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1 Introduction 
 
A wide literature is devoted to the study of the relevance of space, encompassing several 
fields and disciplines, such as geography, economics, epidemiology, environmental and 
regional sciences. For example, space-time modelling has been a relevant focus of research 
in spatial economics starting from Hagerstrand (1967) and Wilson (1967; 1970). While the 
former paid attention to the modelling of spatial diffusion phenomena, the latter unified 
movements of spatial flows under the umbrella of statistical and information theory, by 
means of spatial interaction models. In these models, the relevance of spatial structure 
emerged in the associated cost/impedance functions. In parallel, starting from Zipf (1932) 
and Simon (1955), the importance of spatial structures (homogeneous or heterogeneous) 
has been discussed extensively in the literature, by focusing on the relationships between 
urban growth, agglomeration economies, and commuting costs (see, among others, 
Krugman 1991; Rossi-Hansberg and Wright 2006). A point of concern is that, in these 
spatial (growth and interaction) models, the effects of spatial topology and connectivity are 
only implicitly included, but never explicitly considered and discussed. 

Tied to the spatial topology and connectivity issue is the network concept, which 
received a great deal of attention in social sciences and spatial economics in the past 
decades. Examples are the popular ideas of social complex networks (Barabási 2003; 
Vega-Redondo 2007), the network economy (Shapiro and Varian 1999), and the 
knowledge economy (Cooke 2001). Networks are based on the existence of interactions – 
at multiple levels/layers – between agents, giving rise to synergy effects. The effects of 
these interactions are often investigated and modelled in the form of, for example, network 
externalities or spillover effects (Yilmaz et al. 2002). The labour market literature is no 
exception: spatial matching processes have been widely studied in a social network 
framework (Montgomery 1991), as well as commuting, which has been modelled in both 
urban and regional contexts (for example, see van Nuffel and Saey 2005; Russo et al. 2007; 
Reggiani and Bucci 2008). In addition, network-based results can be tied to widely used 
econometric techniques (see, for instance, the relation between topological accessibility 
and spatial weights matrices, discussed in Mackiewicz and Ratajczak 1996). 

The commuting literature has long been interested in problems of urban shape and 
regional networks of cities, in particular with regard to monocentricity and polycentricity 
(Button 2000). Cases of the latter are found at increasingly larger spatial scales, leading to 
the idea of ‘network cities’ (Batten 1995), in which horizontal city-relations emerge 
(Wiberg 1993; van der Laan 1998), also because of improved transportation infrastructure 
and accessibility. In this framework, network modelling approaches to the analysis of 
commuting flows are worth noting. Russo et al. (2007) analyse commuting flows in 
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Germany to identify ‘entrepreneurial cities’ in Germany. van der Laan (1998) and van 
Nuffel and Saey (2005) investigate the emergence of multinodality in the Netherlands and 
in the Flanders, respectively. In particular, van der Laan finds that increasing horizontal 
relations emerge for regions with modern economic structures, while the hierarchical status 
quo is preserved for peripheral, less advanced regions. 

In line with the above developments, the present paper investigates, for the case of 
Germany, the relevance of the volume and distribution of commuting flows, as well as of 
the commuting network’s connectivity and topology. We aim to assess how network 
topology and its changes over time affect the geographic commuting system and its 
hierarchies. The reason for studying the commuting network in a connectivity perspective 
is inspired by the idea that the distribution of commuting can help explain other relevant 
economic phenomena, such as the convergence or divergence of labour market indicators 
(see for example Patacchini and Zenou 2007) or production levels. In this regard, the value 
added of network analysis is that it allows inspecting – in an intuitive fashion – 
commuting-induced topology and accessibility. Therefore, we aim to further inspect the 
connectivity perspective, to improve our understanding of the spatial-economic perspective. 

The paper is structured as follows: Section 2 briefly reviews recent developments in the 
field of network analysis. Section 3.1 illustrates a preliminary spatial analysis of 
commuting flows in Germany, with reference to the ‘open’ cities (that is, to the cities with 
high propensity to mobility), while Section 3.2 presents the results of the network 
modelling experiments, by focusing on the network connectivity properties. Section 4 
presents then a comparative multicriteria analysis that synthesizes the dynamics of the 
different hierarchies – concerning the German ‘open’ districts – emerging from the spatial 
and network approach. Finally, Section 5 concludes the paper with some final remarks and 
directions for future research. 
 
 
2 Spatial and Network Analysis: Recent Perspectives 
 
Recent developments in spatial analysis call for a better understanding of the influence of 
space in the dynamics of economic growth patterns (for example, agglomeration 
economies). Relationships between agglomeration economies, fractal patterns, and rank 
size rules can be found, among others, in Batty (2005), and Chen (2004), while spatial 
equilibrium models consisting of a system of monocentric cities (city network) have also 
been adopted (see, for example, Abdel-Rahman 2003). However, these models have rarely 
embedded network concepts. 

Here below we briefly discuss recent developments in network analysis and, in particular, 
their implications for regional networks. The focus is on recent works published by 
Barabási and Albert (BA) (1999), which radically changed the pre-existing frameworks for 
the analysis of large networks, by developing the concept of ‘scale-free (SF) networks’, 
and by providing a model that helps explaining their (topological) properties. 

SF networks are usually discussed vis-à-vis ‘random networks’ (see, for example, the 
conventional Poisson random graph, Erdös and Renyi 1960). SF networks – first 
formalized by Price (1965; 1976) – are characterized by the presence of a few nodes 
(‘hubs’) with a high number of connections (‘links’) to other nodes (a high ‘degree’), and 
by the a vast majority of nodes exhibiting a low number of links. The term ‘scale-free’ 
refers to the statistical properties deriving from the above characteristics (see Newman 
2003) and implies a great heterogeneity of the degree distribution. 

The probability distribution of the nodes’ degree x (its ‘degree distribution’) for SF 
networks tends to decay following a power function: 
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 Pr( ) ,aX x x−= ∼  (1) 
For large x, the value of the exponent a in SF networks converges to 3 (Bollobás et al. 

2001). A direct relation follows between the power law and Zipf’s law (Zipf 1932), a 
distribution relating the degree of the nodes to their rank (Adamic 2000). According to 
Zipf, the relation between these two variables is as follows: 
 ,bx r−∼  (2) 
where r is the rank of the node concerned. The value of the exponent b is expected to be 1. 
Following from the mathematical relation of the Pareto distribution (which can be 
interpreted as rank size rule) and power-law distributions (Adamic 2000), the relation 
between Equations (1) and (2) is given by: 
 1 1 .a = + b  (3) 
On the basis of the above considerations, we apply − in our empirical experiments − 
Equation (2) (in logarithmic terms), by then extrapolating the value of a according to 
Equation (3). 

In contrast to SF models, random networks (RNs) belong to a long-established class of 
networks (Rapoport 1957; Erdös and Renyi 1960). In an RN, the links between nodes in 
the network are expected to arise randomly. As a result, the probability of a node having 
degree x, Pr(X = x), follows, for a large-enough number of nodes, a Poisson distribution, 
implying a homogeneous distribution of connections. Consequently, most of the nodes 
have a similar number of links and importance. 

In our empirical application, we test whether the German commuting network shows SF 
or RN characteristics, that is, if it is heterogeneous or homogeneous. Consistently with 
Equation (2), we adopt, in the RN case, the exponential Equation (4), where the degree of 
the nodes x is sorted in decreasing order: 
 β .rx ke−=  (4) 

By synthesizing, the empirical evidence of rank size rules in urban economics, biology, 
and other fields is strictly related to the underlying connectivity network properties 
expressed by the associated power law. In other words, the rank size rule advocated in 
spatial economic science and the power law advocated in social sciences can be considered 
as two sides of the same coin, and hence interpreted in a unifying perspective.1

The above analytical frameworks are tested, for the case of the German commuting 
network, in Section 3.2, subsequently to a preliminary spatial analysis. 
 
 
3 Case Study: Dynamics of German Commuting 
 
3.1 Spatial Analysis: The ‘Open Cities’ 
 
Before analysing the network properties of spatial commuting patterns, we will synthesize 
the characteristics of the German database from a regional/spatial perspective. 

The data employed in our analysis refer to the registered residence and workplace of all 
dependent employees in Germany, at two points in time: 1995 and 2005. The data are 
aggregated in 439 German administrative districts, called Kreise (NUTS-3), and were 
collected by the Federal Employment Services (Bundesanstalt für Arbeit, BA) within 
social security services. 2  We can then form an origin-destination (OD) matrix, of 
dimension 439 x 439, which has, for each cell (i, j), the number of employees living in 
                                                 
1  See also Chapter 19 by Reggiani, in this volume. 
2  Since the data are directly gathered at the single firm level, it is reasonable to expect low and non-

systematic measurement errors. 
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district i and working in district j. In addition, we classify the German districts with regard 
to their levels of urbanization and surrounding agglomeration3 (BBR– Bundesanstalt für 
Bauwesen und Raumordnung) (Böltgen and Irmen 1997). 

As indicators of the propensity to mobility of the districts, we employ indicators of 
incoming and outgoing mobility, which we refer to as inward and outward openness 
(authors’ adaption from van der Laan 1998). The inward openness of a district indicates to 
which extent it attracts outside workers, and is computed, for a generic district j, as the 
ratio between the number of employees of the district j residing in other districts, and the 
total number of employees of district j: .ij iji j i

e e
≠∑ ∑  Similarly, the outward openness 

can be defined as the percentage of residents who commute outside of their district, and is 
computed as: .ij ijj i j

e e
≠∑ ∑  As a synthetic indicator of mobility (openness), we compute 

the average of inward and outward openness. This synthetic openness measure represents 
the capacity of a district to be ‘mobile’ and, consequently, ‘active’. van der Laan (1998, p. 
238) identifies high values of openness as possible signs of a ‘multi-nodal urban region’. 

In Figure 1, central cities (CBDs) and highly urbanized districts mainly emerge as the 
most ‘active’ in both 1995 and 2005. The Munich Landkreis resulting as the most ‘open’. 
The higher concentration of population and economic activities (located within or in the 
surroundings of the main cities) – or a mobile population exploring new work 
opportunities – might explain this result (van Oort 2002). Notable exceptions – with low 
openness values – are Berlin and CBD of Munich, due to the larger areas, which tend to 
contain commuting with the district boundaries. Over the ten-year period we observe a 
generalized increase in the propensity to mobility, while a bigger positive variation can be 
found for the Berlin area. 

 

a)

Legend
German NUTS-3 districts
Openness 1995

0.09 - 0.22

0.23 - 0.36

0.37 - 0.51

0.51 - 0.65

0.65 - 0.80

b)

Legend
German NUTS-3 districts
Openness 2005

0.12 - 0.22

0.23 - 0.36

0.37 - 0.51

0.52 - 0.65

0.66 - 0.80

 
 
Source: Patuelli et al. (2009). 
Figure 1 – Maps of openness of districts, 1995 and 2005 

 
                                                 
3  The districts are classified as follows: 1) central cities in regions with urban agglomerations; 2) highly 

urbanized districts in regions with urban agglomerations; 3) urbanized districts in regions with urban 
agglomerations; 4) rural districts in regions with urban agglomerations; 5) central cities in regions with 
tendencies towards agglomeration; 6) highly urbanized districts in regions with tendencies towards 
agglomeration; 7) rural districts in regions with tendencies towards agglomeration; 8) urbanized districts in 
regions with rural features; and 9) rural districts in regions with rural features. 
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In this context, it could be interesting to explore whether the most ‘open’ cities seen 
above are also connected together in a city-network pattern. In summary, given the 
mobility characteristics of the districts, it might be relevant to explore how these are 
affected by the underlying connectivity networks, also in the light of the findings 
supporting multinodality, recently presented in the literature (Batten 1995; van Nuffel and 
Saey 2005). The next section investigates this aspect. 
 
3.2 Network Analysis: The ‘Connected’ Cities 
 
3.2.1 Connectivity Distribution 
An initial analysis of the network underlying the commuting activities can be carried out 
by considering the statistical distribution of the data. In order to identify the (network) 
attractiveness and the propensity to mobility of the districts, we propose two exploratory 
approaches, based on the so-called indegree and on the inward openness. First, the number 
of inward connections per district (indegree) is examined, that is, from how many districts 
commuters come. From this viewpoint, which regards the logical topology of the 
commuting network, it is relevant if there is (any) commuting between two districts i and j, 
whatever its extent. Secondly, we examine the inward openness of the districts (as defined 
above). In this case we consider the commuting inflows, that is, the weights tied to the 
links. In this case, the total inflows of each district are standardized by the number of jobs 
available in-place. 

We next interpolate our data with a power function and an exponential function (see 
Equations (2) and (4)). Table 1 shows the resulting R2 coefficients and the values of the 
function exponents. For the case of the indegree distribution, an exponential distribution 
fits well the degree decay, although with a sharp cut-off at the end, and its exponent also 
remains extremely low in time. The R2 for the power function is lower and also decreasing 
over time. On the other hand, its coefficient is more meaningful from an economic point of 
view. Transforming the indegree power-law coefficient according to Equation (3), we 
obtain coefficients much greater than 3, suggesting random network characteristics (that is, 
a homogeneous pattern). Overall, these findings suggest the existence of a highly 
interconnected (logical) commuting network. However, the ambiguity between exponential 
and power law suggests that no clear agglomeration-pattern can be inferred in the case of 
the indegree distribution. 
 
Table 1 – R2 values and exponents for power and exponential interpolations of incoming 

connections (indegree) and inward openness, 1995 and 2005 
 

Indegree Inward openness Year 
Power law Exponential Power law Exponential 

1995 0.7002 0.9739 0.8027 0.9871 
(exponent) (0.2442) (0.0022) (0.4623) (0.0039) 
2005 0.6046 0.9316 0.7820 0.9859 
(exponent) (0.2589) (0.0025) (0.4000) (0.0034) 
Source: Patuelli et al. (2009). 
 

As for the indegree distribution, the distribution of the inward openness remains fairly 
stable in the two years considered, and the exponential function better interpolates the data. 
However, the power function also has a high R2. In addition, the exponent values for the 
power interpolation are now higher (0.40–0.46), which implies transformed power-law 
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coefficients greater than 4  3. Overall, this preliminary data exploration shows that the 
exponential function is a better fit to both the indegree and the inward openness 
distributions, thus suggesting – according to these variables – an equilibrated network. This 
result is indeed in agreement with the associated rank size rule (Equation (2)), since power-
law coefficients smaller than 1 indicate an even spatial distribution of the two variables at 
hands (indegree and openness) (Brakman et al. 2001). 
 
3.2.2 Network Indices 
After exploring the data and their distribution, we provide a set of synthetic indices, which 
describe three principal aspects exploring the network under different perspectives: (a) 
centralization; (b) clustering; and (c) variety/dispersion. 

Network centralization is an aggregate assessment of the degree of inequality of a 
network. It may be computed on the basis of individual node centrality measures. The 
‘centrality’ of a node may be seen as a measure of its structural importance. The centrality 
index presented here may be called indegree centralization, and is based on the concept of 
relative degree centrality of nodes, which measures the ‘visibility’ of a node. This concept 
can be linked to the one of ‘hub’ (Latora and Marchiori 2004), since the most visible nodes 
can be considered as hubs. The index only considers direct connections (indirect 
connections can only be considered if the transportation infrastructure is included in the 
analysis), and, in our case, only inward connections are considered (hence, the 
denomination ‘indegree centralization’), in order to show the nodes’ attractiveness for 
outside workers. Relative indegree centrality (rici) is computed, for each node i, as the ratio 
between the observed and the maximum possible number of connections of a node (n – 1): 

 where n is the total number of nodes. Consequently, the aggregate 
network indegree centralization (NIC) index is computed, similarly to Freeman (1979), as: 

indegree /( 1),i iric n= −

*( ) (i
i N

NIC ric ric n
∈

= − −∑ 2) ,  where ric* is maxi (rici). 

The second index we compute refers to network clustering. Network clustering 
coefficients have been used extensively in network analysis (see, for example, Watts and 
Strogatz 1998) in order to determine the level of interconnectedness of networks. In order 
to compute a clustering coefficient for a node, we need to define its neighbourhood, which 
is given – if first order relations only are considered – by the nodes directly connected to 
the node concerned. A clustering coefficient for node i is then computed as the ratio of the 
number of links existing between its neighbours and the maximum number of links that 
may exist between the same (neighbours): * ,i i ic l l=  where  and  are the actual and 
possible number of links in node i’s neighbourhood, respectively. A synthetic network 
clustering coefficient is then computed as the average of the single nodes’ coefficients. 
Clearly, if n-order neighbours are considered, a node’s neighbourhood is represented by all 
the nodes that can be reached in n hops. 

il
*
il

As a third index, in order to assess the variety/dispersal of the nodes, we use an entropy 
indicator. Entropy is a concept derived from information theory (Shannon 1948) and 
widely used in spatial-economic science (Wilson 1967, 1970). Entropy is employed here as 
an indicator of the probability that the flows observed are generated by a ‘stochastic spatial 
allocation process’ (Nijkamp and Reggiani 1992, p. 18). Higher entropy levels indicate that 
the flows are more homogeneous and dispersed over the network. The indicator E is 

                                                 
4  Our result would vary if we imposed a minimum threshold on the flows associated with each network link. 

A threshold set at 3 would support a finding of scale-free characteristics of the commuting network. 
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computed as: ,ln∑−=
ij ijij ppE  where .iijij Otp =  In pij, tij is the number of commuters 

between districts i and j, while Oi is the outflows of district i. 
Table 2 presents the results obtained for the German commuting network for the three 

indices described above, for the years 1995 and 2005. Though without dramatic changes, 
the network shows two distinct trends over ten years. On the one hand, the network 
becomes less centralized, while the entropy increases. These results imply a more 
distributed structure of the network. On the other hand, the clustering coefficient of the 
network grows, suggesting a tendency towards greater interconnectivity. These results 
seem to confirm the findings emerging in our spatial analysis (Section 3.1), highlighting 
the network’s tendency towards a multinodal structure (van der Laan 1998). 
 
Table 2 – Descriptive indices for the German commuting network, 1995 and 2005 
 
Indices 1995 2005 
Indegree centralization 0.33 0.31 
Clustering 0.59 0.63 
Entropy 8.23 8.38 
Source: Patuelli et al. (2009). 
 

A graphical representation of the tendency towards greater interconnectivity in the 
commuting network can be obtained, for 1995 and 2005, on the basis of the ‘k-core’ 
concept (Figure 2), again from an inward connections viewpoint. A k-core is a subgraph 
(or more) in which each node has a minimal degree (in our case, indegree) of k, that is, 
each node in the k-core has connections with at least k other nodes in the subgraph (Holme 
2005). For a more meaningful computation and a readable graph, we select a subsample of 
the data, consisting of the flows above the arbitrary threshold of 1,000 individuals per OD 
pair. We find − for both 1995 and 2005 − k-cores of level 4, comprising first 13 and then 
33 districts. 
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Source: Patuelli et al. (2009). 
Figure 2 – ‘4-cores’ in the commuting network: (a) 1995; (b) 2005 

 
For the year 1995, the small core of 13 districts identifies a local and heavily 

interconnected network, headed by Düsseldorf and Dortmund, showing intense horizontal 
(local) relations. The fact that other districts do not appear in the 4-core does not mean that 
they have no reciprocal flows of commuters with the core districts. Simply, these other 
nodes do not feature the minimum levels of interconnectedness and flows of the core nodes, 
although they can show several flows much greater than 1,000 individuals. Frankfurt is a 
clear example. If we consider the year 2005, a larger graph of 33 districts is found. Here, 
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the Düsseldorf/Dortmund cluster increases, and it represents most of the core. But it is 
noteworthy to cite the function of Frankfurt, which now acts as a hub, connecting the 
Frankfurt (code 6412) local cluster to the main Düsseldorf/Dortmund cluster. 

Overall, the results of the network analysis seem to confirm the multinodal structure of 
the German commuting network (especially at the local level), while also suggesting an 
increased connectivity among the major centres − as centrality decreases over time − and, 
consequently, a tendency towards two layers of multinodality: (a) at the local level; and (b) 
at the regional level (the city-network level). As also seen by van Nuffel and Saey (2005, p. 
326) and by van der Laan (1998, p. 244), these relations between the main centres do not 
overshadow local links – which still carry most of the mobility − but complement them. 
 
 
4 Multidimensional Synthesis: The Network of the ‘Open’ and Connected Cities 
 
As a final step of this research endeavour, it is worthwhile to map out the hierarchies of the 
districts and their persistence over time, in order to identify the main relevant centres from 
both a spatial and a network viewpoint. We aim to offer a ‘synthetic’ measure of the 
multiple spatial and connectivity dimensions observed above, by using a multidimensional 
method well known in the spatial-economic literature, known as multicriteria analysis 
(MCA). The synthetic assessment of the district characteristics – from the spatial and the 
connectivity perspectives – allows us to define a dominance rank of the districts concerned, 
and to investigate the changes which occurred in this rank over the period 1995–2005. 

In order to look at the most representative districts only, we select a subsample of 
districts (‘alternatives’) to be employed in our MCA, using a synthetic connections-flows 
(CF) index, computed, for each district i, as (  where 
Ci and Fi are the number of incoming connections (the indegree) and the inward openness 
of district i, respectively. The index is the product of the two normalized indicators Ci and 
Fi, and is constrained from 0 to 1. It aims to provide a balanced assessment of the openness 
and connectedness of the districts, that is, from the conventional spatial interaction 
perspective and from the network perspective, respectively. On the basis of the CF index, 
we select 26 districts (listed in Table 3), which appear among the top 30 districts for both 
1995 and 2005. Such a large group of ‘open’ districts (26 of 30) over a 10-year period 
suggests an overall stability of the upper tier of the districts, according to the CF index. 
The districts selected, with a few exceptions, are urban districts – that is, central cities of 
type 1 and 5. 

) [ max ( max ( )],i i i i i iCF C C F=

                                                

)]*[i F

We carry out the MCA 5  on the basis of two aggregate assessment criteria (macro-
criteria): spatial mobility (inward and outward openness) and connectivity (relative 
indegree centrality and clustering coefficients). We proceed in two steps: first, by carrying 
out an MCA for each macro-criterion6 and, second, by carrying out a final MCA which 
synthesizes the two previous analyses. 

 

 
5  We employ the regime multicriteria method Hinloopen and Nijkamp 1990). In detail, three scenarios have 

been considered: (a) equal weights to all criteria; (b) ascending weights; and (c) descending weights. A 
final MCA of the rankings obtained provides the final results. We assume the hypothesis of no correlation 
between the criteria employed in the MCA. 

6  The two macro-criteria employed here clearly identify two different types of phenomena: Spearman’s 
correlation between the rankings resulting from the spatial and connectivity MCAs is equal to –0.369 for 
1995 and to –0.311 for 2005. This is confirmed by the cross-correlations between the spatial and the 
connectivity criteria, which range – in absolute values – from 0.066 to 0.501. 
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Table 3 – Multicriteria analysis for the ‘open’ and connected districts: results for 1995 and 2005 
 

Spatial results Connectivity results Final resultsDistricts 
1995 2005 

Districts 
1995 2005 

Districts 
1995 2005

09184 Munich   1   1 05111 Düsseldorf, Stadt   1   1 09184 Munich   1   1 
06436 Main-Taunus-Kreis    2   2 06412 Frankfurt am Main, Stadt   2   2 06436 Main-Taunus-Kreis    2   4 
09661 Aschaffenburg, Stadt    3   4 08111 Stuttgart   3   4 06411 Darmstadt, Stadt    3   3 
06413 Offenbach am Main, Stadt   4   3 09184 Munich   4   7 07315 Mainz, Stadt    4   5 
06411 Darmstadt, Stadt    5   5 09564 Nuremberg, Stadt   5   8 08221 Heidelberg   5   9 
07314 Ludwigshafen am Rhein, Stadt   6   6 05314 Bonn, Stadt   6   9 05314 Bonn, Stadt   6   7 
08221 Heidelberg    7   8 08222 Mannheim   7   6 06414 Wiesbaden, Landeshauptstadt   7   2 
07315 Mainz, Stadt    8   7 06414 Wiesbaden, Landeshauptstadt   8   3 09562 Erlangen, Stadt   8 15 
09662 Schweinfurt, Stadt    9 15 06436 Main-Taunus-Kreis   9 11 08121 Heilbronn    9 16 
08121 Heilbronn  10   9 08212 Karlsruhe 10   5 07314 Ludwigshafen am Rhein, Stadt 10 18 
09461 Bamberg, Stadt  11 12 06411 Darmstadt, Stadt 11 10 08421 Ulm  11 12 
08421 Ulm  12 11 07315 Mainz, Stadt  12 13 06412 Frankfurt am Main, Stadt 12   8 
09562 Erlangen, Stadt  13 10 09562 Erlangen, Stadt  13 12 06413 Offenbach am Main, Stadt 13 10 
06611 Kassel, Stadt  14 16 08221 Heidelberg  14 15 08222 Mannheim  14   6 
07111 Koblenz, Stadt  15 13 08421 Ulm  15 14 08111 Stuttgart 15 11 
06414 Wiesbaden, Landeshauptstadt 16 14 08121 Heilbronn  16 20 06611 Kassel, Stadt  16 17 
05314 Bonn, Stadt  17 17 09663 Wuerzburg, Stadt  17 22 09661 Aschaffenburg, Stadt  17 20 
09362 Regensburg, Stadt  18 20 07314 Ludwigshafen am Rhein, Stadt 18 21 05111 Düsseldorf, Stadt  18 13 
09161 Ingolstadt, Stadt  19 24 06413 Offenbach am Main, Stadt 19 16 09663 Wuerzburg, Stadt  19 24 
09663 Wuerzburg, Stadt  20 19 06611 Kassel, Stadt  20 17 07111 Koblenz, Stadt  20 22 
08222 Mannheim  21 18 09161 Ingolstadt, Stadt  21 18 08212 Karlsruhe  21 14 
06412 Frankfurt am Main, Stadt 22 22 09362 Regensburg, Stadt  22 19 09564 Nuremberg, Stadt  22 19 
08111 Stuttgart 23 21 07111 Koblenz, Stadt  23 24 09461 Bamberg, Stadt  23 25 
05111 Düsseldorf, Stadt  24 25 09661 Aschaffenburg, Stadt  24 23 09161 Ingolstadt, Stadt  24 23 
08212 Karlsruhe  25 26 09461 Bamberg, Stadt  25 25 09362 Regensburg, Stadt  25 21 
09564 Nuremberg, Stadt  26 23 09662 Schweinfurt, Stadt  26 26 09662 Schweinfurt, Stadt 26 26 
Source: Patuelli et al. (2009). 
a Spatial criteria: inward and outward openness 
b Connectivity criteria: relative indegree centrality and clustering coefficient 
c Final MCA: uses as criteria the spatial and connectivity results. 



 

With respect to the MCA based on spatial-economic indicators (spatial mobility macro-
criterion), the results (presented in Table 3) show that Munich (Landkreis) steadily 
occupies the first position. Moreover, the ranking of the top districts is rather stable over 
the period considered. The results of the second MCA, based on the connectivity macro-
criterion, provide – in 1995 – a different ranking, as the main cities are dominant. As seen 
earlier for the k-core analysis, Düsseldorf emerges from a network perspective. Further 
large cities, such as Frankfurt, Stuttgart and Munich, follow. We can also note that, with 
the exception of Munich, the districts that headed the spatial MCA rankings only perform 
intermediately in the connectivity MCA. 

The final MCA results, synthesizing the two preceding analyses, can be summarized 
along a few main observations. The district of Munich (Landkreis) – which also happens to 
be the richest German district according to per capita GDP – emerges as the most dominant 
for both 1995 and 2005, while a reshuffling in the rank of the districts can be observed 
over the 10-year period. Other districts seem to emerge. In particular, these are: Wiesbaden 
(from 7th to 2nd), Mannheim (14th to 6th), Frankfurt (12th to 8th), Stuttgart (15th to 11th), 
Düsseldorf (18th to 13th) and Karlsruhe (21st to 14th). The progress observed for these 
districts is mainly due to the connectivity macro-criterion. In other words, their high 
clustering coefficients show that the above districts are oriented towards stronger 
agglomeration patterns, in addition to their openness. 

The findings summarized here lead us to propose a reinterpretation (or integration) in an 
economic sense of the concept of hub (for conventional hub definitions, see Barabási 2003), 
on the basis of a node’s capacity of not only attracting connections from many other nodes, 
but also of generating an increased propensity to mobility. This double role by a few main 
nodes may drive the network towards multinodal characteristics. 

However, although the districts emerging in the above analysis are the most ‘open’ and 
‘active’, they still cannot be considered as the main ‘attractors’. If we want to explore this 
characteristic, we then have to use, in the CF index computation, different variables (such 
as inflows or workplaces), in order to detect the relevance of the destinations, as the 
attraction models in the transport literature suggest.7

 
 

5 Conclusions 
 
This paper has attempted to provide a novel analysis of commuting data and their trends, 
investigating both the spatial distribution of work mobility and the underlying logical 
commuting network. We have analysed data on journey-to-work trips for 439 German 
districts, for the years 1995 and 2005. 

From a spatial perspective, we searched for the most mobile and ‘open’ centres, with a 
particular focus on the openness of different typologies of districts. From the network 
perspective, we first considered the distributional properties of mobility indicators such as 
inward openness and indegree. We then computed aggregate indicators showing the 
evolution of the commuting network structure. Overall, we found evidence of the presence, 
in addition to a local and strongly interconnected network, of a regional network, which, 
however, does not overshadow established local patterns (see, for example, the results of 
the k-core analysis).8

                                                 
7  In this context, had inflows and outflows been employed as criteria within the spatial mobility macro-

criterion, a ranking similar to the one obtained for the connectivity macro-criterion would have emerged. 
8  If high-degree nodes were found to be also connected to each other, then highly interconnected clusters 

could emerge, possibly leading, according to Holme (2005), to a core-periphery network structure (Chung 
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In order to provide a unifying perspective, we synthesized the two (spatial and network) 
analyses by carrying out a multicriteria analysis (MCA). The MCA allowed us to observe, 
through a systematic assessment of the various indicators computed that the German 
districts are stable at the spatial mobility level, that is, with regard to their hierarchies. In 
addition, the results of the connectivity-based MCA show that the clustering coefficient 
indicator appears to influence most network connectivity, as suggested by Watts and 
Strogatz (1998). 

A number of further research directions can be traced, in order to push further (or to fully 
exploit) the multidisciplinarity of the analytical approach proposed here. From the 
theoretical viewpoint, a deeper investigation of the influence of distance, travel time and 
accessibility, as well as of labour market characteristics, on commuting would be 
commendable. In this regard, and in order to better understand the relationship between the 
spatial economy and its underlying interaction networks, further research should frame our 
approach within more extensive regional labour market theoretical models (for example, 
the one developed by Blanchard and Katz (1992)). A further investigation of local 
commuting networks and agglomeration economies could be sought by integrating power-
law-based and Zipf’s-based evidence. Behavioural analysis at a micro-level (or taking into 
account different socio-economic groups) would also be fruitful, in order to test the 
aggregate behaviour. 

From the methodological viewpoint, additional topological characteristics, such as 
betweenness-based centrality measures, should be investigated by means of a joint 
network/physical infrastructure analysis. Moreover, incorporating physical infrastructure 
would allow us to fully exploit network analysis tools, and to inspect widely relevant 
policy issues, such as infrastructure criticalities and bottlenecks. An integration of spatial 
and network-based measures into spatial econometric interaction models (see, for example, 
Griffith in this volume) should also be sought, in particular in order to investigate the 
relationship between clustering and network autocorrelation. 

From the empirical viewpoint, the study of pre- and post-unification commuting 
networks in Germany, as well as of alternative geographical settings (for example, islands; 
see De Montis et al. in this volume) and aggregation levels, could provide much needed 
information on the different long-run evolution of commuting networks. 

All in all, the integrated ‘space-network’ approach seems to offer novel pathways for the 
analysis of commuting and the associated interacting economic activities. 
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and Lu 2002). Most importantly, Holme shows that transportation networks (more generically, 
geographically-embedded networks) tend to share this characteristic. 
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