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Abstract from the population and observing its category.

. . _Clearly the chances of are given byJ, i.e.,0; is
In this paper we analyze the behavior of the Impre the chance thaX is equal taz;. Our aim is to pre-

cise Dirichlet Model when data are not perfectly . : N
: ict the chance of drawing an individual of type
observable. The results show that the existence o :
from a population of unknown chancésfter hav-

a perfect observation mechanism is a crucial as-in observedY independent random draws. Hav-
sumption. In fact if the observation mechanism can ing observed adatan)zelwe can summarize tHe ob-
never be assumed to be perfect, then the Imprecise g obs )

. . Servation with the counts = (aq,...,ax) where
Dirichlet Model produces vacuous predictive prob- . is the number of individuals of tvae: observed
abilities. At the other side, if we assume that there . ld 45 _ N Th ypha £ ob
is a positive probability of having a perfect ob- in dataset and}_;_, a; = N. The chance of ob-

servation mechanism, then the IDM produces nontse;;’mg 3 d_atgaslet W'ot(t'k c?unLSa g|ve2'z9 IS eqtrjla}l
vacuous predictive probabilities. 0 P(x|9) = 6y" ---6;*. In above setting each in-
dividual in the population is perfectly observable,
Keywords. Predictive Bayesian Inference, Impre- i.€., the observer can determine the exact category
cise Dirichlet Model, Vacuous Predictive Proba- of each individual without committing mistakes. In
bilities, Perfect and Imperfect Observation Mecha- Section 4 we relax this assumption.
nism.
3 The Imprecise Dirichlet Model
1 Introduction
3.1 Bayesian Inference and Dirichlet Prior
Density

In the Bayesian setting we learn from observed
data using Bayes rule, which can be formulated
as follows. Consider datasetand the unknown
chanceg}. Then

2 Setup

In this paper we consider an infinite population
of individuals which can be classified in cate-
gories (or typed from the set¥ = {z1,..., z;}. p(9]x) = P(x[9) - p(?) (1)
The proportion of units of type; is denoted by P(x) ’

0; and called the chance af. The population is . .

therefore completely characterized by the chancesWherep(ﬁ) Is some density measure @nand
¥ = (64,...,0;), where the vectod is a point in

the closed:-dimensional unit simpléx Plx) = /GP(XWWW)M'

This rule can be used only ’(x) # 0. The prob-
ability measureP (x|¢) is called thdikelihood, the
, ) ) ) density measurg(d) is called theprior densityand
We' define a rapdom v'arlab]?é. W'f[h, values inX the density measungd|x) is called theposterior
which consists in drawing an individual at random density The aim of Bayesian inference in our set-

1For the rest of the paper we denote witha definition. ting is to learn the value of. We must therefore
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specify as prior density a density measuren ©.

A common choice of prior density in the multino-
mial setting is théirichlet density measure that is
defined as follows.

Definition 1. TheDirichlet densitydir(s, t) is de-
fined on the closed-dimensional simple® and is
given by the density measure

k
st;—1
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s)
[Tizi D(sts)

wheres is a positive real numbef is the usual
Gamma-function and = (¢4, ...,tx) € 7, where
T is the operk-dimensional simplex

p(0):

k
To={t=(tr,....t)| Y tr=1,0<t; <1}.

Jj=1

We review first some important properties of
Dirichlet densities.

Lemma 1 (First moment). The first moments of a
dir(s,t) density are given by (6;) = t; for each
ie{l,...,k}

Proof. See: (Kotz 2000), p.485 and following.

Lemma 2. Consider an experiment with out-
comes inX = {z1,...,xx}. Suppose further that
the outcomes are distributed according to an un-
known vector of chancesand that our knowledge
about the parameterg can be summarized by a
dir(s,t)-density. Then the probability of the out-
comez; according to our knowledge is given by
P(xz;) = E(6;) =t; foreachi € {1,...,k}.

Proof. See: (Walley 1996).

Proposition 1. Consider a datasetx with
corresponding countsa = (ay,...,ax), where

Z;“:l a; = N. Then the following equality holds

k

H 07 - dir(s, t) =

j=1
k , .
Hj:l ) H?il(Stj +i—1) X .x
= ¥ : -dir(s*,t%),
[[i=(s+i—1)
wheres* = N + s and ¥ = a;’ffz-f. Here

and in the rest of the paper whery = 0 we set
1597 (st; +i — 1) = 1 by definition.

Proof. See Appendix A.

Remark 1. Using a dir(s,t) density measure
as prior density in a problem involving Bayesian
learning from a datasex of multinomial data we
havep(¥) = dir(s,t) and

k
P(x[9) =[] 05" 2)
j=1

Proposition 1 states that the posterior density is
then given byP(¥|x) = dir(s*, t*) and therefore

a; + Sti
. 3
N +s ®)
Furthermore, confronting Bayes rule (1) with the
equality of the proposition we conclude that
I T sty +i = 1)
vaﬂ(s +i—1)

P(zi|x) = E(0; |x) =

P(x) (4)

3.2 The Imprecise Dirichlet Model

The Imprecise Dirichlet Model (IDM) (Walley
1996) is a model for Bayesian learning from multi-
nomial data when there is prior near-ignorance
about. Prior ignorance is modelled using the set
of all Dirichlet densitieslir (s, t) for a fixeds and
all t in 7 as set of prior densities instead of a sin-
gle prior density. Because of Lemma 2 the prob-
ability of each category;; a priori is vacuous, i.e.
P(z;) € [infr t;,supst;] = [0, 1]. The ignorance
is therefore modeled assigning vacuous prior prob-
abilities to each category ¢f. For each prior den-
sity one calculates, using Bayes rule, a posterior
density and obtains, taking into accounts the whole
set of priors, a set of posterior densities. Let now
s be a given positive constant number. Consider
the set of prior densities, := {dir(s,t)|t €
T, s giver}. Suppose that we observe the dataset
with corresponding counts= (a1, ..., ax). Then
the set of posterior densities follows from Proposi-
tion 1 and is given by

«_ 8t st

G-t ver),

Definition 2. Given a set of probability measures
P, the upper probabilityP is given byP(-)
suppep P(+), thelower probabilityP by P(-) :=
infpep P()

Remark 2. The upper and lower posterior prob-
abilities of an observationg; in the IDM after
N observations are found lettingg — 1, resp.
t; — 0, and are given byP(z; |x) = %** and

s ’ N+s
P(z;|x) = 4 for eachi.

Mp s = {dir(N—!—s,t*)




4 Imperfect observation mechanism

4.1 Introduction

In practice, there is always a even small possibility
of doing classification mistakes during the obser-
vation process. Usually, if this probability is small,
one assumes that the data are perfectly observabl
in order to use a simple model. It is an implicit as-
sumption that there is a sort of continuity between
models with perfectly observable data and models
with small probability of mistakes in the observa-
tions. In this section, we study the behavior of the
IDM when the observation process is not perfect
and we show that there is absolutely no continuity
between the results of the IDM with perfect ob-
servation mechanism and the results with imper-
fect observation mechanism. We consider a two-
step model. In the first step a random variakle

is generated with chances In the second step,
given the value ofX, a second multinomial ran-
dom variableO with values inX is generated with
chances = (&1,...,&) dependent on the value
of X. We define\;; = P(O = z; | X = z;). All
such chances can be collected ik & k& matrix,
called theemission matrix

A= %)

Then the chances @ conditional on are given
by & = Y, Aij - 6;. Matrix A is a stochastic
matrix. l.e., the sum of the elements of each col-

umn is equal to one. We assume that each row of

the emission matrix has at least an element differ-
ent from zero; in the opposite case we could define
O on a strict subset of'. We also assume that

p(¥]x,0) = p(J %), (6)

i.e., an observed datasetjives no additional infor-
mation about the value af given the true dataset
x. In the following calculations we make use of the
well known equalities

P(o)= Y P(o|x)- P(x). 7)
xeXxXN
and
p(?d,x|0) =p(?|x,0) - P(x[o).  (8)

4.2 Predictive inference

Suppose that we have observed a datasetd we
want to construct the posterior densiyd | o) us-

ing Bayes rule and a prior densitir(s,t). We

have

P@]o)= Y p(¥,x|o) =

xeXN

S p(?]x,0) - P(x|0) =

xeXN

S p(9]x) - Plx]o0) =

xeXN

—~
=

e

xe XN
Po|x) - P(x|9) - p(v

3 (o] P((O))p()

xex N

> xex~ Plo]|x)- P(x|7) - p(d)
Yxexn Plo]x)-P(x)

(
)

—~
S

)

This is possible withP(x) > 0 andP(o) > 0, a
condition satisfied in our settiigFrom Remark 1
we have

P(x|9) - P(W) = P(x) - dir(s*,t%). (9)

Therefore

Yxexn P(o]x) - P(x]9) - P(9)
Yxexn Plo]x) - P(x)

©) 2xexy P(0]x) - P(x) - dir(s", t")

> xexn Plo]x) - P(x)

P(?]o) =

)

which is a convex combination of Dirichlet density
measures. The IDM, when data are not perfectly
observable, consists in performing the calculation
above for each prior density in the sétl,, the

set of posterior densities consists of convex com-
binations of Dirichlet density measures. For each
posterior densityp (¢ | o) we calculate the proba-
bility that the next individual drawn will be of type
x;. Becausep(¥|o) is a convex combination of
Dirichlet density measures, we can use (3) and we

2Sincetj > 0 for all j ands > 0 it follows from (4) that
P(x) > 0. Because all the rows df are assumed to have at
least one element different from zero, for eaghthere exists
at least ong such that\;; # 0, therefore there exists at least
onex with P(o|x) # 0 and, becaus®(x) > 0 for eachx it
follows from (7) thatP (o) > 0.



obtain
3

P(x;|0) = E(6; o)
_ Jobi - Ssean Plo]|x) - P(x|9) - p(0)dV
- > wexn P(o]x) - P(x)
_ er)c'N P(O | X) i f@ 9i ) P(X | 19) -p(ﬁ)dﬁ‘
- > wexn P(o]x) - P(x)
V) Lexn Plo]x) - P(x) - [ 0i - p(9]x)dY
> xexn P(0]x) - P(x)
Ywexn Plo|x) - P(x)- E(0;[x)
> wexn P(o]x) - P(x)
(3 Sxexn P(0]x) P(x) - Gt
© Caean Plo]x)- P(x)

(10)

4.3 Vacuous predictive probabilities

Theorem 1. Assume that we are doing Bayesian
inference with the IDM. We have observed a
dataseto with countsn = (n4,...,n,) and our
observation mechanism is characterized by an
emission matrix\. Then following results hold.

1. If the matrix A is full®, the the IDM produces
vacuous upper and lower predictive probabil-
ities for each category iy, i.e.,

P(xilo)=1 and P(z;|o)=0.

. The IDM produces non-vacuous upper pre-
dictive probabilities for the category;, only
if it exists at least a\;; = 0 withn; > 0.

. The IDM produces non-vacuous lower predic-
tive probabilities only for the categories;,
such that\;; = 1 and \;; = 0 for eachj # i.

Corollary 1. The IDM produces non-vacuous pre-
dictive probabilities for each category itf, only if
A = 1I,i.e., inthe case described by (Walley 1996).

Proof. For giveni € {1, ..., k} define the dataset

—i

X = {Iia"'a'x’i}v

i.e., the dataset with counts = IV anda; = 0 for
eachj # ¢. We study the behavior aP(z; | o)
when the priordir(s,t) is characterized by ex-
treme values of the parameter Set7 is the
openk-dimensional simplex, we can therefore de-
fine sequences of priors with extreme values of

3Without zero elements.

the parameters, e.gt,with ¢; — 1 and, because
S t; =1,t; — 0for eachj # i. We show
thatlim,, ; P(x) = 0 for eachx € AN\ {x'}.
The numerator of (4) is a product of terms

x
J

[t +r=1).

r=1

a

(11)

If ¥ = 0 (11) is equal to one by definition, else, if
a¥ > 0foraj # 4, then (11) is equal to

Stjm..'(stj-i-a;-(—l),

and tends to zero, because of the first term of the
product, ag; — 0. Therefore for eaclk # X' (4)
tends to zero a§ — 1. Forx’ we have

@ . aX + st;

lim E(6; | X
Jim, (0: [x") N1

i
ti—>l

N+s
N +s

)

) a?+stj
tljlino N + s
0+s-0
N+s

tlilinl E@0;|x")

=0,

T, (sti +7 — 1)

(11)
=R s ;
7 Hj:1(5 +ji—-1)

lim P(X%) =

t;—1

For P(o|X') # 0 it follows

(10)

tlilgll P(z;|o0)

(10) . 2xean P(o]x) - P(x)-
=" lim

ay +st;
N+s

WS Seexn Plo[X) P(X)
oy Plol®) P S
ti—1 P(o|X") - P(X") ’

and therefore the IDM produces vacuous upper
predictive probabilities for the category,. For
P(o|x") = 0, limg, ; P(z; | o) is non vacuous
because atkk # X' have

. aX+s-1 N+s
tlilin1E(9j‘X): N s N—i—s:l'
Because
k
Plolx)= J[ Ay (12)

J=1,n;>0



the condition(12) # 0 is satisfied iffA;; # 0 for
eachj such that; > 0.

Consider now another extreme valtiéor the pa-
rameters of the prior density, this time with —

0 andt; 4 0 for eachj # 4. In this case
all the datasetx € XV with ¥ > 0 have
lim¢,—oP(x) = 0 and all dataset wittuX
havelim;, oP(x) # 0. For eachx € X with
a¥ = 0 we have

af+st; 0+s-0 0
im = =
t;i—0 N + s N+ s

)

and therefore, ifP(o | x) # 0 for at least a dataset
with ¢ = 0, it follows that

tlianO P(z;]|0) =

At least one~0 ,_TL
—_—— ¥ —+ Sti
ZXEXN,@:O Plo|x) - P(x)- ]lv s

ZXGXN,(L;‘:O P(O ‘ X) : P(X)
=0.

Therefore, if there is at least one datasetwith
a¥ = 0 and P(o|x) # 0, the model produces
lower probability O for the category;. For each
j with n; > 0 there is at least a with ;. # 0
because all the rows i are non-zero. Ih; = 0
we can therefore construct easily a datasetith
a¥ = 0andP(o|x) # 0. We cannot construct
such a dataset only i, > 0 and the unique el-
ement different from zero on thieth row of the
matrix A is A;; = 1. This concludes the proof of
the theorem.

4.4 Examples
We illustrate the results with two examples in the
binary case.

Example 1. Consider a situation wittk = 2, s =
2, N = 2 and an emission matrix

r = (

wheres > 0. Suppose that we have observed the
dataseto = (x1, 1) and therefore the count =
(2,0). The probabilities of the observed dataset

1—c¢
€

€
1—¢

given the different dataset &f? are given by

Po|(z1,21))=(1—¢)-(1—¢) >0,
P(o|(z1,22)) = (1 —¢€) - >0,
Plof(z2,21)) = (1—¢) ¢ >0,
P(o|(z2,22)) =€-e>0

Calculating the posterior probability?(z1|o) us-
ing (10) we obtain

P(a1]o) =
2+5t1

—((1=2)-(1—2)-sty(1+st,)-
(1-9-0-9 s+ 30

1+8t1
2. (1—¢)-e-5t -5ty-
+ ( 5) g - 811 - Sl2 2+ s

0+St1

+e-e sty (14 sta)- P

~((15)o(15)ost1(1+st1)+
+2-(1—¢€)-€- sty - sta+

—1
+€'€‘St2'(1+8t2) > .

It follows that

, 1—¢)? s(1+s)
= = 1
tlllgll P(z1]o) (1—¢)2-5(1+s) ’
and
. e2-s(1+s)-0
pm Plede) = — =y =0

implying
P(z1]0) =0, P(x1]o) = 1.

The same result holds fd?(x2|o).

Remark 3. The result of Example 1 holds for each
positive, even very small, value2fThe IDM with
A = I and the same produces

= 2+2
P(I‘1|O):m:1,
2
B(x1|0):m205,
— 0-+2
P(I2|0):m:05,
0
£($2|0)=m=0~



It is evident that there absolutely no continuity be-
tween the result forA = I and the results for
A = A, even for very smal.

Example 2. Suppose that we have observed a
dataseto with corresponding counts = (12, 23)

and assume that the observation mechanism is
characterized by the emission matrix

0.8 0.2
A= ( 0.2 0.8 )

Figure 1 displays the results fdP(x;|o) obtained
with the IDM for s = 2. It is interesting to  °°f
remark that the problem of vacuous probabilities s
arises very near the boundaries ®f In the first

plot,where the function is plotted in the interval
t1 € [0,1], it seems thaP’(x1|o) is around 0.34.  °¢
But if we look at the second plot, where the func- s
tion is plotted more precisely in the interval
[0.99999, 1] we see clearly thaP(z;|o) = 1 as
confirmed by theoretical results. o3r
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Consider an observer with a unique extreme prior
density measurg(¢) = dir(s,t) with s > 0 and ool
t; — 1forsomei € {1,...,k}. The observer be-
lieves a-priori that the population is formed almost o5
completely by individuals of category;. Now,
if he observes an individual of categomy, and o7t
Aji # 0, then he will tend to believe that the indi-
vidual observed is actually of categary and that ~ osf
there was a mistake in the observation mechanism.
Only if A\;; = 0 he has to rationally realize that °°|
observing something different from can only be
consistent with a strong modification of his prior °*f
beliefs.

03

Consider now an observer with — 0. Such an
observer believes a-priori that there is almost no
individuals of categoryt; in the population. If he
observes an individual of categosy, he will be-
lieve that the actual category is another categgry
such that; > 0 and\;; > 0. The observer cannot
believe that, only if\;; = 0 for all 7 # j.

for t; € [0.99999, 1].

When letting the prior density of an observer con-
verge to a degenerate one, the model with imper-
fect observation mechanism produces trivial results
because of the degeneration in the behavior of the
observer. Such a feature arises only with prior den-
sities that are extreme. To avoid vacuous infer-
ences it would be sufficient to restrict the set of the

L
t1

Figure 1: The functiorP(z;|o) for ¢; € [0,1] and



prior densities by excluding the problematic ones. Proof. See appendix C. We can conclude therefore
However this is not compatible with the idea of that our result about vacuous probabilities is still

complete prior ignorance: each restriction of the valid also from the point of view of the observable

set of priors without a specific knowledge is arbi- data.

trary and hence impossible to motivate.

5 The binary case
4.6 Inference on¢
In the previous section we have assumed an obser-
vation mechanism with known and constant emis-
sion matrix. In this section we study in detail the
A = ( l—e & ) behavior of the IBM if the observation mechanism
o= , (13) ) X :

€ 1—¢ is not known, or when the observation mechanism
changes with time, in order to generalize Theorem
1. We show that a crucial assumption is the possi-
bility of a perfect observation mechanism. In par-
aticular we show that, if the observation mechanism
varies over time but it it is surely never perfect, then
the IBM produces vacuous predictive probabilities.
At the other side we show that, if there is a prob-
ability, even small, that for an observation the ob-
servation mechanism is perfect, then the IBM pro-
duces non-vacuous probabilities. At the end of the
section we illustrate this feature with a paradoxical
example.

Consider the binary cas& (= 2) with emission
matrix

wheree # 0.5. The IDM with & = 2 is usu-
ally called Imprecise Beta ModeIBM) because
the Dirichlet density measures with= 2 are beta
density measures (see (Walley 1991) and (Bernar
1996) ). Consider the chancés = (6;,6,) of
the unobservable proce¥sand the chance§ =
(&1, &2) of the observable process Because the
matrix (13) is non singular, we can reconstruct
the values ofd starting from the values of us-
ing the relationd; = £ and viceversa with
& = (1 — 2e)6; + . Apparently, it should be
possible to do inference dhusing the observable
values ofO with the standard IBM and then recon-
struct the values af. But this would contradict our
previous result about vacuous probabilities. Actu-
ally, we show that our result is still valid, also from
the point of view of the observable data. In par-
ticular we show that, at one side the application of _ .
. X o ) trix.
the IBM on ¢ ignoring the emission matrix pro- ) )
duces sinless results, at the other side the applicacorollary 2. The IBM with observation mecha-
tion of the IBM on¢ taking correctly into account Nism defined by the emission matrix (13), where

the emission matrix produces vacuous probabilities® 7 U Produces vacuous probabilities.
as the IBM onJ. Proof. This is a particular case of theorem 1. Now

Proposition 2. The inference o with the stan-  we allow the observation mechanism to vary over
dard IBM can produce sinless values fér i.e. time, we obtain however the same result:

negative values or values greater than 1. Theorem 3. The IBM with observation mechanism
for thei-th observation defined by the emission ma-

5.1 Vacuous probabilities in the binary case

We generalize theorem 1 to a situation where the
observation mechanism is characterized by a non-
constant, stochastically distributed emission ma-

Proof. See appendix B. In fact the density measure ™
of the parameter§ is not a standard beta density. X

1—¢g i
If we model our knowledge about the parametérs A, = ( 5-6 1 i - ) , (14)
with a beta(s, t) density, then taking into consid- ‘ !
eration the emission matrix (13) we obtain fos ~ Wheree; # 0 for eachi € {1,..., N} produces

scaledbetay. 1_.(s, t) density. Therefore the IBM  Vacuous probabilities.

on¢ should be performed using, as set ofpnorden—Proofl The proof is equal to the proof of theo-

sity measures, the set of all beta densities scaled on :
5,1 — ] with t ¢ 7 and not the standard beta rem 1 except for the term®(o|x) that contain

densities used usually in the IBM. But in this case €1,..,€x instead of a single.
following theorem holds: Lemma 3 (Lebesgue Theorem).Let {f,,} be a
series of functions on the domaihsuch thatf,, —

Theorem 2. The IBM on¢, with, as set of prior £ pointwise. If for each we have

densities, the set of all scaled beta densities de-
scribed above, produces vacuous probabilities. | fn(2)| < &(z),



and and, similarly,

/A bl)dz < oo,

lim P(z2]0) =0.

t1—1

then

. Remark 4. The result can be easily generalized

lim Afn(x)dw = /Af(ﬂf)dx- to the k-dimensional case. It is sufficient to as-
sume thatP()\;; = 0) = 0 for each element in

In the following Theorem we allow the emission (5). This condition is satisfied by all continuous

matrices to be unknown and we summarize ourdensity measures defined on the components of the

knowledge about; with a continuous density mea- emission matrix.

sure. We obtain once more the same result.

Theorem 4. Suppose that we want to perform pre- 5-2 An alternative approach with relaxed
dictive inference using the IBM and our obser- assumptions

vation mechanism for théth observation is de-
fined by the emission matrix (14), whete :=
(e1,...,en) is distributed according to a continu-
ous densityf () defined or0, 1]V. Then, the IBM
produces vacuous predictive probabilities.

We have shown that we are unable to obtain non-
vacuous predictive inferences with prior ignorance
if we know that the observation process is not per-
fect. Vacuous probabilities arise because of the
combination of two factors:

Proof. We know from Theorem 3 that given

€1,-..,en 7 0we have (i) Extreme, quasi-degenerate, prior densities.
Jlim P(z1]0,¢) = 1, (ii) Persistent doubt about the quality of observa-
tions.
and

Jim, P(zz]o0,e) =0, therefore, in order to produce non-vacuous predic-

for eachj # i. We have tive probabilities, we can follow two approaches:
tlllin1p($1 o) = (i) We can restrict the set of prior densities ac-
) cording to some criteria. However, it is very
= /[O ~ P(z1]0,e) - f(e)de. difficult to do so, while maintaining a com-
’ plete prior ignorance and without applying ar-
bitrary criteria.

Furthermore (i) We can model the observation process allow-

P(xzjlo,e)- f(e) < f(e), ing it to be perfect with some probability. In
other words, without excluding a-priori the
possibility of a perfect observation mecha-
nism.

for anyj, ¢, 0 where

/ f(e)de = 1.
[0,1¥

Because of the continuity of we know that We follow the second approach. All results pre-
P(s; = 0) = 0 for eachi and eacle € [0,1]2. sented in the sequel for the binary case can be

extended to th&-dimensional case. Given &-

Applying Lemma 3 we conclude that ’ - X
dimensional vector of observatiomswe assume

lim P(z1]0) = that some observations were made under a per-
fect observation mechanism, while the other ones
= lim / P(z1|o0,¢) - f(e)de = have been obtained under an imperfect observation
=ty mechanism with emission matrix (13). Define a
_ . ) _ binary random variabl& such thatP(E = 1) =
/[O’I]N tlllgllp(zl |0,6)- fle)de = 1 -pandP(E = 0) = p. For each observed
dataseb there exists an unobservable veosoof
:/[0 o 1- f(e)de =1, length V consisting of independent realizations of

random variabléE. Set€ := [0,1]V, £ is equal to
the set of all possible vectoesof length N. With



e; = 0 (e; = 1), we mean that théth observation

is obtained under a perfect (imperfect) observationwith values inx? and probabilityy =

mechanism. Assume that

P(¥,x,0,e) = P(o|e,x)-P(x|¥)-P(e)-P(¥).
(15)

From (15) it follows that
P(e|o) = P(e). (16)

In order to obtain predictive probabilities, we cal-
culate
P(zi|o) = E(0;|o) =

:/ 0;P(¢|0)dd =
(7)/GZP19|0e (e|o)dd

ecé
(16) Z

eeg(/@PMoedﬂ) Ple) =

:ZE(HZ» |o,e)- P(e) =

ecé

:ZP(aci\o,e)~

ecé

P(e), a7)

for i = 1,2. Explicit calculations (see Appendix
D) lead to the following result.

Theorem 5. If p > 0, then the IBM produces non-
vacuous inferences.

Therefore the crucial assumption, in order to obtain ;
non vacuous predictive inferences, is the possibil-
ity of a perfect observation mechanism with some
positive probability.

5.3 A paradoxical example

We illustrate the above results with a paradoxical

Process 2: In a first step a random variablg

{01,062}

is generated. Independently Xf a binary random
variableE is then generated such tha{E = 0) =
1—eandP(E = 1) = ¢ wheres > 0. After X and

E have been generated, a further random variable
O is drawn, such thad = X if E = 0. Else, when
E=1,if X =z, thenO = o, if X = X9, then
0= Zq.

The paradoxon

The processes 1 and 2 produce exactly the same
probabilities for the observed data In fact for
both processes

P(Ole):(1—€)91+€92,

P(O:$2):(1—€)92+501.

It follows that the two processes are indistinguish-
able from the point of view of the observer. How-
ever, the first process is a process of the type de-
scribed in section 4.1. Therefore the IBM produces
vacuous predictive probabilities. The second pro-
cess belongs to the category of processes described
in section 5.2. In such a setting the IBM produce
non-vacuous predictive probabilities. In particu-
lar, the possibility of producing non vacuous in-
ferences depends not on the form of the distribu-
tion of observed data, but rather on some structural
assumption on the process generating the observa-
tions. The difference between the two models lies
in the assumptions. In the first model we assume
the existence of perfect observation mechanisms,
whereas the second one assumes only the exis-
tence of perfect observations. The assumptions of
the second model are therefore much weaker than
those of the first model.

example. To this end we introduce two data gener-6  Conclusions

ating processes.

Process 1: In a first step a random variabl¢
with values inx? and probabilityd = {6;,0-} is
generated. AfteK has been generated, a random
variableO is generated, such that

PO=z1|X=21)=1—¢,
PO=x1|X=19) =c¢,
PO=x|X=12) =¢,
PO=x3|X=x3)=1—c¢.
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A Proof of Proposition 1
Proof. The Gamma function satisfies the property

MNz+1) =z -T'(z).



[Is+i—1)-1(s).

=1

Proof of the Lemmalf N = 0 thenT'(s*) = I'(s).
Now assume that fav — 1 the following equality
holds

N—-1
I(N—1+s)=[](s+i—1)-T(s),
then
'(N+s)=(N—-1+s)-T(N—-1+s)=
N-1
:(N—1+s)~H(s+i_1).p(s):
N =1
ZH(5+Z—1) I'(s)
Lemma.
Rt = Lot +i—1)-Tsty).

Proof of the Lemmalf a; = 0 thenl'(s* - t7) =
I'(st;). Now assume that fai; = n — 1 the fol-
lowing equality holds

[L(s*-t7) =T(a; +stj) =T(n—1+st;) =

n—1
= H (stj +1—1)-T(st;).
i=1

then witha; = n
L(s* - t7) =[(a; + stj) =

=T(n+st;) =
= (n—1+ st;) - (

=TT(st; +i—1)-T(st)).

It follows that
dir(s*,t*) =
I'(s*) k s tr—1
I D) 11
j=1 j j*l
a7 st 71
TTHE 1 oeae . H H9
H_j: t Jj=1
Hizl(s +i-1)- F(S) _
[T -(TTE (st + i — 1)) - T(st;)
k k
a; stj—l _
~H6j- -HGj =
j=1 j=1

[T (s+i—1)

By <st-+z>1>'
k
9(1] . st'—lz
() et 1o
_ Hi:1(8+i_1) .
1, T (st +i— 1)

<H9 ) -dir(s,t),

and therefore

k

1%

j=1
k a .

_ Hj:l L2, (st +i—1)
Iy (s +i—1)

-dir(s,t) =

~dir(s*,t").

B Proof of Proposition 2

Suppose that we have observed a datasefith
corresponding counts = (ng, ng). If we perform
the standard IBM on this dataset then we obtain

¢ e n; _ni—i—s
! N+s N+s

and therefore

mi—c(N+s) mits—c(N+s)
e | (v 5

Butif n, < (N + s) thenm% < 0and

if n; < e(N +5) — s then e =) < 0, At



the other side if;; > (1 —¢)(INV + s) thenwe find ~ We have that

values for; that are greater than 1. Therefore the
g ) P(o,e|0) 19) Plo,e|d) _

standard IBM can produce sinless results. P(ole, ) = =
e | 1D = "ples) ~ P
Substitutingt; = - in the beta(s,t) density
e _ ) P(o e|X (X|19)
C - 65171 . 95721 of ¥ defined on0; 1] we obtain >
for ¢ the density xeX
(22)
C e e\ gy e = ZP(0|e,x)-P(x|19),
y (18) xeX
1 -2 \1-2¢ 1— 2

defined on the intervdk, 1 — ¢]. This density is
called ascaled beta densitgnd referred to with and therefore
betar. 1< (s, t). The first moment of a scaled beta

density are given byF(0;,) = (1 — 2¢e)t; + «. p(o, v, e Z P(¥,x,0,¢)
For scaled beta densities a result similar to propo- xed
sition 1 holds, i.e. ifo is a dataset with counts = Z P(ole,x)-P(x|9)-P(e) p(¥) =
n = (n1,n2) then x€EX
G —e\" (& —e\" B =P(o|e, ) - P(e) - p(V)
- beta(s,t) =
1—2¢ 1—-2¢
L2 (st —0) - T2, (n2 + st — ) thus
Hi\il(N""S_i) ) p(0,9,e)
- beta(s®,t°). p(]o,e) = m -
P(o|e,d)  P(e) p(t) _
P(ofe)- P(e)
C Proof of Theorem 2 P(o|e, ) - p(9)
~ Plole)
D Proof of Theorem 5 (20)+(1) (0 e, d) - p(9)

N 9) - p(9)dd’
) Proof. Suppose that we have observed a dataset Jo P o Plole V) -p(v)
o. For given vectok and observed datasetwe
introduce following notations: )
and therefore it follows from (17) that
e N, is the number of components equal to one f99 P( o|e 75) p(0)dV

in the vectore. P(z;|0,e) = .
Jo Plo]e,d) - p(d)dy

(23)

e 1. is the number of ones in the vectethat

correspond to amy in dataseb. For eache € £ the functionp(¥| o, e) is a likeli-

e 74, is the number of ones in the vectothat ~ hood function of the form
correspond to am, in dataseb.
P(o|e,9) =

® TNe 1= (nlevnQS)' :97111—n1e . egz—n% . ((1 _ E) 0 +e- 92)7L1e_

From (15) it follows that ((L—g)-O2+c-01)" =

P(e|9) = P(e), (19) —HZZ< nie ) . ( "]2 )

=0 j=0
p(d]e) =p(¥), (20) (1 — e)Nem () | (i) gma—iti _gna=it+i _
P(e|x) = P(e), (21) nie noe N o
and therefore =: Z Z c(i, j, n1e, nae) - O L graitE

1=0 7=0
(8) P(o,e|x) 1) P(o,e|x) !

Plolex) = 26 — Pl

. (22)



From Proposition 1 we know that

07 05T beta(s, by, o) =
T (st +a—1) T2 (st + b - 1)
= M (s+c—1) |

beta(s®,t7,;,t35;;) =

C(i, j,me)

=———"" . beta(s®,t9;,,t9;.),
[Tl (s+c—1) v
where
s =N +s,
to..— nl—i+j+8t1
Lij = N +s ’
and

o ng—j+i+8t2
N+s '
Therefore using (23) we have

25 —

E(61]o,e) =
Z?:IB ;Liﬁo C(iuj» ne) : C(Zu]v ne) :

n1—i+j+sty
N+s

Z?:lr(i) ?ico C(i’j7 ne) ' C(i,j, ne) ’

and
E(02 | o, e) =
Z:l:l?) ;Lii) C(iaj7ne> : C(iaj7ne> : %ﬁjm

Z?:IB ;’lieo C(i7j7 ne) : C(i7j7 nE)

Consider a vectoe with n; > ni. andngy >
ng. and the corresponding likelihood function
P(o|v,e). We know that

E(61]o0,e) =
Z:l:l(f) ;LiEO C(ivjv ne) : C(Zvjv ne) .

ni—i+j+sty
N+s

Z?:l:) ;Lipo C(Z7jvne) C(Z7jane)
<n1—0+n26+st1
- N +s
-1
<n1+n2+s _
N +s

L

and in the same manner

E(0;|o0,e) >
>n17n16+5t1
- N+s
nl—n1—|—8-0_0
N +s e

Therefore each likelihood function of this type
leads to non vacuous predictive probabilities for
x1. Forx, we obtain the same result. Because
the predictive probabilities that we obtain using the
IDM are a weighted average of the predictions ob-
tained with each single likelihood the model pro-
duce vacuous predictions only if the probabilities
of all e with n; > ny. andny > no. are equal to
zero. However, since

P(e) = p™ Ne(1 - p)™,
and in this caseV — N, > 0, this holds only if
p=0.
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