explore this characteristic, we 
then have to use – in the CF index computation of Equation (9.6) – other variables (such as 
actual inflows or workplaces) which can detect the relevance of the destination, as the well-
known attraction models in transport literature suggest. The result of this further analysis 
(again utilizing MCA) is illustrated in next section. 
 
9.4.2  The Network of the ‘Attraction’ and Connected Districts 
 
The preceding section illustrated the results for the MCA that investigated the group of the 
most open and connected districts. However, in the light of the transport economics literature, 
this group of cities cannot be identified as the most attracting ones (and hence, according to 
Barabási’s work, the ‘preferential nodes’; that is, the ‘hubs’). On the basis of the ‘attraction-
model’ formulation in the conventional four-step transportation model, the ‘attraction 
variable’ is conventionally identified as the total inflows per district (or another variable that 
detects the relevance of destinations, such as workplaces). Consequently, we repeat our last 
analysis by substituting – in the CF index – the previously employed inward openness with 
the total inflows per district, which can be seen as a measure of the importance of the 
destinations. 

As inflows are not normalized by city-size, they have, of course, a different distribution 
with respect to the inward openness, the characteristics of which are reported in Table 9.5 and 
plotted in Figure 9.A3, Annex 9.A. While the distribution of the inward openness was found 
to fit – to a large extent – an exponential function (see Section 9.2), the distribution of the 
inflows according to Equation (8.2) is best interpolated, in this case, by the power function 
(an R2 of 0.94 versus an R2 of 0.92 for the exponential case). Also, the value of the power 
function exponent of about 0.89 is more interesting than the value of 0.46 (see Table 9.2) 
observed for the inward openness. In fact, the transformed coefficient would be about 2.1, 
which suggests the emergence of hub patterns (in particular, Munich, Frankfurt and Hamburg 
mainly seem to emerge as principal attraction-hub nodes). 
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Table 9.5 – R2 values and exponents for power and exponential interpolations of incoming 
connections (indegree) and inflows, 1995 and 2005 

Indegree Inflows Year 
Power-law Exponential Power-law Exponential 

1995 0.7002 0.9739 0.9447 0.9163 
(exponent) (0.2442) (0.0022) (0.8962) (0.0068) 
2005 0.6046 0.9316 0.9411 0.9162 
(exponent) (0.2589) (0.0025) (0.8841) (0.0067) 
 

Having observed the variation in the distributional results obtained by employing inflows, 
we modify the CF index (see Equation (9.6)) so as to include – in place of the inward 
openness – the total inflows. Employing the same selection process illustrated above, we then 
obtain a new group of districts; that is, 29 ‘alternatives’ to be analysed in a further MCA. The 
same methodology followed in the preceding section applies. This new group is evaluated by 
means of the same criteria employed in Section 9.4.1 in order to classify the attraction 
districts on the basis of their openness and connectedness. The results of the spatial and 
connectivity MCAs, as well as the final MCA results, are summarized in Table 9.6, showing a 
hierarchy of attraction nodes which are also open and active. 

This concluding analysis shows that again Munich (Landkreis) emerges on the top of the 
rankings for the spatial MCA. The connectivity MCA, instead, favours the most important 
German cities, such as Hamburg, the Düsseldorf/Cologne agglomeration and Frankfurt, with 
Munich and Berlin following closely. The results from the final MCA, a synthesis of the two 
preceding MCAs, show that the 1995 hierarchy – which in principle matches the main 
German cities – changes in 2005, because of the emergence of new districts, such as 
Mettmann (from 5th to 1st), Weisbaden (9th to 2nd), Darmstadt (16th to 8th), and Karlsruhe 
(15th to 9th). As a consequence, the main cities decline in the ranking, most notably: Munich 
(from 1st to 3rd), Frankfurt (2nd to 5th), Stuttgart (3rd to 4th) and Düsseldorf (4th to 6th). 
Once again, this reshuffling can mostly be attributed to the high clustering coefficient values 
attached to the above-mentioned emerging districts. 

Clearly, the selection of the 29 districts analysed emerges from the choice of the inflows 
variable in the CF index, as an indicator for the attraction nodes (Equation (9.6)). If, on the 
other hand, we wish to consider in this index the ‘strength’ of the connection (in other words, 
inflows and outflows, by means of, for example, spatial interaction models) instead of the 
attraction only (the inflows), we may expect to be more likely to detect the ‘hub’ cluster, since 
a hub – in a strict sense – not only attracts flows, but also distributes them (hub-and-spoke). In 
this context, it should be noted that preliminary analyses showed that, had inflows and 
outflows been employed as criteria for the spatial MCA, a ranking similar to the one of the 
connectivity MCA would have emerged. 
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9.5  Conclusions 
 

This chapter has presented a dual analysis of commuting trends in Germany, from both a 
spatial and a network perspective. We have analysed data for home-to-work trips for 439 
German districts, for the years 1995 and 2005. 

With regard to the spatial perspective, we considered the distribution of commuting 
inflows and outflows per district, in our case normalized by jobs and residents, respectively 
(Section 9.2). Our analyses showed that – as expected – mobility revolves around the major 
metropolitan areas, and that the districts identified as central cities (of types 1 and 5 – see 
Table 9.1) have the larger shares of inward labour mobility. When considering inward and 
outward mobility in a synthetic indicator (‘openness’), the Landkreis district of Munich 
(which surrounds the city of Munich itself, an independent district) emerges as the most 
mobile centre, most likely because of its role revolving around the city. 

With regard to the network perspective, we have considered first the distribution of the 
inward openness and of the number of incoming connections (which we call the ‘indegree’) 
per district (Section 9.3.2). Our results show that the distribution of the districts’ inward 
openness is slightly more heterogeneous than that of the number of incoming connections (the 
indegree). In addition, if we consider the distribution of the inflows, further heterogeneity is 
found, implying possible hub patterns. We have then computed aggregate indicators showing 
the evolution of the commuting network (Section 9.3.3). In particular, in addition to a local 
multi-nodal commuting network (between nearby cities), a regional network is also present to 
some extent, which, however, does not overshadow well-defined local relations (see, for 
example, the results of the k-core analysis).63 

Accordingly, the MCAs carried out in Section 9.4 suggest that the German districts are 
rather stable – in the 10-year period examined – at the spatial level, with regard to the 
hierarchies between the districts. In particular, the Landkreis district of Munich emerges as 
the most mobile/connected district over the ten years. In addition, we may note, from the 
results of the connectivity-based MCAs, that network connectivity appears to be influenced 
by the clustering coefficient indicator, as suggested in the works of Watts and Strogatz 
(1998). In this context, new districts, such as Mettmann and Wiesbaden, seem to emerge – 
together with Munich – as the most attracting, open and connected. This final result mainly 
depends on the values of the clustering coefficients – which emphasize the network 
agglomerations related to the main dominant districts – in the connectivity criteria. For 
example, Mettmann is connected to Düsseldorf and Wiesbaden to Frankfurt. This ‘hub’ 
clustering effect might also be taken into account in future research concerned with the 

                                                 
63  If, in addition to finding high clustering, well-connected nodes are also found to be connected to each other, 

then highly interconnected clusters can emerge, which, according to Holme (2005), can possibly lead to a 
core-periphery network structure (Chung and Lu 2002). In particular, Holme finds that transportation networks 
(or, more generically, geographically-embedded networks) show these characteristics at some level. 
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identification of network hubs, since they appear to be the engine of these new cluster 
agglomerations. 

A few general conclusions may be drawn in this regard, in particular relating to the 
research objective pursued in Part C of this study. First, we can consider the stability of 
German commuting patterns found in Chapters 8 and 9. This general stability, even over a 
medium-range period like ten years, can be related to the findings of Part B of the study, 
where by means of spatial filtering techniques we analysed the (again) stability of regional 
patterns of unemployment and other socio-economic variables. Our findings appear to be 
consistent, since we might expect, on the basis of the regional interaction interpretation given 
in Chapter 1, that regional change would be driven by phenomena such as labour mobility. 
Therefore, our finding of relatively stable commuting patterns contributes to justify the 
stickiness of regional labour market aggregates observed in Chapter 7. A second conclusion 
may be drawn with regard to the hierarchies observed in our MCAs. We observed, 
particularly in our second MCA, that West German centres in Bavaria (Munich) and in the 
Düsseldorf/Stuttgart/Frankfurt area emerge as the most active, mobile and connected. It is 
worth noting that these areas have also been shown, in our preceding analyses, to be the ones 
which have well-performing regional labour markets. Similarly, East German districts, in 
addition to having underperforming labour markets, also show rather low levels of labour 
mobility and connectivity. In this regard, we might draw attention to East Germany’s different 
sectoral distribution, which influences the type of labour demand in the regions, as well as at 
the lower level of the East’s infrastructure, which hinders higher levels of mobility, especially 
for longer distances. 

Further future research should fruitfully address, from a theoretical viewpoint, the 
behavioural/economic implications of our findings, in particular with regard to the role of 
distance/travel time and accessibility (wasteful commuting could be an issue), as well as of 
labour market characteristics, in the genesis of commuting. Moreover, the direction of 
causality between the regional labour market trends and the network findings observed here 
deserves investigation. From a methodological viewpoint, a joint network/physical 
infrastructure analysis is desirable (this research task is described in more detail in the 
conclusions of Chapter 8), while, from an empirical viewpoint, the study of pre- and post-
unification networks in Germany might provide relevant information on the evolution of its 
commuting patterns. Finally, it would be useful to experiment with alternative spatial 
disaggregation levels (for example, community levels or functional areas), in order to analyse 
the consistency of our findings. 
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Annex 9.A  Plots of Various Distributions 
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Figure 9.A1 – Log-log distributions of input degree: (a) 1995; (b) 2005. Interpolating 

functions are power-law (continuous line) and exponential (broken line) 
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Figure 9.A2 – Log-log distributions of inward openness: (a) 1995; (b) 2005. Interpolating 

functions are power-law (continuous line) and exponential (broken line) 
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Figure 9.A3 – Log-log distributions of inflows: (a) 1995; (b) 2005. Interpolating functions are 

power-law (continuous line) and exponential (broken line) 
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Chapter 10 
 

Conclusions 
 
 
 

10.1  Content of the Study 
 
The present study has offered a set of statistical analyses concerning regional labour markets 
in Germany. The objective of this dissertation was to analyse, from a statistical perspective, 
their development and the associated spatial disparities observed for the case of Germany. 
The emphasis is less on policy, but rather on patterns in the evolution of labour markets in 
Germany. The motivation for the study has been rooted in the increased importance, which 
has emerged in recent years, of ‘regions’ as a focal level of analysis, both in academia and in 
applied policy contexts. Economic aggregates for regions of varying size (depending on 
country size or on the level of spatial disaggregation) are an essential tool for developing 
‘micro-policies’, since, in particular for the case of actual administrative areas, that is where 
public funding is redistributed. Also, given their different characteristics with respect to 
nations (that is, regions can be considered as much more open systems than nations), regions 
show greater socio-economic heterogeneity. As stated earlier in Chapter 1, this aspect and the 
reduced geographic scale, which allows us to apply interdisciplinary approaches (mixing, for 
example, urban economics, geography or land use) and new methodological frameworks, call 
for challenging research questions and interesting empirical investigations. In particular, 
Germany, with its high number of small geographic units (NUTS-3 districts) and complex 
socio-economic scenario emerging from the reunification of 1990, is a textbook case for such 
spatial-economic analyses. 

The present study focused on two aspects of German regional labour markets and two 
related research questions: 

 
- Key labour market indicators, such as employment or unemployment, can be seen as a 

proxy for the levels of economic activity. Consequently, the first research objective of 
this dissertation concerned the spatio-temporal analysis of regional labour market 
aggregates. We focused on two main issues: (a) the forecast of regional employment 
variations; and (b) the analysis of unemployment differentials in the presence of 
spatial autocorrelation. 
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- Likewise, commuting can be interpreted as a proxy for the economic interactions 
between regions, for which actual data are rarely available. The second research 
objective of the present study concerned the analysis of the diversification of journey-
to-work trips (which are implicitly associated with regional labour markets). In 
particular, we focused on the investigation of the commuting flows’ distribution (in 
terms of heterogeneity/homogeneity) and of the related level of ‘openness’ of regions. 

 
As underlined in Chapter 1, this study did not aim to test or prove established theoretical 

foundations, but concentrated on the statistical analysis of regional labour markets. As a result 
of the dual research objective outlined above, the empirical applications carried out in this 
thesis were subdivided into two main parts: Part B of the thesis addressed the first research 
question, while Part C was dedicated to the second research question. The remainder of this 
chapter discusses the analyses carried out (Section 10.2), the main findings obtained (Section 
10.3), and the directions for future research (Section 10.4). 
 
10.2  Empirical Applications 
 
10.2.1  Statistical Modelling of Regional Labour Markets in Germany 
 
Part B of the present study was concerned with the statistical analysis and forecast of key 
labour market indicators. In detail, Chapters 4–6 were concerned with carrying out regional 
labour market forecasts. Neural network (NN) techniques were employed as a novel statistical 
approach for estimating regional employment variations. Subsequently, Chapter 7 was 
concerned with the analysis of regional unemployment rates. We employed spatial filtering 
techniques in order to accommodate spatial heterogeneity in the data. 

With regard to our NN applications, our main objective was to develop NN models in 
order to provide short-term forecasts (in our case, 2-years-ahead) of variations in the number 
of German full-time employees by region. Chapter 4 provided a discussion of the main 
technical issues involved in developing NN forecasting models, particularly with regard to the 
panel nature of the labour market data employed. Several models, based on NN and genetic 
algorithm (GA) techniques, were developed, which computed estimates for a range of out-of-
sample forecasting periods (2001–04), for all 439 NUTS-3 districts (kreise) in Germany. 
Because of the different length of the data sets, NN models for East and West Germany were 
developed separately. We presented the results for both conventional models (NN models) 
and for GA-specified models (NNGA models); that is, NN models which used an internal 
(GA)-optimization algorithm for the choice of the specification. The results of ex post 
forecasts were evaluated by means of statistical indicators and of forecast equivalence tests: 
namely, the Morgan-Granger-Newbold (MGN) test and the sign test (ST). 
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In Chapter 5, we extended the aforementioned analyses by proposing a joint shift-share 
analysis/NN approach, in order to catch regional specificities related to each region’s sectoral 
performance. We developed additional NN models (NN-SS), which include – as inputs – 
components from several SSA approaches (that is, conventional deterministic shift-share, 
spatial shift-share and shift-share regression). These new NN-SS models were then 
statistically evaluated using the predefined out-of-sample periods, and compared with the 
winning models of Chapter 4. 

In Chapter 6, we focused on the settings of the particular NN algorithm employed. We 
carried out a sensitivity analysis in order to investigate how the NN models’ forecasting 
performance varied in the presence of changing learning parameters and functional forms. A 
subsequent re-evaluation – in the light of the sensitivity analysis findings – of the NN and 
NN-SS models developed in Chapters 4 and 5 was offered. Final considerations on the 
importance of considering region-specific aspects (such as in the case of the spatial shift-share 
NN model) prompted us to a more thorough analysis of spatial issues. 

Consequently, in Chapter 7, our objective was to analyse space-time patterns in German 
regional unemployment rates. We presented an analysis based on ‘spatial filtering’ 
techniques, and aimed at uncovering spatial structures underlying regional unemployment 
data. Using varying definitions of the contiguity concept, we computed and selected sets of 
year-specific ‘spatial filters’, in order to explain the geographic variations in the 
unemployment rates, as well as subsets of these spatial filters that defined time-invariant 
spatial structures. These analyses were then repeated, with the introduction of explanatory 
variables that have socio-economic meaning (wages, employment and population). The value 
added of the new analyses is that the use of covariates in a simple unemployment model 
allowed us to identify spatial structures, that is, spatial filters, which are the result of the 
analysis not only of the dependent variable but also of the covariates. Once the underlying 
spatial structures have been accounted for, a clearer estimation of the regression parameters in 
the unemployment model (that is, the relationship between unemployment and the socio-
economic explanatory variables) is possible. 
 
10.2.2  Spatial Interactions and Networks for Commuting 
 
Part C of the present study was concerned with the description and analysis of the regional 
labour mobility pattern in Germany. In particular, we aimed to integrate the conventional 
spatial interaction framework – usually used to describe commuting flows – with novel 
approaches emerging from network theory, so as to better understand the mechanisms leading 
to, and evidence of, regional disparities. In this framework, network analyses were used to 
study the heterogeneity of commuting flows. 

In Chapter 8, we provided an overview of the network properties found for German 
commuting patterns. We analysed flows between NUTS-3 districts (kreise), by first exploring 
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their distribution over origin-destination (O-D) pairs. Second, we performed a network 
analysis, with the aim to investigate the connectivity properties of the network; that is, the 
number of connections per district (‘degree’). In addition to the above analyses, we developed 
two spatial interaction models (SIMs) – employing different functional forms – in order to 
simulate the network structure underlying the commuting flows, and we compared the results 
emerging from the estimations. 

Expanding the set of analyses outlined above, Chapter 9 further investigated the evolution 
of commuting flows in Germany, focusing on the relative mobility levels of the districts; that 
is, their ‘openness’. In this context, we analysed the flows’ spatial and network distributions, 
for all the 439 German districts, with reference to the years 1995 and 2005. From the spatial 
perspective, we investigated the distribution of regional inflows and outflows. From the 
network perspective, we again considered the distributional properties of the network – but 
this time from the incoming flows viewpoint – and we subsequently computed aggregate 
network indicators showing the evolution of commuting patterns. Finally, multicriteria 
analyses (MCAs) were employed to systematically assess the overall change in the hierarchies 
of the German most ‘open’ and ‘connected’ regions. 

The results and findings that emerge from the empirical applications outlined in this 
section are summarized next. 
 
10.3  Analysis of the Findings 
 
10.3.1  Statistical Modelling of Regional Labour Markets in Germany 
 
The first set of analyses presented in Part B of the dissertation concerned neural forecasting 
experiments, aimed at providing short-term forecasts of regional employment variations. In 
Chapter 4, NN models were developed for this task, based on varying sets of explanatory 
variables and two different approaches with regard to the inclusion of the ‘time’ variable. 

The NN models showed, from the empirical point of view, a range of statistical error 
levels. In particular, we attributed the variability in the results to the differences in the 
specification of the NN models, in that the typology of inclusion of time correlation 
determines the provision of lower error levels. A second finding was that the inclusion of the 
additional socio-economic variables (such as wages or urbanization/agglomeration levels) did 
not result in a uniform improvement of the models, with the exception of the inclusion in NNs 
of shift-share analysis (SSA) components (see Chapter 5). In particular, a new NN model 
employing components derived from a conventional SSA approach (Model BSS) proved to be 
the most reliable, and was shown to outperform the remaining models. Consequently, we 
were able to select Model BSS as the winning NN model, to be employed in the future for 
benchmarking and policy purposes. This finding demonstrated the effectiveness of the 
integration of a nonlinear tool such as NNs and of long-established deterministic (or linear) 
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tools (such as SSA). Furthermore, the incorporation in NN models of spatial information (see 
Model BSSN) represented a first step towards a joint NN/spatial econometrics approach, 
which could be considered to be desirable, since, at present, NNs require further research into 
the incorporation and processing of cross-sectional and panel information. From a 
methodological viewpoint, we found that our experiments on the joint application of NNs and 
GAs did not improved the models’ forecasting power, which called for an in-depth 
investigation of the NN learning parameters. The sensitivity analysis of NN models carried 
out in Chapter 6 showed that, in the specific case analysed, a particular combination of 
learning parameters was able to provide improved forecasting power, which was also 
demonstrated by the subsequent comparative analysis carried out. 

In summary, our neural forecasting experiments showed the importance of understanding 
the ‘complexity’ involved in regional labour market forecasting. Our NN models had different 
levels of reliability, depending on the data sets used and the socio-economic background. 
While this is certainly caused by the different time spans of the data sets, and by the fact that 
our empirical analyses were based on just a few main explanatory variables, the results 
emerging from the aforementioned NN-SS models nevertheless provide preliminary evidence 
with regard to the most promising direction in which further research steps should be made. 

A step in this direction is, indeed, the direct consideration of ‘space’ in our analyses. The 
spatial filtering experiments on German unemployment rates, which were presented in 
Chapter 7, aimed to do this, by identifying space-time structures (that is, time-invariant 
‘spatial filters’) inherent to the data, for future inclusion in econometric modelling. We 
experimented with different definitions of space and contiguity, both geographical and non-
geographical. The results emerging from the two types of approach suggested that the non-
geographical approach – based on the idea of commuting flows as a proxy for economic 
interdependence between regions – did not provide a level of statistical reliability comparable 
to that of the geographical approaches. The reason for this finding could be found in the 
nature of the data used, which concerned only logical connections between districts, or, most 
importantly, in the lack of more suitable measures of regional economic interactions. In 
summary, we showed that it is possible to identify time-stable spatial structures in 
unemployment data, both when only unemployment is considered and when socio-economic 
covariates are included. In the latter case, we obtained improved statistical reliability and 
consistent parameter estimates, in the framework of a simple unemployment model 
estimation. 

With regard to the research objective pursued in Part B of the present study, the statistical 
analyses presented in Chapter 7 appear consistent with our neural forecasting experiments, 
which benefited from the inclusion of the SSA paradigm. Furthermore, we highlighted the 
relevance and the persistence of spatial structures and local specificities in German regional 
labour markets. The existence of spatial filters which are common to different years is a 
reflection of this general stability. The spatial filtering technique employed here should 
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therefore be considered as one of several useful tools that can be deployed in the analysis of 
regional disparities. 
 
10.3.2  Spatial Interactions and Networks for Commuting 
 
Following the analyses of Part B, which were centred on the analysis of labour market 
aggregates (employment and unemployment), Part C of the dissertation concerned the study 
of a variable which is associated with labour market accessibility patterns: that is, commuting. 
We jointly employed the conventional spatial interaction framework and novel network 
approaches in order to identify patterns of heterogeneity in journey-to-work trips. 

From these two perspectives, we first provided – in Chapter 8 – a preliminary 
investigation of German district-to-district commuting trips. By means of a network analysis, 
we demonstrated that the German commuting (transportation) network has rather 
homogeneous characteristics, in terms of the number of interconnections between districts, 
which were also shown to increase over the period considered (1995–2004). In this network, 
we observed that even the least-connected districts (with fewer connections to other districts) 
still reach a major share of the network nodes. This finding was confirmed, with regard to 
spatial interaction modelling, by the empirical evidence suggesting that the use of an 
exponential deterrence function (see Equation (8.9)) better interpolates the real data from the 
connectivity viewpoint. 

The above analyses were subsequently extended by focusing on the direction of the flows 
and, in particular, on the ‘openness’ of the German districts; that is, their potential mobility 
(see Chapter 9). In this perspective, the analysis of the commuting flows indicated that, 
spatially, mobility is concentrated around the major metropolitan areas (the urban centres 
attract larger shares of incoming commuting) and, overall, districts in agglomerated areas tend 
to be the most ‘mobile’. From the network perspective, we showed that network heterogeneity 
–which may suggest the possible emergence of ‘hubs’ – is found only when considering raw 
commuting (in)flows, rather than relative indicators of openness or connectedness. 
Accordingly, the multicriteria analyses (MCAs) carried out in order to identify the most 
‘open’ and ‘connected’ German districts suggest that, while there is a certain stability – during 
the period examined – at the spatial level, it is with regard to the clustering of destinations that 
new districts (such as Mettmann and Wiesbaden) emerge. 

With regard to the research objective pursued in Part C of this study, we can relate this 
general medium-term stability of the German commuting patterns to the spatial filtering 
findings, which revealed stable spatial structures underlying regional labour markets. Since 
we stated in Chapter 1 that regional change (convergence or divergence) may be driven by 
interaction phenomena such as commuting, the finding of stable hierarchies with regard to 
journey-to-work patterns contributes to justifying the time-invariance of regional labour 
market aggregate patterns. In this context, the emergence, in our MCAs, of leading West 
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German centres in Bavaria (Munich) and in the Düsseldorf/Stuttgart/Frankfurt area, and the 
depression of East Germany, is a consistent and corroborating result. 

In synthesis, the results of the present study drew a fairly consistent picture of German 
regional labour markets – with regard to employment and unemployment – and their 
hierarchies. We showed that they exhibit spatial heterogeneity that is persistent in time and 
can be explained only in part by recent socio-economic trends (such as, for example, 
demographic changes) or by regional interactions (in our case, commuting flows). In the 
presence of persistent spatial (heterogeneity) structures such as the ones observed, the 
methodological tools proposed here should be considered as a novel contribution to the 
existing literature – also in the light of possible application to other contexts – in the 
following terms: 

 
- We developed a neural network framework for computing labour market forecasts at 

the regional level. 
- We proposed an approach for the study of time-invariant spatial structures in 

georeferenced data, particularly in the presence of explanatory factors. 
- We developed a multidimensional framework for the evaluation of the degree and 

level of heterogeneity of regional interactions (such as commuting). 
 
Applications of the methodological approaches outlined above in a policy-making context 

can be proposed, for example, for decision making at a meso- or micro-level, which often 
requires fast thinking and may be based on limited information. In this context, the analyses 
carried out here offer potential support for better decision making. 
 
10.4  Directions for Future Research 
 
This dissertation has showcased the statistical potential of the application of novel methods 
for the space-time analysis of regional labour markets, with regard to forecasting and 
heterogeneity. However, our empirical applications can be considered neither exhaustive nor 
complete, and call for further research to be carried out. The following is a shortlist of 
desirable future developments within the general framework outlined in this study, and in the 
perspective of a future integration of the methodological approaches proposed. 

Research directions should first be specified with regard to the methodologies employed 
in the dissertation. The experiments carried out in Chapters 4–6 showed that NNs can be a 
useful tool for regional labour market forecasting. However, we obtained the greatest gain in 
statistical reliability when information regarding regional specificities was introduced (that is, 
shift-share analysis), which, in our opinion, highlighted the major direction of research to be 
followed, with regard to regional neural forecasting: that is, the introduction of ‘space’ in 
NNs. While the introduction of a ‘spatial shift-share’ extension in NNs moved us one step 
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closer to filling this gap, further joint approaches should be tested, in particular with regard to 
the integration of the two techniques employed in Part B of this study: namely, NNs and 
spatial filtering (see Chapter 7). In this framework, in order to fully exploit the method’s 
potential, additional spatial filtering experiments are needed, such as a more in-depth 
empirical investigation of the proposed economic variables. In addition, the development of a 
more suitable economic-proximity matrix is desirable. The results emerging from the analyses 
carried out in Chapters 8 and 9 (Part C) could be used in this regard. The investigation of the 
German commuting patterns has highlighted that, in this case too, improvements could be 
sought in several directions, such as the use of more sophisticated spatial interaction models 
or the integration of the logical network and the spatial flows associated with it. 

In particular, challenging research can be foreseen in the direction of the joint application 
of the methodologies showcased in this dissertation. In addition to the aforementioned 
integration of spatial filtering and NN techniques, additional novel methods, which apply 
(spatial) econometrics to spatial interaction (see, for example, LeSage and Pace 2005; Fischer 
et al. 2006) should be investigated, as well as recent developments that relate spatial filtering 
and spatial interaction (Fischer and Griffith 2006). These recent approaches may allow us to 
fruitfully mix the economic modelling contribution of spatial interaction techniques and the 
empirical advantages of spatial econometrics. 

In addition, again from the viewpoint of the integration of methodologies and the 
enrichment of established ones, wider economic modelling frameworks, such as general 
spatial equilibrium models, might benefit from the incorporation of techniques such as NNs, 
spatial filtering or network analysis. From this perspective, the amalgamation of such 
methodologies in a different but complementary research framework would represent a 
significant added value, and appears to be a fascinating scenario that could profitably be 
explored in the future. 

Finally, further research should also address policy perspectives more extensively. For 
instance, many labour market policies have been implemented in Germany during the period 
considered in our case study. From this perspective, a profitable use of the methodological 
approaches proposed in the study could be in the statistical impact analysis of the policies 
applied to labour markets (for example, unemployment benefits, firm subsidies, and so on). In 
addition, the approaches developed here may also be applied to alternative regional contexts, 
in order to carry out comparative analyses in the light of common European policies. 

In conclusion, our study demonstrated that regional labour markets are a very fruitful 
research area, which may lead to challenging questions and fascinating empirical findings, in 
the light also of ever-evolving socio-economic and political systems. These will most likely 
be the subject of further innovative research in the coming years. 
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Nederlandse Samenvatting (Summary in Dutch) 
 

Regionale Arbeidsmarkten in Duitsland: 
Statistische Analyse van Tijd-Ruimte 

Verschillen en Netwerkstructuren 
 
 
 
Inhoud van de Studie 
 
Deze dissertatie presenteert diverse moderne statistische analyses van regionale markten in 
Duitsland. De doelstelling van deze studie is een kwantitatieve analyse van de ontwikkelingen 
op deze markten en van de daarmee samenhangende ruimtelijke verschillen vanuit statistisch 
perspectief. De nadruk ligt daarbij niet zo zeer op beleidsanalyse als wel op de 
ontwikkelingspatronen van de arbeidsmarkten in Duitsland. De motieven voor de studie 
vloeien voort uit het toegenomen belang van ‘de regio’ als focus voor sociaal-economische 
analyse. Informatie over relevante economische kerngrootheden voor regio’s van 
verschillende omvang, positie en structuur vormt een onmisbaar instrument voor het 
ontwikkelen van gericht beleid. Dit geldt in het bijzonder voor Duitsland waar de regio’s het 
ruimtelijk relevante aggregatieniveau vormen voor de verdeling van 
werkloosheidsuitkeringen. Belangrijk is bovendien dat regio’s een grotere sociaal-
economische diversiteit vertonen dan landen, omdat, gegeven hun verschillende kenmerken, 
regio’s als een veel opener sociaal-economisch systeem kunnen worden beschouwd. Zoals 
beargumenteerd in Hoofdstuk 1, leidt dit gegeven – tezamen met het lagere geografische 
schaalniveau dat ons mede in staat stelt om een interdisciplinaire aanpak te volgen en nieuwe 
methodologische kaders toe te passen – tot uitdagende onderzoeksvragen en boeiend 
empirisch onderzoek. Daarbij geldt Duitsland als een schoolvoorbeeld voor vernieuwende 
ruimtelijk-economische analyses, vanwege haar grote aantal kleine geografisch-
administratieve regio’s (NUTS-3 regio’s) en de complexe sociaal-economische context die 
voortkomt uit de hereniging van Oost- en West-Duitsland in 1990. 

Tegen deze achtergrond, richt dit proefschrift zich op twee kernaspecten van de Duitse 
regionale arbeidsmarkt en op twee daaraan gerelateerde onderzoeksvragen: 
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- Belangrijke arbeidsmarktindicatoren, zoals werkgelegenheid of werkloosheid, kunnen 
worden gezien als indicatoren voor het niveau van economische activiteit. Daarom 
richt de eerste onderzoeksdoelstelling van deze dissertatie zich op de ruimtelijk-
temporele analyse van regionale-arbeidsmarkt kerngrootheden. We richten ons daarbij 
op twee hoofdissues: (a) het voorspellen van variaties in regionale werkgelegenheid; 
en (b) de analyse van verschillen in werkloosheid in geval van ruimtelijke 
autocorrelatie. 

- Op vergelijkbare wijze kan men woon-werkverkeer interpreteren als een indicator 
(proxy) voor de omvang van economische interactie tussen regio’s. De tweede 
onderzoeksdoelstelling van deze studie betreft daarom het analyseren van de 
diversificatie in woon-werkverkeer (dat impliciet verbonden is met de regionale 
arbeidsmarkten). We richten ons daarbij vooral op het onderzoek naar de verdeling in 
woon-werkverkeer (in termen van heterogeniteit/homogeniteit) en van het daarmee 
samenhangende niveau van ‘openheid’ van de regio’s. 

 
Het dient vermeld te worden dat deze studie niet als doelstelling heeft om gevestigde 

theoretische onderbouwingen te testen of bewijzen, maar de zoeker te richten op de 
statistische analyse van regionale arbeidsmarkten op basis van moderne statistische methoden 
(zoals neurale netwerkanalyse). Deel 1 van deze studie biedt daarom een bredere 
methodologische introductie. In lijn met de twee hierboven uiteengezette 
onderzoeksdoelstellingen, zijn de empirische toepassingen die in dit proefschrift zijn 
uitgevoerd onderverdeeld in twee hoofdonderdelen: Deel B van het proefschrift richt zich op 
de eerste onderzoeksvraag; Deel C is gewijd aan de tweede onderzoeksvraag.  
 
Methodologische Aanpak van Arbeidsmarktgegevens in Duitsland 
 
Statistische Modellering van Regionale Arbeidsmarkten in Duitsland 
 
Deel B van deze studie behelt de statistische analyse en voorspelling van kerngrootheden voor 
de arbeidsmarkt. Meer specifiek houden Hoofdstukken 4–6 zich bezig met het uitvoeren van 
regionale arbeidsmarktvoorspellingen. Neurale netwerk (NN) technieken worden benut als 
een statistische noviteit om regionale variaties in werkgelegenheid te schatten. Vervolgens 
richt Hoofdstuk 7 zich op de analyse van regionale werkloosheidspercentages. We hebben 
recent ontwikkelde, zgn. ruimtelijke filtertechnieken benut om recht te doen aan ruimtelijke 
heterogeniteit in de data. 

Wat onze NN toepassingen betreft, is het hoofddoel om NN modellen te ontwikkelen om 
daarmee korte-termijn voorspellingen (2 jaar vooruit) te genereren van variaties in het aantal 
Duitse voltijdwerkers per regio. Hoofdstuk 4 behandelt daarom de voornaamste technische 
vragen die optreden bij het ontwikkelen van NN voorspellingsmodellen, in het bijzonder 
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betreffende de paneldata structuur van de gebruikte arbeidsmarktgegevens. Verscheidene 
modellen gebaseerd op NN en genetisch algoritme (GA) technieken zijn recentelijk 
ontwikkeld, waarmee we schattingen hebben gemaakt van een aantal ‘out-of-sample’ 
voorspellingsperioden (2001–04), voor alle 439 NUTS-3 districten (Kreise) in Duitsland. 
Vanwege de verschillen in de tijdsspanne van de data, hebben we de NN modellen apart 
ontwikkeld voor Oost- en West-Duitsland. We presenteren de resultaten voor zowel de 
gangbare modellen (NN modellen), als voor GA-gespecificeerde modellen (NNGA 
modellen). De laatste categorie betreft NN modellen die een interne (GA-) 
optimaliseringsalgoritme gebruiken voor het bepalen van de specificatiekeuze. De resultaten 
van ex post voorspellingen zijn geëvalueerd door middel van passende statistische indicatoren 
en testen voor voorspellingsequivalentie, te weten de Morgan-Granger-Newbold (MGN) test 
en de teken test (sign test: ST). 

In Hoofdstuk 5 breiden we de bovengenoemde analyses uit door een gecombineerde 
‘shift-share’-analyse/NN aanpak voor te stellen, om op die manier regio-specifieke aspecten 
die gerelateerd zijn aan de sectorale prestaties van iedere in de analyse te betrekken regio te 
omvatten. Daartoe ontwikkelen we additionele NN modellen (NN-SS), die als inputs de 
componenten uit diverse SSA methoden bevatten (dat wil zeggen, uit conventionele 
deterministische ‘shift-share’, ruimtelijke ‘shift-share’ en ‘shift-share’ regressie analyse). 
Vervolgens evalueren we deze nieuwe NN-SS modellen statistisch voor de hierboven 
gedefinieerde ‘out-of-sample’ perioden en vergelijken we de resultaten met de winnende 
modellen uit Hoofdstuk 4. 

In Hoofdstuk 6 leggen we de nadruk op de eigenschappen van het specifieke NN 
algoritme dat gebruikt is. We voeren een gevoeligheidsanalyse uit om te bepalen hoe de 
voorspelprestaties van de NN modellen verschillen onder diverse veronderstellingen van 
andere leer-parameters en functionele specificaties. Een herevaluatie – in het licht van de 
uitkomsten van de gevoeligheidsanalyse – van de NN en NN-SS modellen die ontwikkeld zijn 
in Hoofdstukken 4 en 5 is vervolgens uitgevoerd. De uiteindelijke overwegingen over het 
belang van het in ogenschouw nemen van regio-specifieke aspecten (zoals in het geval van 
het ruimtelijke ‘shift-share’ NN model) brengen ons daarbij tot een meer diepgaande analyse 
van ruimtelijke vraagstukken. 

Tenslotte is onze doelstelling in Hoofdstuk 7 om ruimte-tijd patronen in de regionale 
Duitse werkloosheidspercentages te analyseren. We presenteren daartoe een analyse die 
gebaseerd is op ruimtelijke filteringstechnieken, met als doel om ruimtelijke structuren die ten 
grondslag liggen aan de regionale werkloosheidscijfers te identificeren. Gebruikmakend van 
verschillende definities van het nabijheidsconcept, berekenen en selecteren we jaar-specifieke 
verzamelingen van ‘ruimtelijke filters’, om daarmee de geografische variatie in 
werkloosheidspercentages te verklaren. Bovendien bepalen we deelverzamelingen van deze 
ruimtelijke filters die tijdsonafhankelijke ruimtelijke structuren weergeven. Vervolgens 
worden deze analyses herhaald, na introductie van verklarende variabelen die een duidelijke 
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sociaal-economische betekenis hebben (lonen, werkgelegenheid en bevolkingsomvang). De 
toegevoegde waarde van deze nieuwe analyses is dat het gebruik van verklarende variabelen 
in een eenvoudig model ter verklaring van werkloosheid ons in staat stelt om ruimtelijke 
structuren (dat wil zeggen: ruimtelijke filters) te identificeren die niet alleen het resultaat zijn 
van het analyseren van de afhankelijke variabele, maar ook van deze verklarende variabelen. 
Als de onderliggende ruimtelijke structuren eenmaal in acht zijn genomen, is het mogelijk om 
de regressieparameters in het werkloosheidsmodel (te weten: de verbanden tussen 
werkloosheid en de sociaal-economische verklarende variabelen) meer eenduidig te schatten. 
 
Ruimtelijke Interactie en Netwerken in Woonwerkverkeer 
 
Deel C van het proefschrift beschrijft en analyseert de patronen van regionale 
arbeidsmobiliteit in Duitsland. De doelstelling is in het bijzonder om het gangbare analyse-
raamwerk van ruimtelijke interactie patronen – gewoonlijk gebruikt om woon-werkverkeer te 
beschrijven – te integreren met de vernieuwende aanpak die uit de moderne netwerktheorie 
voortkomt, zodat we de mechanismen die leiden tot regionale ongelijkheden beter kunnen 
begrijpen. 

In Hoofdstuk 8 geven we een overzicht van de netwerkeigenschappen in het Duitse woon-
werkverkeer. We onderzoeken de stromen tussen NUTS-3 regio’s (Kreise) door allereerst de 
verdeling over oorsprong-bestemmings (origin-destination: O-D) paren te verkennen. 
Vervolgens voeren we een netwerkanalyse uit met als doel om de verbindingseigenschappen 
van het netwerk te onderzoeken, ofwel: het aantal verbindingen per district (‘degree’). Ter 
uitbreiding van deze analyses ontwikkelen we twee ruimtelijke interactiemodellen (spatial 
interaction models: SIMs), om de netwerkstructuur die ten grondslag ligt aan de woon-
werkverkeersstromen te simuleren. We vergelijken vervolgens de resultaten die uit de 
schattingen voortkomen. 

Voortbouwend op de hierboven uiteengezette analyses onderzoekt Hoofdstuk 9 de 
evolutie van het woon-werkverkeer in Duitsland verder, met nadruk op de relatieve 
mobiliteitsniveau’s van de districten, ofwel: hun ‘openheid’. In deze context worden de 
ruimtelijke- en netwerkverdeling van de stromen voor alle 439 Duitse districten geanalyseerd, 
voor de jaren 1995 en 2005. Vanuit een ruimtelijke perspectief, onderzoeken we de verdeling 
van de regio-specifieke instroom en uitstroom. Vanuit een netwerkperspectief, beschouwen 
we opnieuw de verdelingseigenschappen van het netwerk – echter, ditmaal vanuit het 
perspectief van de inkomende stromen – en berekenen we vervolgens geaggregeerde 
netwerkindicatoren die de ontwikkeling in de patronen van woon-werkverkeer weergeven. 
Tenslotte gebruiken we als evaluatie-instrument multicriteria analyses (MCAs) om de 
algehele verandering in de hiërarchie van de meest ‘open’ en ‘verbonden’ regio’s van 
Duitsland systematisch te toetsen en weer te geven. De resultaten en vindingen die 
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voortkomen uit de empirische toepassingen zoals in deze sectie zijn uiteengezet, worden 
hierna kort samengevat. 

 
Analyse van de Resultaten 
 
Statistische Modellering van Regionale Arbeidsmarkten in Duitsland 

 
De eerste reeks analyses, gepresenteerd in Deel B van de dissertatie, houdt zich bezig met 
neurale voorspellingsexperimenten, gericht op het verkrijgen van kortetermijnprognoses met 
betrekking tot de variatie in regionale werkgelegenheid. In Hoofdstuk 4 zijn hiertoe NN-
modellen ontwikkeld, gebaseerd op wisselende verzamelingen van verklarende variabelen en 
twee verschillende benaderingen met betrekking tot het opnemen van de tijdsvariabele.  

Vanuit een empirisch gezichtspunt bezien, laten de NN-modellen een ‘range’ van 
statistische foutenniveaus zien. In het bijzonder schrijven we de variabiliteit van de resultaten 
toe aan de verschillen in de specificatie van de NN-modellen, in die zin dat de typologie van 
het opnemen van temporele correlatie de oplevering van lagere foutenmarges bepaalt. Een 
tweede bevinding is dat het opnemen van additionele sociaal-economische variabelen (zoals 
loon of stedelijkheids- /agglomeratiegraad) geen uniforme verbetering van de modellen tot 
gevolg heeft, met uitzondering van het opnemen in neurale netwerken van componenten van 
shift-share analyse (SSA) (zie Hoofdstuk 5). In het bijzonder blijkt dat een vernieuwend NN-
model, dat gebruik maakt van componenten die afgeleid zijn van een conventionele SSA-
benadering (Model BSS), het meest betrouwbaar is en beter presteert dan de overige 
modellen. Als gevolg hiervan kunnen we Model BSS beschouwen als het meest succesvolle 
NN-model, in het vervolg te gebruiken voor benchmarking- en beleidsdoeleinden. Deze 
constatering toont de effectiviteit aan van de integratie van een niet-linair instrument als 
neurale netwerken met deterministische (of lineaire) instrumenten (zoals SSA). Bovendien 
vertegenwoordigt het opnemen van ruimtelijke informatie (zie Model BSSN) binnen NN-
modellen een eerste stap in de richting van een gezamenlijke NN/ruimtelijke econometrische 
benadering, hetgeen zeer wenselijk is gezien het feit dat vervolgonderzoek vereist is naar het 
opnemen en verwerken van cross-sectiedata en paneldata bij neurale netwerken. Vanuit een 
methodologisch gezichtspunt bezien, constateren we dat onze experimenten met betrekking 
tot de gecombineerde toepassing van neurale netwerken en GA’s niet leidt tot een verbetering 
van de voorspelkracht van de modellen, hetgeen vraagt om een diepgaand onderzoek naar de 
NN-leerparameters. De gevoeligheidsanalyse van NN-modellen, uitgevoerd in Hoofdstuk 6, 
toont aan dat, in het specifieke onderzochte geval, een zekere combinatie van ‘learning 
parameters’ een verbetering van de voorspelkracht mogelijk maakt, hetgeen tevens 
aangetoond wordt via de daaropvolgende uitgevoerde vergelijkende analyse.  

Samenvattend tonen onze neurale voorspellingexperimenten het belang aan van het 
verkrijgen van meer inzicht in de ‘complexiteit’ die regionale arbeidsmarktprognoses met zich 
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meebrengen. Onze NN-modellen hebben, afhankelijk van de gebruikte datasets en de sociaal-
economische achtergrond, verschillende betrouwbaarheidsniveau’s. Hoewel dit met zekerheid 
wordt veroorzaakt door de verschillende tijdsspannen van de datasets, en door het feit dat 
onze empirische analyses gebaseerd zijn op slechts enkele belangrijke verklarende variabelen, 
leveren de resultaten die voortkomen uit de hiervoorgenoemde NN-SS-modellen toch 
voorlopige aanwijzingen op met betrekking tot de meest veelbelovende richting waarin 
vervolgonderzoek zich zou dienen te ontwikkelen. 

Een stap in deze richting wordt inderdaad genomen door in onze analyses direct rekening 
te houden met ‘ruimte’. De ruimtelijke filterexperimenten, uitgevoerd op Duitse 
werkloosheidspercentages, die in Hoofdstuk 7 zijn gepresenteerd, streven dit na door ruimte-
tijdstructuren (i.e. tijdsinvariante ‘spatial filters’) te identificeren voor de gebruikte data, 
teneinde deze in toekomstige econometrische modellen op te nemen. We experimenteren met 
verschillende, zowel geografische als niet-geografische, definities van ruimte en nabijheid. De 
resultaten die op basis van de twee typen benaderingen naar voren komen, suggereren dat een 
niet-geografische benadering – gebaseerd op de idee dat woon-werkverkeersstromen als 
proxy-variabele voor economische interactie tussen regio’s beschouwd kunnen worden – geen 
statistisch betrouwbaarheidsniveau oplevert dat vergelijkbaar is met dat van geografische 
benaderingen. De oorzaak van deze vinding kan gevonden worden in de aard van de gebruikte 
data, die alleen logische verbindingen tussen districten betreffen, of, belangrijker, in het 
ontbreken van beter geschikte maatstaven van regionale economische interactie. 
Samenvattend tonen we aan dat het mogelijk is om in werkloosheidsdata temporeel stabiele 
ruimtelijke structuren te identificeren, zowel in het geval waarbij alleen rekening wordt 
gehouden met werkloosheid als in het geval waarbij ook sociaal-economische covariaten 
worden opgenomen. In het laatste geval worden, binnen het kader van een schatting van een 
eenvoudig werkloosheidsmodel, een hogere statistische betrouwbaarheid en consistente 
parameterschattingen verkregen. 

Met betrekking tot de onderzoeksdoelstelling nagestreefd in deel B van deze studie, lijken 
de statistische analyses die in Hoofdstuk 7 werden gepresenteerd consistent te zijn met onze 
neurale voorspellingsexperimenten, die het voordeel hadden van het opnemen van het SSA 
paradigma.  

 
Ruimtelijke Interactie en Netwerken voor Woonwerkverkeer 
 
Deel C van de dissertatie houdt zich vervolgens bezig met het bestuderen van een variabele 
die samenhangt met toegankelijkheidspatronen van arbeidsmarkten, namelijk 
woonwerkverkeer. Wij hanteren het gebruikelijke ruimtelijke interactiekader in combinatie 
met nieuwe netwerkbenaderingen, met als doel het identificeren van patronen van 
heterogeniteit in woonwerkverplaatsingen. 



 Nederlandse Samenvatting 199 

 

Vanuit deze twee perspectieven, voeren we eerst – in Hoofdstuk 8 – een voorlopig 
onderzoek uit naar woonwerkmobiliteit tussen Duitse arbeidsdistricten. Met behulp van een 
netwerkanalyse tonen we aan dat het Duitse netwerk van woonwerkverkeer tamelijk 
homogene kenmerken vertoont met betrekking tot het aantal verbindingen tussen districten, 
welke gedurende de bestudeerde periode (1995–2004) bovendien in aantal bleken toe te 
nemen. Binnen dit netwerk zien we dat zelfs de slechtst verbonden districten (die met minder 
verbindingen dan andere districten) nog altijd een belangrijk deel van de netwerkknooppunten 
bereiken.  

Bovenstaande analyses worden vervolgens uitgebreid door de richting van de 
vervoerstromen te bezien en, in het bijzonder, de ‘openheid’ van de Duitse districten, dat wil 
zeggen, hun potentiële mobiliteit (zie Hoofdstuk 9). In dit opzicht wijst de analyse van de 
woonwerkvervoerstromen erop dat, in ruimtelijke zin, mobiliteit geconcentreerd is rond de 
belangrijkste stedelijke gebieden (de stedelijke centra trekken een grotere aandeel van de 
ingaande woonwerkverkeerstromen aan) en dat, in algemene zin, districten in 
agglomeratiegebieden het meest ‘mobiel’ zijn. Vanuit een netwerkperspectief bezien, wordt 
netwerkheterogeniteit – wat kan wijzen op de mogelijke opkomst van ‘hubs’ – slechts 
aangetroffen wanneer ruwe data met betrekking tot woonwerkverkeerstromen in beschouwing 
worden genomen, in plaats van relatieve indicatoren van openheid of verbondenheid. 
Overeenkomstig deze bevindingen wijst de multicriteria-analyse (MCA), die is uitgevoerd 
met als doel om de meest ‘open’ en ‘verbonden’ Duitse districten te identificeren, erop dat, 
ondanks een zekere stabiliteit – gedurende de bestudeerde periode – op ruimtelijk niveau, 
nieuwe districten (zoals Mettmann en Wiesbaden) opkomen. 

Met betrekking tot de onderzoeksdoelstelling nagestreefd in deel C van deze studie 
kunnen we deze algemene middellangetermijn-stabiliteit van de Duitse 
woonwerkverkeerpatronen relateren aan de resultaten van de ‘spatial filtering’ experimenten, 
die met betrekking tot regionale arbeidsmarkten stabiele onderliggende ruimtelijke structuren 
aantonen. Regionale verandering (convergentie of divergentie) wordt mede aangestuurd door 
interactie-gerelateerde verschijnselen zoals woonwerkverkeer, en zo draagt de constatering 
van stabiele hiërarchieën met betrekking tot woonwerk-verplaatsingen bij aan het begrijpen 
van de stabiliteit van patronen van geaggreggeerde regionale arbeidsmarkten. In deze context 
is de opkomst van toonaangevende Westduitse centra in Beieren (München) en in het gebied 
Düsseldorf/Stuttgart/Frankfurt, alsmede de depressie in Oostduitsland, een consistent en 
ondersteunend resultaat. 

Samengevoegd geven de resultaten van deze studie een tamelijk consistent beeld van 
Duitse regionale arbeidsmarkten – met betrekking tot werkgelegenheid en werkloosheid – en 
hun hiërarchieën. Deze markten vertonen ruimtelijke heterogeniteit, die hardnekkig is in de 
tijd en die slechts gedeeltelijk verklaard kan worden vanuit recente sociaal-economische 
interacties (in dit geval, woonwerk-verkeerstromen). De door ons gehanteerde 
methodologische instrumenten dienen te worden beschouwd als een vernieuwende bijdrage 
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aan de bestaande literatuur – mede in het licht van toepassingsmogelijkheden in andere 
contexten – in de volgende opzichten: 
 

- We hebben een neuraal netwerk-kader ontwikkeld voor het berekenen van 
arbeidsmarktprognoses op regionaal niveau. 

- We hebben een benadering getoetst voor het bestuderen van temporeel invariante 
ruimtelijke structuren in geografisch gerefereerde data, in het bijzonder in de 
aanwezigheid van verklarende factoren daarbij. 

- We hebben een multidimensioneel kader ontwikkeld voor het evalueren van de mate 
en het niveau van heterogeniteit van regionale interacties (waaronder woonwerk-
verkeer) 

 
Aanbevelingen voor Vervolgonderzoek 
 
Deze dissertatie heeft een demonstratie gegeven van de statistische potentie van de toepassing 
van nieuwe methoden voor de ruimte-tijd analyse van regionale arbeidsmarkten, vanuit de 
optiek van prognose en heterogeniteit. Onze empirische toepassingen kunnen echter noch als 
uitputtend noch als compleet beschouwd worden, en vereisen het verrichten van 
vervolgonderzoek. Hierna volgt een shortlist van wenselijke toekomstige ontwikkelingen 
binnen het algemene kader dat in deze studie is geschetst, vanuit het perspectief van een 
toekomstige integratie van de voorgedragen methodologische benaderingen.  

Onderzoeksrichtingen dienen eerst nader te worden gespecificeerd met betrekking tot de 
in deze dissertatie gebruikte methodologieën. De in Hoofdstuk 4-6 uitgevoerde experimenten 
tonen aan dat neurale netwerken een bruikbaar instrument kunnen zijn voor het maken van 
regionale arbeidsmarktprognoses. De grootste toename in statistische betrouwbaarheid wordt 
echter verkregen door de introductie van informatie met betrekking tot specifieke regionale 
kenmerken (shift-share analysis), hetgeen volgens ons de belangrijkste 
vervolgonderzoeksrichting met betrekking tot regionale neurale voorspellingen suggereert, 
namelijk, de introductie van ‘ruimte’ in neurale netwerken. Hoewel de introductie van een 
‘ruimtelijke shift-share’ uitbreiding in neurale netwerken ons een stap dichter bij het opvullen 
van dit hiaat heeft gebracht, dienen verdere gecombineerde benaderingen getest te worden, 
met name met betrekking tot het de integratie van de twee in deel B van deze studie 
gehanteerde technieken, namelijk: neurale netwerken en ‘spatial filtering’ (zie Hoofdstuk 7). 
Teneinde zo volledig mogelijk het potentieel van de methode te benutten, is er binnen dit 
kader behoefte aan aanvullende ruimtelijke filterexperimenten, zoals een diepgaand empirisch 
onderzoek naar de beschouwde economische variabelen. Bovendien is de ontwikkeling van 
een beter geschikte ‘economic-proximity matrix’ wenselijk. Hierbij kan gebruik worden 
gemaakt van de resultaten van de in Hoofdstuk 8 en 9 uitgevoerde analyse (deel C). Het 
onderzoeken van de patronen van het Duitse woonwerk verkeer heeft benadrukt dat, ook in dit 
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specifieke geval, verbeteringen in diverse richtingen kunnen worden gezocht, zoals het 
gebruik van meer geavanceerde ruimtelijke interactiemodellen of de integratie van logistieke 
netwerken en de bijbehorende ruimtelijke stromen. 

Uitdagende onderzoeksmogelijkheden mogen met name worden verwacht in de richting 
van de gecombineerde toepassing van de in deze dissertatie belichte methodologieën. Naast 
de genoemde integratie van ‘spatial filtering’ en NN-technieken, zouden aanvullende nieuwe 
methodes die (ruimtelijke) econometrie op ruimtelijke interactie toepassen onderzocht dienen 
te worden. Dit geldt tevens voor recente ontwikkelingen waarbij ‘spatial filtering’ en 
ruimtelijke interactie aan elkaar worden gerelateerd. Deze recente benaderingen zouden ons in 
staat kunnen stellen om de economische modelleringsaspecten van ruimtelijke 
interactietechnieken op succesvolle wijze te kunnen combineren met de empirische voordelen 
van de ruimtelijke econometrie. 

Verder kunnen bredere economische modelkaders, zoals ruimtelijke evenwichtsmodellen, 
profijt hebben van het opnemen van technieken zoals neurale netwerken, ‘spatial filtering’ of 
netwerkanalyse. In dit opzicht zou de combinatie van dergelijke methodologieën binnen een 
ander, complementair onderzoekskader een significante toevoegende waarde hebben en een 
fascinerend researchscenario kunnen zijn dat in de toekomst onderzocht zou kunnen worden. 

Tenslotte dient vervolgonderzoek ook ruimere aandacht te besteden aan 
beleidsperspectieven. Veel beleidslijnen op het gebied van arbeidsmarkten in Duitsland zijn 
bijvoorbeeld geïmplementeerd tijdens de periode die onze case studie beslaat. Vanuit dit 
perspectief bezien zou een vruchtbaar gebruik van de in deze studie gehanteerde 
methodologische benaderingen gevormd kunnen worden door een statistische impactanalyse 
van het op de arbeidsmarkt toegepaste beleid (bijvoorbeeld werkloosheidsuitkeringen, 
bedrijvensubsidies enzovoorts). Verder zouden de hier ontwikkelde benaderingen ook 
toegepast kunnen worden op alternatieve regionale contexten, teneinde vergelijkende analyses 
uit te voeren in het licht van het gemeenschappelijk Europees beleid.  

Concluderend toont onze studie aan dat regionale arbeidsmarkten een erg vruchtbaar 
onderzoeksterrein vormen, dat kan leiden tot uitdagende onderzoeksvragen en fascinerende 
empirische bevindingen, mede in het licht van continu evoluerende sociaal-economische en 
politieke beleidssystemen. Deze zullen de komende jaren hoogstwaarschijnlijk het onderwerp 
vormen van innovatief vervolgonderzoek. 
 
 
 





In recent years, researchers and policy makers have shown a rising interest 
in the study and interpretation of socio-economic processes at the meso- 
or regional level. From that perspective, the region is often considered 
to be the ‘place of action’, where micro-behaviour and macro-outcomes 
come together.
The present study offers a novel statistical analysis of the development 
of regional labour markets in Germany. The objective of the dissertation 
is to analyse their patterns and evolution, as well as the associated spatial 
disparities. In particular, Germany – with its large number of small 
geographical units (NUTS-3 districts in EU terminology) and complex 
socio-economic ramifications emerging from the reunification of 1990 
– is a textbook case for such spatial-economic analyses.
The first empirical part of the study concerns the spatio-temporal analysis 
of regional labour market aggregates. The focus is on two main issues: 
(a) the forecast of regional employment variations; and (b) the analysis 
of unemployment differentials in the presence of spatial autocorrelation. 
The second empirical part concerns the analysis of the diversification of 
journey-to-work trips. In particular, we focus on the investigation of the 
commuting flows’ heterogeneity/homogeneity and of the related level 
of ‘openness’ of regions. The results draw a fairly consistent picture of 
German regional labour markets and their hierarchies, in which spatial 
heterogeneity is persistent in time, and can be explained only in part by 
recent socio-economic trends or regional interactions.
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