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Abstract

In this paper we analyze the behavior of the Impre-
cise Dirichlet Model when data are not perfectly
observable. The results show that the existence of
a perfect observation mechanism is a crucial as-
sumption. In fact if the observation mechanism can
never be assumed to be perfect, then the Imprecise
Dirichlet Model produces vacuous predictive prob-
abilities. At the other side, if we assume that there
is a positive probability of having a perfect ob-
servation mechanism, then the IDM produces non
vacuous predictive probabilities.

Keywords. Predictive Bayesian Inference, Impre-
cise Dirichlet Model, Vacuous Predictive Proba-
bilities, Perfect and Imperfect Observation Mecha-
nism.

1 Introduction

. . .

2 Setup

In this paper we consider an infinite population
of individuals which can be classified ink cate-
gories (or types) from the setX = {x1, . . . , xk}.
The proportion of units of typexi is denoted by
θi and called the chance ofxi. The population is
therefore completely characterized by the chances
ϑ = (θ1, . . . , θk), where the vectorϑ is a point in
the closedk-dimensional unit simplex1

Θ := {ϑ = (θ1, . . . , θk) |
k∑

i=1

θi = 1, 0 ≤ θi ≤ 1}.

We define a random variableX with values inX
which consists in drawing an individual at random

1For the rest of the paper we denote with:= a definition.

from the population and observing its category.
Clearly the chances ofX are given byϑ, i.e.,θi is
the chance thatX is equal toxi. Our aim is to pre-
dict the chance of drawing an individual of typexi

from a population of unknown chancesϑ after hav-
ing observedN independent random draws. Hav-
ing observed a datasetx, we can summarize the ob-
servation with the countsa = (a1, . . . , ak) where
ai is the number of individuals of typexi observed
in datasetx and

∑k
i=1 ai = N . The chance of ob-

serving a datasetx with countsa givenϑ is equal
to P (x |ϑ) = θa1

1 · · · θak

k . In above setting each in-
dividual in the population is perfectly observable,
i.e., the observer can determine the exact category
of each individual without committing mistakes. In
Section 4 we relax this assumption.

3 The Imprecise Dirichlet Model

3.1 Bayesian Inference and Dirichlet Prior
Density

In the Bayesian setting we learn from observed
data using Bayes rule, which can be formulated
as follows. Consider datasetx and the unknown
chancesϑ. Then

p(ϑ|x) =
P (x|ϑ) · p(ϑ)

P (x)
, (1)

wherep(ϑ) is some density measure onΘ and

P (x) =
∫

Θ

P (x|ϑ)p(ϑ)dϑ.

This rule can be used only ifP (x) 6= 0. The prob-
ability measureP (x|ϑ) is called thelikelihood, the
density measurep(ϑ) is called theprior densityand
the density measurep(ϑ|x) is called theposterior
density. The aim of Bayesian inference in our set-
ting is to learn the value ofϑ. We must therefore



specify as prior density a density measurep on Θ.
A common choice of prior density in the multino-
mial setting is theDirichlet density measure that is
defined as follows.

Definition 1. TheDirichlet densitydir(s, t) is de-
fined on the closedk-dimensional simplexΘ and is
given by the density measure

p(ϑ) :=
Γ(s)∏k

i=1 Γ(sti)

k∏

i=1

θsti−1
i ,

wheres is a positive real number,Γ is the usual
Gamma-function andt = (t1, . . . , tk) ∈ T , where
T is the openk-dimensional simplex

T := {t = (t1, . . . , tk) |
k∑

j=1

tk = 1, 0 < tj < 1}.

We review first some important properties of
Dirichlet densities.

Lemma 1 (First moment). The first moments of a
dir(s, t) density are given byE(θi) = ti for each
i ∈ {1, . . . , k}.

Proof. See: (Kotz 2000), p.485 and following.

Lemma 2. Consider an experiment with out-
comes inX = {x1, . . . , xk}. Suppose further that
the outcomes are distributed according to an un-
known vector of chancesϑ and that our knowledge
about the parametersϑ can be summarized by a
dir(s, t)-density. Then the probability of the out-
comexi according to our knowledge is given by
P (xi) = E(θi) = ti for eachi ∈ {1, . . . , k}.

Proof. See: (Walley 1996).

Proposition 1. Consider a datasetx with
corresponding countsa = (a1, . . . , ak), where∑k

j=1 aj = N . Then the following equality holds

k∏

j=1

θ
aj

j · dir(s, t) =

=

∏k
j=1 ·

∏aj

i=1(stj + i− 1)
∏N

i=1(s + i− 1)
· dir(sx, tx),

where sx = N + s and txj = aj+stj

N+s . Here
and in the rest of the paper whenaj = 0 we set∏aj=0

i=1 (stj + i− 1) = 1 by definition.

Proof. See Appendix A.

Remark 1. Using a dir(s, t) density measure
as prior density in a problem involving Bayesian
learning from a datasetx of multinomial data we
havep(ϑ) = dir(s, t) and

P (x|ϑ) =
k∏

j=1

θ
aj

j . (2)

Proposition 1 states that the posterior density is
then given byP (ϑ|x) = dir(sx, tx) and therefore

P (xi |x) = E(θi |x) =
ai + sti
N + s

. (3)

Furthermore, confronting Bayes rule (1) with the
equality of the proposition we conclude that

P (x) =

∏k
j=1

∏aj

i=1(stj + i− 1)
∏N

i=1(s + i− 1)
. (4)

3.2 The Imprecise Dirichlet Model

The Imprecise Dirichlet Model (IDM) (Walley
1996) is a model for Bayesian learning from multi-
nomial data when there is prior near-ignorance
aboutϑ. Prior ignorance is modelled using the set
of all Dirichlet densitiesdir(s, t) for a fixeds and
all t in T as set of prior densities instead of a sin-
gle prior density. Because of Lemma 2 the prob-
ability of each categoryxi a priori is vacuous, i.e.
P (xi) ∈ [infT ti, supT ti] = [0, 1]. The ignorance
is therefore modeled assigning vacuous prior prob-
abilities to each category ofX . For each prior den-
sity one calculates, using Bayes rule, a posterior
density and obtains, taking into accounts the whole
set of priors, a set of posterior densities. Let now
s be a given positive constant number. Consider
the set of prior densitiesMs := {dir(s, t) | t ∈
T, s given}. Suppose that we observe the datasetx
with corresponding countsa = (a1, . . . , ak). Then
the set of posterior densities follows from Proposi-
tion 1 and is given by

MN,s :=
{

dir(N + s, t∗)
∣∣∣∣ t∗j =

aj + stj
N + s

, t ∈ T

}
.

Definition 2. Given a set of probability measures
P, the upper probabilityP is given byP (·) :=
supP∈P P (·), the lower probabilityP by P (·) :=
infP∈P P (·).
Remark 2. The upper and lower posterior prob-
abilities of an observationxi in the IDM after
N observations are found lettingti → 1, resp.
ti → 0, and are given byP (xi |x) = ai+s

N+s and
P (xi |x) = ai

N+s for eachi.



4 Imperfect observation mechanism

4.1 Introduction

In practice, there is always a even small possibility
of doing classification mistakes during the obser-
vation process. Usually, if this probability is small,
one assumes that the data are perfectly observable
in order to use a simple model. It is an implicit as-
sumption that there is a sort of continuity between
models with perfectly observable data and models
with small probability of mistakes in the observa-
tions. In this section, we study the behavior of the
IDM when the observation process is not perfect
and we show that there is absolutely no continuity
between the results of the IDM with perfect ob-
servation mechanism and the results with imper-
fect observation mechanism. We consider a two-
step model. In the first step a random variableX
is generated with chancesϑ. In the second step,
given the value ofX, a second multinomial ran-
dom variableO with values inX is generated with
chancesξ = (ξ1, . . . , ξk) dependent on the value
of X. We defineλij = P (O = xi |X = xj). All
such chances can be collected in ak × k matrix,
called theemission matrix,

Λ :=




λ11 · · · λ1k

...
.. .

...
λk1 · · · λkk


 . (5)

Then the chances ofO conditional onϑ are given
by ξi =

∑k
j=1 λij · θj . Matrix Λ is a stochastic

matrix. I.e., the sum of the elements of each col-
umn is equal to one. We assume that each row of
the emission matrix has at least an element differ-
ent from zero; in the opposite case we could define
O on a strict subset ofX . We also assume that

p(ϑ |x,o) = p(ϑ |x), (6)

i.e., an observed dataseto gives no additional infor-
mation about the value ofϑ given the true dataset
x. In the following calculations we make use of the
well known equalities

P (o) =
∑

x∈XN

P (o |x) · P (x). (7)

and

p(ϑ,x |o) = p(ϑ |x,o) · P (x |o). (8)

4.2 Predictive inference

Suppose that we have observed a dataseto and we
want to construct the posterior densityP (ϑ |o) us-

ing Bayes rule and a prior densitydir(s, t). We
have

P (ϑ |o) =
∑

x∈XN

p(ϑ,x |o) =

(8)
=

∑

x∈XN

p(ϑ |x,o) · P (x |o) =

(6)
=

∑

x∈XN

p(ϑ |x) · P (x |o) =

(1)
=

∑

x∈XN

P (x |ϑ) · p(ϑ)
P (x)

· P (o |x) · P (x)
P (o)

=

=
∑

x∈XN

P (o |x) · P (x |ϑ) · p(ϑ)
P (o)

=

(7)
=

∑
x∈XN P (o |x) · P (x |ϑ) · p(ϑ)∑

x∈XN P (o |x) · P (x)
.

This is possible withP (x) > 0 andP (o) > 0, a
condition satisfied in our setting2. From Remark 1
we have

P (x |ϑ) · P (ϑ) = P (x) · dir(sx, tx). (9)

Therefore

P (ϑ |o) =
∑

x∈XN P (o |x) · P (x |ϑ) · P (ϑ)∑
x∈XN P (o |x) · P (x)

=

(9)
=

∑
x∈XN P (o |x) · P (x) · dir(sx, tx)∑

x∈XN P (o |x) · P (x)
,

which is a convex combination of Dirichlet density
measures. The IDM, when data are not perfectly
observable, consists in performing the calculation
above for each prior density in the setMs, the
set of posterior densities consists of convex com-
binations of Dirichlet density measures. For each
posterior densityp(ϑ |o) we calculate the proba-
bility that the next individual drawn will be of type
xi. Becausep(ϑ |o) is a convex combination of
Dirichlet density measures, we can use (3) and we

2Sincetj > 0 for all j ands > 0 it follows from (4) that
P (x) > 0. Because all the rows ofΛ are assumed to have at
least one element different from zero, for eachxi there exists
at least onej such thatλij 6= 0, therefore there exists at least
onex with P (o |x) 6= 0 and, becauseP (x) > 0 for eachx it
follows from (7) thatP (o) > 0.



obtain

P (xi |o)
(3)
= E(θi |o)

=

∫
Θ

θi ·
∑

x∈XN P (o |x) · P (x |ϑ) · p(ϑ)dϑ∑
x∈XN P (o |x) · P (x)

=

=
∑

x∈XN P (o |x) · ∫
Θ

θi · P (x |ϑ) · p(ϑ)dϑ∑
x∈XN P (o |x) · P (x)

=

(1)
=

∑
x∈XN P (o |x) · P (x) · ∫

Θ
θi · p(ϑ |x)dϑ∑

x∈XN P (o |x) · P (x)
=

=
∑

x∈XN P (o |x) · P (x) · E(θi |x)∑
x∈XN P (o |x) · P (x)

=

(3)
=

∑
x∈XN P (o |x) · P (x) · ax

i +sti

N+s∑
x∈XN P (o |x) · P (x)

. (10)

4.3 Vacuous predictive probabilities

Theorem 1. Assume that we are doing Bayesian
inference with the IDM. We have observed a
dataseto with countsn = (n1, . . . , nk) and our
observation mechanism is characterized by an
emission matrixΛ. Then following results hold.

1. If the matrixΛ is full3, the the IDM produces
vacuous upper and lower predictive probabil-
ities for each category inX , i.e.,

P (xi |o) = 1 and P (xi |o) = 0.

2. The IDM produces non-vacuous upper pre-
dictive probabilities for the categoryxi, only
if it exists at least aλji = 0 with nj > 0.

3. The IDM produces non-vacuous lower predic-
tive probabilities only for the categoriesxi,
such thatλii = 1 andλij = 0 for eachj 6= i.

Corollary 1. The IDM produces non-vacuous pre-
dictive probabilities for each category inX , only if
Λ = I, i.e., in the case described by (Walley 1996).

Proof. For giveni ∈ {1, . . . , k} define the dataset

xi := {xi, . . . , xi},
i.e., the dataset with countsai = N andaj = 0 for
eachj 6= i. We study the behavior ofP (xi |o)
when the priordir(s, t) is characterized by ex-
treme values of the parametert. Set T is the
openk-dimensional simplex, we can therefore de-
fine sequences of priors with extreme values of

3Without zero elements.

the parameters, e.g.,t with ti → 1 and, because∑k
j=1 tj = 1, tj → 0 for eachj 6= i. We show

that limti→1 P (x) = 0 for eachx ∈ XN \ {xi}.
The numerator of (4) is a product of terms

ax
j∏

r=1

(stj + r − 1). (11)

If ax
j = 0 (11) is equal to one by definition, else, if

ax
j > 0 for a j 6= i, then (11) is equal to

stj · . . . · (stj + ax
j − 1),

and tends to zero, because of the first term of the
product, astj → 0. Therefore for eachx 6= xi (4)
tends to zero asti → 1. Forxi we have

lim
ti→1

E(θi |xi)
(3)
= lim

ti→1

axi

i + sti
N + s

=
N + s

N + s
= 1,

lim
ti→1

E(θj |xi)
(3)
= lim

tj→0

axi

j + stj

N + s

=
0 + s · 0
N + s

= 0,

lim
ti→1

P (xi)
(11)
= lim

tj→0

∏N
r=1(sti + r − 1)∏N
j=1(s + j − 1)

= 1.

ForP (o |xi) 6= 0 it follows

lim
ti→1

P (xi |o)
(10)
=

(10)
= lim

ti→1

∑
x∈XN P (o |x) · P (x) · ax

i +sti

N+s∑
x∈XN P (o |x) · P (x)

= lim
ti→1

P (o |xi) · P (xi) · axi

i +sti

N+s

P (o |xi) · P (xi)
= 1,

and therefore the IDM produces vacuous upper
predictive probabilities for the categoryxi. For
P (o |xi) = 0, limti→1 P (xi |o) is non vacuous
because allx 6= xi have

lim
ti→1

E(θj |x) =
ax

i + s · 1
N + s

<
N + s

N + s
= 1.

Because

P (o |xi) =
k∏

j=1,nj>0

λ
nj

ji , (12)



the condition(12) 6= 0 is satisfied iffλji 6= 0 for
eachj such thatnj > 0.

Consider now another extreme valuet for the pa-
rameters of the prior density, this time withti →
0 and tj 6→ 0 for each j 6= i. In this case
all the datasetx ∈ XN with ax

i > 0 have
limti→0P (x) = 0 and all dataset withax

i = 0
havelimti→0P (x) 6= 0. For eachx ∈ XN with
ax

i = 0 we have

lim
ti→0

ax
i + sti
N + s

=
0 + s · 0
N + s

= 0,

and therefore, ifP (o |x) 6= 0 for at least a dataset
with ax

i = 0, it follows that

lim
ti→0

P (xi |o) =

=

∑
x∈XN ,ax

i =0

At least one6→0︷ ︸︸ ︷
P (o |x) · P (x) ·

→0︷ ︸︸ ︷
ax

i + sti
N + s∑

x∈XN ,ax
i =0 P (o |x) · P (x)

= 0.

Therefore, if there is at least one datasetx with
ax

i = 0 and P (o |x) 6= 0, the model produces
lower probability 0 for the categoryxi. For each
j with nj > 0 there is at least ar with λjr 6= 0
because all the rows inΛ are non-zero. Ifni = 0
we can therefore construct easily a datasetx with
ax

i = 0 andP (o |x) 6= 0. We cannot construct
such a dataset only ifni > 0 and the unique el-
ement different from zero on thei-th row of the
matrix Λ is λii = 1. This concludes the proof of
the theorem.

4.4 Examples

We illustrate the results with two examples in the
binary case.

Example 1. Consider a situation withk = 2, s =
2, N = 2 and an emission matrix

Λε =
(

1− ε ε
ε 1− ε

)
,

whereε > 0. Suppose that we have observed the
dataseto = (x1, x1) and therefore the countn =
(2, 0). The probabilities of the observed dataset

given the different dataset ofX 2 are given by

P (o|(x1, x1)) = (1− ε) · (1− ε) > 0,

P (o|(x1, x2)) = (1− ε) · ε > 0,

P (o|(x2, x1)) = (1− ε) · ε > 0,

P (o|(x2, x2)) = ε · ε > 0.

Calculating the posterior probabilityP (x1|o) us-
ing (10) we obtain

P (x1|o) =

=
(

(1− ε) · (1− ε) · st1(1 + st1) · 2 + st1
2 + s

+

+2 · (1− ε) · ε · st1 · st2 · 1 + st1
2 + s

+

+ ε · ε · st2 · (1 + st2) · 0 + st1
2 + s

)
·

·
(

(1− ε) · (1− ε) · st1(1 + st1) +

+2 · (1− ε) · ε · st1 · st2+

+ ε · ε · st2 · (1 + st2)
)−1

.

It follows that

lim
t1→1

P (x1|o) =
(1− ε)2 · s(1 + s)
(1− ε)2 · s(1 + s)

= 1,

and

lim
t1→0

P (x1|o) =
ε2 · s(1 + s) · 0
ε2 · s(1 + s)

= 0,

implying

P (x1|o) = 0, P (x1|o) = 1.

The same result holds forP (x2|o).

Remark 3. The result of Example 1 holds for each
positive, even very small, value ofε. The IDM with
Λ = I and the sameo produces

P (x1 |o) =
2 + 2
2 + 2

= 1,

P (x1 |o) =
2

2 + 2
= 0.5,

P (x2 |o) =
0 + 2
2 + 2

= 0.5,

P (x2 |o) =
0

2 + 2
= 0.



It is evident that there absolutely no continuity be-
tween the result forΛ = I and the results for
Λ = Λε, even for very smallε.

Example 2. Suppose that we have observed a
dataseto with corresponding countsn = (12, 23)
and assume that the observation mechanism is
characterized by the emission matrix

Λ =
(

0.8 0.2
0.2 0.8

)
.

Figure 1 displays the results forP (x1|o) obtained
with the IDM for s = 2. It is interesting to
remark that the problem of vacuous probabilities
arises very near the boundaries ofT . In the first
plot,where the function is plotted in the interval
t1 ∈ [0, 1], it seems thatP (x1|o) is around 0.34.
But if we look at the second plot, where the func-
tion is plotted more precisely in the intervalt1 ∈
[0.99999, 1] we see clearly thatP (x1|o) = 1 as
confirmed by theoretical results.

4.5 Discussion

Consider an observer with a unique extreme prior
density measurep(ϑ) = dir(s, t) with s > 0 and
ti → 1 for somei ∈ {1, . . . , k}. The observer be-
lieves a-priori that the population is formed almost
completely by individuals of categoryxi. Now,
if he observes an individual of categoryxj and
λji 6= 0, then he will tend to believe that the indi-
vidual observed is actually of categoryxi and that
there was a mistake in the observation mechanism.
Only if λji = 0 he has to rationally realize that
observing something different fromxi can only be
consistent with a strong modification of his prior
beliefs.

Consider now an observer withti → 0. Such an
observer believes a-priori that there is almost no
individuals of categoryxi in the population. If he
observes an individual of categoryxi, he will be-
lieve that the actual category is another categoryxj

such thattj > 0 andλij > 0. The observer cannot
believe that, only ifλij = 0 for all i 6= j.

When letting the prior density of an observer con-
verge to a degenerate one, the model with imper-
fect observation mechanism produces trivial results
because of the degeneration in the behavior of the
observer. Such a feature arises only with prior den-
sities that are extreme. To avoid vacuous infer-
ences it would be sufficient to restrict the set of the
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Figure 1: The functionP (x1|o) for t1 ∈ [0, 1] and
for t1 ∈ [0.99999, 1].



prior densities by excluding the problematic ones.
However this is not compatible with the idea of
complete prior ignorance: each restriction of the
set of priors without a specific knowledge is arbi-
trary and hence impossible to motivate.

4.6 Inference onξ

Consider the binary case (k = 2) with emission
matrix

Λε :=
(

1− εi εi

εi 1− εi

)
, (13)

whereε 6= 0.5. The IDM with k = 2 is usu-
ally called Imprecise Beta Model(IBM) because
the Dirichlet density measures withk = 2 are beta
density measures (see (Walley 1991) and (Bernard
1996) ). Consider the chancesϑ = (θ1, θ2) of
the unobservable processX and the chancesξ =
(ξ1, ξ2) of the observable processO. Because the
matrix (13) is non singular, we can reconstruct
the values ofϑ starting from the values ofξ us-
ing the relationθi = ξi−ε

1−2ε and viceversa with
ξi = (1 − 2ε)θi + ε. Apparently, it should be
possible to do inference onξ using the observable
values ofO with the standard IBM and then recon-
struct the values ofϑ. But this would contradict our
previous result about vacuous probabilities. Actu-
ally, we show that our result is still valid, also from
the point of view of the observable data. In par-
ticular we show that, at one side the application of
the IBM on ξ ignoring the emission matrix pro-
duces sinless results, at the other side the applica-
tion of the IBM onξ taking correctly into account
the emission matrix produces vacuous probabilities
as the IBM onϑ.

Proposition 2. The inference onξ with the stan-
dard IBM can produce sinless values forϑ, i.e.
negative values or values greater than 1.

Proof. See appendix B. In fact the density measure
of the parametersξ is not a standard beta density.
If we model our knowledge about the parametersϑ
with a beta(s, t) density, then taking into consid-
eration the emission matrix (13) we obtain forξ a
scaledbeta[ε,1−ε](s, t) density. Therefore the IBM
onξ should be performed using, as set of prior den-
sity measures, the set of all beta densities scaled on
[ε, 1 − ε] with t ∈ T and not the standard beta
densities used usually in the IBM. But in this case
following theorem holds:

Theorem 2. The IBM onξ, with, as set of prior
densities, the set of all scaled beta densities de-
scribed above, produces vacuous probabilities.

Proof. See appendix C. We can conclude therefore
that our result about vacuous probabilities is still
valid also from the point of view of the observable
data.

5 The binary case

In the previous section we have assumed an obser-
vation mechanism with known and constant emis-
sion matrix. In this section we study in detail the
behavior of the IBM if the observation mechanism
is not known, or when the observation mechanism
changes with time, in order to generalize Theorem
1. We show that a crucial assumption is the possi-
bility of a perfect observation mechanism. In par-
ticular we show that, if the observation mechanism
varies over time but it it is surely never perfect, then
the IBM produces vacuous predictive probabilities.
At the other side we show that, if there is a prob-
ability, even small, that for an observation the ob-
servation mechanism is perfect, then the IBM pro-
duces non-vacuous probabilities. At the end of the
section we illustrate this feature with a paradoxical
example.

5.1 Vacuous probabilities in the binary case

We generalize theorem 1 to a situation where the
observation mechanism is characterized by a non-
constant, stochastically distributed emission ma-
trix.

Corollary 2. The IBM with observation mecha-
nism defined by the emission matrix (13), where
ε 6= 0, produces vacuous probabilities.

Proof. This is a particular case of theorem 1. Now
we allow the observation mechanism to vary over
time, we obtain however the same result:

Theorem 3. The IBM with observation mechanism
for thei-th observation defined by the emission ma-
trix

Λεi :=
(

1− εi εi

εi 1− εi

)
, (14)

whereεi 6= 0 for eachi ∈ {1, . . . , N} produces
vacuous probabilities.

Proof. The proof is equal to the proof of theo-
rem 1 except for the termsP (o |x) that contain
ε1, . . . , εN instead of a singleε.

Lemma 3 (Lebesgue Theorem).Let {fn} be a
series of functions on the domainA such thatfn →
f pointwise. If for eachn we have

|fn(x)| ≤ φ(x),



and ∫

A

φ(x)dx < ∞,

then

lim
n→∞

∫

A

fn(x)dx =
∫

A

f(x)dx.

In the following Theorem we allow the emission
matrices to be unknown and we summarize our
knowledge aboutεi with a continuous density mea-
sure. We obtain once more the same result.

Theorem 4. Suppose that we want to perform pre-
dictive inference using the IBM and our obser-
vation mechanism for thei-th observation is de-
fined by the emission matrix (14), whereε :=
(ε1, . . . , εN ) is distributed according to a continu-
ous densityf(ε) defined on[0, 1]N . Then, the IBM
produces vacuous predictive probabilities.

Proof. We know from Theorem 3 that given
ε1, . . . , εN 6= 0 we have

lim
t1→1

P (x1 |o, ε) = 1,

and
lim

t1→1
P (x2 |o, ε) = 0,

for eachj 6= i. We have

lim
t1→1

P (x1 |o) =

= lim
t1→1

∫

[0,1]N
P (x1 |o, ε) · f(ε)dε.

Furthermore

P (xj |o, ε) · f(ε) ≤ f(ε),

for anyj, ε,o where
∫

[0,1]N
f(ε)dε = 1.

Because of the continuity off we know that
P (εi = 0) = 0 for eachi and eachε ∈ [0, 1]2.
Applying Lemma 3 we conclude that

lim
t1→1

P (x1 |o) =

= lim
t1→1

∫

[0,1]N
P (x1 |o, ε) · f(ε)dε =

=
∫

[0,1]N
lim

t1→1
P (x1 |o, ε) · f(ε)dε =

=
∫

[0,1]N
1 · f(ε)dε = 1,

and, similarly,

lim
t1→1

P (x2 |o) = 0.

Remark 4. The result can be easily generalized
to the k-dimensional case. It is sufficient to as-
sume thatP (λij = 0) = 0 for each element in
(5). This condition is satisfied by all continuous
density measures defined on the components of the
emission matrix.

5.2 An alternative approach with relaxed
assumptions

We have shown that we are unable to obtain non-
vacuous predictive inferences with prior ignorance
if we know that the observation process is not per-
fect. Vacuous probabilities arise because of the
combination of two factors:

(i) Extreme, quasi-degenerate, prior densities.

(ii) Persistent doubt about the quality of observa-
tions.

therefore, in order to produce non-vacuous predic-
tive probabilities, we can follow two approaches:

(i) We can restrict the set of prior densities ac-
cording to some criteria. However, it is very
difficult to do so, while maintaining a com-
plete prior ignorance and without applying ar-
bitrary criteria.

(ii) We can model the observation process allow-
ing it to be perfect with some probability. In
other words, without excluding a-priori the
possibility of a perfect observation mecha-
nism.

We follow the second approach. All results pre-
sented in the sequel for the binary case can be
extended to thek-dimensional case. Given aN -
dimensional vector of observationso we assume
that some observations were made under a per-
fect observation mechanism, while the other ones
have been obtained under an imperfect observation
mechanism with emission matrix (13). Define a
binary random variableE such thatP (E = 1) =
1 − p and P (E = 0) = p. For each observed
dataseto there exists an unobservable vectore of
lengthN consisting of independent realizations of
random variableE. SetE := [0, 1]N , E is equal to
the set of all possible vectorse of lengthN . With



ei = 0 (ei = 1), we mean that thei-th observation
is obtained under a perfect (imperfect) observation
mechanism. Assume that

P (ϑ,x,o, e) = P (o | e,x) ·P (x |ϑ) ·P (e) ·P (ϑ).
(15)

From (15) it follows that

P (e |o) = P (e). (16)

In order to obtain predictive probabilities, we cal-
culate

P (xi |o) = E(θi |o) =

=
∫

Θ

θiP (ϑ |o)dϑ =

(7)
=

∫

Θ

θi

∑

e∈E
P (ϑ |o, e)P (e |o)dϑ =

(16)
=

∑

e∈E

(∫

Θ

θiP (ϑ |o, e)dϑ

)
· P (e) =

=
∑

e∈E
E(θi |o, e) · P (e) =

=
∑

e∈E
P (xi |o, e) · P (e), (17)

for i = 1, 2. Explicit calculations (see Appendix
D) lead to the following result.

Theorem 5. If p > 0, then the IBM produces non-
vacuous inferences.

Therefore the crucial assumption, in order to obtain
non vacuous predictive inferences, is the possibil-
ity of a perfect observation mechanism with some
positive probability.

5.3 A paradoxical example

We illustrate the above results with a paradoxical
example. To this end we introduce two data gener-
ating processes.

Process 1: In a first step a random variableX
with values inX 2 and probabilityϑ = {θ1, θ2} is
generated. AfterX has been generated, a random
variableO is generated, such that

P (O = x1 |X = x1) = 1− ε,

P (O = x1 |X = x2) = ε,

P (O = x2 |X = x1) = ε,

P (O = x2 |X = x2) = 1− ε.

Process 2: In a first step a random variableX
with values inX 2 and probabilityϑ = {θ1, θ2}
is generated. Independently ofX, a binary random
variableE is then generated such thatP (E = 0) =
1−ε andP (E = 1) = ε whereε > 0. After X and
E have been generated, a further random variable
O is drawn, such thatO = X if E = 0. Else, when
E = 1, if X = x1, thenO = x2, if X = x2, then
O = x1.

The paradoxon

The processes 1 and 2 produce exactly the same
probabilities for the observed datao. In fact for
both processes

P (O = x1) = (1− ε)θ1 + ε θ2,

P (O = x2) = (1− ε)θ2 + ε θ1.

It follows that the two processes are indistinguish-
able from the point of view of the observer. How-
ever, the first process is a process of the type de-
scribed in section 4.1. Therefore the IBM produces
vacuous predictive probabilities. The second pro-
cess belongs to the category of processes described
in section 5.2. In such a setting the IBM produce
non-vacuous predictive probabilities. In particu-
lar, the possibility of producing non vacuous in-
ferences depends not on the form of the distribu-
tion of observed data, but rather on some structural
assumption on the process generating the observa-
tions. The difference between the two models lies
in the assumptions. In the first model we assume
the existence of perfect observation mechanisms,
whereas the second one assumes only the exis-
tence of perfect observations. The assumptions of
the second model are therefore much weaker than
those of the first model.

6 Conclusions
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A Proof of Proposition 1

Proof. The Gamma function satisfies the property

Γ(x + 1) = x · Γ(x).



Lemma.

Γ(s∗) =
N∏

i=1

(s + i− 1) · Γ(s).

Proof of the Lemma.If N = 0 thenΓ(s∗) = Γ(s).
Now assume that forN − 1 the following equality
holds

Γ(N − 1 + s) =
N−1∏

i=1

(s + i− 1) · Γ(s),

then

Γ(N + s) = (N − 1 + s) · Γ(N − 1 + s) =

= (N − 1 + s) ·
N−1∏

i=1

(s + i− 1) · Γ(s) =

=
N∏

i=1

(s + i− 1) · Γ(s).

Lemma.

Γ(s∗ · t∗j ) =
aj∏

i=1

(stj + i− 1) · Γ(stj).

Proof of the Lemma.If aj = 0 thenΓ(s∗ · t∗j ) =
Γ(stj). Now assume that foraj = n − 1 the fol-
lowing equality holds

Γ(s∗ · t∗j ) = Γ(aj + stj) = Γ(n− 1 + stj) =

=
n−1∏

i=1

(stj + i− 1) · Γ(stj).

then withaj = n

Γ(s∗ · t∗j ) = Γ(aj + stj) =

= Γ(n + stj) =
= (n− 1 + stj) · Γ(n− 1 + stj) =

= (n− 1 + stj) ·
n−1∏

i=1

(stj + i− 1) · Γ(stj) =

=
n∏

i=1

(stj + i− 1) · Γ(stj) =

=
aj∏

i=1

(stj + i− 1) · Γ(stj).

It follows that

dir(s∗, t∗) =

=
Γ(s∗)∏k

j=1 Γ(s∗t∗j )
·

k∏

j=1

θ
s∗t∗j−1

j =

=
Γ(s∗)∏k

j=1 Γ(s∗t∗j )
·

k∏

j=1

θ
aj

j ·
k∏

j=1

θ
stj−1
j =

=
∏N

i=1(s + i− 1) · Γ(s)∏k
j=1 ·(

∏aj

i=1(stj + i− 1)) · Γ(stj)
·

·
k∏

j=1

θ
aj

j ·
k∏

j=1

θ
stj−1
j =

=
∏N

i=1(s + i− 1)∏k
j=1 ·

∏aj

i=1(stj + i− 1)
·

·



k∏

j=1

θ
aj

j


 · Γ(s)∏k

j=1 Γ(stj)
·

k∏

j=1

θ
stj−1
j =

=
∏N

i=1(s + i− 1)∏k
j=1 ·

∏aj

i=1(stj + i− 1)
·

·



k∏

j=1

θ
aj

j


 · dir(s, t),

and therefore

k∏

j=1

θ
aj

j · dir(s, t) =

=

∏k
j=1 ·

∏aj

i=1(stj + i− 1)
∏N

i=1(s + i− 1)
· dir(s∗, t∗).

B Proof of Proposition 2

Suppose that we have observed a dataseto with
corresponding countsn = (n1, n2). If we perform
the standard IBM on this dataset then we obtain

ξi ∈
[

ni

N + s
;
ni + s

N + s

]

and therefore

θi ∈
[

ni − ε(N + s)
(N + s)(1− 2ε)

;
ni + s− ε(N + s)
(N + s)(1− 2ε)

]
.

But if ni < ε(N + s) then ni−ε(N+s)
(N+s)(1−2ε) < 0 and

if ni < ε(N + s) − s then ni+s−ε(N+s)
(N+s)(1−2ε) < 0. At



the other side ifni > (1− ε)(N + s) then we find
values forθi that are greater than 1. Therefore the
standard IBM can produce sinless results.

Substitutingθi = ξi−ε
1−2ε in the beta(s, t) density

C · θst1−1
1 · θst2−1

2 of ϑ defined on[0; 1] we obtain
for ξ the density

C

1− 2ε

(
ξ1 − ε

1− 2ε

)st1−1 (
ξ2 − ε

1− 2ε

)st2−1

, (18)

defined on the interval[ε, 1 − ε]. This density is
called ascaled beta densityand referred to with
beta[ε,1−ε](s, t). The first moment of a scaled beta
density are given byE(θi) = (1 − 2ε)ti + ε.
For scaled beta densities a result similar to propo-
sition 1 holds, i.e. ifo is a dataset with counts
n = (n1, n2) then

(
ξ1 − ε

1− 2ε

)n1
(

ξ2 − ε

1− 2ε

)n2

· beta(s, t) =

=

∏n1
i=1(n1 + st1 − i) ·∏n2

j=1(n2 + st2 − j)
∏N

i=1(N + s− i)
·

· beta(so, to).

C Proof of Theorem 2

D Proof of Theorem 5

) Proof. Suppose that we have observed a dataset
o. For given vectore and observed dataseto we
introduce following notations:

• Ne is the number of components equal to one
in the vectore.

• n1e is the number of ones in the vectore that
correspond to anx1 in dataseto.

• n2e is the number of ones in the vectore that
correspond to anx2 in dataseto.

• ne := (n1e, n2e).

From (15) it follows that

P (e |ϑ) = P (e), (19)

p(ϑ | e) = p(ϑ), (20)

P (e |x) = P (e), (21)

and therefore

P (o | e,x)
(8)
=

P (o, e |x)
P (e |x)

(21)
=

P (o, e |x)
P (e)

. (22)

We have that

P (o | e, ϑ)
(8)
=

P (o, e |ϑ)
P (e |ϑ)

(19)
=

P (o, e |ϑ)
P (e)

=

(7)
=

∑

x∈X

P (o, e |x) · P (x |ϑ)
P (e)

=

(22)
=

∑

x∈X
P (o | e,x) · P (x |ϑ),

and therefore

p(o, ϑ, e) =
∑

x∈X
P (ϑ,x,o, e) =

=
∑

x∈X
P (o | e,x) · P (x |ϑ) · P (e) · p(ϑ) =

=P (o | e, ϑ) · P (e) · p(ϑ).

thus

p(ϑ |o, e)
(8)
=

p(o, ϑ, e)
P (o, e)

=

=
P (o | e, ϑ) · P (e) · p(ϑ)

P (o | e) · P (e)
=

=
P (o | e, ϑ) · p(ϑ)

P (o | e)
=

(20)+(1)
=

P (o | e, ϑ) · p(ϑ)∫
Θ

P (o | e, ϑ) · p(ϑ)dϑ
,

and therefore it follows from (17) that

P (xi |o, e) =

∫
Θ

θiP (o | e, ϑ) · p(ϑ)dϑ∫
Θ

P (o | e, ϑ) · p(ϑ)dϑ
. (23)

For eache ∈ E the functionp(ϑ |o, e) is a likeli-
hood function of the form

P (o | e, ϑ) =

=θn1−n1e
1 · θn2−n2e

2 · ((1− ε) · θ1 + ε · θ2)n1e ·
·((1− ε) · θ2 + ε · θ1)n2e =

=
n1e∑

i=0

n2e∑

j=0

(
n1e

i

)
·
(

n2e

j

)
·

·(1− ε)Ne−(i+j) · ε(i+j) · θn1−i+j
1 · θn2−j+i

2 =

=:
n1e∑

i=0

n2e∑

j=0

c(i, j, n1e, n2e) · θn1−i+j
1 · θn2−j+i

2 .



From Proposition 1 we know that

θn1−i+j
1 · θn2−j+i

2 · beta(s, t1, t2) =

=
∏n1−i+j

a=1 (st1 + a− 1) ·∏n2−i+j
b=1 (st2 + b− 1)∏N

c=1(s + c− 1)
·

·beta(so, to1ij , t
o
2ij) =

=:
C(i, j, ne)∏N

c=1(s + c− 1)
· beta(so, to1ij , t

o
2ij),

where
so = N + s,

to1ij =
n1 − i + j + st1

N + s
,

and

to2ij =
n2 − j + i + st2

N + s
.

Therefore using (23) we have

E(θ1 |o, e) =

=

∑n1e

i=0

∑n2e

j=0 c(i, j, ne) · C(i, j, ne) · n1−i+j+st1
N+s∑n1e

i=0

∑n2e

j=0 c(i, j, ne) · C(i, j, ne)
,

and

E(θ2 |o, e) =

=

∑n1e

i=0

∑n2e

j=0 c(i, j, ne) · C(i, j, ne) · n2−j+i+st2
N+s∑n1e

i=0

∑n2e

j=0 c(i, j, ne) · C(i, j, ne)
.

Consider a vectore with n1 > n1e and n2 >
n2e and the corresponding likelihood function
P (o |ϑ, e). We know that

E(θ1 |o, e) =

=

∑n1e

i=0

∑n2e

j=0 c(i, j, ne) · C(i, j, ne) · n1−i+j+st1
N+s∑n1e

i=0

∑n2e

j=0 c(i, j, ne) · C(i, j, ne)
≤

≤n1 − 0 + n2e + st1
N + s

<

<
n1 + n2 + s · 1

N + s
= 1,

and in the same manner

E(θ1 |o, e) ≥
≥n1 − n1e + st1

N + s
>

>
n1 − n1 + s · 0

N + s
= 0.

Therefore each likelihood function of this type
leads to non vacuous predictive probabilities for
x1. For x2 we obtain the same result. Because
the predictive probabilities that we obtain using the
IDM are a weighted average of the predictions ob-
tained with each single likelihood the model pro-
duce vacuous predictions only if the probabilities
of all e with n1 > n1e andn2 > n2e are equal to
zero. However, since

P (e) = pN−Ne(1− p)Ne ,

and in this caseN − Ne > 0, this holds only if
p = 0.
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