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Abstract Symmetry and self-similarity is the cornerstone
of Nature, exhibiting itself through the shapes of natural
creations and ubiquitous laws of physics. Since many nat-
ural objects are symmetric, the absence of symmetry can of-
ten be an indication of some anomaly or abnormal behavior.
Therefore, detection of asymmetries is important in numer-
ous practical applications, including crystallography, medi-
cal imaging, and face recognition, to mention a few. Con-
versely, the assumption of underlying shape symmetry can
facilitate solutions to many problems in shape reconstruc-
tion and analysis. Traditionally, symmetries are described as
extrinsic geometric properties of the shape. While being ad-
equate for rigid shapes, such a description is inappropriate
for non-rigid ones: extrinsic symmetry can be broken as a
result of shape deformations, while its intrinsic symmetry is
preserved. In this paper, we present a generalization of sym-
metries for non-rigid shapes and a numerical framework for
their analysis, addressing the problems of full and partial ex-
act and approximate symmetry detection and classification.

1 Introduction

“Symmetry, as wide or as narrow as you may define its mean-
ing, is one idea by which man through the ages has tried to
comprehend the created order, beauty, and perfection” [55].
These words of Hermann Weyl, one of the greatest twen-
tieth century mathematicians, reflect the importance sym-
metry has in all aspects of our life. Symmetry, referred to
in some contexts as self-similarity or invariance is the cor-
nerstone of Nature, exhibiting itself through the shapes of

Department of Computer Science,
Tel.: +972-4-8294313
Fax: +972-4-8293900
Technion – Israel Institute of Technology, Haifa 32000, Israel
E-mail: {darav,bron,mbron,ron}@cs.technion.ac.il

natural creations we see every day as well as through less
evident yet omnipresent laws of physics.

The interest in symmetries of shapes dates back to the
dawn of the human civilization. Early evidences that our pre-
decessors attributed importance to symmetries can be found
in many cultural heritages, ranging from monumental archi-
tecture of the Egyptian pyramids to traditional ancient Greek
decorations. Johannes Kepler was among the first who at-
tempted to give a geometric formulation to symmetries in
his treatise On the six-cornered snowflake [25] in as early
as 1611 (Figure 1). A few centuries later, the study of sym-
metric shapes became a cornerstone of crystallography. Fi-
nally, symmetries of more complicated higher-dimensional
objects underlie modern physics theories about the nature of
matter, space and time.

Since many natural objects are symmetric, symmetry break-
ing can often be an indication of some anomaly or abnormal
behavior. Therefore, detection of asymmetries arises in nu-
merous practical problems, among which medical applica-
tions are probably the first to come in mind. For example,
detection of tumors in medical images can be based on devi-
ations from otherwise symmetric body organs and tissues
[35]. Facial symmetry is important in craniofacial plastic
surgery [23], since symmetric facial features are often asso-
ciated with beauty and aesthetics [38]. Furthermore, facial
asymmetry can also be an indication of various syndromes
and disorders [21]. Conversely, the assumption of symmetry
can be used as a prior knowledge in many problems. It may
facilitate, for example, the reconstruction of surfaces [53],
face detection, recognition and feature extraction [44,49].

In pattern recognition and computer vision literature, there
exists a significant number of papers dedicated to finding
symmetries in images [36,51], two-dimensional [56,3,1] and
three-dimensional shapes [54,24,41]. A wide spectrum of
methods employed for this purpose includes approaches based
on dual spaces [15], genetic algorithms [19], moments cal-
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Fig. 1 Hexagonal symmetry of ice crystals was one of the fist shape symmetries to be rigorously studied (snowflake images taken by Wilson
Bentley in 1902).

culation [12], pair matching [33,14], and local shape de-
scriptors [59].

Traditionally, symmetries are considered as extrinsic ge-
ometric properties of shapes that are related to the way the
shape is represented in the Euclidean space. Though ade-
quate for rigid shapes, such a point of view is inappropri-
ate for non-rigid ones. Due to the deformations such shapes
can undergo, the extrinsic symmetries may be lost, while in-
trinsically the shape still remains symmetric. Consider the
human body example in Figure 2 (left). Extrinsic bilateral
symmetry of the body is broken when the body assumes dif-
ferent postures (Figure 2, center). Yet, from the point of view
of intrinsic geometry, the new shape remains almost identi-
cal, as such a deformation does not significantly change its
metric structure. In this sense, intrinsic symmetries are a su-
perset of the extrinsic ones.

An even more challenging problem is the detection of
partial symmetries, shown in Figure 2 (right). In this exam-
ple, the human figure has no leg, which makes only part of
it symmetric. Detecting symmetric parts of generally asym-
metric objects is a difficult problem in the rigid case [41],
and significantly more difficult in the case of non-rigid shapes.

Recent works on deformable shape analysis studied many
shape properties and characteristics remaining invariant un-
der deformations in applications to shape similarity and cor-
respondence. Anguelov et al. [2] addressed the problem of
non-rigid shape correspondence based on local extrinsic prop-
erties. Fully intrinsic approaches were considered by Elad
and Kimmel [16], Mémoli and Sapiro [40], and Bronstein
et al. [9], who used the distortion of geodesic distances as
a criterion of shape similarity. Reuter et al. [50] used the
eigenvalues of the Laplace-Beltrami operator as shape de-
scriptors, referred to as Shape DNA. Rustamov [52] mod-
eled and compared shapes as distributions of commute time
distances; a similar approach based on distributions of diffu-
sion distances was presented by Mahmoudi and Sapiro [34].
Lévy [28] and Mateus et al [37] used eigenmaps obtained
by the first eigenfunctions of the Laplace-Beltrami operator

as low-dimensional Euclidean representations of non-rigid
shapes.1

Bronstein et al. [8,7,6] presented a framework for the
computation of partial intrinsic similarity, where the simi-
lar parts are unknown in advance. The authors formulated a
multi-criterion optimization problem in which the part “sig-
nificance” and similarity are maximized at the same time;
most similar and most significant parts are Pareto optima of
the problem.

In [48], we introduced the notion of intrinsic symme-
tries for non-rigid shapes. Formulating non-rigid symme-
tries as intrinsic self-similarity allowed exploiting methods
proposed for representation and comparison of non-rigid shapes.
We used methods based on geodesic distances and moti-
vated by [9] , and presented several numerical tools for sym-
metry detection. In a parallel work, Ovsjanikov et al. [45]
showed a spectral approach for intrinsic symmetry detec-
tion. The authors showed how reflection intrinsic symme-
tries are transformed into Euclidean ones in the space de-
fined by the eigenfunctions of the Laplace-Beltrami opera-
tor. This approach is limited only to coping with reflection
symmetries and cannot detect rotation and continuous sym-
metries. In addition, the method may be sensitive to geomet-
ric noise and, finally, it cannot be straightforwardly extended
to dealing with partial symmetries. Yang et al [58] showed
an approach for the detection of reflection symmetries in 2D
non-rigid shapes by finding axes maximizing the shape self-
similarity.

Several generalizations of [48] for partial symmetries
were proposed. Lasowski et al. [27] used a Markov random
field model to obtain a probability distribution over all pos-
sible intrinsic matches of a shape to itself in order to reveal
the symmetry structure. Xu et al. [57] used a voting pro-
cedure to find partial reflection symmetry axes and showed
how the knowledge of symmetry can be exploited in shape
segmentation and computer graphics applications.

1 For additional methods, the reader is referred to [17,20].
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Fig. 2 Symmetric or not? Visualization of the difference between extrinsic and intrinsic symmetry: an extrinsically symmetric shape is also
intrinsically symmetric (left), however, an isometry of the shape is intrinsically symmetric but extrinsically asymmetric (center). The shape on the
right, on the other hand, is partially intrinsically symmetric (the part obtained by removing the leg is symmetric).

1.1 Contributions

In this paper we elaborate on and expand the concepts put
forward in [48]. Specifically, we classify and efficiently com-
pute symmetries and partial symmetries, while using prop-
erties of symmetry groups in order to explore the symmetry
space. Secondly, we generalize the notion of intrinsic sym-
metries to partial symmetries in the spirit of Bronstein et al.
[6,7] and show how partial symmetries can be found as a
trade-off between self-similarity and partiality.

Compared to [45,58] the main advantage of our approach
for the detection of full symmetries are its ability to handle
generic symmetries (not only reflections). In partial sym-
metry detection, compared to [57], our approach has a sig-
nificantly lower computational complexity. Finally, using a
generic metric framework, we have the possibility to use dif-
ferent metrics instead of the geodesic one.

The rest of this paper is organized as follows. In Sec-
tion 2, we define intrinsic and extrinsic symmetries. In sec-
tion 3, we introduce the space of approximate symmetries.
Section 4 presents the relation between intrinsic and extrin-
sic symmetries and Section 5 deals with partial symmetries.
Section 6 is devoted to a numerical framework for computa-
tion and visualization. Experimental results are presented in
Section 7, and Section 8 concludes the paper.

2 Mathematical background

When dealing with nonrigid shapes, different geometric tools
are invoked when the same shape is considered as a stan-
dalone rigid object or an instance (deformation) of a non-

rigid object. A unifying framework allowing to capture both
points of view is possible by considering shapes from the
perspective of metric geometry [16,9,7].

A geometric shape is modeled as a metric space (X ,d),
where X is a two-dimensional smooth compact connected
manifold (possibly with boundary) embedded into the Eu-
clidean space E (equal to R3 in case of three-dimensional
objects and R2 in case of two-dimensional shapes), and d :
X ×X → R+ ∪{0} is some metric measuring the distances
on X . For the brevity of notation, we will write shortly X
instead of (X ,d) when the metric d is implied or not impor-
tant.

There exist two most natural ways to define the metric
d on X . One is to consider X as a subset of E and measure
the distances between points x,x′ on X using the restricted
Euclidean metric,

dE(x,x′) = dE|X×X (x,x′). (1)

The Euclidean metric regards the “external” properties of
the shape, having to do with the way it is laid out in E. We
broadly refer to properties described by dE as the extrinsic
geometry of X .

Another way is to define the distance between x and x′

as the length of the shortest path (geodesic) on the surface X
connecting x and x′. We call the metric defined this way the
geodesic metric and denote it by dX . Properties defined by
dX are part of the intrinsic geometry of X . Broadly speak-
ing, intrinsic geometry describes the properties of the shape
which are invariant to inelastic deformations, that is trans-
formations that do not stretch or tear the surface, while ex-
trinsic geometry is associated with a specific rigid deforma-
tion. The same shape can be regarded both from the intrinsic
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and extrinsic point of view by selecting d to be either the
geodesic or the Euclidean metric, respectively [10,39].

2.1 Intrinsic and extrinsic similarity

In order to say whether two shapes are similar, we compare
them as metric spaces. From the point of view of metric
geometry, two metric spaces are equivalent if their corre-
sponding metric structures are equal. Such metric spaces are
said to be isometric. More formally, given two metric spaces
(X ,d) and (Y,δ ), a bijective map g : (X ,d)→ (Y,δ ) is called
an isometry if

δ ◦ (g×g) = d. (2)

In other words, an isometry is a metric-preserving map be-
tween two metric spaces, such that

d(x1,x2) = δ (g(x1),g(x2)) ∀x1,x2 ∈ X . (3)

We call such (X ,d) and (Y,δ ) isometric and denote this by
(X ,d) ∼ (Y,δ ).

The definition of isometry obviously depends on the choice
of the metric. Here, we consider two specific examples, the
Euclidean metric dE and the geodesic metric dX . A bijection
g : (X ,dX )→ (Y,dY ) satisfying dY ◦(g×g) = dX is called an
intrinsic isometry. Saying that (X ,dX ) and (Y,dY ) are iso-
metric is equivalent to saying that X and Y are intrinsically
similar.

On the other hand, if we consider the extrinsic geom-
etry of the shapes (i.e., look at the shapes endowed with
the Euclidean rather than geodesic metric), we notice that
(X ,dE) and (Y,dE) are subsets of the same metric space,
(E,dE). As a result, an extrinsic isometry is a bijection be-
tween subsets of the Euclidean space rather than between
two different metric spaces. In Euclidean geometry, the only
possible isometries are rigid motions, which include rota-
tion, translation and reflection transformations; we denote
the family of such transformations by Iso(E,dE). Thus, X
and Y are extrinsically isometric if there exists g ∈ Iso(E)
such that dE(X ×X) = dE ◦ (g×g)(X ×X). This means that
two shapes are extrinsically isometric if one can be obtained
by a rigid transformation of the other, which is sometimes
expressed by saying that X and Y are congruent.

In the following, we will say that X and Y are isomet-
ric implying intrinsic isometry, and that X and Y are con-
gruent when referring to an extrinsic isometry. The class
of intrinsic isometries is usually richer than that of congru-
ences, since any congruence is by definition also an intrinsic
isometry. However, for some objects these two classes co-
incide, meaning that they have no incongruent isometries.
Such shapes are called rigid, and their extrinsic geometry is
completely defined by the intrinsic one2. In particular, two-
dimensional shapes realized as two-dimensional Euclidean

2 More rigorously, the first fundamental form of a rigid shape de-
fines (up to a congruence) its embedding into R3.

sub-manifolds are always rigid3, unless they have point joints
around which parts of the shapes can rotate [7,30]. How-
ever, the assumption that the shape is a manifold rules out
such singularities.

2.2 Symmetries

As mentioned in the Introduction, symmetries are self-similarities
of shapes. So far, we have defined the rigorous meaning
of similarity, using the notions of metric geometry. Self-
similarity is a particular case, in which we compare a metric
space to itself. A metric space (X ,d) is self-similar if there
exists a self-isometry on (X ,d) (an isometry from (X ,d) to
itself).

However, just knowing that a shape is self-similar is not
enough in order to understand how symmetric it is. For ex-
ample, a sphere and a torus are self-similar, however, it is
obvious that the sphere is “more symmetric” than the torus.
We can actually claim that any shape is self-similar, since
there always exists a trivial self-similarity, the identity trans-
formation, which is an isometry by definition in any metric
space.

A common and convenient way to model symmetries is
by using the group theory, which describes operations be-
tween symmetries. A group, denoted by (G,∗) is a set with
the associative binary operation ∗, satisfying:

(G1) Associativity: (g1 ∗g2)∗g3 = g1 ∗ (g2 ∗g3) for all
g1,g2,g3 ∈ G.

(G2) Identity: There exists a unique identity element
in G denoted by id, such that g∗ id = g for all g in G.

(G3) Inverse: For all g in G, there exists a unique in-
verse denoted by g−1 such that g∗g−1 = g−1∗g = id.

A simple example is the group (R,+) of real numbers with
the addition operation, in which the identity element is 0
and the inverse of a number is its negative. A subset of a
group (G′ ⊂ G,∗) with the operation ∗ restricted to G′ and
satisfying g−1 ∗h ∈ G′ for all g,h ∈ G′ is called a subgroup
of (G,∗).

In our case, we are interested in groups as a concise de-
scription of classes of transformations acting on shapes. For
this purpose, we consider the group (Π(X),◦) of all bijec-

tions Π(X) = {g : X 1:1→X} on the shape X with the function
composition operator ◦. In this context, bijections from X to
itself are referred to as permutations (even if X is continu-
ous), as they can be thought of different ways to “permute”
the points of the shape X . The identity element of the group

3 Two-dimensional shapes are manifolds restricted to the plane and
therefore have a trivial second fundamental form. Isometries of a pla-
nar shape also have identical first fundamental forms, which by the
fundamental theorem of the theory of shapes implies their congruence.
This, in turn, implies rigidity of two-dimensional shapes.
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is the identity map id(x) = x, and the inverse element is the
inverse map g−1.

Next, we recall that X is actually a metric space (X ,d)
equipped with the metric d and consider a subset of permu-
tations Π(X) which are also isometries,

Iso(X ,d) = {g ∈ Π(X) : d ◦ (g×g) = d}. (4)

It can be easily shown that g−1h ∈ Iso(X ,d) for all g,h ∈
Iso(X ,d), which means that (Iso(X ,d),◦) is a subgroup of
(Π(X),◦). We refer to this subgroup as the symmetry group
of (X ,d) and use the notation

Sym(X ,d) = (Iso(X ,d),◦), (5)

omitting the operator ◦ for notation brevity. Since this def-
inition depends on the choice of the metric, we distinguish
between the group of extrinsic symmetries Sym(X ,dE) and
that of intrinsic symmetries Sym(X ,dX ) as can be seen in
Figure 3. Such a notation finally draws a formal distinction
between these two notions.

It should be noted that in the case of rigid objects, these
two notions coincide. Hence, in the 2D examples we show
in the following, we refer to symmetries as both intrinsic and
extrinsic ones.

The use of symmetry groups also allows to conveniently
classify different types of symmetries. In many cases, the
group describing the symmetries of a shape is isomorphic
to a finite group, which can be thought of as a representa-
tion of the symmetry group. For example, the symmetries of
an equilateral triangle (three rotations by 120 degrees and
three reflections, see Figure 4) can be represented by the
elements of the dihedral group D3, consisting of six ele-
ments R0,R1,R2 (representing rotations) and S0,S1,S2 (rep-
resenting reflections), with the following composition rule
(arranged as Cayley table),

◦ R0 R1 R2 S0 S1 S2

R0 R0 R1 R2 S0 S1 S2
R1 R1 R2 R0 S1 S2 S0
R2 R2 R0 R1 S2 S0 S1
S0 S0 S2 S1 R0 R2 R1
S1 S1 S0 S2 R1 R0 R2
S2 S2 S1 S0 R2 R1 R0

(6)

which can be thought of as a “multiplication table” of the
group.

Triskelion (Figure 5, right), a three-legged shape fre-
quently occurring in ancient Greek ornaments and in mod-
ern heraldry, has three rotational symmetries described by
the cyclic group C3, consisting of the cyclic permutations
of the vector (1,2,3). The Star of David (Figure 5, middle)
is described by the dihedral group D6 (six rotations and six
reflections). A circle (Figure 5, left) has continuous symme-
tries, represented by the special orthogonal group SO(2,R)
(containing all the rotation transformations around a fixed
point in a plane), and one reflective symmetry represented

by C2 (the only group of order two). Combining them both
creates C2×SO(2,R), which is the circle’s symmetry group.
Note that the latter group is infinite – any infinitesimal rota-
tion of the circle is a symmetry.

Another interesting symmetry groups worth mentioning
are the frieze groups [32], defining one-parametric repeti-
tive structures. There exist seven distinct frieze groups, gen-
erated by translation along one axis and a combination of
rotations and reflections along another axis. In this paper,
we do not distinguish between the different groups, yet one
able to detect the repeating structure they produce.

The structure of the symmetry group (or a group isomor-
phic to it used as a representation) tells us how symmetric
the shape is. If the group is trivial, that is, consists only of the
identity element, the shape is said to be asymmetric. In gen-
eral, when looking for symmetries we usually rule out the
identity element. The symmetry analysis problem can there-
fore be split into two problems: finding the self-isometries
of a shape (symmetry detection) and finding the group struc-
ture or the multiplication table (symmetry classification).

2.3 Symmetry generators

Given a group (G,∗) and a subset G′ ∈ G, we denote by
〈G′〉 the subgroup generated by G′, defined as the smallest
subgroup of G containing all the elements of G′. If G = 〈G′〉,
i.e., every element of G can be expressed as the product of
finitely many elements of G′ and their inverses,

G = {g±1
i1 ∗ . . .∗g±1

iK : gi1 , . . . ,giK ∈ G′}, (7)

we call G′ the generating set of G and its elements the gen-
erators of G. If G′ is finite, G is said to be finitely generated.

Applying this notion to symmetry group Sym(X ,d), we
can find out that in many cases a few self-isometries can de-
scribe the entire symmetry structure of the shape. For ex-
ample, the dihedral group D3 visualized in Figure 4 has
two generators: rotation by 120 degrees and reflection; other
symmetries can be represented as finite compositions of these
two. We call such generators of symmetry groups symmetry
generators.

2.4 Approximate symmetries

The notion of the symmetry group allowed us to classify dif-
ferent shape symmetries and, in particular, answer the ques-
tion whether one shape is more symmetric than another. Yet,
perfect symmetry is a mathematical abstraction that never
or rarely exists in natural shapes. Even the snowflakes we
hailed as an example of symmetric shapes are never per-
fectly symmetric. In fact, according to our definition, the
snowflakes from Figure 1 are asymmetric. Yet, with minor
modifications, these shapes can be symmetrized.
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Fig. 3 Extrinsic versus intrinsic symmetry. Here, g ∈ Π(X) is a permutation on X (a bijective map on X).

Fig. 4 Equilateral triangle has six symmetries (rotations and reflections), described by the dihedral group D3.

Fig. 5 Symmetries of different shapes can be described using group theory. Shown left-to-right: circle with continuous rotational symmetries and
one reflective symmetry (C2 ×SO(2,R)), star of David with dihedral symmetry (D6, including six rotations and six reflections) and triskelion with
three rotational symmetries (described by the cyclic group C3).

To this end, we introduce the notion of approximate sym-
metry: if we define a symmetry as the existence of a self-
isometry on the metric space (X ,d), an approximate sym-
metry is the existence of an approximate self-isometry on

(X ,d). If a bijection g : X → X was said to be a self-isometry
when d ◦ (g × g) = d held, an approximate self-isometry
should satisfy d ◦ (g× g) ≈ d. Quantitatively, we measure
how far g is from being an isometry by defining the distor-
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tion

dis(g,d) = ‖d ◦ (g×g)−d‖∞ (8)

= sup
x,x′∈X

|d(x,x′)−d(g(x),g(x′))|.

Since we assume compact spaces, the supremum is always
achieved. In the following, we will be using maxima instead
of suprema.

A map g with distortion dis(g,d) ≤ ε is called an ε-self-
isometry. As a particular case, we have a self-isometry de-
fined as a zero-self-isometry. We denote the family of all
ε-self-isometries of (X ,d) by

Isoε(X ,d) = {g ∈ Π(X) : dis(g,d) ≤ ε}. (9)

As before, we can distinguish between extrinsic and intrin-
sic ε-self-isometries of (X ,d) by defining the metric d to
be dE or dX . Obviously, Iso(X ,d) ⊂ Isoε(X ,d). The proper-
ties of approximate self-isometries are substantially differ-
ent from those of exact self-isometries. If a composition of
two self-isometries is still a self-isometry, composing two
ε-self-isometries we get a 2ε-self-isometry. Consequently,
Isoε(X ,d) is not closed under the function composition op-
eration and thus does not form a group.

As a visualization of the consequences of the above dif-
ferences, consider the torus shape depicted in Figure 6. The
intrinsic symmetry group Sym(X ,dX ), consisting of all maps
shifting the points along the tube (6, left), is isomorphic to
SO(2) and can be therefore parametrized by a single pa-
rameter (rotation angle). Since the torus has two reflective
planes, and each reflection is isomorphic to C2, the intrin-
sic symmetry group is isomorphic to C2 ×C2 × SO(2). In
this case the intrinsic symmetry group is isomorphic to the
extrinsic one.

On the other hand, if some distortion is allowed, rota-
tions across the tube can be considered as approximate sym-
metries. In this case, Isoε(X ,dX ) contains a two-parametric
family of maps (6, right), in addition to the reflective ones.

2.5 Local and global asymmetry

We can calculate the shape’s asymmetry both locally and
globally. Usually, extrinsic asymmetry is calculated accord-
ing to a reflective plane or a rotating vector. Another method
to define asymmetry is based on the distortion of the sym-
metry as a function. Such a method is adequate for intrinsic
symmetries as well.

In order to quantify how a point on X contributes to the
asymmetry of the shape, we define the local shape asymme-
try,

asym(X ,x) = max
x′∈X

|dX (x,x′)−dX (g∗(x),g∗(x′))| (10)

quantifying the distortion of g∗ at a point x. Points with
large local asymmetry are responsible for symmetry break-
ing. The global assymetry,with respect to g∗, can then be

written as,

asym(X) = max
x∈X

asym(X ,x). (11)

Using local asymmetry we can find local abnormality in
intrinsically symmetric shapes.

3 Symmetry space

Though we cannot use group structures to represent approx-
imate symmetry, we think of the space of permutation Π(X),
where each function has its distortion dis(g,d). Approxi-
mate symmetries appear in this space as local minima of
the distortion. The space of functions Π(X) can also be en-
dowed with a metric that measures the distance between two
permutations of points on X . We define the metric between
f ,g ∈ Π(X) as

dΠ(X)( f ,g) = max
x∈X

d( f (x),g(x)) = d( f (X),g(X)), (12)

which, in turn, depends on the choice of the metric d. We
refer to the set

BΠ(X)(g,r) = { f ∈ Π(X) : dΠ(x)(g, f ) < r} (13)

as the metric ball (intrinsic or extrinsic, according to the
choice of the metric in the definition of dΠ(X)) of radius
r centered at g (we will omit r referring to a ball of some
unspecified radius). A ball forms an open neighborhood of
g. Since perfect symmetries have zero distortion, they are
the global minimizers of the distortion on Π(X). Moreover,
they are also local minimizers of the distortion, in the sense
that for every g ∈ Isoε(X ,d), there exists a sufficiently small
neighborhood BΠ(X)(g)⊂ Π(X), such that any f ∈ BΠ(X)(g)
has dis( f ) ≥ dis(g). We can therefore define approximate
symmetries as

Symε(X ,d) = (14)

{g ∈ Isoε(X ,d) : dis(g,d) ≤ dis( f ,d) ∀ f ∈ BΠ(X)(g)}.

The exploration of the symmetry space consists of find-
ing such local minima and composition relations between
them. For increasingly large ε , we are likely to find more
approximate symmetries, and for ε = 0 only perfect sym-
metries should be detected.

Though in the case of approximate symmetries there is
no formal notion of generators (as there is no group struc-
ture), this idea can still be used for efficient exploration of
the symmetry space. Given an initial set of possible approx-
imate symmetries, we can search for a symmetry which is
composed from two known symmetries. Each possible can-
didate is then compared to the known set to check if a new
one was found, iterating until no more symmetries are added.
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Fig. 6 Visualization of the difference between perfect and approximate symmetries. The intrinsic symmetry group of the torus consists of all
maps rotating the points “along the tube” (left), and two reflections (vertical and horizontal). Approximate symmetries of the torus also include
rotations “across the tube” (right).

4 Intrinsic symmetries as extrinsic symmetries

Let (Z,dZ) be some homogenous metric space endowed with
a simple metric (ideally, there should exist a closed form ex-
pression for dZ; we require homogeneity to obtain a sim-
ple isometry group Iso(X)). For a moment, let us also as-
sume that there exists an isometric embedding ϕ : (X ,dX )→
(Z,dZ such that dX = dZ ◦ (ϕ ×ϕ). We refer to the image
ϕ(X) as a canonical form of X in Z [16]. Clearly, canonical
forms are defined up to an isometry in Z, since dZ ◦ (ϕ ×
ϕ) = dZ ◦ ((ϕ ◦ i)× (ϕ ◦ i)) for any i ∈ Iso(Z). The canon-
ical form Z = ϕ(X) represents the intrinsic geometry of X
in the sense that the two metric spaces (X ,dX ) and (Z,dZ|Z)
are isometric and, consequently, have isomorphic intrinsic
symmetry groups.

Moreover, since the intrinsic geometry of Z coincides
with its extrinsic counterpart, the analysis of the intrinsic
symmetry group of the shape reduces to the analysis of the
extrinsic symmetry group of its canonical form. Therefore,
if the embedding space Z has a reasonably simple isom-
etry group (preferably with a convenient parametrization),
the search for intrinsic symmetries is greatly simplified. For
example, if Z = R3, conventional extrinsic (Euclidean) sym-
metry detection algorithms can be employed [41].

This approach assumes the existence of an isometric em-
bedding ϕ : (X ,dX ) → (Z,dZ). Unfortunately, a perfectly
isometric embedding does not exist in most cases. However,
we can can find the minimum distortion embedding of X into
Z,

ϕ = arg min
ϕ:X →Z

‖dX −dZ ◦ (ϕ ×ϕ)‖∞ (15)

= arg min
ϕ:X →Z

max
x,x′∈X

|dX (x,x′)−dZ(ϕ(x),ϕ(x′))|,

and repeat our reasoning replacing the assumption dX = dZ◦
(ϕ ×ϕ) with

sup
x,x′∈X

|dX (x,x′)−dZ(ϕ(x),ϕ(x′))| ≤ δ . (16)

Proposition 1 Let X be a shape, and let Z be its canonical
form created by the embedding ϕ : (X ,dX )→(Z,dZ) with
distortion δ . Then, for every f ∈ Isoε(X ,dX ), ϕ ◦ f ◦ϕ−1 ∈
Isoε+2δ (Z,dZ); and for every g ∈ Isoε(Z,dZ), ϕ−1 ◦g◦ϕ ∈
Isoε+2δ (X ,dX ).

An alternative way to write Proposition 1 in terms of rela-
tions between the symmetry spaces is

ϕ ◦ Isoε(X ,dX )◦ϕ−1 ⊆ Isoε+2δ (Z,dZ|Z×Z),

ϕ−1 ◦ Isoε(Z,dZ|Z×Z)◦ϕ ⊆ Isoε+2δ (X ,dX ). (17)

Observe that in the particular case of δ = 0, the two spaces
are equivalent; furthermore, if ε = 0, ϕ is a group isomor-
phism. We conclude that the applicability of intrinsic sym-
metry analysis based on canonical forms relies inherently
on the ability to produce a low-distortion embedding ϕ . For
example, if Z = Rn, the approach is suitable for nearly-flat
shapes with small Gaussian curvature. If this is not the case
then we cannot guarantee that intrinsic symmetries will be
translated into extrinsic ones. In general, the canonical forms
method is usually unsuitable for complicated intrinsic ge-
ometries, which cannot be faithfully represented as subsets
of generic embedding spaces. For example, embedding a hu-
man body in different poses into R2 reveals the approximate
reflective symmetry (Figure 7). Yet, embedding into R3 does
not provide an extrinsic symmetric structure (Figure 8).

5 Partial symmetry

So far, our discussion assumed the existence of a bijection
with zero or near-zero distortion, which we designated as a
symmetry of the shape. In many cases, a shape does not have
symmetries as a whole, yet possess parts that are symmetric.
In order to extend our notion of intrinsic symmetries to this
case, we need a definition of partial similarity.

Let (X ′ ⊆ X ,d|X ′×X ′) be a part of the shape X , modeled
as a metric sub-space of (X ,d) with the restricted metric
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Fig. 7 Embedding a human body into R2 reveals the reflective symmetry regardless of the body’s pose.

Fig. 8 Embedding a human body into R3 fails to produce an extrinsically symmetric shape. The arms and legs are stretched in different directions.

d|X ′×X ′(x,x′) = d(x,x′) for all x,x′ ∈ X ′. We denote by ΣX
the collection of all parts of X ,4 and by p(X ′) the partiality
of the part X ′, a notion of the part significance with respect

4 Formally, ΣX is required to be a σ -algebra, see [6,7].

to the entire shape, given e.g. by the relative area of X \X ′,

p(X ′) = 1−

∫
X ′

dµ(x)∫
X

dµ(x)
. (18)

Our definition of symmetry applied to the part X ′ is re-
ferred to as partial symmetry. Given a part X ′ with p(X ′) =
λ , a symmetry (self-isometry) on (X ′,d|X ′×X ′) is a λ -partial
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symmetry. Since we do not know which part of the shape is
symmetric, we need to look for the largest most symmet-
ric part by minimizing the distortion under partiality con-
straints, i.e., look for λ -partial ε-self-isometric part with the
smallest λ and ε . The two criteria are not commensurable,
e.g., it is not clear what is better: a 0.5-partial 1-self-isometry
or a 1-partial 0.5-self-isometry? Moreover, for any λ , there
exists the identity map id : X ′ → X ′ with zero distortion.

We can thus define the set of partial approximate sym-
metries of X as

Symλ ,ε(X ,d) = (19)g ∈ Π(X ′)

∣∣∣∣∣∣∣∣
dis(g,d|X ′×X ′) ≤ ε
dis(g,d|X ′×X ′) ≤ dis( f ,d|X ′×X ′)

∀ f ∈ BΠ(X ′)(g)
p(X ′) ≤ λ


Elements in Symλ ,ε(X ,d) are called λ -partial ε-symmetries.

For a fixed partiality, the problem of finding the best par-
tial symmetry is a scalar-valued constrained minimization
problem,

min
X ′⊂X

g∈Π(X ′)

dis(g,d|X ′×X ′) s.t. p(X ′) ≤ λ0, (20)

In contrast to partial matching between two shapes, in or-
der to rule out the trivial solution (identity map), we are
not searching the global minimizer of (20) as done in [8].
Instead, we look for local minimizers of (20), which corre-
spond to λ0-partial symmetries of X .

5.1 Regularization

As noted in [6], the straightforward definition of partial-
ity (18) does not take into consideration the “quality” of the
part and tends to produce multiple disconnected parts of X .
As a remedy, in [6] it was proposed to add a regularization
term, penalizing for the part boundary length,

r(X ′) =
∫

∂X ′
d`. (21)

Using this definition given partiality p(X ′) = p0 for a two-
dimensional shape, the minimum is achieved by a circle. Un-
fortunately, no known extension exists for curved surfaces,
since we may find two parts with similar area and bound-
ary having an arbitrary number of disconnected components.
[6] suggested another regularization based on Gauss-Bonnet
theorem. Yet, we found the results based on parts length to
be satisfactory. Adding a regularization term to our prob-
lem (20) yields

min
X ′⊂X

g∈Π(X ′)

dis(g,d|X ′×X ′) s.t.
{

p(X ′) ≤ λ0;
r(X ′) ≤ ρ0.

(22)

Alternatively, one can move the regularization term to the
objective function, obtaining

min
X ′⊂X

g∈Π(X ′)

dis(g,d|X ′×X ′)+ηr(X ′) s.t. p(X ′) ≤ λ0, (23)

where η is the Lagrange multiplier governing the relative
importance of the part regularity.

5.2 Fuzzy formulation

The main computational challenge in problems (20) and (22)
is the need to perform optimization over all the subsets of X ,
which has combinatorial complexity. In [8], Bronstein et al.
proposed a relaxation of the problem based on a fuzzy ap-
proximation of the parts. The part is represented as a mem-
bership function u : X → [0,1], quantifying the probability
of each point to belong to a part. The function u replaces
X ′ in the above definitions, in the following way. The fuzzy
distortion is defined as

dis(g,d) = max
x,x′∈X

u(x)u(x′)|d(x,x′)− (d ◦g)(x,x′)|. (24)

Note that u acts here as weight and the map g ∈ Π(X) is a
permutation on the entire X .

The fuzzy partiality is defined as

p(u) =
∫

X
(1−u(x))dµ(x). (25)

The regularization term, using a relaxation in the spirit of
[43], is given by

r(u) =
∫

X
h(u(x))‖∇X u(x)‖dµ(x), (26)

where h(t) ≈ δ (t − 0.5) is an approximation of the Dirac
delta function, and ∇X u is the intrinsic gradient of u.

The fuzzy version of (22) has the form

min
u:X→[0,1]
g∈Π(X)

max
x,x′∈X

u(x)u(x′)|d(x,x′)− (d ◦g)(x,x′)| (27)

s.t.
{

p(u) ≤ λ0;
r(u) ≤ ρ0.

A fuzzy version of (23) is obtained in a similar way.

min
u:X→[0,1]
g∈Π(X)

max
x,x′∈X

u(x)u(x′)|d(x,x′)− (d ◦g)(x,x′)|+ηr(u)

s.t.p(u) ≤ λ0. (28)

6 Numerical framework

Even for shapes with simple intrinsic geometry, the com-
plexity of its symmetry space is likely to be tremendous. The
lack of a simple parametrization, similar to the one available
for describing extrinsic symmetries, makes the analysis of
symmetries of non-rigid shapes significantly more difficult.
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Here, we propose an algorithm for automatic detection
of symmetries comprising the following steps (see Figure 9):
The input shape is first sub-sampled at a sparse set of sam-
ple points and an intrinsic descriptor is computed at each
sample. Matches between similar descriptors are used to es-
tablish a set of initial correspondences, thus reducing the
complexity of the search space. Next, a branch-and-bound
procedure is used to prune correspondences with high dis-
tortion. The remaining coarse correspondences are refined
using GMDS, and composition is performed to complete
the group structure. The latter two stages are iterated until
no new symmetries are found. In what follows, we describe
each of the above steps in further detail.

6.1 Discretization and sampling

For simplicity, we assume the shape to be given in the form
of a triangular mesh with N vertices; other discrete repre-
sentations such as point clouds can be handled as well.

Intrinsic geometry is computed using the fast marching
method [26], which produces a first-order approximation for
the geodesic distances between points on the mesh.

Since the input sampling density is prohibitive for prac-
tical computation of symmetries, the mesh is sub-sampled.
An R-sampling of the surface consisting of M points such set
of points XR = {x1, . . . ,xM} ⊂ X that form an R-covering,
i.e., X =

∪M
n=1 BX (xn,R), where BX denotes a closed met-

ric ball on X . A good sampling strategy of the surface can
be achieved using the greedy farthest point sampling algo-
rithm [16,22,42,46], which guarantees that XR is also R-
separated, i.e., dX (xi,x j) ≥ R for any i 6= j.

The coarse sampling XR together with the M×M matrix
of geodesic distances between each pair of samples form
a discrete metric space, the set of permutations Π(XR) on
which can be represented as M-tuples g = (g1, ...,gM) ∈
{1, ...,M}M . Without loss of generality, we set π1 =(1,2, ...,M)
to be the identity map.

6.2 Detection of coarse symmetries

Finding all πk permutations with a distortion lower than ε re-
quires computing the distortion of O(M!) mappings, which
is prohibitive even for modest values of M. However, the
search space can be reduced by ruling out mappings that are
unlikely to have low distortion.

Following [18], we observe that in order for π to be a
good candidate for an approximate symmetry, the intrinsic
properties of the surface, such as the behavior of the metric
dX around every xi should be similar to those around xπi . In
order to quantify this behavior, for each xi ∈ XR we compute
the histogram hi = hist({d̂i j : d̂i j ≤ ρ}) of the approximate

geodesic distances (d̂i j) in a ρ-ball centered at xi. In our im-
plementation, the parameter ρ was set to ∞. The use of dis-
tance distributions is widely accepted in the literature. The
reader is referred to the recent paper [31] for further discus-
sion.

6.3 Local refinement

Once a coarse match is found it is used as an initialization
for the second stage. We optimize over the images x′i = g(xi)
of a candidate symmetry g,

min
x′1,...,x′N∈X̂

max
i, j=1,...,N

∣∣d̂i j − d̂X (x′i,x
′
j)
∣∣ , (29)

where the distance terms d̂X (x′i,x
′
j) between arbitrary points

on the mesh are found using the interpolation technique de-
scribed in [9]. A local minimizer of (29) is found by convex
optimization detailed in [5].

6.4 Partial symmetries

Solving (28) is done similarly to the framework presented
in [6,7]. We perform alternating minimization by first fixing
u and solving for g and vice versa. u is initialized by the
local asymmetry values of a candidate full symmetry and x′

is initialized by interpolation.
For a fixed u, the minimization w.r.t. g is posed as a

weighted GMDS problem,

min
x′1,...,x′N∈X̂

max
i, j=1,...,N

uiu j
∣∣d̂i j − d̂X (x′i,x

′
j)
∣∣ . (30)

For a fixed g, we have the constrained problem

min
u1,...,uN

max
i, j=1,...,N

ei juiu j +η
N

∑
i=1

h(ui)ai

T

∑
k=1

qikgk

s.t.
{

ui ∈ [0,1] i = 1, ...,N;
∑N

i=1(1−ui)ai ≤ λ0,
(31)

where ei j = |d̂i j− d̂X (x′i,x
′
j)| are fixed distortion terms, ai are

area elements,

qik =
{ 1

3 triangle k shares thevertex xi
0 else,

, (32)

gk = (∆uk(XT
k Xk)−1∆uk)1/2, with Xk = (xk,2 − xk,1,xk,3 −

xk,1) being the 3× 2 matrix with the local system of coor-
dinates of the triangle k, and ∆uk = (uk,2 −uk,1,uk,3 −uk,1)

Proposition 2 gk = |∇X uk|2.
See proof in Appendix A.
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Fig. 9 Symmetry detection pipeline: The input mesh is sub-sampled at a sparse set of sample points and an intrinsic descriptor is computed at each
sample. Matches between similar descriptors are used to establish a set of initial correspondences. Next, the branch-and-bound procedure is used
to prune correspondences with high distortion. The remaining coarse correspondences are refined using GMDS, and composition is performed to
complete the group structure. The latter two stages are iterated until no new symmetries are found.

6.5 Symmetry group completion by composition

The branch-and-bound procedure used for the detection of
coarse symmetries is practical if the value of the threshold ε
is relatively low. However, too low value of ε might result in
rejecting true symmetries which due to acquisition and rep-
resentation imperfections have high distortion. We observe
that if the detected set of symmetries contains all the genera-
tors of the symmetry group, the missing group structure can
be completed by their composition. If some of the genera-
tors are not detected, the completion will yield a subgroup
of the symmetry group.

The completion algorithm proceeds as follows:

1. Input: set of refined symmetries G = {gi}.
2. Compute all pair-wise compositions hi j = gi ◦g j for ev-

ery gi,g j ∈ G.
3. For every hi j having ming∈G dΠ(X)(hi j,g) > δ ,

3.1. Perform refinement of hi j
3.2. If dishi j ≤ ε , add hi j to G.

4. Go to Step 2.

The procedure adds new low-distortion permutations result-
ing from a composition only if they lie at sufficient distance
(controlled by the parameter δ ) away from the already de-
tected set of symmetries. It is guaranteed to stop after finite
time, as in the worst case it will create a finite δ -separated
covering of the bounded space Π(X).

7 Results

In the following experiments, we show how to explore and
visualize the space of intrinsic symmetries. We used trian-
gular meshes from the TOSCA dataset [5], each consisting
of 1000–2000 points. The branch-and-bound procedure was
used in order to filter out strongly non-isometric permuta-
tions by measuring the score of matching between a rela-
tively small number of local features (as features, we used

local histograms of geodesic distances). The branch-and-
bound stage yielded a relatively small number of coarse-
resolution permutations, which were considered as candi-
dates for intrinsic symmetries. Refinement of these coarse
mappings to establish high-resolution permutations was achieved
using the GMDS procedure with the L2 norm. For reason-
able selections of ε , the execution time of the branch-and-
bound step took a couple of seconds per surface on a 2.5GHz
Intel CPU. The complexity of the GMDS-based refinement
was about a minute.

7.1 Symmetry detection

Figure 10 (first row) presents the best two intrinsic symme-
tries of a human body. For this pose, the intrinsic and extrin-
sic symmetries are identical. Next, Figure 10 (second row)
demonstrates how breaking the extrinsic symmetry of the
body by changing its pose still preserves the intrinsic sym-
metry, as long as there is no considerable stretching of the
limbs.

The same procedure can be applied for symmetry detec-
tion in planar shapes, which can be considered as a particu-
lar case of a flat surface with boundary. Figure 11 presents
such a shape whose intrinsic symmetry is calculated w.r.t.
the interior geodesic distances [30,7].

Finally, Figure 12 presents a more complex set of ten
symmetries of a five-legged octopus-like shape (a “penta-
pus”), and visualizes the symmetry composition approach
for the exploration of the symmetry space of the shape. A
perfectly symmetric “pentapus” would have a C2 ×C5 sym-
metry group (also known as D5 or dihedral group of order
five). Its generators are one rotation and one reflection. Since
the deformation of the “pentapus” is not perfectly isometric,
selecting too small an ε yields only a subset of D5. However,
if the generators are in this subset, we can find the rest of the
symmetries by composition. This is preferable over increas-
ing the value of ε , which slows down the computation. Since
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Fig. 10 Symmetries of the human shape. Top row: in this pose, the extrinsic and intrinsic symmetries are equivalent. The two self-isometries are
identity and reflection (color represents corresponding points on the shape). Bottom row: in this pose, extrinsic symmetry is broken, yet the shape
is still intrinsically symmetric. The two self-isometries are again identity and reflection.

Fig. 11 Symmetry of a planar shape w.r.t. to the interior geodesic metric. Like in the 3D case, the shape has two self-isometries: identity and
reflection (color represents corresponding points on the shape).

the value of ε is unknown a priori, completion of the sym-
metry set by composition should always be performed as a
part of the search procedure.

7.2 Comparison to Ovsjanikov et al.

In this section, we compare our approach to the algorithm
of Ovsjanikov et al. [45]. This algorithm is based on the
representation of the shape as an eigenmap

Φ(x) = (λ−1/2
1 φ1(x), . . . ,λ

−1/2
K φK(x)), (33)

where λ1, . . . ,λK are non-repeating eigenvalues of the Laplace-
Beltrami operator and φ1, . . . ,φK are the corresponding eigen-

functions. Ovsjanikov et al. [45] observe that any reflec-
tion symmetry g ∈ Sym(X ,dX ) satisfies φi ◦g = ±φi for i =
1, . . . ,K. Thus, the symmetries of X can be parameterized
by the sign signature s = (s1, . . . ,sK); si ∈ {−1,1} such that
φi ◦g = siφi.

The symmetries of X are detected by testing different
sign signatures. Given a sign signature s, define Φs(x) =
(s1λ−1/2

1 φ1(x), . . . ,sKλ−1/2
K φK(x)). Then,

E(s) = ∑
x

min
x∈X

‖Φs(x)−Φ(x′)‖2
2 (34)
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Fig. 12 Ten symmetries of the pentapus shape. A perfectly symmetric shape would have had a symmetry group C2 ×C5, generated by one rotation
and one reflection. For each of the two possible reflections, the five rotations are presented in a separate row.

will vanish for s corresponding to intrinsic symmetries. For
approximate symmetries, E is small.5 The symmetry itself
is recovered as

g(x) = argmin
x′∈X

‖Φs(x)−Φ(x′)‖2. (35)

The pentapus shape from Figure 12 was used for a com-
parison of our algorithm to Ovsjanikov et al. [45]. Eigenval-
ues and eigenvectors of the Laplace-Beltrami operator were
computed as in [29] using the cotangent weights discretiza-
tion [47]. We used sign signatures of length K = 8.

The smallest values of E(s) were 0, obtained for the se-
quence of all pluses, and 15.7, obtained for the sequence
s = (−1,+1,+1,−1,+1,+1,−1,+1). The latter sequence
encodes the reflection symmetry of the pentapus, while the
former one encodes the identity map and all the rotation
symmetries: they are all undistinguishable from each other
(for a more detailed analysis, see the five-corner star exam-
ple in Ovsjanikov et al. [45]). For other sign sequences E(s)
has significantly higher values of 46.88,49.28, . . . and they
do not encode any of the desired symmetries of the shape.
Thus, the algorithm of Ovsjanikov et al. [45] is able to find
only two of the ten existing symmetries of the pentapus.

7.3 Exploring the symmetry space

Despite the high dimensionality of the space of permutations
Π(X), its metric structure can be visualized as a configura-
tion of points in a low-dimensional Euclidean space, where
each point represents a map in Π(X), and the Euclidean dis-
tance between two points approximates dΠ(X). Such an ap-
proximate representation can be constructed using multidi-
mensional scaling [4]. An approximation of the distortion
function is obtained by projecting the values of dis(g) onto
its corresponding point in the representation space.

Figure 13 presents the approximate intrinsic symmetry
set of a square with a bent corner. The square’s extrinsic
symmetry group is known to be generated by one rotation

5 This straightforward symmetry detection approach has complexity
exponential in d. For large d, Ovsjanikov et al. [45] propose a fast
heuristic.

and one reflection which creates the dihedral group D4. Bend-
ing one corner breaks most of the extrinsic symmetries (ac-
tually, only the identity and one reflection survive as extrin-
sic symmetries, which makes the extrinsic symmetry group
of this shape isomorphic to C2). Intrinsically, all eight sym-
metries survive the bending. Figure 13 visualizes these sym-
metries as clusters of low-distortion permutations in Π(X).

Choosing the right ε obviously influences the solution
we obtain. For ε ≈ 0 only the identity mapping would be ex-
tracted, while choosing ε >> 1, every permutation could be
regarded as an approximate symmetry. In our experiments,
choosing ε with a similar order as that of the resolution of
the mesh produced good results for near-symmetric shapes.
Figure 14 presents the influence of the value of ε on the set
of symmetries. We varied ε from zero (left) to larger val-
ues (right) and obtained the identity member (left), the re-
flective symmetries (center) and finally a semi-uniform sam-
pling of the whole space of permutations with bounded dis-
tortion (right). Approximate rotational symmetries can also
be displayed as clusters. Figure 15 captures the ten clusters
of the octopus symmetries embedded in R2. Each cluster
corresponds to a different symmetry.

The continuous symmetry set of a knot-shaped object is
depicted in Figure 16. As the knot possesses a continuous
family of rotation symmetries, the intrinsic symmetry group
contains an infinite number of elements. Those are visual-
ized as two two-dimensional contours of local minima (there
are two of them due to an approximate reflective symmetry).

In Figure 17, the symmetries of the human body were
embedded into R2. The symmetry space was sampled in the
vicinity of potential symmetries, and the distortion was in-
terpolated over the entire domain. The color represents the
value of asymmetry at each point. The four minima repre-
sent a reflection, half-reflection and their compositions.

Figure 18 presents the intrinsic reflection symmetry of a
human body as a self-correspondence computed using GMDS.
Given the computed symmetry g(xi)= x′i and the groundtruth
symmetry g∗(xi) = x∗i , we evaluated the accuracy of g com-
paring it to the groundtruth g∗,

dC (g,g∗) =
Σ N

i=1dX (x′i,x
∗
i )

N ·Diam(X)
, (36)
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Fig. 13 The eight elements of the square’s D4 dihedral group appear as clusters in the space of permutations approximately embedded into the
Euclidean plane.

Fig. 14 The influence of ε on the approximate symmetry sets. From left to right: For ε = 0 the identity member is extracted. For a small ε a set
of approximate identity symmetries appear, and as ε is increased candidates for reflective symmetry start to emerge. Increasing ε even more, we
obtain a semi-uniform sampling of the space of permutations with bounded distortions and the nice structures we experienced before disappears.

where Diam(X) is the diameter of X , and N is the sample
size. We achieved dC ≈ 0.009 at three different resolutions,
N = 64, 128, and 256. The computation took about 30, 70
and 260 seconds, respectively.

The refinement stage is performed on non-linear func-
tions, which can converge to an undesired local minimum.
We did not experience any difficulties in our experiments but

one can not guarantee a successful convergence for arbitrary
initial conditions.

7.4 Local asymmetry

In the following experiment, we computed the local shape
asymmetry of a human body with a local asymmetry that
was introduced by elongating one of the arms. Figure 19



16

Fig. 15 The ten members of the C2 ×C5 symmetry group are shown as a clusters in the space of permutations approximately embedded into the
Euclidean plane.

Fig. 16 The set of approximate intrinsic symmetries of a torus knot show up as two continuous contours in the space of permutations approximately
embedded into R3. Sliding the knot along itself shows up as a circle. One circle represent the reflection.

shows the local distortion of the detected reflection symme-
try, which correctly localizes the deformed limb.

7.5 Partial symmetry

In order to demonstrate detection of partial symmetries, we
used a female shape from the TOSCA dataset, whose ap-
proximate intrinsic symmetry was broken by removal of parts.
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Fig. 17 The set of approximate intrinsic symmetries of a human body is embedded into R2. Colors demonstrate normalized asymmetry values,
where red represents symmetry and blue asymmetry. The four local minima correspond to the identity, full reflection, reflection of only half of the
body, and their composition.

.

Fig. 18 Reflection symmetry of the human body depicted as a self-correspondence.
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Fig. 19 Local distortion of the intrinsic reflection symmetry detected in a human shape whose intrinsic symmetry broken by deformation of one
of arms. High distortion values are marked in red, correctly localizing the deformation.

We detected partial reflection symmetries by solving (28)
with different values of partiality λ0 and regularization co-
efficient η . The computation took about five minutes for
each selection of the parameters. The obtained results are
depicted in Figure 20. For visualization clarity, we com-
pleted the removed parts of the shape marking them in semi-
transparent dark gray. Observe how the increase in the rel-
ative contribution of the regularization term (large η) tends
to shorten the boundary of the detected part at the expense
of its symmetry, while small values of η produce more sym-
metric and less regular parts. This phenomenon is particu-
larly visible in the last two rows of Figure 20, where the
detected part has multiple disconnected components disap-
pearing with the increase of η . Figures 21 and 22 further vi-
sualize the shape of the selected part for different values of
λ0 and η . In all cases, the detected part appears to be more
symmetric than the original shape. In Figure 23 and Fig-
ure 24 we depict more examples of partial symmetry detec-
tion. In Figure 23 we show the influence of partiality, and in
Figure 24 the influence of regularization. As before, the de-
tected parts appear more symmetric then the original shape.
Since different coefficients of regularization and partiality
provide different solutions, we can not predict, for a given
shape, the best relation between them. More than that, an
approximate full symmetry can be interpreted as a partial
symmetry for different coefficients. In Figure 25 we present
such a case. Once again, we can not determine a priori which
solution is better.

8 Discussion and conclusions

We formulated the problem of approximate intrinsic sym-
metries detection which is specifically useful for non-rigid

articulated objects. The proposed measure of symmetry re-
lies on the intrinsic geometric structure of the shape, namely
the geodesic distances between surface points. It allowed us
to find approximate intrinsic symmetries that are insensitive
to bending of the shapes and detect and quantify asymmetric
deformations. While other methods were presented recently,
our method can also handle rotational symmetries and par-
tial symmetries in sparse and dense sampling.

We presented a practical framework for the numerical
computation of intrinsic symmetries, and demonstrated its
potential by experimental results. We believe that the pro-
posed approach could be useful for the detection of mor-
phological distortions in medical imaging and we plan to
explore its potential for diagnosis and analysis of morpho-
metric deformations.

As a concluding remark, we emphasize that while the
geodesic metric was used throughout this paper, the pro-
posed framework is more general and is suitable for the
detection of symmetries with respect to any metric. One of
such possible alternatives is the diffusion metric [13], which
is known to be significantly less sensitive to topological de-
formations than the geodesic counterpart. In [11], the GMDS
framework was used to compute topologically-insensitive
approximate isometries between shapes equipped with the
diffusion geometry. In our future studies, we intend to de-
velop this framework for the detection of full and partial
symmetries.
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Appendix A

Proposition 2
gk = |∇X uk|2.
proof
For the proof of the proposition we will omit the triangle in-
dex k from X and u and use the subscript for partial deriva-
tion.
A linear discretization of the X and u leads to the local pa-
rameterization

X(w,v) = w · (xk,2 − xk,1)+ v · (xk,3 − xk,1) (37)

u(w,v) = w · (uk,2 −uk,1)+ v · (uk,3 −uk,1),

for which the gradient in local coordinates becomes

uw = uk,2 −uk,1 (38)

uv = uk,3 −uk,1

Xw = xk,2 − xk,1

Xv = xk,3 − xk,1.

Hence, we can denote the local Riemannian metric as[
E F
F G

]
=

[
Xw ·Xw Xw ·Xv
Xv ·Xw Xv ·Xv

]
(39)

Since the gradient of a function on a Riemannian manifold
can be written in the local base as

∇X u =
uwG−uvF
EG−F2 Xw +

uvE −uwF
EG−F2 Xv, (40)

it follows that

|∇X u|2 = 〈∇X u,∇X u〉 = G ·uwuw −2F ·uwuv +E ·uvuv

= gk. (41)
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Fig. 20 Partial symmetry of a human body with broken intrinsic symmetry obtained by removal of parts (marked in semitransparent dark gray).
The detected partial symmetries are shown as the function of the relative part size (1−λ0) and the regularization coefficient η . The discarded parts
of the shape are marked in light gray. Colors encode corresponding regions. Note how the increase in η results in the shortening of the boundary
at the expense of symmetry of the part (increase of dis(X ′)).
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Fig. 21 Selected part for fixed η = 104 and part size varying from λ0 = 0.2 (left) to 0.8 (right).

Fig. 22 Selected part for fixed λ = 0.2 and regularization coefficient varying from η = 0 (left) to 109 (right).
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Fig. 23 Low partiality coefficient (left) versus a high one (right) in the pareto frontier. The symmetric surface is colored red.

Fig. 24 Low regularization coefficient (left) versus a high one (right) in the pareto frontier. The symmetric surface is colored red.

Fig. 25 Ambiguity of partial symmetries: a shape with an asymmetric deformation can be interpreted in two ways: as a shape having an approx-
imate full symmetry (left) or as a shape having an exact partial symmetry (right). Both interpretations correspond to Pareto-optimal choices of ε
and λ .


