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Abstract

Partial replication is a way to increase the scalability of replicated systems since updates
only need to be applied to a subset of the system’s sites, thus allowing replicas to handle
independent parts of the workload in parallel. In this paper, we propose P-Store, a partial
database replication protocol for wide area networks. In P-Store, each transaction T op-
timistically executes on one or more sites and is then certified to guarantee serializability
of the execution. The certification protocol is genuine, it only involves sites that replicate
data items read or written by T , and incorporates a mechanism to minimize a convoy ef-
fect. P-Store makes a thrifty use of an atomic multicast service to guarantee correctness:
no messages need to be multicast during T ’s execution and a single message is multicast to
certify T . This is in contrast to previously proposed solutions that either require multiple
atomic multicast messages to execute T , are non-genuine, or do not allow transactions to
execute on multiple sites. Experimental evaluations reveal that the convoy effect plays
an important role even when one percent of the transactions are global, that is, they in-
volve multiple sites. We also compare the scalability of our approach to a fully replicated
solution when the proportion of global transactions and the number of sites vary.
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1 Introduction

Partial replication is a way to improve the scalability
of replicated systems by allowing sites to store a subset
of the application data and split the load among rep-
licas, to maximize throughput. As a consequence, data
is replicated close to clients, to favor locality, and stor-
age resources are used sparingly.

In this paper, we present P-Store, a scalable dis-
tributed key-value store that supports partial replica-
tion and transparent transactional access. P-Store as-
sumes a wide area network environment where sites
are clustered in groups (e.g., data centers) and seeks to
minimize costly and slow inter-group communication.

The solution we propose is flexible and scalable in
a precise sense as we explain next. Data items may be
replicated anywhere and any number of times provided
that sites of a given group replicate the same set of
data items. Transaction execution does not require data
items to be accessed from the same site, allowing more
flexibility when partitioning data. Read requests are
executed optimistically with no inter-site synchroniza-
tion; transactions are then certified to guarantee serial-
izability of the execution. To improve scalability, the
certification protocols we present ensure genuine par-
tial replication:

• For any submitted transaction T , only database
sites that replicate data items read or written by
T exchange messages to certify T .

In P-Store, correctness relies on the use of an atomic
multicast service to order transactions that operate on
the same data items. We make an economical use of
this service: to execute and certify each transaction, a
single message is atomically multicast.

This is in contrast to previously proposed solutions
that either atomically multicast multiple messages to
handle each transaction [1, 2], are non-genuine [3, 4],
or do not allow transactions to execute on multiple sites,
thereby forcing at least one replica to hold the entire
database if a single transaction operates on the entire
data [3]. To the best of our knowledge, this is the
first genuine partial database replication protocol that
allows transactions to execute on multiple sites while
using a single atomic multicast message per transac-
tion.

The first certification protocol we propose is simple
but vulnerable to a convoy effect that slows down trans-
action certification due to global transactions, i.e., trans-
actions that involve multiple groups. To mitigate this
undesired phenomenon, we propose a second protocol
that doubles the throughput of the first protocol even
when only 1% of transactions are global—this advant-
age grows when the percentage of global transactions
increases.

We further study the performance of P-Store and

compare its scalability to a fully replicated solution when
the percentage of global transactions and the number
of groups vary. P-Store provides a linear scale-out up
to eight groups and when a fourth of the transactions
are global. With this number of groups, P-Store al-
lows to almost double the peak throughput of the fully
replicated scheme and can process multiple thousands
of update transactions when each data items is replic-
ated three times and inter-group links have a delay of
50 milliseconds and 10 megabits per second of band-
width. Preliminary experimental results suggest that
partial replication is interesting in systems with four
or more groups when global transactions access few
groups.

The rest of the paper is structured as follows. Sec-
tion 2 introduces our model and assumptions. Sec-
tions 3 and 4 respectively present P-Store and the two
certification protocols; the current state-of-the-art is sur-
veyed in Section 5. The implementation of P-Store is
sketched in Section 6 and empirical results are reported
in Section 7. Section 8 concludes the paper. We prove
the correctness of P-Store in the appendix.

2 System Model and Definitions

2.1 Sites, Groups, and Links

We consider a system Π = {s1, ..., sn } of sites, each
equipped with a local database. Sites communicate
through message passing and do not have access to a
shared memory nor a global clock. We assume the be-
nign crash-stop failure model: sites may fail by crash-
ing, but do not behave maliciously. A site that never
crashes is correct; otherwise it is faulty.

The system is asynchronous, i.e., messages may ex-
perience arbitrarily large (but finite) delays and there is
no bound on relative site speeds. To circumvent the
FLP impossibility result [5] and make atomic multicast
implementable, we further assume that the system is
augmented with unreliable failure detectors [6]. The
exact failure detector needed depends on the atomic
multicast algorithm. Hereafter, we assume an atomic
multicast service, as defined in 2.4.

We define Γ = {g 1, ..., g m } as the set of site groups
in the system. Groups are disjoint, non-empty, and sat-
isfy
⋃

g∈Γ g =Π. For each site s ∈Π, group(s ) identifies
the group s belongs to. A group g that contains at least
one correct site is correct; otherwise g is faulty.

Communication links are quasi-reliable, i.e., they
do not create, corrupt, nor duplicate messages, and for
any two correct sites s and s ′, and any message m , if s
sends m to s ′, then s ′ eventually receives m .
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2.2 Database and Replication Model

A database D is a finite set of tuples (k , v, ts), or data
items, where k is a key, v its value, and ts is its version
number. Each site holds a partial copy of the database.
For each site s i , we denote by Items(s i ) ⊆ D the set
of keys replicated at site si. Given a site s i and a key k
replicated at site s i , Version(k , s i ) returns the version of
k stored at s i . We suppose that, initially, for every key
k and every site s i , Version(k , s i ) = 1. We assume that
sites in the same group replicate the same set of data
items, that is, ∀g ∈ Γ : ∀s , s ′ ∈ g : Items(s) = Items(s′),
and we allow data items to be replicated in more than
one group. For every key k in the database, there exists
a correct site s i that replicates the value associated with
k , i.e., k ∈ Items(si).

A transaction is a sequence of read and write opera-
tions on data items followed by a commit or abort oper-
ation. A read on some key k by transaction T , denoted
rT [k ], returns the value associated with k as well as its
corresponding version. A write performed by T is des-
ignated as wT [k , v, ts], where v is the value written on
key k , and ts is its version. For simplicity, we hereafter
represent a transaction T as a tuple (id, rs, ws, up)where
id is the unique identifier of T , rs is the set of key-
version pairs read by T , ws is the set of keys written by
T , and up contains the updates of T . More precisely,
up is a set of tuples (k, v), where v is the new value T
associates to k; the set T .ws equals {k : (k , v ) ∈ T.u p},
where we refer to element e of T ’s tuple as T .e.

For every transaction T , Items(T ) is the set of keys
read or written by T . Transactions T and T ′ read-
write conflict if one transaction reads a key k that the
other transaction updates. We do not consider write-
write conflicts since, in the certification protocols we
propose, updates to each key k are ordered. Every
transaction T is associated to a unique site: Proxy(T ),
which submits T ’s read and write requests on behalf
of a client. We denote WReplicas(T ) as the set of sites
that replicate at least one data item written by T , and
Replicas(T ) as the sites that replicate at least one data
item read or written by T . Transaction T is local iff for
any site s in Replicas(T ), Items(T ) ⊆ Items(s); other-
wise, T is global.

2.3 Data Consistency Criteria

On each site, the local database ensures order-preserving
serializability: the local execution of transactions has
the same effect as a serial execution of these trans-
actions in which the commit order is preserved [7].
This condition is typically met by relying on two-phase
locking.

In this paper, we provide a partial replication pro-
tocol that ensures the transaction execution on multiple
partial copies of the database is equivalent to some
one-copy serial execution of the same set of transac-

tions. More precisely, the devised protocol ensures one-
copy serializability (1-SR) [8].

2.4 Atomic Multicast

We assume that our system is equipped with an atomic
multicast service that allows messages to be dissem-
inated to any subset of groups in Γ [1, 9]. For every
message m , m .dst denotes the groups to which m is
multicast. A message m is multicast by invoking A-
MCast(m ) and delivered with A-Deliver(m ). We define
the relation < on the set of messages sites A-Deliver as
follows: m <m ′ iff there exists a site that A-Delivers
m before m ′.

Atomic multicast satisfies the following properties:
(i) uniform integrity: for any site s and any message m ,
s A-Delivers m at most once, and only if s ∈m .dst and
m was previously A-MCast, (ii) validity: if a correct
site s A-MCasts a message m , then eventually all cor-
rect sites s ′ ∈m .dst A-Deliver m , (iii) uniform agree-
ment: if a site s A-Delivers a message m , then eventu-
ally all correct sites s ′ ∈m .dst A-Deliver m , (iv) uni-
form prefix order: for any two messages m and m ′ and
any two sites s and s ′ such that {s , s ′} ⊆m .dst∩m ′.dst,
if s A-Delivers m and s ′ A-Delivers m ′, then either s
A-Delivers m ′ before m or s ′ A-Delivers m before m ′,
(v) uniform acyclic order: the relation < is acyclic.

To guarantee genuine partial replication, we require
atomic multicast protocols to be genuine [10]: an al-
gorithm A solving atomic multicast is genuine iff for
any admissible run R ofA and for any site s , in R , if s
sends or receives a message, then some message m is
A-MCast, and either s is the site that A-MCasts m or
s ∈m .d s t .

3 The Lifetime of a Transaction in P-Store

We present the lifetime of transactions in our partially
replicated system P-Store. We consider a transaction T
and comment on the different states T can be in.

• Executing: Each read operation on key k is ex-
ecuted at some site that stores k ; k and the data
item version ts read are stored as a pair (k , ts)
in T.rs. Reads are optimistic, that is, no syn-
chronization between sites in Replicas(T ) occurs
to guarantee the consistency of T ’s view of the
database; later on, when T is in the Submitted
state, a certification protocol checks that T read
the correct data item versions. Every update of
key k to some value v is buffered as a pair (k , v )
in T.up.

When Proxy(T ) requests a commit, T passes to
the Committed state if T is read-only and local.
Otherwise, if T is global or an update transac-
tion, T is submitted to the certification protocol,
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at which point T enters the Submitted state. The
goal of the certification protocol is twofold. First,
it propagates T ’s updates to WReplicas(T ).
Second, it ensures that the execution of transac-
tions is one-copy serializable. To submit T , sites
use one of the certification protocols presented in
Section 4.

• Submitted: To ensure one-copy serializability, the
certification protocol checks whether T observed
an up-to-date view of the database despite optim-
istic reads and concurrent updates. If T passes
the certification test, T enters the Committed state;
otherwise, T passes to the Aborted state.

• Committed/Aborted: If T commits, all sites in
WReplicas(T ) apply its updates. Whatever T ’s
outcome, Proxy(T ) is notified.

P-Store, combined with any of the two certification
protocols proposed in this paper, ensures genuine par-
tial replication and one-copy serializability. Moreover,
the following two liveness properties are also ensured:

• non-trivial certification: If there is a time after
which no two read-write conflicting transactions
are submitted, then eventually transactions are
not aborted by certification

• termination: For every submitted transaction T ,
if Proxy(T ) is correct, then all correct sites in
WReplicas(T ) either commit or abort T .

4 Certifying Transactions

In this section, we present two certification protocols.
The first one is simple but suffers from a convoy ef-
fect, that is, transaction certification may be delayed by
transactions currently being certified. The second pro-
tocol seeks to minimize this undesired phenomenon.

4.1 A Genuine Protocol

The algorithm Age we present next relies on atomic
multicast to certify transactions. We first present an
overview of the algorithm and then present Age in de-
tail.

Algorithm Overview When a transaction T is submit-
ted for certification, AlgorithmAge atomically multic-
asts T to all groups storing keys read or updated by
T . Upon A-Delivering T , each site sr that replicates
data items read by T checks whether the values read
are still up-to-date. To do so, sr compares the version
of the data items read by T against the versions cur-
rently stored in the database. If they are the same, T
passes certification at sr , otherwise T fails certification
at sr .

In a partially replicated context, sr may only store
a subset of the keys read by T , in which case sr does
not have enough information to decide on T ’s outcome.
Hence, to satisfy non-trivial certification, we introduce
a voting phase where sites replicating data items read
by T send the result of their certification test to each site
sw in WReplicas(T ).1 Site sw can safely decide on T ’s
outcome when sw received votes from a voting quorum
for T . Intuitively, a voting quorum VQ for T is a set
of sites such that for each data item read by T , there
is at least one site in VQ replicating this item. More
formally, a quorum of sites is a voting quorum for T if
it belongs to VQ(T ), defined as follows:

VQ(T ) = {VQ|VQ⊆Π∧T .rs⊆
⋃

sr∈VQ

Items(sr)} (1)

Transaction T can safely commit when every site in
a voting quorum for T voted yes. If a site in the quorum
votes no, it means that T read an old value and should
be aborted to ensure serializability of the execution.

Figure 1 illustrates the execution of a global trans-
action T that reads data items from groups g 1 and g 2.
After all read requests have been executed, T is sub-
mitted toAge for certification.

Algorithm in Detail AlgorithmAge (see next page) is
composed of three concurrent tasks. Each line of the
algorithm is executed atomically. The algorithm uses
a global variable named Votes that stores the votes re-
ceived, i.e., the results of the certification tests.

When a transaction T is submitted, Proxy(T ) atom-
ically multicasts T to Replicas(T ) (line 10). Upon A-
delivering T , each site s that stores data items read by
T certifies T (line 8). If T is local, s knows T ’s out-
come at this point and, in case T commits, s applies
T ’s updates to the database (lines 16-17). Otherwise,
T aborts (line 18). If T is global, the result of the certi-
fication test is stored locally at s and sent to every site
sw in WReplicas(T ), except to members of s ’s group
(lines 20-22). Each site sw waits until it receives votes
from a voting quorum for T at which point sw can
safely decide on T ’s outcome (lines 23-24), and T is
handled similarly as local transactions (lines 25-28).
The outcome of T is then sent to Proxy(T ) (line 29).

4.2 Minimizing the Convoy Effect

The convoy effect occurs when the certification of a
transaction T1 is delayed by another global transaction
T2 although T1 is ready to be certified. In the certi-
fication protocol Age, this phenomenon may happen

1A similar voting phase appears in [11]. In contrast to Age, the
protocol in [11] is non-genuine and relies on a total order to certify
transactions.
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Figure 1: The execution and certification of a global transaction T involving groups g 1 and g 2 with AlgorithmAge.

AlgorithmAge 1
A Genuine Certification Protocol - Code of site s
1: Initialization
2: Votes←;

3: function ApplyUpdates(T )
4: foreach ∀(k , v )∈ T.up : k ∈ Items(s) do
5: let ts be Version(k , s )
6: wT [k , v, ts+1] {write to the database}

7: function Certify(T )
8: return ∀(k , ts)∈ T.rs s.t. k ∈ Items(s) : ts=Version(k , s )

9: To submit transaction T {Task 1}
10: A-MCast(T ) to Replicas(T ) {Executing→ Submitted}

11: When receive(Vote, T.i d , vot e ) from s ′ {Task 2}
12: Votes←Votes∪ (T.i d , s ′, vot e )

13: When A-Deliver(T ) {Task 3}
14: if T is local then
15: if Certify(T ) then
16: ApplyUpdates(T )
17: commit T {Submitted→ Committed}
18: else abort T {Submitted→ Aborted}
19: else
20: if ∃(k , -)∈ T .rs : k ∈ Items(s) then
21: Votes←Votes∪ (T.i d , s , Certify(T ))
22: send(Vote, T.i d , Certify(T )) to all s ′ in WReplicas(T ) s.t.

s ′ 6∈ group(s )
23: if s ∈WReplicas(T ) then
24: wait until ∃VQ ∈VQ(T ) :

∀s ′ ∈VQ : (T.i d , s ′, -)∈Votes
25: if ∀s ′ ∈VQ : (T.i d , s ′, y e s )∈Votes then
26: ApplyUpdates(T )
27: commit T {Submitted→ Committed}
28: else abort T {Submitted→ Aborted}
29: if s ∈WReplicas(T ) then send T ’s outcome to Proxy(T )

as follows: T1 was A-Delivered but it must wait un-
til T2’s votes are received to be certified. As the fre-
quency of submitted global transactions increases, this
phenomenon deteriorates the performance of Age: an
ever growing chain of transactions waiting to be certi-
fied is formed since only one global transaction can be

certified per inter-group delay. We address this prob-
lem in AlgorithmA ∗

ge. We first give an overview of the
algorithm and then presentA ∗

ge in detail.

Algorithm Overview To reduce the convoy effect, we
seek to certify transactions in parallel as much as pos-
sible. In the scenario described above, this allows T1 to
be certified while T2’s votes are exchanged.

Obviously, not all transactions can be certified con-
currently. Consider two read-write conflicting transac-
tions T0 and T1 such that Ti reads key k i and writes
key k1−i with i ∈ [0, 1]. Further, suppose that keys k0

and k1 are replicated in different groups and thus a vote
phase is needed to certify these transactions. If T0 and
T1 were certified in parallel, a site s1 could certify T1

followed by T2 while another site s2 could certify T2

before T1. In this scenario, s1 would vote “commit” for
T0 but “abort” for T1, the inverse of what s2 would do.

We observe that when transactions do not read-write
conflict, their certification order does not matter since
they do not affect each other. These transactions can
thus be certified in parallel.

Nevertheless, the updates of such transactions must
be applied in the order defined by atomic multicast. In
short, this is because local read-only transactions are
not certified. To illustrate this, consider the following
execution that violates 1-SR. Suppose that two trans-
actions T1 and T2 update keys k1 and k2, respectively,
and on site s1, T1 commits before T2, while on site s2,
T2 commits before T1. Consider in addition that on s1 a
local read-only transaction T3 reads keys k1 and k2 be-
fore T2 commits but after T1 does, and that s2 executes
a local read-only transaction T4 that reads the same data
items as T3 before T1 commits but after T2 does. This
execution is not 1-SR: in a one-copy serial execution,
T3 must be placed before T2 but after T1. However, T4

should be placed before T1 but after T2, which is im-
possible.
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Algorithm in Detail Algorithm A ∗
ge is composed of

four concurrent tasks. Each line of the algorithm is ex-
ecuted atomically. The algorithm uses two global vari-
ables: Votes stores the results of the certification tests,
as inAge, and CertifyQ is a FIFO queue of transactions
that are being certified.

To submit a transaction T , Proxy(T ) atomically mul-
ticasts T to Replicas(T ) (line 11). When T is A-Delivered
at a site s and T does not read-write conflict with any
transaction currently being certified, s stores and sends
the result of T ’s certification test if s replicates data
items read by T and T is global (lines 14-17). If s
is concerned by T ’s outcome, s adds T to the tail of
CertifyQ (line 18).

Site s then waits until there exists a transaction T in
CertifyQ whose outcome is known, i.e., Outcome(T ) 6=
⊥. Recall that T ’s outcome is known after s certi-
fies T if T is local (lines 4-5); if T is global, its out-
come is determined by votes from a voting quorum
for T (lines 6-7). If T can commit, s waits until T
is at the head of the certification queue before apply-
ing T ’s updates and committing T (lines 19-22). This
ensures that transaction updates are applied in the or-
der defined by atomic multicast. If T failed the certi-
fication test, T can be aborted regardless of T ’s posi-
tion in CertifyQ (lines 19). Transaction T is then re-
moved from CertifyQ and its outcome sent to Proxy(T )
(lines 25-26).

4.3 Why Does it Work?

We briefly argue why P-Store ensures one-copy seri-
alizability, and refer the reader to the appendix for a
complete proof. We consider only certification protocol
A ∗

ge sinceAge is a special case ofA ∗
ge.

Let H be a replicated data history consisting of com-
mitted transactions only. History H is 1-SR iff H is
view-equivalent to some one-copy serial history 1H ,
where H and 1H are view-equivalent iff the following
holds [8]:

1. H and 1H are defined over the same set of trans-
actions,

2. H and 1H have the same reads-x-from relation-
ships on data items: ∀Ti , Tj ∈ H (and hence,
Ti , Tj ∈ 1H): Tj read-x-from Ti in H iff Tj reads-
x-from Ti in 1H , and,

3. For each final write wT [k , v, ts] in 1H ,
wT [ka , v, ts] is also a final write in H for some
copy ka of key k .

We show how to construct a one-copy serial history
1H that is view-equivalent to H . History 1H consists of
the same committed transactions as H , write operations
follow the order defined by atomic multicast, and oper-
ations from different transactions do not interleave. In

AlgorithmA ∗
ge 2

Minimizing the Convoy Effect - Code of site s

1: Initialization
2: Votes←;, CertifyQ← ε

{ Functions ApplyUpdates and Certify are as inAge}

3: Function Outcome(T )
4: if T is local then
5: return Certify(T )
6: else if ∃VQ∈VQ(T ) :∀s ′ ∈VQ : ∃(T .id, s ′,−)∈Votes then
7: return ∀s ′ ∈VQ : (T .id, s ′, yes)∈Votes
8: else
9: return ⊥

10: To submit transaction T {Task 1}
11: A-MCast(T ) to Replicas(T ) {Executing→ Submitted}

12: When receive(Vote, T.i d , vot e ) from s ′ {Task 2}
13: Votes←Votes∪ (T.i d , s ′, vot e )

14: When A-Deliver(T ) and 6 ∃T ′ ∈CertifyQ :
T ′ read-write conflicts with T {Task 3}

15: if T is global and ∃(k , -) ∈ T .rs : k ∈ Items(s) then
16: Votes←Votes∪ (T.i d , s , Certify(T ))
17: send(Vote, T.i d , Certify(T )) to all s ′ in WReplicas(T ) s.t.

s ′ 6∈ group(s )
18: if s ∈WReplicas(T ) then add T to the tail of CertifyQ

19: When ∃T ∈CertifyQ : Outcome(T ) 6=⊥ and
(T = he a d (CertifyQ) or Outcome(T ) = no) {Task 4}

20: if Outcome(T ) = yes then
21: ApplyUpdates(T )
22: commit(T ) {Submitted→ Committed}
23: else if Outcome(T ) = no then
24: abort(T ) {Submitted→ Aborted}
25: CertifyQ←CertifyQ \ {T }
26: send T ’s outcome to Proxy(T )

certification protocol A ∗
ge, a transaction T passes the

certification test iff the data items read by T are still
up-to-date. Hence, if T commits then no transactions
updated data items read by T in the meantime. Con-
sequently, T reads a key k written by some transaction
T ′ in H iff T reads key k from T ′ in 1H . The fact
that A ∗

ge certifies non-conflicting transactions in paral-
lel does not matter since certifying these transactions
sequentially would produce the same result. Finally,
since writes to every key k are ordered by atomic mul-
ticast, it follows directly that if wT [k , v, ts] is a final
write to k in 1H , then wT [ka , v, ts] is also a final write
to k in H .

5 Related Work

Numerous protocols for full database replication have
been proposed [13, 14, 15, 16], some of which have
been evaluated in wide area networks [17]. Fewer pro-
tocols for partial replication exist. These protocols can
be grouped in two categories: those that are optimized
for local area networks [18, 19, 11], and those that are
topology-oblivious. In the following, we review pro-
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Algorithm Genuine? Execution on Execution Certification messages Consistency
multiple sites? latency latency (execution + certification) criterion

[3] no no - 2∆ O(n 2) GSI
[4] no yes (rr +wr +1)×2∆ 2∆ O(n 2) GSI

[12] yes yes rr ×2∆ | rr ×3∆ 4∆ O(k 2d 2) |O((rr +k 2)×d 2) 1-SR
[2] yes yes rr ×2∆ 2∆ | 4∆ O(k 2d 2) |O((rr +wr +k 2)×d 2) 1-SR

Age &A ∗
ge yes yes rr ×2∆ 3∆ O(k 2d 2) 1-SR

Table 1: Comparison of the database replication protocols (rr and wr are the number of remote reads and writes respectively, n is the
number of sites in the system, d is the number of sites per group, and k is the number of groups addressed by T ).

tocols from the second category that either provide a
generalized form of snapshot isolation (GSI) [3, 4] or
one-copy serializability (1-SR) [12, 2].

With GSI, transactions read data from a possibly
old committed snapshot of the database and execute
without interfering with each other. A transaction T
can only successfully commit if no other transaction
T ′ updated the same data items and committed after
T started (first-committer-wins rule). This consistency
criterion never blocks nor aborts read-only transactions
and update transactions are never blocked nor aborted
due to read-only transactions.

To the best of our knowledge, none of the proto-
cols that ensure GSI guarantee genuine partial replic-
ation. In fact, to certify a transaction T , the protocols
in [3, 4] require to atomically multicast T to all sites in
the system. Moreover, in [3], each transaction opera-
tion must be executed at the same site. Thus, if a single
transaction operates on the entire data, at least one rep-
lica must store the whole database. The protocol in [4]
does not have this drawback, however, for each transac-
tion T executed, an additional snapshot message must
be atomically multicast to guarantee that T observes a
consistent view of the database.

In [12] the authors propose a database replication
protocol based on atomic multicast that ensures 1-SR.
Every read operation on data item x is multicast to the
group replicating x; writes are multicast along with the
commit request. The delivered operations are executed
on the replicas using strict two-phase locking and res-
ults are sent back to the client. A final atomic commit
protocol ensures transaction atomicity. In the atomic
commit protocol, every group replicating a data item
read or written by a transaction T sends its vote to a
coordinator group, which collects the votes and sends
the result back to all participating groups.

In [2], a protocol that allows transactions to be ex-
ecuted on multiple sites is presented. To certify a trans-
action T , T is reliably multicast to Replicas(T )2, and
each operation of T on some data item x is atomically
multicast to the replicas of x . Sites then build the graph
G of transactions that precede T in the execution by ex-
changing their partial view of G . One-copy serializab-

2Reliable multicast ensures all properties of atomic multicast ex-
cept uniform prefix and acyclic order.

ility is ensured by checking that G is acyclic. These last
two operations, namely building G and checking that G
is acyclic, can be expensive.

Two algorithms based on atomic multicast that en-
sure genuine partial replication are presented in this
paper. They require a single atomic multicast per trans-
action and allow transactions to execute at multiple sites.
This allows to effectively partition the database even
if transactions access the database in its entirety. Al-
gorithm Age may suffer from the convoy effect since
it certifies transactions sequentially. The second al-
gorithm A ∗

ge alleviates this undesired phenomenon by
allowing non-conflicting transactions to be certified in
parallel.

Table 1 compares the properties and cost of the re-
viewed protocols. Columns two and three respectively
indicate whether the protocols ensure genuine partial
replication and whether transactions can be executed
at multiple sites. The subsequent three columns present
the cost of the protocols, namely the inter-group latency
to execute and certify a transaction T , and the total
number of inter-group messages exchanged to execute
and certify T . To compute these costs, we consider that
T is global and is executed from within some group
g . Transaction T issues rr remote reads and wr remote
writes. These operations access data items stored out-
side of g and thus require inter-group communication.
Further, we assume that groups are correct, neither fail-
ures nor failure suspicions occur, inter-group messages
have a delay of ∆, and intra-group message delays are
assumed to be negligible. In Table 1, costs are com-
puted by using the atomic multicast algorithm in [20].
This protocol has a latency of ∆ and 2∆ for messages
addressed to one and multiple groups respectively, and
sends O(x 2) inter-group messages to deliver multicast
messages, where x is the number of sites to which the
transaction is multicast. In columns four, five, and six,
we report the costs of the algorithms when data items
are replicated in one and two groups respectively. When
these costs are identical, we report a single value.

6 The Implementation of P-Store

We implemented P-Store in Java on top of BerkeleyDB
(BDB). To execute a transaction T , a client sends read
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and write requests to Proxy(T ), one of the sites in
Replicas(T ). Write requests are buffered by Proxy(T )
and each read of key k is executed at some site that
stores k inside a BDB transaction. When T is ready
to commit, Proxy(T ) submits T along with T ’s set of
key-version pairs read and T ’s updates using one of
the certification protocols presented in this paper. If
T passes the certification test, a BDB transaction ap-
plies T ’s updates to the database in the order defined
by atomic multicast. Otherwise, P-Store re-executes T
and resubmits T to the certification protocol.

Certification protocolsAge andA ∗
ge are implemen-

ted on top of an atomic multicast library optimized for
wide area networks [21]. When a transaction T is A-
Delivered at some site s , s assigns a certifier thread to
T . This thread executes the certification test for T and
applies T ’s update to the database as soon as T does
not read-write conflict with transactions currently be-
ing certified. Certifiers are part of a thread pool whose
size is configurable. When P-Store uses Age to certify
transactions, the certifier pool contains a single thread.

7 Performance Evaluation

In this section, we present an experimental evaluation
of the performance of P-Store with the certification pro-
tocolsAge andA ∗

ge. We start by presenting the system
settings and the benchmark used to assess the proto-
cols. We then evaluate the impact of the convoy effect
onAge and asses the scalability of P-Store when partial
and full replication are assumed.

7.1 Experimental Settings

The system The experiments were conducted in a
cluster of 24 nodes connected with a gigabit switch.
Each node is equipped with two dual-core AMD Op-
teron 2 Ghz, 4GB of RAM, and runs Linux 2.6. In all
experiments, each group consisted of 3 nodes, and the
number of groups varied from 2 to 8. We assumed that
groups were correct and used an atomic multicast ser-
vice optimized for this assumption. To provide higher
degrees of resilience, it would have sufficed to replace
the atomic multicast service with an implementation
that tolerates group crashes [9]. The bandwidth and
message delay of our local network, measured using
netperf and ping, were about 940 Mbps and 0.05 ms re-
spectively. To emulate inter-group delays with higher
latency and lower bandwidth, we used the Linux traffic
shaping tools. We considered a network in which the
message delay between any two groups follows a nor-
mal distribution with a mean of 50 ms and a standard
deviation of 5 ms, and each group is connected to the
other groups via a 1.25MBps (10 Mbps) full-duplex
link.

BerkeleyDB was configured with asynchronous disk
writes and logging in memory. Moreover, on each site
s , the cache was big enough to hold the entire portion
of the database replicated at s . This corresponds to a
setting were data durability is ensured through replica-
tion.

The benchmark We measured the performance of the
protocols using a modified version of the industry stand-
ard TPC-B benchmark [22]. TPC-B consists of update
transactions only, and defines one transaction type that
deposits (or withdraws) money from an account. In
our implementation of TPC-B, each transaction reads
and updates three data items: the account, the teller
in charge of the transaction, and the branch in which
the account resides. Accounts and tellers are associ-
ated with a unique branch.

We horizontally partitioned the branch table such
that each group is responsible for an equal share of the
data. Accounts and tellers of a branch b were replicated
in the same group as b , and members of a given group
replicated the same set of data items. Before partition-
ing, the database consisted of 3’600 branches, 36’000
tellers, and 360’000 accounts.

In TPC-B, about 15% of transactions involve two
groups, that is, the teller in charge of the transaction is
replicated in a different group than the group in which
the branch and account are stored. The remaining 85%
of transactions access data in the same group. To assess
the scalability of our protocols, we parameterized the
benchmark to control the proportion p of global trans-
actions. In the experiments, we report measurements
when p varies from 0% to 50%.

Each node of the system contained an equal number
of clients that executed the benchmark in a closed loop:
each client executed a transaction T and waited until it
was notified of T ’s outcome before executing the next
one. Each client c was placed in the same group as
the teller in charge of handling c ’s transactions, and in-
side each group g the load generated by g ’s clients was
shared among g ’s replicas. For all the experiments, we
report the average transaction execution time (in milli-
seconds) as a function of the throughput, i.e., the num-
ber of transactions committed per second. We com-
puted 95% confidence intervals for the transaction ex-
ecution times but we do not report them here as they
were always smaller than 5% of the average execution
time. The throughput was increased by adding an equal
number of clients to each node of the system and, on
average, four hundred thousand transactions were ex-
ecuted per experiment. Unless we explicitly state oth-
erwise, the executions were cpu-bound at peak loads.
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7.2 Assessing the Convoy Effect

We explore the influence of the number of certifier
threads on the performance of P-Store. We consider
a system with four groups, one percent of global trans-
actions, and vary the number of certifier threads from
one to one hundred fifty. With any pool size bigger than
one, the certification protocol used isA ∗

ge, otherwise it
isAge.

In Figure 2, we observe that the convoy effect af-
fects both latency and throughput despite a low per-
centage of global transactions. With one certifier thread,
as soon as sites certify a global transaction, no other
transactions can be certified for the duration of the vote
exchange, that is, one inter-group delay. This creates
long chains of transactions waiting to be certified and
limits throughput. Adding extra certifiers quickly im-
proves the performance of P-Store which reaches its
peak bandwidth with one hundred fifty threads. With
this pool size, the peak throughput reached by P-Store
more than doubled compared to when P-Store uses a
single certifier. We observed that the difference between
these two certification protocols grows when the per-
centage of global transactions increases.

In the following experiments, we configuredA ∗
ge to

use one hundred certifiers since the performance gained
by adding an extra fifty certifiers is small.
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Figure 2: The influence of the number of certifier threads in
a system with four groups and 1% of global transactions.

7.3 Full versus Partial Replication

In the following, we assess the scalability of P-Store
and compare certification protocol A ∗

ge against a cer-
tification protocol denoted as Afull that assumes full
replication, i.e., all sites store the entire database. To
do so, we evaluate the performance of A ∗

ge and Afull

when the number of groups and percentage of global
transactions vary.

ProtocolAfull is based onA ∗
ge: non-conflicting trans-

actions are certified in parallel and updates are applied
in the order defined by atomic multicast. When an up-
date transaction T is submitted toAfull, T is atomically
multicast to all sites to be certified and to propagate its

updates. Since full replication is assumed, all transac-
tions are local and do not require a vote phase. The
certifier pool ofAfull contains one hundred threads.

Varying the percentage of global transactions In Fig-
ure 3(a), we report the latency of P-Store as a function
of throughput when using certification protocols A ∗

ge
andAfull. We consider from 0% to 50% of global trans-
actions and a system with four groups. A ∗

ge presents
a similar latency as Afull with 25% of global trans-
actions but supports higher loads. Any percentage of
global transactions higher than 25% makes full replic-
ation more attractive than partial replication. This is
explained by the extra cost paid byA ∗

ge to fetch remote
data items and execute vote phases to handle global
transactions.

With lower percentages of global transactions,A ∗
ge

provides lower latencies and improves the peak through-
put ofAfull by a factor of 2.1, 2.7, 3.7, and 6.3 when the
percentage of global transactions is respectively 15%,
5%, 1%, and 0%. When no transactions are global,
each group acts as a completely independent replicated
system, the corresponding curve in Figure 3(a) thus
only serves as an illustrative purpose.
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Figure 3: The scalability of Afull and A ∗
ge when the percent-

age of global transactions and the number of groups vary.

Varying the number of groups In Figure 3(b), we study
the scalability of A ∗

ge and Afull when the number of
groups varies and consider 25% of global transactions.
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Afull does not scale when the number of groups in-
creases. In fact, Afull performs best with two groups;
with eight groups the execution is network-bound. In
contrast, A ∗

ge presents a scale-out of roughly 0.7 up to
eight groups, that is, multiplying the number of groups
by k increases the peak throughput of A ∗

ge by a factor
of 0.7k . Moreover,A ∗

ge with eight groups can support a
load that is 1.7 times higher than the best peak through-
put of Afull among all considered system sizes. This
shows thatA ∗

ge offers good scalability even when 25%
of the workload involves multiple groups.

We note that at peak loads, from 7% to 15% of
transactions were aborted by A ∗

ge—Afull never abor-
ted more than 5% of the transactions. In A ∗

ge, aborts
were primarily caused by the optimistic reads of global
transactions. We are currently working on techniques
to reduce this phenomenon.

7.4 Replicating Data across Groups
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Figure 4: The scalability of Afull and A ∗
ge when the replica-

tion factor and the percentage of update transactions vary.

To reduce the amount of data items fetched from
remote groups and increase the locality of the execu-
tion, it may be interesting to replicate data items in
multiple groups. To evaluate this idea, the database is
split into as many partitions as there are groups, and
each group replicates x partitions. We denote x as the
replication factor or number of copies. With x equal to
one, the data is perfectly partitioned such that no two
groups replicate the same data item—this is the set-

ting A ∗
ge used up to now. With x equal to the number

of groups, we fall back to full replication, i.e., Afull.
In Figures 4(a) and 4(b), we report results in a system
with four groups and respectively 100% and 20% per-
cent of updates—read-only transactions read a single
account. Recall that update transactions also perform
reads and may benefit from replicating data items in
multiple groups to allow local reads.

Maintaining copies of each data item in two groups
harms the latency and scalability of A ∗

ge dramatically
with 25% of global transactions (see Figure 4(a)). Trans-
actions are now atomically multicast to twice as many
groups to be certified. In particular, global transactions
must be multicast to all four groups of the system. In-
terestingly, reducing the percentage of global transac-
tions to 1% does not affect this result significantly. This
is because with two copies, the updates of local transac-
tions must be applied to two groups, compared to only
one group otherwise. This situation does not change
when the workload is composed of only 20% of up-
dates (see Figure 4(b)). In Figures 4(a) and 4(b), Afull

provides better performance than A ∗
ge with two cop-

ies and regardless of the proportion of global transac-
tions. This suggests that performing remote reads is
less costly than replicating data across groups.

7.5 Summary

Based on the results above, we provide a tentative de-
cision diagram to determine whether to deploy full or
partial replication given the workload. Figure 5 advoc-
ates partial replication when the number of groups is
important and global transactions access few groups.
We suspect that the percentage of read-only transac-
tions does not affect the decision procedure, except in
special cases (e.g., when the majority of read-only trans-
actions read data items from multiple groups). Further
refining this decision procedure is future work.
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Figure 5: Deciding between full and partial replication.
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8 Conclusion

P-Store is a partial database replication protocol for
wide area networks that allows transactions to optim-
istically execute at multiple sites and certifies transac-
tions in a genuine manner: to certify a transaction T
only sites that replicate data items read or written by
T exchange messages. The certification protocol A ∗

ge
proposed in this paper allows to reduce the convoy ef-
fect by certifying non-conflicting transactions in paral-
lel. To guarantee serializability of the transaction exe-
cution, P-Store makes a thrifty use of an atomic mul-
ticast service: a single message is atomically multicast
during T ’s certification. This is in contrast to previ-
ously proposed solutions that either do not allow trans-
actions to execute at multiple sites, are non-genuine, or
invoke the atomic multicast service multiple times to
handle each transaction.

Our experimental results show that the certification
protocol A ∗

ge effectively reduces the convoy effect and
doubles the peak throughput of P-Store even when only
one percent of transactions are global. We also ob-
served that P-Store scales better than a fully replicated
solution when the percentage of global transactions is
no more than twenty-five percent and provides an al-
most linear scale-out up to at least eight groups.

As future work, we plan to further investigate the
parameters that influence the scalability of partial rep-
lication and refine our decision procedure to determine
when partial replication is a better choice than full rep-
lication.
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We only give the proof of P-Store when used with
certification protocol A ∗

ge as Age is a special case of
A ∗

ge. We show P-Store ensures one-copy serializabil-
ity, termination, non-trivial certification, and genuine
partial replication when used with A ∗

ge and the genu-
ine atomic multicast algorithms in [20, 1, 9].

.1 Proof of Correctness

Definition .1. We define the binary relation<T on trans-
actions as follows: T1 <T T2 iff ∃s i ∈ Π : s i A-
Delivers T1 before T2. Moreover, let G<(T ) = (V, E ) be a
finite DAG constructed as follows:

1. add vertex T to V

2. while ∃T1 ∈V : ∃T2 6∈V : T2 <T T1 do:
add T2 to V and add directed edge T2→ T1 to E

For any transaction T ′ in G<(T ), we say that T ′ is
at distance k of T iff the longest path from T ′ to T is
of length k . We let Tk be the subset of transactions in
G<(T ) that are at distance k of T .

Lemma .1. For any submitted transaction T , G<(T ) is
acyclic.

Proof: Follows directly from the uniform acyclic
order property of atomic multicast. �

Definition .2. We define Certify(T )i as the returned
value of the function Certify(T) called on si. If there
exists no invocation of function Certify(T) on si we say
that Certify(T) is undefined, and we write Certify(T)i =
⊥.

Definition .3. We define vote(VQ, T ), voting quorum
VQ’s vote for transaction T (VQ∈VQ(T )), considering
the VOTE messages of all q ∈VQ as follows:

• vot e (VQ , T ) = y e s iff ∀s i ∈ VQ : Certify(T )i = yes

• vot e (VQ , T ) = no iff ∀s i ∈ VQ :
Certify(T )i 6=⊥ ∧
∃s j ∈ VQ : Certify(T )j = no

• vot e (VQ , T ) =⊥ iff ∃s i ∈ VQ : Certify(T )i =⊥

Definition .4. For any submitted transaction T and any
key k read by T , we define Version(k , s i )T as the value
of Version(k , s i ) on site s i after s i executed line 8 for
transaction T . If s i never executes line 8 for transac-
tion T or s i does not replicate k , then Version(k , s i )T =
⊥.

Lemma .2. For any submitted transaction T:

1. There does not exist VQ1, VQ2 ∈ VQ(T ) such that
vote(VQ1, T ) = yes and vote(VQ2, T ) = no.

2. For any key k ∈ T.w s , for any two sites s i , s j

such that k ∈ Items(si) and k ∈ Items(sj), if
Version(k , s i )T 6=⊥ and Version(k , s j )T 6=⊥, then
Version(k , s i )T =Version(k , s j )T .

Proof: Let Tk be the subset of the transactions in
G<(T ) that are at distance k of T . We show that for any
k and any T ′ ∈ Tk , 1) and 2) hold. Since T ∈ T0, this
shows the two claims. Let km a x be the largest k such
that Tk 6= ;. We proceed by simultaneous induction on
1) and 2), starting from km a x .

• Base step (k = km a x ):

1. From the definition of Tkm a x , there exists no
transaction T ′ ∈Tkm a x such that a site s i A-
Delivers a transaction T ′′ before T ′. Hence,
on all sites s i such that Certify(T )i 6= ⊥,
Certify(T )i = yes. Hence,
for all VQ ∈ VQ(T ′), vote(VQ, T ′) = yes.

2. From the definition of Tkm a x and the algorithm,
for any transaction T ′ ∈ Tkm a x and any key
k ∈ T ′.w s , on all sites s i such that
k ∈ Items(si) and Version(k , s i )T

′ is defined,
Version(k , s i )T

′ = 1.

• Induction step: Suppose that the two claims hold
for any k such that 0 < k ≤ km a x , we show that
they also hold for k−1. Let T ′ be any transaction
in Tk−1.

1. Suppose, by way of contradiction, that
vote(VQ1, T ′) = yes and vote(VQ2, T ′) = no.
Hence, there exists a site s i ∈ VQ2 such
that Certify(T ′)i = no. Consequently, there
exists a tuple (k , ts) ∈ T.rs such that ts 6=
Version(k , s i )T

′ . From the algorithm, there
exists a transaction T ′′ such that s i A-Delivers
T ′′ just before T ′, T ′′ commits and updates
k , and Version(k , s i )T

′′ = ts (just after T ′′

commits, Version(k , s i ) is incremented and
becomes greater than ts). From the defini-
tion of a voting quorum, there exists a site
s j ∈ VQ1 such that k ∈ Items(s j ), and
thus, T ′′ is also atomically multicast to s j .
From the uniform prefix order property of
atomic multicast, either (i) s i A-Delivers
T ′ before T ′′ or (ii) s j A-Delivers T ′′ be-
fore T ′. Case (i) is impossible as s i would
A-Deliver T ′ twice, a contradiction to the
uniform integrity property of atomic mul-
ticast. Therefore, s j A-Delivers T ′′ before
T ′. From the induction hypothesis of 1), all
voting quorums for T ′′ vote similarly, and
thus, since s i commits T ′′, s j commits T ′′

as well. From the induction hypothesis of
2), Version(k , s i )T

′′ = Version(k , s j )T
′′ .
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Hence, since s j A-Delivers T ′′ before T ′

and T ′′ read-write conflicts with T ′, s j in-
crements Version(k , s j ) to a greater value
than ts before certifying T ′, and thus Certify(T ′)j
= no, a contradiction to the fact that s j ∈ VQ1

and vote(VQ1, T ′) = yes.
2. Let T ′′ be the last transaction that commits

on s i before T ′ such that T ′′ updates k . Us-
ing a similar argument as in the induction
step of 1), we can show that s j A-Delivers
T ′′ before T ′. From the induction hypo-
thesis of 1), T ′′ commits on s j .
We now show that (*), on s j , T ′′ is also the
last transaction that updates k and commits
before T ′. Suppose, by way of contradic-
tion, that there exists a transaction T ′′′ that
commits after T ′′ and before T ′ on s j such
that k ∈ T ′′′.w s . From the uniform prefix
order of atomic multicast, either (i) s i A-
Delivers T ′′′ before T ′ or (ii) s j A-Delivers
T ′ before T ′′′. Case (ii) is impossible as s j

would A-Deliver T ′ twice, a contradiction
to the uniform integrity property of atomic
multicast. Hence, s i A-Delivers T ′′′ before
T ′. Now, either (iii) s i A-Delivers T ′′ be-
fore T ′′′ or (iv) s j A-Delivers T ′′′ before
T ′′. Case (iv) is impossible for the same
reason as case (ii). Therefore, s i A-Delivers,
in order, T ′′, T ′′′, and T ′. From the induc-
tion hypothesis of 1), s i also commits T ′′′.
Consequently, the last transaction that com-
mits before T ′ on s i and updates k is T ′′′, a
contradiction to the definition of T ′′.
By the induction hypothesis of 2),
Version(k , s i )T

′′ = Version(k , s j )T
′′ . There-

fore, from (*) and the algorithm,
Version(k , s i )T

′ =Version(k , s j )T
′ . �

Proposition .1. (Safety) There exists a serial one-copy
history 1H that is view-equivalent to H .

Proof: We first explain how to construct 1H and
then show that 1H is view-equivalent to H . History 1H
is constructed in the following way:

1. History 1H is composed of the same transactions
as H .

2. A read operation rT [k] of transaction T in H is
mapped to the same operation rT [k] of T in 1H .
Write operations wT [kA, v, ts], wT [kB, v, ts], ...,
wT [kN , v, ts] of transaction T in H is mapped to
a single write operation wT [k, v, ts] of transaction
T in 1H .

3. The order of transactions in 1H is defined by
means of a total order relation <1H on transac-
tions. Recall that for any two transactions T, T ′ ∈

H , T <T T ′ iff there exists a site that A-Delivers
T before T ′. Relation <1H is defined as follows,
∀T, T ′ ∈ 1H : T <1H T ′ iff one of the four follow-
ing conditions holds:

(a) T and T ′ are update transactions and T <T T ′

(b) T and T ′ are update transactions, neither
T <T T ′ nor T ′ <T T , and T.id < T ′.id

(c) Either T is read-only and T ′ is an update
transaction or vice-versa and

• ∃s i ∈ Sites(T ) ∩ Sites(T ′) and T com-
mits before T ′ on s i or

• Sites(T )∩Sites(T ′) = ; and T.id < T ′.id

(d) T and T ′ are both read-only, and T.id < T ′.id.

4. In 1H , for any two transactions T and T ′, their
respective operations do not interleave.

We now show that 1H is view-equivalent to H . For 1H
to be view-equivalent to H , three conditions have to be
fulfilled [8]:

1. H and 1H are defined over the same set of trans-
actions,

2. H and 1H have the same reads-x-from relation-
ships on data items: ∀T , T ′ : T ′ reads-x-from T
in H ⇐⇒ T ′ reads-x-from T in 1H .

3. For each final write wT [k , v, ts] in 1H , wT [ka , v, ts]
is also a final write in H for some copy ka of key
k .

H is view-equivalent to 1H:

1. Clear from construction step 1 of 1H .

2. (⇒) Let T , T ′ be two transactions such that T ′

reads-x-from T in H . We prove that T ′ reads-x-
from T in 1H . Obviously, T is an update trans-
action, and either (a) T ′ is a local and read-only
transaction or (b) T ′ is a global or update trans-
action.

In case (a), let s i be the site on which T ′ executes.
Since databases ensure order-preserving serial-
izability, and T ′ reads-x-from T in H , on s i T ′

commits after T does but before any transaction
T ′′ that updates key x . From construction step 3
of 1H , T <1H T ′, and for any transaction T ′′ that
updates x , either T ′′ <1H T or T ′ <1H T ′′. There-
fore, from construction step 4, T ′ reads-x-from T
in 1H .

In case (b), since T ′ commits, T ′ passed the cer-
tification test. Consequently, T ′ read up-to-date
data items and there exists no transaction T ′′ that
updates key x such that T <T T ′′ <T T ′.
Therefore, by construction step 3 of 1H , there
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exists no such transaction T ′′ in 1H such that
T <1H T ′′ <1H T ′, and hence, by construction
step 4, T ′ reads-x-from T in 1H .

(⇐) Let T , T ′ be two transactions such that T ′

reads-x-from T in 1H . We prove that T ′ reads-x-
from T in H . If T ′ reads-x-from T in 1H , from
construct step 4 of 1H (*) there exists no trans-
action T ′′ that commits between T and T ′ and
updates key x in 1H . There are two cases to con-
sider, either (a) T ′ is a local and read-only trans-
action or (b) T ′ is a global or update transaction.

In case (a), from construction step 3 of 1H and
(*), the site on which T ′ executes commits T ′

just after T but before any transaction that up-
dates key x . Since databases guarantee order-
preserving serializability, we conclude that T ′ reads-
x-from T in H .

In case (b), from construction step 3 of 1H and
(*), there exists no transaction T ′′ that updates
key x such that T <T T ′′ <T T ′. Since T ′ com-
mits, T ′ passed the certification test and, con-
sequently, T ′ read up-to-date data items. Be-
cause databases ensure order-preserving serializ-
ability, T ′ reads-x-from T in H .

3. Clear from construction step 1 and the definition
of relation <1H (construction step 3). �

Lemma .3. For any submitted transaction T and cor-
rect site s i such that s i A-Delivers T :

1. line 14 on s i eventually evaluates to true for T ,
and,

2. line 19 on s i eventually evaluates to true for T .

Proof: Let Tk be the subset of the transactions in
G<(T ) that are at distance k of T . We show that for any
k and any T ′ ∈ Tk , 1) and 2) hold. Since T ∈ T0, this
shows the two claims. Let km a x be the largest k such
that Tk 6= ;. We proceed by simultaneous induction on
1) and 2), starting from km a x .

• Base step (k = km a x ):

1. From the definition of Tkm a x , there exists
no transaction T ′ ∈Tkm a x such that a site A-
Delivers a transaction T ′′ before T ′. Hence,
on a correct site s i that A-Delivers T ′, line 14
evaluates to true as soon as s i A-Delivers
T ′.

2. From the definition of Tkm a x , on a correct
site s i that A-Delivers T ′, T ′ is the first
transaction that s i A-Delivers. From the
base step of 1), s i eventually inserts T ′ into
CertifyQ and T ′ is the first transaction to be
inserted in this queue. Now either (a) T ′ is
local or (b) T ′ is global.

– In case (a), line 19 evaluates to true as
soon as s i inserts T ′ into CertifyQ.

– In case (b), line 19 evaluates to true as
soon as s i inserts T ′ into CertifyQ if
s i 6∈WReplicas(T ′). Otherwise, if s i ∈
WReplicas(T ′), since there exists a cor-
rect site for all data items in D, from
the base step of 1) a voting quorum of
correct sites eventually certify T ′ and
send their votes to WReplicas(T ′). Be-
cause links are quasi-reliable, s i even-
tually receives these votes and line 19
evaluates to true.

• Induction step: Suppose that the two claims hold
for any k such that 0 < k ≤ km a x , we show that
they also hold for k−1. Let T ′ be any transaction
in Tk−1.

1. From the induction hypothesis, for a cor-
rect site s i that A-Delivers T ′, for all trans-
actions s i A-Delivers before T ′ line 19 even-
tually evaluates to true. From the algorithm,
these transactions are thus removed from
CertifyQ and line 14 eventually evaluates to
true for T ′ on s i .

2. From the induction hypothesis, all transac-
tions that are A-Delivered before T ′ on a
correct site s i are eventually removed from
CertifyQ. Consequently, there exists a time
at which T ′ is at the head of CertifyQ on s i .
There are two cases to consider, either (a)
T ′ is local or (b) T ′ is global.

– In case (a), line 19 evaluates to true
on s i as soon as T ′ is at the head of
CertifyQ.

– In case (b), if s i 6∈WReplicas(T ′), line 19
evaluates to true on s i as soon as T ′ is
at the head of CertifyQ. Otherwise, if
s i ∈ WReplicas(T ′), since there exists
a correct site for all data items in D,
from the induction step of 1), a voting
quorum of correct sites eventually cer-
tify T ′ and send their votes to WReplicas(T ′).
Because links are quasi-reliable, s i even-
tually receives these votes and line 19
evaluates to true. �

Proposition .2. (termination) For every submitted trans-
action T , if Proxy(T ) is correct, then all correct sites in
WReplicas(T ) either commit or abort T .

Proof: Since Proxy(T ) is correct, Proxy(T )A-MCasts(T )
and by the validity property of atomic multicast, all cor-
rect sites in Replicas(T ) eventually A-Deliver T . By
Lemma .3-2 and .2, all correct sites in WReplicas(T )
either commit or abort T . �
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Proposition .3. (non-trivial certification) If there is a
time after which no two read-write conflicting trans-
actions are submitted, then eventually transactions are
not aborted by certification.

Proof: Let t1 be the time after which no two read-
write conflicting transactions are submitted. Let t2 > t1

be the time after which the last transaction T submitted
before t1 commits. We claim that no transaction sub-
mitted after t2 is aborted by certification. Indeed, for
any transaction T submitted after t2, the call of func-
tion Certify return yes and the condition at line 20 al-
ways evaluates to true. This is because on any site s i

that certifies T , and for any tuple (k , ts)∈ T .rs such that
s i replicates k , ts=Version(k , s i )T . �

Proposition .4. (genuine partial replication) Using the
genuine atomic multicast algorithm in [20, 9, 1], for
any submitted transaction T , only database sites that
replicate data items read or written by T exchange mes-
sages to certify T .

Proof: Since to certify T , T is atomically multic-
ast to sites that replicate data items read or written by
T and votes are only sent to WReplicas(T ), the claim
holds. �
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