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Abstract

Similarity is one of the most important abstract concepts in human
perception of the world. In computer vision, numerous applications deal
with comparing objects observed in a scene with some a priori known pat-
terns. Often, it happens that while two objects are not similar, they have
large similar parts, that is, they are partially similar. Here, we present a
novel approach to quantify partial similarity using the notion of Pareto
optimality. We exemplify our approach on the problems of recognizing
non-rigid geometric objects, images, and analyzing text sequences.

1 Introduction

Similarity is one of the most important abstract concepts in human perception
of the world. For example, we encounter it every day during our interaction
with other people whose faces we recognize. Similarity also plays a crucial role
in many fields in science. Attempts to understand self-similar or symmetric
behavior of Nature led to many fundamental discoveries in physics [46]. In
bioinformatics, a fundamental problem is detecting patterns similar to a se-
quence of nucleotides in given DNA sequences. In computer vision, comparing
objects observed in a scene with some a priori known patterns is a fundamental
and largely open problem.

The definition of similarity is, to a large extent, a semantic question. Judging
the similarity of faces, one may say that two human faces are similar if they
have a common skin tone, while someone else would require the identity of the
geometric structure of facial features like the eyes, the nose, and the mouth.

With a slight exaggeration, we can say that all pattern recognition problems
boil down to giving a quantitative interpretation of similarity (or equivalently,
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Table 1: Notation and symbols
R ; R+ Real numbers ; non-negative real numbers
Rm m-dimensional Euclidean space
Rm

+ Non-negative m-dimensional orthant
C Class of objects
X; X ′; X ′c Object ; part of object, subset of X ; complement of X
mX Fuzzy part of X, membership function
δX′ Characteristic function of set X ′; Dirac delta function
τθ Threshold function
TθmX Thresholded fuzzy set
ΣX σ-algebra, set of parts of object X

Φ ; Φ̃ Vector objective function ; fuzzy objective function
(X∗, Y ∗) Pareto optimal parts
(m∗

X ,m∗
Y ) Pareto optimal fuzzy parts

ε, ε̃ Dissimilarity ; fuzzy dissimilarity
µX , µ̃X Measure on X ; fuzzy measure on X

λ, λ̃ Partiality ; fuzzy partiality
dis (ϕ, d) Distortion of a map ϕ
dX ; dX |X′ Geodesic metric on surface X; restricted metric
(X, d) Metric space, non-rigid object
diam X Diameter of X
Br Metric ball of radius r
XN Finite sampling of surface X
T (XN ) Triangular mesh built upon vertices XN

µX ; mX Discretized measure ; discretized membership function
lcs(X, Y ) Longest common subsequence of X and Y
|X| Cardinality of set X, length of sequence X
dGH Gromov-Hausdorff distance
dHAM Hamming distance
dE Edit (Levenshtein) distance
dMP Minimum partiality distance
dP ; dSP Set-valued Pareto distance; scalar Pareto distance

dissimilarity) between objects [18]. Since there is no unique definition of sim-
ilarity, every class of objects requires a specific, problem-dependent similarity
criterion. Such criteria have been proposed for images [71, 48, 26, 53], two-
dimensional shapes [22, 65, 57, 27, 40, 52, 49, 37, 27, 9], three-dimensional rigid
[25, 2, 79, 72] and non-rigid [33, 60, 16, 14] shapes, text [58, 51], and audio
[38, 39]. In the face recognition community, extensive research has been done
on similarities insensitive to illumination [50, 11], head pose [42], and facial
expressions [12, 13].

In many situations, it happens that, while two objects are not similar, some
of their parts are [1, 74, 56, 3]. Such a situation is common, for example, in the
face recognition application, where the quality of facial images (or surfaces in
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Figure 1: Is a centaur similar to a horse? A large part of the centaur is similar
to a horse; likely, a large part of the centaur is similar to a human. However,
considered as a whole, the centaur is similar neither to a horse, nor to a human.

the case of 3D face recognition) can be degraded by acquisition imperfections,
occlusions, and the presence of facial hair [6]. As an illustration that will help to
understand the problem of partial similarity, we give an example from the realm
of shape comparison. Figure 1 (inspired by Jacobs et al. [52]; see also [74, 56])
shows a centaur – a half-equine half-human mythological creature. From the
point of view of traditional shape similarity, a centaur is similar neither to a
horse nor to a man. However, large part of these shapes (the upper part of the
human body and the bottom part of the horse body) are similar. Semantically,
we can say that two object are partially similar if they have large similar parts. If
one is able to detect such parts, the degree of partial similarity can be evaluated
[56].

The main purpose of this paper, stated briefly, is to provide a quantitative
interpretation to what is meant by “similar” and “large”, and derive a consistent
relation between these terms. It allows us to formulate a computationally-
tractable problem of finding the largest most similar parts. In our approach, we
use the formalism of Pareto optimality and multicriterion optimization. While
well-known in fields like information theory and economics, these tools have
been explored to a lesser extent in the computer vision and pattern recognition
community (for some related concepts, see e.g. [62, 35, 32]).

A narrow setting of the discussed framework was previously presented in
[9, 10] in relation to two-dimensional objects, and in [19] in relation to three-
dimensional objects. In this paper, we introduce a more general formalism,
which allows us extend the results to generic objects and address problems from
other fields as well. We show particular examples of partial similarity of rigid and
non-rigid two- and three-dimensional objects and text sequences, and further
elaborate the numerical aspects of their computation. In addition, we show the
extension of these methods to images and shapes with texture, and discuss an
important particular case of partial self-similarity (symmetry) computation.
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Figure 2: Illustration of the problems addressed in the paper (left to right,
top to bottom): partial similarity of non-rigid three-dimensional objects, two-
dimensional articulated shapes, images and text sequences.

The paper is structured as follows. In Section 2, we give formal definitions
of partiality and similarity and the necessary generic mathematical background.
In Section 3, we formulate a multicriterion optimization problem, from which
the relation between partiality and similarity is derived using the formalism of
Pareto optimality. We represent partial similarity as a set-valued distance and
study its properties. Then, we present a few case studies and applications of our
partial similarity framework, showing how a specific use of the generic definitions
from Section 2 can be used in different applications. All the application-specific
mathematical background is defined in the beginning of each section.

In Section 4, we study the problem of analysis of two- and three-dimensional
geometric objects. We show that all these apparently different objects can
be modeled as metric spaces, and use the Gromov-Hausdorff distance as the
criterion of their similarity. Practical numerical schemes for partial similarity
computation are discussed in Section 4.6. In Section 5, we show how the par-
tial similarity approach generalizes classical results in text sequences analysis.
Section 6 is devoted to experimental results. In Section 7, we discuss a few
extensions of the proposed methods. We address the problem of finding partial
symmetries (self similarities) of shapes, which can be considered as a particular
case of the partial similarity problem. Another possible generalization of the
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proposed framework is to textured shapes and two-dimensional images, which is
also discussed. In addition, we address the problem of parts regularity and show
a way to compute regularized partial similarity. Finally, Section 8 concludes the
paper. Proofs of some results appear in the Appendix.

2 Basic Definitions

In order to give a quantitative interpretation of our definition of partial similar-
ity, we first have to define the terms “part”, “large” and “similar”. We start our
construction by defining the class C of objects we wish to compare: these may
be, for instance, shapes, pictures, three-dimensional surfaces, audio and video
sequences or words. An object in C is a set, denoted by X. We assume that
X can be decomposed into parts, where a part is modeled as a subset X ′ ⊆ X.
The set of all the parts of an object X is described by a σ-algebra ΣX on X (a
subset of the powerset 2X closed under complement and countable union). We
demand that ΣX ⊆ C, or in other word, a part is also an object in C.

Let us further assume to be given an equivalence relation ∼ (a symmetric,
reflexive and transitive relation) on the set of all parts of objects from class C.
Given two parts X ′ and Y ′, we will say that they are similar if X ′ ∼ Y ′ (note
that similarity does not necessarily imply that X = Y ). Many objects have a
natural definition of similarity. For example, two rigid shapes are similar if they
are congruent, and two non-rigid shapes are similar if they are isometric.

However, two objects may be almost similar, in which case X ′ ∼ Y ′ does
not hold anymore. In order to quantify how similar two objects are, we define
a non-negative function ε : C × C → R+, obeying the following properties,

(D1) Self-similarity: ε(X,Y ) = 0 iff X ∼ Y ;

(D2) Symmetry: ε(X, Y ) = ε(Y, X);

(D3) Triangle inequality: ε(X, Y ) + ε(Y, Z) ≥ ε(X,Z);

for all objects X, Y and Z in C. We call ε a dissimilarity, since the greater it
is, the less similar are the objects. Property (D1) simply states that ε(X, Y ) =
0 is equivalent to X and Y being similar. Particularly, ε(X,X) = 0, which
implies that an object is similar to itself. Property (D2) requires similarity to
be reflexive; and (D3) expresses the transitivity of similarity: if X is similar to
Y , which is in turn similar to Z, then X and Z cannot be dissimilar. Technically
speaking, ε is a pseudo-metric on C, and a metric on the quotient space C\ ∼.
We will encounter some specific examples of dissimilarities in Sections 4 and 5.

In order to quantify how large a part of an object X is, we define a function
µX : ΣX → R+, satisfying the following properties,

(M1) Additivity: µX(X ′ ∪X ′′) = µX(X ′) + µX(X ′′) for two disjoint parts X ′ ∩
X ′′ = ∅.

(M2) Monotonicity: µX(X ′′) ≤ µX(X ′) for all X ′′ ⊆ X ′ ∈ ΣX .
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Such a µX is called a measure. In case of geometric objects, an intuitive example
of a measure is the area of the object. Given a real function u : X → R, we say
that it is ΣX -measurable if {x ∈ X : u(x) ≥ α} ∈ ΣX for all α.

The size of the parts compared to the entire objects is measured using the
partiality function,

λ(X ′, Y ′) = f(µX(X ′c), µY (Y ′c)), (1)

where X ′c = X \X ′ and f : R2 → R+ is a bivariate nonnegative monotonous
and symmetric function satisfying f(0, 0) = 0. Partiality quantifies how “small”
are the parts X ′ and Y ′ (the larger is the partiality, the smaller are the parts)
and satisfies the following properties,

(P1) Partiality of the whole: λ(X,Y ) = 0.

(P2) Symmetry: λ(X ′, Y ′) = λ(Y ′, X ′).

(P3) Partial order: λ(X ′′, Y ′′) ≥ λ(X ′, Y ′) for every X ′′ ⊆ X ′ ∈ ΣX and
Y ′′ ⊆ Y ′ ∈ ΣY .

Hereinafter, we will restrict the discussion to the following partiality func-
tion,

λ(X ′, Y ′) = µX(X ′c) + µY (Y ′c), (2)

though other definitions are possible as well.

2.1 Fuzzy formulation

Anticipating the discussion in Section 4.6, we should say that the partial similar-
ity computation problem requires optimization over subsets of X and Y , which
in the discrete setting when the objects are represented as finite sets, gives rise
to an NP-hard combinatorial problem. In order to cope with this complexity,
we extend the above definitions using the fuzzy set theory [77]. This formula-
tion is useful in numerical computations, and as will be shown in the following
sections, allows to relax the combinatorial problem and pose it as a continuous
optimization problem.

We define a fuzzy part of X as a collection of pairs of the form {(x,mX(x)) :
x ∈ X}, where mX : X → [0, 1] is referred to as a membership function and
measures the degree of inclusion of a point into the subset. A fuzzy part of X is
completely described by its membership function mX ; hereinafter, we use mX

referring to fuzzy parts. A subset X ′ ⊆ X in the traditional set theoretic sense
(called crisp in fuzzy set theory) can be described by a membership function
δX′(x), equal to one if x ∈ X ′ and zero otherwise. More generally, a fuzzy part
mX can be converted into a crisp one by thresholding, τθ ◦mX , where

τθ(x) =
{

1 x ≥ θ;
0 otherwise; (3)
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and 0 ≤ θ ≤ 1 is some constant. The corresponding crisp set is denoted by
TθmX = {x ∈ X : τθ ◦ mX = 1}. Given a ΣX , we define MX as the set of
all the fuzzy parts whose membership functions are ΣX -measurable. It follows
that TθmX is in ΣX for all mX ∈ MX and 0 ≤ θ ≤ 1.

Hereinafter, as a notation convention, we will use tilde to denote fuzzy quan-
tities. We define a fuzzy dissimilarity as a function of the form ε̃(mX ,mY ) satis-
fying properties (D1)–(D3) with crisp parts replaced by fuzzy ones. We require
ε̃ to coincide with ε on crisp parts, or in other words, ε(X ′, Y ′) = ε̃(δX′ , δY ′).
The fuzzy measure is defined as

µ̃X(mX) =
∫

X

mX(x)dµX , (4)

for all mX ∈ MX , where µX is a (crisp) measure on X. We define the fuzzy
partiality as

λ̃(mX ,mY ) = µ̃X(mc
X) + µ̃Y (mc

Y ), (5)

where mc
X = 1−mX , similarly to definition (2). The following relation between

the fuzzy and the crisp partialities holds,

Proposition 1 (i) λ(X ′, Y ′) = λ̃(δX′ , δY ′); (ii) λ(TθmX , TθmY ) ≤ 1
1−θ λ̃(mX ,mY ),

for all 0 < θ < 1.

3 Pareto framework for partial similarity

Using the definitions of Section 2, we can now give a quantitative expression to
our definition of partial similarity: X and Y are partially similar if they have
parts X ′ and Y ′ with small partiality λ(X ′, Y ′) (“large”) and small dissimi-
larity ε(X ′, Y ′) (“similar”). We therefore formulate the computation of partial
similarity as a multicriterion optimization problem: minimization of the vector
objective function Φ(X ′, Y ′) = (ε(X ′, Y ′), λ(X ′, Y ′)) with respect to the pair
(X ′, Y ′) over ΣX × ΣY ,

min
(X′,Y ′)∈ΣX×ΣY

Φ(X ′, Y ′). (6)

The values of the criteria ε(X ′, Y ′) and λ(X ′, Y ′) for every (X ′, Y ′) can be
associated with a point with the coordinates Φ(X ′, Y ′). The set of possible
criteria values is described by the region Φ(ΣX × ΣY ) in R2, referred to as the
attainable set. The point (0, 0) is usually not attainable, unless X and Y are
fully similar (i.e., X ∼ Y ). For this reason, it is called the utopia point.

Since the two criteria are competing, no solution simultaneously optimal for
both (i.e., the utopia point) can be found.1 Thus, the notion of optimality used

1In information theory, such multicriterion optimization problems are widely known. For
example, in statistical estimation, the bias and the variance of an estimator are two competing
criteria. In lossy signal compression, distortion and bitrate are competing.
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Figure 3: Illustration of the notion of Pareto optimality and set-valued distance.

in traditional scalar optimization must be replaced by a new one, adapted to the
multicriterion problem. Since there does not exist a total order relation in R2, we
generally cannot say which solution is better, for example: is the point (0.5, 1)
better than (1, 0.5)? Yet, we can introduce partial order by coordinate-wise com-
parison: Φ(X ′, Y ′) is better than Φ(X ′′, Y ′′) if both λ(X ′, Y ′) ≤ λ(X ′′, Y ′′) and
ε(X ′, Y ′) ≤ ε(X ′′, Y ′′), e.g., the point (0.5, 0.5) is better than (1, 1). By writing
Φ(X ′, Y ′) ≤ Φ(X ′′, Y ′′), this partial order relation is implied hereinafter.

A solution (X∗, Y ∗) is called a Pareto optimum [63, 30, 36] of the multicri-
terion optimization problem, if there exists no other pair of parts (X ′, Y ′) ∈
ΣX × ΣY such that both ε(X ′, Y ′) < ε(X∗, Y ∗) and λ(X ′, Y ′) < λ(X∗, Y ∗)
hold at the same time. An intuitive explanation of Pareto optimality is that
no criterion can be improved without compromising the other. The set of all
the Pareto optima, referred to as the Pareto frontier and can be visualized as
a curve (see Figure 3). We denote the Pareto frontier by dP(X, Y ) and use it
as a set-valued criterion of partial similarity, referred hereinafter as the Pareto
distance.

When fuzzy quantities are used instead of the crisp ones, the multicriterion
optimization problem is defined as the minimization of the vector objective
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Φ̃ = (λ̃, ε̃) over the set MX × MY . A Pareto optimum is a point (m∗
X ,m∗

Y ),
for which there exists no other pair of fuzzy parts (mX ,mY ) ∈ MX ×MY such
that both ε̃(mX ,mY ) < ε̃(m∗

X ,m∗
Y ) and λ̃(mX ,mY ) < λ̃(m∗

X ,m∗
Y ) hold at the

same time. The fuzzy Pareto distance d̃P(X, Y ) is defined as the Pareto frontier,
similarly to our previous crisp definition.

3.1 Scalar-valued partial dissimilarity

Since there exists only a partial order relation between our criteria, not all
Pareto distances are mutually comparable. In this sense, the notion of partial
similarity is considerably different from the standard “full” similarity. We can
say that X is more similar to Y than to Z (expressed as dP(X, Y ) < dP(X, Z),
where a coordinate-wise inequality is implied) only if dP(X, Y ) is entirely below
dP(X, Z) (see Figure 4). Otherwise, only point-wise comparison is possible: we
write (λ0, ε0) < dP(X,Y ), implying that the point (λ0, ε0) is below dP(X,Y ).

In order to define a total order between partial dissimilarities, we have to
“scalarize” the multicriterion optimization problem. We refer to a distance
obtained in this way a scalar Pareto distance and denote it by dSP. One way to
convert the set-valued distance into a scalar-valued one is by selecting a point
on the Pareto frontier with a fixed value of partiality,

dSP(X, Y ) = min
(X′,Y ′)∈ΣX×ΣY

ε(X ′, Y ′) s.t. λ(X ′, Y ′) ≤ λ0,

which can be alternatively formulated as an unconstrained problem,

dSP(X, Y ) = min
(X′,Y ′)∈ΣX×ΣY

ε(X ′, Y ′) + βλ(X ′, Y ′), (7)

where β is the corresponding Lagrange multiplier. Alternatively, we can fix a
value of dissimilarity, obtaining the problem

dSP(X, Y ) = min
(X′,Y ′)∈ΣX×ΣY

λ(X ′, Y ′) s.t. ε(X ′, Y ′) ≤ ε0,

which can be posed equivalently to problem (7). A particular case of ε0 = 0
measures the minimum partiality required to achieve zero dissimilarity. We call
such a distance minimum partiality distance and denote it by dMP. We will
encounter dMP in Section 5 when discussing the similarity of text sequences.

The disadvantage of the described scalarization is that it is usually impossible
to fix a single threshold value suitable for all the objects. A better and more
generic way in which there is no need to fix arbitrary values of λ or ε is selecting
a point on dP(X,Y ) which is the closest, in the sense of some distance, to the
utopia point (0, 0). A Pareto optimum corresponding to such a point is called
Salukwadze optimal [68]. We define the scalar Pareto distance between X and
Y as

dSP(X,Y ) = inf
(X′,Y ′)∈ΣX×ΣY

‖Φ(X ′, Y ′)‖R2
+
, (8)
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where ‖ · ‖R2
+

denotes some norm on R2
+. One example is the family of weighted

norms ‖Φ‖w = ΦT w (w ∈ R2
+). The particular case ‖ · ‖(1,1) coincides with

the L1-norm. We refer to a dSP constructed in this manner as the Salukwadze
distance. It generalizes the previous ways of creating scalar-valued distances
from the Pareto distance.

4 Geometric shapes

Our first case study deals with geometric shapes. We attribute to this broad
category rigid, articulated and non-rigid two- and three-dimensional objects,
shapes with texture and, as a particular case, binary, gray and color images.
While the analysis of two-dimensional [64] and three-dimensional rigid shapes
[25, 2, 79] is a well-established field, analysis of non-rigid shapes is an impor-
tant direction emerging in the last decade in the pattern recognition community
and arising in applications of face recognition [12, 13], shape watermarking [67],
texture mapping and morphing [15, 7], to mention a few. In many practi-
cal problems, it was shown that natural deformations of non-rigid shapes can
be approximated as isometries, hence, recognition of such objects requires an
isometry-invariant criterion of similarity. A particular case complying to this
model are articulated shapes, consisting of rigid parts connected by non-rigid
joints [65, 52, 33, 78, 59, 60, 9]. Moreover, in many situations (e.g. in face
recognition [6]), due to acquisition imperfections, the objects may be given only
partially, i.e., have similar overlapping parts. This makes our partial similarity
framework especially useful in such applications.

In this section, following the spirit of [33, 16, 10], we consider such objects as
metric spaces. We show that such a metric approach provides a unifying frame-
work which allows us to analyze the similarity of two- and three-dimensional
shapes and images. We start with discussing similarity and self-similarity of
objects, and then extend it using our partial similarity approach.

4.1 Intrinsic and extrinsic similarity

A geometric shape is modeled as a metric space (X, d), where X is a two-
dimensional smooth compact connected surface (possibly with boundary) em-
bedded into Rm (m = 3 in case of three-dimensional objects and m = 2 in case
of two-dimensional shapes), and d : X ×X → R+ is some metric measuring the
distances on X. For the brevity of notation, we will write shortly X instead of
(X, d) when the metric d is implied or not important.

There are at least two natural ways to define the metric d on X. One way is
to consider X as a subset of its embedding space Rm and measure the distances
between a pair of points x, x′ on X using the restricted Euclidean metric,

dRm |X(x, x′) = dRm(x, x′). (9)

The Euclidean metric regards the “external” properties of the shape, having to
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do with the way it is laid out in Rm. We broadly refer to properties described
by dRm |X as the extrinsic geometry of X.

Another way is to define the distance between x and x′ as the length of the
shortest path (geodesic) on the surface X connecting x and x′. The length of the
path can be computed as the sum of infinitesimally short line segments in the
Euclidean space. We call the metric defined in this way the geodesic metric and
denote it by dX . Properties described by dX are called the intrinsic geometry
of X. Roughly speaking, intrinsic geometry describes the properties of the
shape which are invariant to inelastic nonrigid deformations (i.e., deformations
which do not “stretch” the surface), and extrinsic geometry is associated with a
specific nonrigid deformation. The same shape can be regarded both from the
intrinsic and extrinsic point of view by selecting d to be either the geodesic or
the Euclidean metric, respectively [17].

A transformation ϕ : X → Rm preserving the extrinsic geometry of X is
called a congruence and X and ϕ(X) are said to be congruent. In the Euclidean
space, congruences are limited to rigid motions (rotation and translation trans-
formations);2 we denote the family of such transformations by Iso(Rm). Two
shapes X and Y are thus congruent if there exists a bijection ϕ : X → Y such
that

dRm |Y = dRm |X ◦ (ϕ× ϕ). (10)

In a similar way, a transformation ϕ : X → Rm preserving the intrinsic
geometry of X is called an isometry and X and ϕ(X) are said to be isometric.
Two shapes X and Y are isometric if there exists a bijection ϕ : X → Y such
that

dY = dX ◦ (ϕ× ϕ). (11)

The class of isometries can be richer than that of congruences, since any con-
gruence is by definition an isometry. However, for some objects these two classes
coincide, meaning that they have no incongruent isometries. Such shapes are
called rigid, and their extrinsic geometry is completely defined by the intrinsic
one.

Congruence is a natural similarity relation for rigid shapes. Congruent
shapes have identical extrinsic geometry, or in other words, are the same shape
up to a rigid motion. For this reason, we call the similarity relation defined by
congruence extrinsic similarity. For non-rigid shapes, on the other hand, the
natural similarity criterion is the equivalence of intrinsic geometry; two shapes
are intrinsically similar if they are isometric.

It appears, with a few exceptions [28], that polyhedral surfaces, the most
widely used representation of physical objects in geometric modeling, are rigid
[44]. However, even a rigid object can still have approximate isometries which
are incongruent. To this end, we have to relax the requirement (11), making
it hold only approximately. In order to measure to which extent (11) does not

2Usually, reflection transformations are excluded since they have no physical realization.
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hold, we define the intrinsic distortion,

dis (ϕ, dX) = sup
x,x′∈X

|dX(x, x′)− dY (ϕ(x), ϕ(x′))| ,

of the map ϕ, and say that X and Y are ε-isometric if there exists an ε-surjective
map ϕ : X → Y (i.e., dY (y, ϕ(X)) ≤ ε for all y ∈ Y ) with dis (ϕ, dX) ≤ ε. Such
a ϕ is called an ε-isometry [24].

For rigid shapes, appealing to the analogy between intrinsic and extrinsic
similarity, we define the extrinsic distortion,

dis (ϕ, dRm |X) = sup
x,x′∈X

|dRm |X(x, x′)− dRm |Y (ϕ(x), ϕ(x′))| ,

where ϕ ∈ Iso(Rm) is a rigid motion. dis (ϕ, dRm |X) measures to which ex-
tent (10) does not hold, or in other words, the degree of incongruence between
X and Y . We say that X and Y are ε-congruent if there exists an ε-surjective
map ϕ : X → Y with dis (ϕ, dRm |X) ≤ ε.

4.2 Iterative closest point algorithms

In order to measure how extrinsically dissimilar two shapes X and Y are, we
need to find an ε-congruence between them with the smallest possible ε. A class
of methods trying to solve this problem is called iterative closest point (ICP)
algorithms [25, 2, 79]. Conceptually, these algorithms minimize the set-to-set
distance between the shapes over all the rigid transformations,

dICP(X, Y ) = inf
ϕ∈Iso(Rm)

dR
m

H (X, ϕ(Y )), (12)

where

dR
m

H (X, Y ) = max
{

sup
x∈X

dRm(x, Y ), sup
y∈Y

dRm(y, X)
}

,

is the Hausdorff distance measuring how “far” the subsets X and Y of Rm

are from each other, and dRm(x, Y ) = infy∈Y dRm(x, y) is the point-to-set Eu-
clidean distance. We call dICP the ICP distance. When X and Y are congruent,
dICP(X,Y ) = 0. When X and Y are almost congruent, the ICP distance can
be considered as a measure of their incongruence.3

Assume that we can find a correspondence ϕ : X → Y mapping a point in x
on X to the closest point,

ϕ(x) = arg min
y∈Y

dRm(x, y),

3We do not explain formally the analogy between the definition of ε-congruence and the
ICP distance.
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on Y , and, analogously,

ψ = arg min
x∈X

dRm(x, y),

to be the closest point on X.4 The Hausdorff distance (13) can be rewritten as

dH(X,Y ) = max
{

sup
x∈X

dRm(x, ϕ(x)), sup
y∈Y

dRm(y, ψ(y))
}

. (13)

In practical applications, the Hausdorff distance is often replaced by an L2

approximation,

dH(X,Y ) ≈
∫

X

d2
R3(x, ϕ(x))dx +

∫

Y

d2
R3(y, ψ(y))dy, (14)

which is easier to compute.
Problem (12) can be solved using an iterative two-stage process:

repeat1

Fix the transformation (R, t) and find the closest-point2

correspondences ϕ and ψ between the surfaces X and Y .
Fix the correspondences ϕ and ψ and find a rigid transformation3

minimizing the Hausdorff distance (13) or its approximation (14)
between X and Y with the given correspondences.

until convergence4

Algorithm 1: ICP algorithm.

4.3 Gromov-Hausdorff distance

The extension of problem (12) for non-rigid shapes is not straightforward. For
computing the extrinsic similarity of rigid shapes, it was possible to trivially ap-
ply the Hausdorff distance, since (X, dRm |X) and (Y, dRm |Y ) were subsets of the
same Euclidean space. Unlikely, two non-rigid shapes (X, dX) and (Y, dY ) are
not parts of the same metric space. However, let us assume that there exists5

a metric space (Z, dZ), into which (X, dX) and (Y, dY ) are isometrically embed-
dable by means of two mappings, g and h, respectively. We can now measure
the Hausdorff distance in Z between the images g(X) and h(Y ). However, since
the metric space Z was chosen arbitrarily, we will try to find the best one which
will minimize the Hausdorff distance between g(X) and h(Y ) in Z .

Using a similar motivation, Mikhail Gromov introduced in [47] the Gromov-

4Such a correspondence exists for compact objects were are considering here. In the fol-
lowing, we tacitly assume that infima and suprema can be replaced by minima and maxima.

5Such a space always exists, the most trivial example being the disjoint union of (X, dX)
and (Y, dY ).
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Hausdorff distance,

dGH((X, dX), (Y, dY )) = inf
g:(X,dX)→(Z,dZ)
h:(Y,dY )→(Z,dZ)

Z

dZH(g(X), h(Y )), (15)

where g, h are isometric embeddings (i.e., g is an isometry between (X, dX)
and (g(X), dZ), and h is an isometry between (Y, dY ) and (h(Y ), dZ), respec-
tively). dGH can be regarded as a generalization of the Hausdorff distance: if
the Hausdorff distance measures how far two subsets of a metric space are, the
Gromov-Hausdorff distance measures how far two metric spaces are.

Particularly, if we used the Gromov-Hausdorff distance with the Euclidean
metric, dGH((X, dRm |X), (Y, dRm |Y )), we would obtain an analogous formulation
of the ICP distance. The advantage of our formulation is the fact that it uses
the same theoretical framework as the intrinsic similarity and boils down to
computing the Gromov-Hausdorff distance between metric spaces with different
metrics. As a result, the same numerical algorithms can be employed for both
intrinsic and extrinsic similarity computation, which will be shown in the next
sections.

A practical problem with definition (15) is that its computation involved
optimization over a metric space Z and is thus untractable. For compact surfaces
(assumed here), the Gromov-Hausdorff distance has an equivalent formulation
using distortion terms,

dGH((X, dX), (Y, dY )) =
1
2

inf
ϕ:X→Y

ψ:Y→X

max{dis (ϕ, dX),dis (ψ, dY ), dis (ϕ,ψ, dX , dY )},

where,

dis (ϕ,ψ, dX , dY ) = sup
x∈X
y∈Y

|dX(x, ψ(y))− dY (y, ϕ(x))|.

If X and Y are isometric, then ψ = ϕ−1, and we have dis (ϕ, dX) = dis (ϕ, dY ) =
dis (ϕ,ψ, dX , dY ) = 0. The converse is also true: dGH(X,Y ) = 0 if X and Y are
isometric. In addition, dGH is symmetric and satisfies the triangle inequality,
which means that the Gromov-Hausdorff distance is a metric on the quotient
space of objects under the isometry relation. More generally, if dGH(X,Y ) ≤ ε,
then X and Y are 2ε-isometric and conversely, if X and Y are ε-isometric, then
dGH(X, Y ) ≤ 2ε [24].

Like in ICP problems, for practical purposes, the Gromov-Hausdorff distance
can be approximated in the following way,

dGH(X,Y ) ≈
∫

X×X

|dX(x, x′)− dY (ϕ(x), ϕ(x′))|2dxdx′ (16)

+
∫

Y×Y

|dY (y, y′)− dX(ψ(y), ψ(y′))|2dydy′.
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4.4 Partial similarity of geometric shapes

The common denominator of two- and three-dimensional rigid and non-rigid
shapes in our discussion is that they are modeled as metric spaces with an
appropriately selected metric, and the criteria of similarity we are considering
are between these metric spaces. Hence, from this point on we assume to be
given a generic metric space, which can model any of the above objects, and
will devise a way to compute partial similarity between metric spaces.

Given an object (X, d), we define its part as (X ′, d|X′). As the measure µX ,
we use the area of the object (derived from the metric structure of the surface
in case of three-dimensional object, or the standard measure on R2 in case of
two-dimensional objects and images). The partiality is thus interpreted as the
portion of the area of the selected parts. As the dissimilarity in our framework,
we use the Gromov-Hausdorff distance, wherein the metric is chosen according
to the object in hand and the similarity criterion we are interested in (thus,
we use dX when comparing non-rigid objects, and dRm |X when comparing rigid
objects).

The Pareto distance dP(X, Y ) measures the tradeoff between the dissim-
ilarity (Gromov-Hausdorff distance) and the area cropped from the objects.
The interpretation of the Pareto distance dP(X, Y ) depends on the class to
which the objects X, Y belong. In the case of non-rigid objects, in particular,
dP(X, Y ) tells us what is the size of the parts that must be removed in order
to make X and Y isometric. By properties of the Gromov-Hausdorff distance,
(λ, ε) ∈ dP(X, Y ) implies that there exist X ′ ∈ ΣX and Y ′ ∈ ΣY with par-
tiality λ(X ′, Y ′), such that (X ′, dX |X′) and (Y ′, dY |Y ′) are 2ε-isometric; and
if (X ′, dX |X′) and (Y ′, dY |Y ′) are ε-isometric, then (λ(X ′, Y ′), 2ε) ∈ dP(X, Y ).
For rigid shapes, partial similarity describes the tradeoff between the congruence
of the parts and their area.

The set-valued Pareto distance dP(X,Y ) contains significantly more infor-
mation about the similarity of non-rigid shapes X and Y than the scalar-valued
Gromov-Hausdorff distance dGH(X,Y ). In order to illustrate this difference,
consider an example with non-rigid shapes shown in Figure 4. When we com-
pare the shape of a human to a centaur or another human with a spear using
dGH((X, dX), (Y, dY )) (point (a) on the Pareto frontier in Figure 4), we see
that these objects are approximately equally dissimilar: the Gromov-Hausdorff
distance operates with metric structure, and is thus sensitive to the length of
the dissimilar parts (the spear and the bottom part of the horse body). How-
ever, if we start removing parts by increasing the partiality, we will see that
the Pareto frontier describing the human–spear-bearer distance decreases fast,
since the area of the spear is small, whereas the Pareto frontier describing the
human–centaur distance decreases slowly, since the area of the horse body is
large (Figure 4,b and c, respectively). This suggests that a human is more
similar to a spear-bearer than to a centaur.
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Figure 4: Set-valued Pareto distance compared to traditional full similarity. A
man and a spear-bearer are as dissimilar as a man and a centaur in the sense
of intrinsic full similarity (Gromov-Hausdorff distance, a). In order to make a
spear-bearer similar to a man, we have to remove a small part (spear, b). In
order to make a centaur similar to a man, we have to remove the large horse
body (c).

4.5 Fuzzy approximation

The main problem with the presented approach is that it requires optimization
over all the possible parts of the shapes, which, as we anticipatively mentioned in
Section 2.1, becomes a combinatorial problem in the discrete setting. Therefore,
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to bring the problem back to the domain of continuous optimization we resort
to the fuzzy formulation presented therein. In the fuzzy setting, this problem is
avoided by describing the parts X ′ and Y ′ by membership functions mX , mY ,
which obtain a continuous set of values.

The fuzzy partiality is defined according to (5). The fuzzy dissimilarity is a
fuzzy version of the Gromov-Hausdorff distance,

d̃GH(mX , mY ) =
1
2

inf
ϕ:X→Y

ψ:Y→X

(17)

max





sup
x,x′∈X

mX(x)mX(x′)|dX(x, x′)− dY (ϕ(x), ϕ(x′))|
sup

y,y′∈Y
mY (y)mY (y′)|dY (y, y′)− dX(ψ(y), ψ(y′))|

sup
x∈X,y∈Y

mX(x)mY (y)|dX(x, ψ(y))− dY (ϕ(x), y)|
D sup

x∈X
(1−mY (ϕ(x)))mX(x)

D sup
y∈Y

(1−mX(ψ(y)))mY (y)





,

where D ≥ max{diam(X), diam(Y )} and diam(X) = supx,x′∈X dX(x, x′).

Proposition 2 (i) d̃GH(δ′X , δ′Y ) = dGH(X ′, Y ′); (ii) Let D = max{diam X, diam Y }/θ(1−
θ), where 0 < θ < 1 is a parameter. Then, dGH(TθmX , TθmY ) ≤ 1

θ2 d̃GH(mX ,mY ),
for all 0 < θ < 1.

Combining the results of Propositions 1 and 2, we can connect the crisp and
fuzzy partial dissimilarities,

d̃P(X, Y ) ≤ (
1− θ, θ−2

) · dP(X, Y ). (18)

where ≤ is understood as a partial order relation between vectors in R2, de-
fined in Section 3. This result allows us use d̃P(X,Y ) as an approximation of
dP(X, Y ).

As we described in Section 3.1, a single point of the set-valued Pareto dis-
tance d̃P(X,Y ) can computed by fixing a value of partiality λ̃(mX ,mY ) ≤ λ0

and minimizing d̃GH(mX ,mY ) with respect to mX ,mY subject to this con-
straint. One can notice that this problem involves two sets of variables: besides
the fuzzy parts (membership functions mX ,mY ), we have the correspondences
between the parts (the maps ϕ and ψ). Optimization over this two sets of
variables can be split into the following two-stage alternating scheme:

repeat1

Fix the parts mX and mY and find the correspondences ϕ and ψ.2

Fix the correspondences ϕ and ψ and find fuzzy parts mX ,mY3

minimizing the fuzzy Gromov-Hausdorff distance (18) with the
given correspondences, subject to constraint λ̃(mX ,mY ) ≤ λ0.

until convergence4

Algorithm 2: Fuzzy Pareto distance computation.
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The analogy with ICP Algorithm 1 is evident. By varying the value of λ0,
we obtain a set of values of the Pareto distance.

4.6 Numerical computation

In practice, the computation of the Pareto distance is performed on discretized
objects, XN = {x1, ..., xN} and YM = {y1, ..., yM}. The shapes are approx-
imated as triangular meshes T (XN ) and T (YM ) with vertices XN and YM ,
respectively. A point on the mesh T (XN ) is represented as a vector of the
form x = (t,u), where t is the index of the triangular face enclosing it, and
u ∈ [0, 1]2 is the vector of barycentric coordinates with respect to the vertices
of that triangle.

The geodesic metrics dX and dY are discretized as follows: First, the dis-
tances between the vertices dX(xi, xi′) and dY (yj , yj′) (with i, i′ = 1, ..., N and
j, j′ = 1, ..., M) are numerically approximated using the fast marching method
(FMM) [69, 54]. In order to compute the distance dX(x,x′) between two arbi-
trary points x,x′ on the mesh, interpolation based on the values of dX(xi, xi′)
is used. Here, we employ the three-point interpolation scheme [14] for this pur-
pose. A more computationally efficient approach can apply FMM “on demand”,
using a software cache for geodesic distances.

The measure µX can be discretized by assigning to µX(xi) the area of the
Voronoi cell around xi and represented as a vector µX = (µX(x1), ..., µX(xN ))T.
We use the following approximation,

µX(xi) ≈ 1
3

∑

t∈N (xi)

at,

whereN (xi) denotes the one-ring neighborhood of triangles around the vertex xi

and at is the area of triangle t. The discretized membership functions are repre-
sented as vectors mX = (mX(x1), ...,mX(xN )) and mY = (mY (y1), ...,mY (yM )).

The main challenge in Algorithm 2 is the computation of the correspondences
ϕ and ψ, which is theoretically an NP-hard problem. Mémoli and Sapiro [60]
proposed a probabilistic approximation scheme for this problem. In [16], Bron-
stein et al. introduced a different approach, based on a continuous non-convex
optimization problem similar to multidimensional scaling (MDS), dubbed the
generalized MDS (GMDS). It was shown that the correspondence computation
can be formulated as three coupled GMDS problems, which can be solved ef-
ficiently using convex optimization [14]. The result is numerically accurate if
global convergence is achieved.

The numerical solution we use here is similar to GMDS [16, 14] and, in
general, to the spirit of MDS problems [5, 33]. We express the correspondence
as y′i = ϕ(xi) and x′j = ψ(yj) (note that in our notation, each x′i is a point
anywhere on T (YM ) and each y′j is a point on T (XN )). The points {y′1, ..., y′N}
and {x′1, ..., x′M} are represented in baricentric coordinates as matrices Y′ and
X′.
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Stage 2 of Algorithm 2 is done with the values of mX ,mY fixed and mini-
mizing over the correspondences X′ and Y′,

min
ε≥0

Y′
X′

ε s.t.





mX(xi)mX(xi′)|dX(xi, xi′)− dY (y′i,y
′
i′)| ≤ ε

mY (yj)mY (yj′)|dY (yj , yj′)− dX(x′j ,x
′
j′)| ≤ ε

mX(xi)mY (yj)|dX(xi,x′j)− dY (yj ,y′i)| ≤ ε
D (1−mX(x′i))mX(xi) ≤ ε
D (1−mY (y′j))mY (yj) ≤ ε

. (19)

The values mX(x′i) and mY (y′i) at arbitrary points of the triangular mesh are
computed by interpolation. The distances dX(xi, xi′) and dY (yj , yj′) are pre-
computed by FMM; on the other hand, the distances dY (y′i,y

′
j), dX(x′j ,x

′
j′),

dX(xi,x′j) and dY (yj ,y′i) are interpolated. Numerical solution of problem (19)
requires the ability to perform a step in a given direction on a triangulated mesh
(such a path is poly-linear if it traverses more than one triangle), computed using
an unfolding procedure described in [14]. This also ensures that barycentric
representation of {y′1, ..., y′N} and {x′1, ..., x′M} is always correct.

Stage 3 of Algorithm 2 is performed by fixing X′ and Y′ and minimizing
with respect to mX ,mY ,

min
ε≥0

mX∈[0,1]N

mY ∈[0,1]M

ε s.t.





mX(xi)mX(xi′)|dX(xi, xi′)− dY (y′i,y
′
i′)| ≤ ε

mY (yj)mY (yj′)|dY (yj , yj′)− dX(x′j ,x
′
j′)| ≤ ε

mX(xi)mY (yj)|dX(xi,x′j)− dY (yj ,y′i)| ≤ ε
D (1−mX(x′i))mX(xi) ≤ ε
D (1−mY (y′j))mY (yj) ≤ ε
mT

XµX ≥ 1− λ
mT

Y µY ≥ 1− λ,

(20)

If the L2 approximation of the Gromov-Hausdorff distance is used, the distortion
terms can be decoupled and problems (19) and (20) assume the form

min
X′

∑

i,i′
mX(xi)mX(xi′)|dX(xi, xi′)− dY (y′i,y

′
i′)|2

+ min
Y′

∑

j,j′
mY (yj)mY (yj′)|dY (yj , yj′)− dX(x′j ,x

′
j′)|2,

and

min
mX∈[0,1]N

∑

i,i′
mX(xi)mX(xi′)|dX(xi, xi′)− dY (y′i,y

′
i′)|2 s.t. mT

XµX ≥ 1− λ

+ min
mY ∈[0,1]M

∑

j,j′
mY (yj)mY (yj′)|dY (yj , yj′)− dX(x′j ,x

′
j′)|2 s.t. mT

Y µY ≥ 1− λ,

respectively.
Since the above problems are non-convex, optimization algorithms are liable

to converge to a local minimum, a caveat widely known in MDS problems [5].
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Local convergence can be avoided in practice by using a multiresolution opti-
mization scheme [20], in which a hierarchy of problems is constructed, starting
from a coarse version of the problem containing a small number of points. The
coarse level solution is interpolated to the next resolution level, and is used as
an initialization for the optimization at that level. The process is repeated until
the finest level solution is obtained. Alternatively, an initialization similar to
[41] based on local shape descriptors and a branch-and-bound algorithm can be
used [66].

The main computational complexity of the algorithm is finding the corre-
spondence. In our MATLAB implementation, performing GMDS with 50 points
takes slightly less than a minute. Since the entire procedure is repeated for a few
times in the alternating minimization scheme, computing the partial similarity
between two shapes takes a few minutes. These results can be significantly im-
proved by taking advantage of the fact that the correspondences do not change
significantly from iteration to iteration, and thus performing full GMDS once
followed by an incremental update would result in a much lower complexity.

5 Text sequences

Another application of our partial similarity framework is the analysis of text
sequences. Problems requiring comparison of such sequences arise in linguistics
[45], web search [43, 31], spell checking [29], plagiarism detection [76], speech
recognition, and bioinformatics [55, 4]. The basic problem in this field is finding
subsets of sequences that are similar to some give pattern – again, a problem
fitting nicely into the concept of partial similarity.

The object used in text analysis is a sequence X = (xn)N
n=1. Each xk (called

character) is an element in some set A, referred to as the alphabet. For example,
in text analysis A can be the Latin alphabet, and in bioinformatics, A is the set
of four nucleotides. A part of a sequence X is a subsequence X ′ = (xnk

), where
nk is a strictly increasing subset of the indices {1, ..., N}. The σ-algebra ΣX in
this problem is defined as the collection of all the subsequences of X. A natural
measure is the subsequence length, µX(X ′) = |X ′|.

Given two sequences X and Y , a longest common subsequence (LCS) of X
and Y is defined as

lcs(X, Y ) = argmax
Z∈ΣX∩ΣY

|Z|. (21)

Note that the LCS may not be unique; for example, the longest common sub-
sequences of AATCC and ACACG are the sequences ACC and AAC.

An edit of the sequence X a modification inserting, removing or substituting
one of the sequence characters. If X and Y are of equal length, we can define the
Hamming distance between X and Y as the number of character substitutions
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required to transform one sequence into another,

dHAM(X, Y ) =
|X|∑
n=1

δxn 6=yn . (22)

For sequences of non-equal length, the Hamming distance can be extended by
considering not only the substitution edits, but also character insertions and
deletions. A classical tool in text analysis, known as the edit (or Levenshtein)
distance and denoted here by dE(X, Y ), is defined as the minimum number of
edits required to transform one string to another, where the edits are weighted
differently (character deletion or insertion edits add 1 to the distance, and char-
acter substitution adds 2).6 [58, 75]. The edit distance is related to the longest
common subsequence by the following formula,

dE(X, Y ) = |X|+ |Y | − 2|lcs(X,Y )|. (23)

5.1 Partial similarity of text sequences

To define the partial similarity between character sequences, we use dHAM as
the dissimilarity. If the subsequences are not of equal length, ε is undefined.
The partiality is defined as the total number of characters dropped from the
sequences X and Y to obtain the two sub-sequences X ′ and Y ′, λ(X ′, Y ′) =
|X| + |Y | − (|X ′| + |Y ′|). As the result of the tradeoff between dHAM(X ′, Y ′)
and λ(X ′, Y ′), a discrete Pareto frontier dP(X, Y ) is obtained. If the value of
|X| + |Y | is even, dP(X, Y ) exists only at even7 values of λ; otherwise, it is
defined only at odd values of λ.

We can establish the following relation between the zero-dissimilarity dis-
tance and the edit distance:

Proposition 3 (i) dMP(X,Y ) = dE(X,Y ); (ii) dMP(X,Y ) is realized on sub-
sequences X ′ = Y ′ = lcs(X, Y ).

In other words, the edit distance is a particular case of our set-valued Pareto dis-
tance, obtained by selecting a specific point on the Pareto frontier, correspond-
ing to the minimum partiality obtained requiring that dHAM is zero. However,
we may allow for subsequences which are not similar (dHAM > 0), yet, have
smaller partiality. This brings us to the definition of the Salukwadze distance
dSP(X, Y ), which may better quantify the partial similarity between two se-
quences.

6In some definitions, character substitution adds 1 to dE.
7Subsequences X′ and Y ′ must be of equal length in order for dHAM to be defined, such

that |X′| + |Y ′| is always even. If |X| + |Y | is even, an odd value of λ(X′, Y ′) implies that
X′ and Y ′ are of unequal length and consequently, the Pareto frontier is not defined at this
point.
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6 Results

In order to exemplify the presented method, three experiments were performed,
demonstrating the computation of partial similarity of articulated two-dimensional
shapes, non-rigid three-dimensional shapes and text sequences. All the datasets
used here are available from http://tosca.cs.technion.ac.il. For addi-
tional experiments with partial matching of rigid shapes, refer to [8].

6.1 Articulated two-dimensional shapes

The first experiment was performed on the 2D Mythological Creatures database.
The database consisted of three articulated shapes: human, horse and centaur,
comprising rigid parts and non-rigid joints. Each shape appeared in five different
articulations and with additional parts (sword, spear, tail and horns for the
human shapes; saddle and wings for the horse shapes; sword, whip and spear for
the centaur shapes, see Figure 5). The shapes were represented as binary images
and sub-sampled using the farthest point strategy [34, 21, 33] at approximately
3000 points. The shapes were discretized as described in Section 4.6. Thirteen
values of λ were used to compute the Pareto distance.

Figure 6 shows the Pareto distances between the shapes. We can say that
a human is more similar to a centaur than to a horse, because the Pareto fron-
tier corresponding to the human–centaur comparison (dashed) is below that
corresponding to the human–horse comparison (dotted). Figure 7 depicts the
full intrinsic similarity (dGH) and the scalar Pareto distance (d̃SP) between the
shapes as dissimilarity matrices (the color of each element in the matrix rep-
resents the dissimilarity; the darker the smaller). In terms of the full intrinsic
similarity, different articulations of the same shape are similar, while different
shapes are dissimilar. This is observed as a pattern of dark diagonal blocks in
Figure 7 (left). At the same time, the scalar Pareto distance is able to capture
the partial similarity of the shapes, i.e., that the centaur is similar to the horse
and the human. Additional examples of two-dimensional shape similarity are
shown in [10].

6.2 Non-rigid three-dimensional shapes

The second experiment is a three-dimensional and a more challenging version of
the first one. We used a subset of the nonrigid 3D shapes database, consisting of
five objects: male, female, horse, centaur, and seahorse. Each shape appeared
in five different instances obtained by non-rigid deformations (Figure 8). The
shapes were represented as triangular meshes, sampled at between 1500 to 3000.
We compared dGH and d̃PS. The distortion terms in the Gromov-Hausdorff dis-
tance were computed using 50 samples; the geodesic distances in the embedding
spaces were interpolated from all the 1500 to 3000 samples.

The matching results are visualized in Figure 9 as dissimilarity matrices.
Being an intrinsic criterion of similarity, the Gromov-Hausdorff distance cap-
tures the intra-class similarity of shapes (i.e. that different instances of the
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Figure 5: 2D Mythological Creatures database used in the first experiment.

same objects are similar). However, it fails to adequately capture the inter-class
similarity: the centaur, horse and seahorse appear as dissimilar. On the other
hand, the partial similarity approach captures correctly the partial similarity of
the centaur, horse and the seahorse. For additional results and examples, see
[19].

6.3 Text sequences

To demonstrate the partial similarity concept in text analysis, we compare two
sequences: X = PARTIAL SIMILARITY and Y = PARETO OPTIMUM. The ob-
tained discrete Pareto frontier is shown in Figure 10. Point marked as (a) on
the Pareto frontier in Figure 10 corresponds to the smallest Hamming distance
with the smallest possible partiality (λ = 4). It is realized on subsequences
X ′ = PARIAL SIMIITY and Y ′ = PARETO OPTIMUM, the Hamming distance be-
tween which equals 9. Point (b) corresponds to the L2-Salukwadze distance
(dSP(X,Y ) = ‖(6, 7)‖2 =

√
85). It is realized on subsequences PARTL SIMIITY

and PARTO OPTIMUM (highlighted in red in Figure 10b). Point (c) is the small-
est value of partiality (λ = 18), for which dHAM is zero, i.e., dMP(X,Y ) = 18.
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Figure 6: Pareto distances between two-dimensional mythological creatures.

According to Proposition 3(ii), it is realized on a LCS, which in our example
is lcs(X, Y ) = PART IM (highlighted in Figure 10c). Using relation (23), it is
easy to verify that dE(X, Y ) = 18 as well, which is an empirical evidence that
Theorem 3(i) holds in this case.

7 Extensions

7.1 Self-similarity and symmetry

An important subset of the geometric similarity problem is self-similarity, usu-
ally referred to as symmetry. When we say that an object X is symmetric, we
usually imply extrinsic symmetries, that is, self-congruences of X. The family
of all the self-congruences of X, forms a group with the function composition,
which can be referred to as the extrinsic symmetry group.

In practice, due to acquisition and representation inaccuracies, perfect sym-
metry rarely exists. Non-symmetric shapes have a trivial extrinsic symmetry
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Full similarity Partial similarity

Figure 7: Dissimilarity matrices representing dGH (left) and d̃SP (right) between
two-dimensional mythological creatures.

group, containing only the identity mapping id(x) = x. However, while not
symmetric in the strict sense, a shape can still be approximately symmetric. An
intuitive way to understand the difference between the two definitions, is by
thinking of a non-symmetric shape as obtained by applying a deformation to
some other symmetric shape. Such a deformation may break the symmetries of
the shape: if previously a symmetry was a self-congruence, we now have map-
pings which have non-zero extrinsic distortion. This leads to a simple way of
quantifying the degree of extrinsic asymmetry of an object as

asym(X, dRm |X) = inf
ϕ:X→X

dis (ϕ, dRm |X), (24)

which resembles the Gromov-Hausdorff distance. Note, however, that in order
to avoid a trivial solution, we require the mapping ϕ to be a local minimum of
the distortion distinct from id.

While being adequate for rigid shapes, the traditional extrinsic notion of
symmetry is inappropriate for non-rigid ones. Extrinsic symmetry can be broken
as a result of isometric shape deformations, while its intrinsic symmetry is
preserved. In [66], Raviv et al. proposed using ε-isometries as a generalization
of approximate symmetries for non-rigid shapes. Using our notation, the degree
of intrinsic symmetry of an object is quantified as

asym(X, dX) = inf
ϕ:X→X

dis (ϕ, dX). (25)
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Figure 8: 3D nonrigid shapes database used in the second experiment.

The problem of partial symmetry is a subset of the partial similarity prob-
lem since instead of two objects we have only one, which means that the op-
timization is performed only on one part, X ′ ⊆ X. This allows for a simpler
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Figure 9: Dissimilarity matrices representing dGH (left) and d̃SP (right) between
three-dimensional mythological creatures.

formulation of the problem as follows. The partiality is simply the measure of
the cropped parts, λ(X ′) = µX(X ′c). As the dissimilarity, we use the degree
of asymmetry, ε(X ′) = asym(X ′, dX |X′) in case of intrinsic symmetries and
ε(X ′) = asym(X ′, dRm |X′) in the case of the extrinsic ones. The computation
of partial symmetry is formulated as a the minimization of the vector objective
function Φ(X) = (ε(X ′), λ(X ′)) with respect to X ′ over ΣX . The part X∗ is
Pareto optimal if for any X ′ ∈ ΣX , at least one of the following holds,

ε(X∗) ≤ ε(X ′); or,
λ(X∗) ≤ λ(X ′). (26)

We denote the partial asymmetry by asymP(X). By writing (λ, ε) ∈ asymP(X),
we mean that there exists a part with partiality λ and asymmetry ε, such that
any other part with smaller partiality have larger asymmetry, or any other part
with smaller asymmetry has larger partiality.

7.2 Textured shapes and images

Similarity of geometric objects can be extended to textured shapes, in which the
objects, in addition to their geometric properties also have some photometric
properties. In computer graphics, this is typically modeled by attaching to the
object X a texture I : X → C, where C is some color space (e.g., R in case
of grayscale images and R3 in case of RGB images). The metric dX for such
objects can be defined in numerous ways, in general consisting of a photomet-
ric distance (measuring the dissimilarity between the color of the pixels), or
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Figure 10: Comparison of sequences of characters. Red denotes the subse-
quences. Point (b) corresponds to the L2-Salukwadze distance (dashed). Point
(c) is realized on the LCS. At this point, λ equals the value of dE and dMP

(dotted).

geometric distance (i.e., and extrinsic or intrinsic metric discussed before), or a
combination thereof. The similarity of textured shapes is posed as a problem of
metric spaces comparison in the same way it is done for geometric objects using
the Gromov-Hausdorff distance.

A particular case of textured objects are images. An image can be con-
sidered as a flat rectangular-shaped two-dimensional object with texture. Un-
like the common representation of images in image processing community as a
graph of function, here an image is modeled as a metric space (X, d), where
X = [0,M ] × [0, N ] is a rectangular region and d is a metric representing the
similarity between different points in the image. We should note that images
were considered as geometric objects in previous works. For example, in [70],
Sochen et al. suggested that images can be considered as Riemannian manifolds

28



embedded into R3 (in case of grayscale images) or R5 (in case of color images),
with the metric structure induced by the embedding. There are several funda-
mental differences between representing images as Riemannian manifolds and
as generic metric spaces. First, being a more crude and less restrictive, a generic
metric is not necessarily continuous, unlike the Riemannian one. This is impor-
tant in images, where discontinuities (edges) play a crucial role. Second, unlike
the Riemannian metric which is local, d is global (i.e., it can be used to measure
the distance between any two points in the image). Finally, the metric d is
arbitrary and not related to a specific embedding.

The choice of d is guided by the requirements posed on the similarity crite-
rion. If one, for example, wishes the similarity between images to be rotation-
and translation-invariant, the Euclidean distance dR2(x, x′) is the easiest choice.
If the similarity has to be scale invariant, some kind of photometric similarity
is required, e.g., the pixel-wise photometric distance ‖I(x)− I(x′)‖22, or a more

general region-wise photometric distance,
(∫

Br
‖I(x + ξ)− I(x′ + ξ)‖22dξ

)1/2

,

where Br is a ball of radius r in R2. Recent work in image processing [73, 23]
suggested that these two distances can be combined, resulting in the following
distance,

d(x, x′) = dR2(x, x′) + β

(∫

Br

‖I(x + ξ)− I(x′ + ξ)‖22dξ

)1/2

,

where β is some non-negative constant. Such a distance, referred to as non-local
means, measures the dissimilarity between two pixels x, x′ in the image as the
sum of the distance between small patches around x and x′ and the Euclidean
distance between the locations of x and x′. It appears to be more robust to
noise that point-wise comparison of intensities.

The disadvantage of combining the photometric and geometric distances
into a single metric is the fact that an isometry in the sense of this metric
does not have a clear interpretation. A better alternative is to separately define
multiple metrics (for example, a photometric and a geometric one) and minimize
a combination of the corresponding distortions.

7.3 Regularization

In our definition of partial similarity, we were interested in finding the largest
most similar parts, without saying anything about their shape. This approach
is prone to finding multiple disconnected components, a behavior we sometimes
observed is shape comparison. Avoiding this problem is possible by taking into
consideration the regularity of parts.

There are two ways of doing it. First, some irregularity function r(X ′) can
be added as the third criterion into our vector-valued objective function. This
new multicriterion optimization problem requires simultaneous minimization of
dissimilarity, partiality and irregularity. The Pareto frontier in this case becomes
a surface in R3. Alternatively, instead of partiality we can define insignificance, a
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more complicated criterion of part “quality”, which may include both a measure
of the part size and regularity.

The most straightforward definition of irregularity is the length of the bound-
ary ∂X ′, which allows to define the insignificance of the part as

i(X ′) =
∫

X′
da + η

∫

∂X′
d`,

where η is some parameter controlling the importance of the regularization
term. In the fuzzy setting, the term

∫
∂X′ d` can be approximated using the

Mumford-Shah approach [61]. We refer the reader to [8] for additional details.

8 Conclusions

We presented a method for quantifying the partial similarity of objects, based
on selecting parts of the objects with the optimal tradeoff between dissimilarity
and partiality. We use the formalism of Pareto optimality to provide a defini-
tion to such a tradeoff. We demonstrated our approach on problems of analysis
of geometric two- and three-dimensional rigid and non-rigid objects and text
sequences. In all these problems, our construction has a meaningful interpre-
tation. The set-valued distances resulting from it have appealing theoretical
and practical properties. Particularly, in shape matching and text analysis,
they can be viewed as a generalization of previous results. Since the presented
framework of partial similarity is generic, it can be applied to other pattern
recognition problems.

Appendix

Proof of Proposition 1

Part (i) follows trivially from the fact that µ̃X(δX′) = µX(X ′) and µ̃Y (δY ′) =
µY (Y ′). Part (ii): by Chebyshev inequality, we have

µX((TθmX)c) = µX({x ∈ X : 1−mX(x) ≥ 1− θ})
≤ 1

1− θ

∫

X

(1−mX(x))dµX

=
1

1− θ
µ̃X(mc

X). (27)
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The same holds for µY ((TθmY )c). Plugging these inequalities into the definition
of fuzzy partiality, we have

λ(TθmX , TθmY ) = µX((TθmX)c) + µY ((TθmX)c)

≤ 1
1− θ

(µ̃X(mc
X) + µ̃Y (mc

Y ))

=
1

1− θ
λ̃(mX ,mY ).

Proof of Proposition 2

For proof of (i), refer to [10]. Part (ii):

d̃GH(mX ,mY ) ≥ 1
2

inf
ϕ:X→Y

ψ:Y→X

max





sup
x,x′∈TθmX

θ2|dX(x, x′)− dY (ϕ(x), ϕ(x′))|
sup

y,y′∈TθmY

θ2|dY (y, y′)− dX(ψ(y), ψ(y′))|
sup

x∈TθmX ,y∈TθmY

θ2|dX(x, ψ(y))− dY (ϕ(x), y)|
sup

x∈TθmX

θD (1−mY (ϕ(x)))

sup
y∈TθmY

θD (1−mX(ψ(y)))





.

From d̃GH(mX ,mY ) ≥ θD supx∈TθmX
(1−mX(ϕ(x))), and the fact that d̃GH(mX ,mY ) ≤

1
2 max{diam(X),diam(Y )}, it follows that

inf
x∈TθmX

mY (ϕ(x)) ≥ 1− 2d̃GH(mX ,mY )
θD

≥ 1− max{diam(X), diam(Y )}
θD

≥ θ.

Consequently, ϕ(TθmX) ⊆ TθmY . In the same manner, ψ(TθmY ) ⊆ TθmX .
Therefore,

d̃GH(mX ,mY ) ≥ θ2

2
inf

ϕ:TθmX→TθmY

ψ:TθmY →TθmX

max





sup
x,x′∈TθmX

|dX(x, x′)− dY (ϕ(x), ϕ(x′))|
sup

y,y′∈TθmY

|dY (y, y′)− dX(ψ(y), ψ(y′))|
sup

x∈TθmX ,y∈TθmY

|dX(x, ψ(y))− dY (ϕ(x), y)





= θ2dGH(TθmX , TθmY ).
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Proof of Proposition 3

dMP(X, Y ) corresponds to the longest subsequences X ′ and Y ′ that yield dHAM(X ′, Y ′) =
0, which is, by definition, X ′ = Y ′ = lcs(X,Y ). By definition of partial-
ity, λ(X ′, Y ′) = |X| + |Y | − 2lcs(X, Y ). Using the relation (23), we arrive at
dMP(X, Y ) = dE(X, Y ).
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