
Università
della
Svizzera
italiana

USI Technical Report Series in Informatics

Probabilistic FIFO Ordering

In Publish/Subscribe Networks

Amirhossein Malekpour , Antonio Carzaniga , Giovanni Toffetti Carughi , Fernando Pedone

Faculty of Informatics, University of Lugano, Switzerland

Abstract

In a best-effort publish/subscribe network, publications may be delivered out of order
(e.g., violating FIFO order). We contend that the primary cause of such ordering viola-
tions is the parallel matching and forwarding process employed by brokers to achieve
high throughput. In this paper, we present an end-to-end method to improve event or-
dering. The method involves the receiver (and minimally the sender) and otherwise uses
the broker network as a black box. The idea is to analyze the dynamics of the network,
and in particular to measure the delivery delay and its variation, which is directly related
to out-of-order delivery. With these measures, receivers can determine a near-optimal
latch time to defer message delivery upon the detection of a hole in the message se-
quence number. We evaluate the performance of this ordering scheme empirically in
terms of the reduction in out-of-order deliveries, the delay imposed by the latch time,
and its self-adjustment with variable network conditions and input loads.

Report Info

Published
April 2011

Number
USI-INF-TR-2011-2

Institution
Faculty of Informatics
Università della Svizzera italiana
Lugano, Switzerland

Online Access
www.inf.usi.ch/techreports

1 Introduction

In the content-based publish/subscribe communication model, or simply content-based communication, the
addressing of messages is implicit and controlled by the receivers. Receivers express their interests through
subscriptions that state conditions on the content of messages, while senders simply publish messages with-
out any set address. Each message is then delivered to all receivers whose interests match the content of the
message. Content-based communication has a variety of applications, such as system monitoring and man-
agement, information dissemination, resource discovery, stream processing, and distributed simulation.

In spite of substantial efforts to devise and implement robust and efficient content-based publish/subscribe
systems [1, 2, 3, 4], a few proposals have considered the issue of message ordering and its most basic FIFO
form: two messages published by the same sender must be delivered to a receiver in the same order they were
published. FIFO ordering is typically implemented using sequence numbers set on the sender side to reflect
the sending order, and checked on the receiver side to enforce the same order for delivery [5]. When the net-
work delivers a message with a higher-than-expected sequence number, the receiver must decide whether to
wait for the missing message or to proceed by delivering the message it has received. However, because of the
implicit addressing induced by the content-based model, the receiver does not know whether the hole in the
sequence is due to a message that was delayed along the delivery path, or to a message that does not match
the receiver’s interests.

In this paper we present a probabilistic method to achieve FIFO ordering in content-based communica-
tion. We illustrate this method using B-DRP, a high-throughput content-based network [6]. B-DRP implements
is “best-effort” with respect to ordering and reliability, does not store messages at intermediate brokers, and
does not use acknowledgments to confirm delivery. Also, B-DRP’s design is intended to achieve high deliv-

1

http://www.inf.usi.ch/techreports/

m
es

sa
ge

s
p

er
se

co
n

d

0 50 100 150 200 250 300
Time (seconds)

0

5000

10000

15000

20000

25000

30000

35000

Publications

Notifications

False Negatives

0 50 100 150 200 250 300
Time (seconds)

0

5000

10000

15000

20000

25000

30000

35000

Publications

Notifications

False Negatives

0 50 100 150 200 250 300
Time (seconds)

0

200

400

600

800

1000

1200

1400

(a) ActiveMQ: Throughput (b) B-DRP: Throughput (c) B-DRP: FIFO Violations

Figure 1: Throughput and FIFO violations of ActiveMQ and B-DRP in an 8-broker network.

ery rates thanks to an efficient routing scheme as well as highly parallelized matching and processing within
brokers. Thus, B-DRP is arguably an ideal testbed to experiment with message ordering. Yet, the method is
generic, as it applies to end-points (publishers and subscribers) and treats the whole network as a black box.

Intuitively, FIFO violations are caused by short-term variations of the end-to-end delay of messages, which
may occur in the presence of different delivery paths or if the forwarding process is parallelized and therefore
does not itself maintain FIFO ordering. At a high-level, our approach is to measure the delay variations, and
then compensate for their effect.

To understand and measure delay variations, we study the dynamics of an actual content-based network.
We show that the end-to-end delay of messages along a specific path follows a hypoexponential distribution.
We also develop a way to measure the parameters of this distribution dynamically, and therefore a method
to calculate the probability of a FIFO violation upon the observation of a hole in the sequence numbers. We
also use the same model and technique to estimate the necessary latch time (i.e., deferring the delivery of
messages to the application) to reduce the probability of a FIFO violation. We then enhance the receiver’s
decision algorithm with a method to estimate the relevance of missing messages, to prevent the unnecessary
holding of a message when none of the missing messages matches any local interest.

We have fully implemented and experimentally evaluated our technique. Extensive experiments with net-
works of up to 46 brokers and 2500 clients reveal that our model reflects the dynamics of the network in various
working conditions, and is able to avoid more than 95% of FIFO violations while keeping the extra delay caused
by latching to a minimum.

In Section 2 we begin by motivating this work and overviewing the problem and our proposed solution.
We then detail the model and our probabilistic FIFO ordering algorithm in Section 3. We present an experi-
mental evaluation of the proposed algorithm in Section 5. We review related work in Section 6, and offer some
concluding remarks in Section 7.

2 Overview of Problem and Solution

We motivate this work through an experimental comparison between B-DRP and Apache ActiveMQ.1 Our pur-
pose here is to exemplify the problem at a high level, so we give only a cursory description of the experiment,
focusing on the comparative analysis of the two systems. Later in Section 5.1 we discuss this and other ex-
periments in greater depth. The experiment measures the throughput and the rate of FIFO violations in a
content-based publish/subscribe network of 8 brokers subjected to increasing message traffic. The network
topology is a graph of diameter 3. Each broker runs on a dedicated machine and serves 50 clients running on
the same machine. All 400 clients are subscribers, but only 50 also act as publishers. In order to simulate a
wide area network, we apply transmission delays and bandwidth limits on inter-broker links. In particular, the
bandwidth limit is 10Mbps and the transmission delay is 50ms with a dynamic runtime variability of ±5ms
which is typical of the Internet, based on different Internet measurements.2

Clients generate a synthetic workload of subscriptions and publications, and the generation algorithm is
parametrized so as to induce an intense stream of messages to a few subscribers combined with a steady but
slower flow to all other subscribers. The experiment modulates the publication rates over a period of 300

1ActiveMQ (http://activemq.apache.org/) is a very popular and reportedly very efficient messaging system that also implements a
content-based publish/subscribe service as part of the Java Messaging Service.

2For example see measurements by RIPE Network Coordination Centre (RIPE) available at http://www.ripe.net/data-
tools/stats/ttm/ttm-data

2

seconds using two groups of high-rate and low-rate publishers, respectively. Two high-rate publishers, each
one publishing 1200 messages per second, join the network at 90 and 190 seconds, respectively, and cause the
two noticeable increases in the aggregate input and output rate. The remaining 48 are low-rate publishers, with
a publication rate that slowly ramps up from about 1.5 messages per second at the beginning of the experiment
to a maximum of 25 messages per second at the end of the experiment. This mixed workload is intended to
show, to the extent possible in a single experiment, the general reaction of the broker network to abrupt as well
as gradual increases of publication rates, and also to congestion, since the workload is also designed to reach
the maximum (collective) delivery capacity of the network for both systems.

Figures 1a and 1b show the throughput measurements. In particular, we plot the rates of publication,
message deliveries (i.e., notifications) and false negatives for both ActiveMQ and B-DRP. (A false negative oc-
curs when a subscriber does not receive a published message that matches its subscriptions, and is typically
caused by congestion.) Both networks gracefully handle gradual and sudden increases of the aggregate input
load during the first 200 seconds of the experiment. At this point B-DRP reaches its delivery limit of about
30000 messages per second, and from then on it starts dropping messages, as evidenced by a raise in the rate
of false negatives in the diagram. ActiveMQ handles the growth of the input rate up to time 240, when it deliv-
ers 32500 messages per seconds. However, after this peak point, it exhibits a sudden reduction in delivery rate.
Also, about 20 seconds after this congestion point, ActiveMQ brokers start blocking publishers, presumably to
counter congestion.

As for ordering, ActiveMQ delivers all its notifications in FIFO order—as it should, according to the Java
Messaging Service specification—while B-DRP, which is designed as a best-effort network, does not prevent
FIFO violations, and in fact incurs a rate of violations that is roughly proportional to the delivery rate (see
Figure 1c).

In summary, we observe that ActiveMQ maintains FIFO ordering at all times but suffers an almost catas-
trophic reaction to congestion, while B-DRP reacts more gracefully to congestion but incurs a significant num-
ber of FIFO violations. Our goal in this paper is to combine the best behaviors of these two systems. In partic-
ular, we argue that FIFO ordering can be best supported as an optional, end-to-end service implemented on
top of a best-effort publish/subscribe system.

2.1 FIFO ordering

FIFO is a simple ordering condition defined for each sender/receiver pair: considering a sender s and a re-
ceiver r , for every pair of messages m1 and m2 sent by s and received by r , a FIFO violation occurs when-
ever s sends m1 before m2 but r receives m2 before m1. It is also useful to express this condition in terms
of the total travel time of each message: let departure(m) be the departure time of a message m , and as-
sume δ = departure(m2)−departure(m1) > 0; let arrival(m) be the arrival time, and delay(m) = arrival(m)−
departure(m) the total travel time of a message m . Then, a FIFO violation occurs when delay(m1)−delay(m2)>
δ.

Furthermore, the total travel time of a message can be expressed as the sum delay(m) = delay∗(m) +
vardelay(m) of a nominal delay, delay∗(m), representing the long-term-average link, queuing, and processing
delays, plus a short-term-variable delay vardelay(m). This distinction is useful because, ignoring pathological
cases, FIFO violations occur only when the departure interval δ is small, and therefore when the long-term-
average delays of m1 and m2 can be reasonably considered constant. This means that FIFO violations are
essentially a function of the short-term-variable delays and the departure interval δ. Specifically,

FIFO violation⇔ vardelay(m1)−vardelay(m2)>δ (1)

Equation (1) expresses the essence of the problem as well as the idea upon which we develop a solution.
Our guiding principle is to address FIFO violations with an end-to-end solution. This means that we pro-

pose to detect FIFO violations and perform the necessary reordering on the receiver side and independently
of the underlying network. This mechanism can be incorporated into the client’s middleware or be part of the
application logic. This design has multiple advantages, the most important of which is that it is applicable to
virtually every publish/subscribe system, regardless of their architectures, routing protocols, and broker tech-
nologies. Moreover, maintaining FIFO ordering within brokers can be memory intensive and would delay all
messages without distinction. By contrast, when ordering is handled by end-points, it is up to the client to
decide the right balance between strictness of the ordering and cost in terms of additional delivery delay.

FIFO ordering is typically implemented with sequence numbers attached to each message by the sender
to reflect the sending order, and used by receivers to follow the same order for delivery. One might try to

3

apply the same sequencing technique to content-based communication. However, in this case, holes in the
sequence (e.g., receiving m7 immediately after m5) must be treated differently. Specifically, because of the
implicit addressing of the content-based model, the receiver does not know—and in some cases it can not
know—whether a hole in the sequence is due to a message being delayed along the delivery path (e.g., due to
its longer processing time) or whether that message was not supposed to be delivered at all because it does not
match the receiver’s interests.

Therefore, in order to avoid (or minimize) FIFO violations, we must solve two problems: first, a receiver
must decide whether or not to wait for a missing message; second, if the missing message is determined to be
likely to arrive, the receiver must determine an appropriate buffering time (or “latch” time) for the message(s)
received out of order. One might argue that the receiver can always wait until the missing messages arrive.
However, due to the best-effort nature of the service, those messages may get lost, leaving the receiver in a
live-lock condition. So eventually, the receiver must timeout after a certain latch time and drop or deliver the
buffered messages. The next section details our solution to each one of these two problems.

Our approach is to give receivers a way to answer these questions on the basis of the condition defined in
Equation (1). In particular, we propose to carry with each message its departure time, the departure time of the
preceding message, and a summary of the content of some previous messages. With departure times (time-
stamped by senders) and arrival times (recorded locally) a receiver can continuously measure the distribution
of end-to-end short-term-variable delays. Also, upon receiving message m2 in the absence of the preceding
m1, a receiver can use the time stamps on m2 to compute the sending interval δ between m1 and m2. Then,
with δ and the measured distribution of delays, the receiver can decide, up to a set error probability, whether
m1 may have been delayed and, using the content summary carried by m2, whether m1 may arrive. If so, the
receiver determines, also based on δ and the delay measurements, how long to hold m2 so as to avoid a FIFO
violation without delaying the delivery of m2 excessively.

3 Probabilistic FIFO Ordering

The method we propose is probabilistic in nature, since it is based on a probabilistic model of delay variations.
We now detail this model and how we use it to reduce FIFO violations.

3.1 Model of end-to-end delay

We model the end-to-end delay of a message m as the sum of a long-term average delay plus a short-term
variation vardelay(m). Since we are interested in comparing the end-to-end delay of pairs of messages sent
by the same publisher within a short interval, we consider the long-term-average component of these delays
to be the same. Thus, we focus on the delay variation vardelay(m). In particular, we model vardelay(m) as a
random variable with a probability distribution whose parameters are also constant during the short interval
that separates two consecutive messages.

In general, the variable component of the processing time (including queuing) and the transmission times
at each hop in the publish/subscribe network contribute to the end-to-end variable delay. Typically, a broker
has a set of tables to store subscriptions and routing information, and forwarding a message involves compar-
isons against the entries of the subscriptions table and/or a lookup in the routing table. As a result, the pro-
cessing time may vary according to several factors, including the number of subscriptions, their constraints,
the number of attributes in the message, and the matching algorithm, which might itself be randomized.

Furthermore, in a typical modern implementation on multi-processor hardware, the forwarding process is
usually parallelized for maximum throughput, at a minimum with each message handled by a separate thread,
and possibly with finer-grained parallelism. Therefore, since forwarding incurs minimal (if any) contention on
shared data, the processing times for two different messages are mostly independent. Similar considerations
apply to the transmission time, although typically with much less variability, to the point that transmission
time for two messages published withing a small time frame can be considered equal.

In summary, considering two messages m1 and m2 that might give rise to a FIFO violation, we model their
short-term variable delays vardelay(m1) and vardelay(m2) as two independent and identically distributed ran-
dom variables whose distribution depends essentially on the processing time in brokers. (We validate this
model experimentally and discuss our findings in Section 5.1.) Thus, our goal is to characterize this distribu-
tion in general, and then to measure and parametrize it at run-time.

4

3.2 Measuring delay di�erences

Measuring end-to-end delays with a significant precision requires synchronized clocks, and therefore is not
practical outside of a tightly controlled environment. On the other hand, the difference between the delays of
two messages m1 and m2 can be readily computed, without synchronized clocks, using the time stamps as-
sociated with messages. In practice, a receiver stores the departure time departure(m i) stamped on m i by the
sender, records its arrival time arrival(m i), and also records departure and arrival times, departure(m i−1) and
arrival(m i−1), for the previous message m i−1. With this information, it computes delay(m i)− delay(m i−1) =
[arrival(m i)−arrival(m i−1)]−[departure(m i)−departure(m i−1)]. The crucial point here is that, by subtracting
a departure time from a departure time, and an arrival time from an arrival time, the result is not affected by
the lag between the two clocks. We do assume though that the imprecision due to clock drift during delivery is
negligible.

In summary, a receiver can measure the distribution of the difference between end-to-end delays, and can
then use it as the basis for the estimation of the probability of FIFO violation and the estimation of the optimal
latch time. In our model, any two messages that a subscriber receives from a specific publisher go through
the same route and hence the same number of brokers. Consider two messages mx and my received by a
subscriber that is k brokers away from the publisher. Subtracting the delay of two messages cancels out the
constant component of the delay and the subtraction reduces to subtracting two random variables. Writing
each variable in terms of its components we have:

d e l a y (mx)−d e l a y (my) =

(X1+X2+ · · ·+Xk)− (Y1+Y2+ · · ·+Yk) =

(X1−Y1)+ (X2−Y2)+ · · ·+(Xk −Yk) (2)

where X i and Yi , 1 ≤ i ≤ k , are the independent and identically distributed random variables representing
the processing time of messages mx and my at each broker i . Observe that in the last form of Equation (2)
each term of the summation (i.e., X i −Yi) is itself the difference between two independent and identically dis-
tributed random variables and hence is a symmetric random variable with a mean of zero. As such, without
making any further assumption about any of the random variables involved in this equation we can find prob-
abilistic bounds on the value of the above delay difference using probabilistic inequalities such as Chebyshev’s
inequality. In more specific cases, when the broker-hop count is known (e.g., as a field in the message header
similar to IP header) we can also use Bernstein inequalities or Hoeffding’s inequality to find better bounds.
This is indeed of great advantage because as we will detail later, to find the latch time we need to find the
probability of delay difference being more than a given value.

Unfortunately, space limitation does not allow us to elaborate more on the use of probabilistic inequalities
in the general case. Instead, we focus on finding a more accurate characterizations of the delay difference
distribution and how to measure its parameters. To this end, finding the distribution of end-to-end delays will
enable us to find the distribution of delay differences. In the next section we will analyze the distribution of
end-to-end delays in more detail.

3.3 End-to-end delay distribution

In order to model the difference between end-to-end delays, which is the observable distribution for a receiver,
we start from the distribution of end-to-end delays. In the context of IP networks, various researchers have
proposed different methodologies and distributions to model end-to-end IP-level packet delay. For instance
Zhang et al. found that a power-law distribution offers a good model [7], while Mukherjee [8] reported that
Internet packet delays can be represented by a shifted Gamma distribution whose shape and location factor
depend on traffic load and path length.

To extend some of these results to the case of content-based publish/subscribe systems, and to study the
dynamics and distribution of end-to-end delays, we conducted experiments with a variety of parameters such
as network size and topology, subscription and publication patterns and rates, and link delays. We then syn-
chronized publishers and subscribers via NTP up to a clock difference of less than one millisecond, which
enabled us to accurately measure the end-to-end delay of messages with a negligible error.

Our first observation is that neither Gamma nor power-law distributions properly fit the traces of the end-
to-end message delay. Figure 2a shows the delay distribution of messages received by a subscriber from a
publisher thorough 3 brokers. The inter-broker links have an assigned delay of 50ms. The links that connect

5

P
ro

b
a
b
ili

ty

Delay (milliseconds)

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
100 120 140 160 180 200

0.2

0.4

0.6

0.8

1

0
0 5 10 15 20 25 30

5-phase hypoexponential
Delay data

Delay (milliseconds)

C
D

F

150 100 50 0 50 100 150
Delay Variation (Milliseconds)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Pr
ob

ab
ili

ty

(a) (b) (c)

Figure 2: (a) End-to-end delays for a sender/receiver pair 3 brokers apart. (b) Cumulative distribution of end-to-end delay
samples fitted in a 5-phase hypoexponential distribution. (c) Histogram of the delay difference for a sender and receiver
separated by 5 brokers. The thick line is the approximation with the sum of two Laplacian random variables.

subscriber and publishers to their local brokers have no delay. Since there are two inter-broker links, all the
delays have a constant component of 100 milliseconds. This distribution has two pronounced characteristics:
a long tail, which is composed of low frequencies at large values, and a large density around its mean.

As mentioned in Section 3.1, the variable component of the delay of a message is the sum of the processing
delays at all the brokers it passes through. So, we start the analysis of the distribution of end-to-end delays
(Figure 2a) with a specific experiment to measure the distribution of processing times in a single broker. In a
typical setup with a few brokers and 10 clients per broker, we observed that most messages take a few millisec-
onds to be processed while a few of them need longer processing times. More specifically, in the case of our
subject system B-DRP, measurements with different combinations of workload parameters (number and sizes
of subscriptions, number and sizes of messages) reveal that the processing time is best fit by an exponential
distribution.

We therefore proceed to model the variable component of the end-to-end delay as the sum of n expo-
nentially distributed random variables, where n is the number of brokers between the publisher and the sub-
scriber. This distribution is called a hypoexponential distribution which is a member of a general class of
distributions called phase type distributions. To test this modeling hypothesis, we used the method described
by Asmussen et al. [9] to fit the measured end-to-end delay in a hypoexponential distribution with the appro-
priate number of phases, where a phase corresponds to a hop in the network. Before fitting each data set into
the distribution, we removed the constant component of the samples (i.e., the delay caused by the inter-broker
links). We performed the sampling and fitting process with a variety of configurations and different number of
brokers and topologies with diameters of up to 10. In all cases, the data closely follow the theoretical distribu-
tion.

Figure 2b shows the cumulative distribution function of 6500 samples of end-to-end delay measurements,
for a given publisher-subscriber pair, fitted into a hypoexponential distribution with 5 phases (in the experi-
ment, the publisher and the subscriber were 5 brokers apart). Next, we detail how we use this model to find
the distribution of delay differences.

3.4 Distribution of delay di�erences

We established that the end-to-end delay of a message is a hypoexponential random variable, resulting from
the sum of exponentially distributed random variables, each representing the processing time at a broker.

Therefore each term in the second form of the Equation 2 (i.e., X i −Yi) is the difference of two identically
distributed exponential random variables, which is known as a Laplacian random variable. It follows that
the distribution of differences of end-to-end delays is the sum of independent Laplacian random variables.

The probability density function of a Laplacian random variable is f (x) = 1
2b

e
−|x−µ|

b where µ is the mean of
the distribution and b is its scale parameter. Due to the linearity of expectation, µ is zero for all of the above
Laplacian random variables that are the result of subtracting two exponentially distributed random variables
(e.g., X i −Yi). This is because all the brokers run the same forwarding algorithms, thus we can assume that b
is similar for all the Laplacian random variables.

So, our analysis shows that the difference between end-to-end delays for a given publisher/subscriber pair
can be modeled as the sum of k Laplacian random variables, where k is the number of hops between the
publisher and the subscriber. However, unfortunately, determining an analytical expression of the distribution

6

of the sum of k > 2 Laplacian random variables with different scale parameters is still an open problem [10].
So, as an approximation, we use the statistical properties—namely, the probability distribution, cumulative
density, and quantile functions—of the sum of two Laplacian random variables. Even though this model is
not mathematically rigorous, we have empirical evidence that the two-sum distribution also fits reasonably
well the sum of up to 8 Laplacian random variables. The sum of two independent and identically distributed

Laplacian random variables with mean µ = 0 and scale factor b has probability density f (x) = (|x |+b)
4b 2 e−

|x |
b and

cumulative distribution F (x) = Pr[X < x] for X > 0

F (x) = 1−
(2b +x)

4b
e−

x
b (x > 0) (3)

The estimation of the scale factor b based on a set of n samples is possible with maximum likelihood estima-
tion, which yields b = 2

3n

∑n
i=1 |x i |. Figure 2c shows the histogram of delay differences for messages received

5 hops away from the sender. The thick line represents the sum of two Laplacian random variables whose
parameter is estimated from the data. The sharp spike around zero, falls outside of the approximate distribu-
tion because of the approximation of sum of 5 random variables to only two. In other words, as the number
of broker-hops increases, the density of the real distribution increases around the mean and the tails become
shorter, while the approximation is less dense around zero but has longer tails. This does not cause a problem
though, since in determining the latch time, the likelihood of the extreme values of delay difference is used
(i.e., the tails of its distribution) which we will detail next.

3.5 Determining the latch time

Based on the model we developed, we now go back to Equation (1) to estimate the probability that m1 and
m2 are received out of order (a FIFO violation). This probability is a function of the difference between their
departure times, δ= departure(m1)−d e p a r t u r e (m2). In particular,

Pr[FIFO Violation] = Pr[delay(m1)−delay(m2)>δ]

= 1−Pr[d e l a y (m1)−d e l a y (m2)<δ] = 1− F (δ)

where F (·) is the cumulative distribution of delay differences.
Whenever the receiver detects a gap in the sequence numbers, it can virtually increase δ by latching the

messages whose delivery would cause the FIFO violations so that the probability of a FIFO violation drops
below a given threshold. More precisely, we would like to determine a latch time τ that reduces the FIFO
violation probability below a given threshold Pt for a pair of messages m1 and m2 published δ time units apart
from each other. Thus

τ= F−1(1−Pt)−δ (4)

where F−1 is the quantile function of the delay variation. Intuitively, τ is the minimum amount of time that
the receiver has to hold m2 and wait for the missing message m1 based on the sampled delay difference. We
call Pt the FIFO violation coefficient. Higher values of Pt map to smaller latch times and more FIFO violations.
F−1 is the inverse of Equation (8) and corresponds to

F−1(p) =b [ω(4e−2(p −1))+2] (0.5≤ p ≤ 1) (5)

where ω(·) is the Lambert Omega Function, and can be efficiently computed using several existing numerical
methods.

Now let us consider cases with more than one message missing (e.g., a receiver receives message m6 im-
mediately followed by m10).

Let Φ(m , n) denote the occurrence of a FIFO violation for messages m and n , let δm ,n = departure(m)−
departure(n) denote the time difference between the publication time of two messages m and n , and let
τm ,n be the latch time given by Equation (5) for messages m and n . Since δ10,9 ≤ δ10,8 ≤ δ10,7 it follows that
Pr[Φ(m9, m10)]≥ Pr[Φ(m8, m10)]≥ Pr[Φ(m7, m10)] and therefore τ9,10 ≥τ8,10 ≥τ7,10.

In words, in this probabilistic model, the latch time is independent of the number of messages in a chain
of missing messages. In such cases, in order to calculate the latch time, the receiver only considers the time
difference between the latest received message and the latest missing message.

Appendix A shows the process of developing the statistics of the sum of two independent and identically
distributed Laplacian random variables.

7

3.6 Publication record

So far we have assumed that whenever there is a gap in the message sequence number, the missing messages
would match the interests of the receiver. This assumption enforces the assessment of a latch time upon
every message that causes a gap in the sequence, even when the missing messages are not even supposed to
be received because they do not match the subscriber’s interest. Obviously, this may introduce unnecessary
delivery delays.

To eliminate (or reduce) this problem, we propose to attach to each message some information about pre-
viously published messages along with their publication timestamps. We call this information the publication
record of the publisher. As a simplistic example, consider attaching to each message a copy of the previous 3
messages sent by the same publisher. In this case, a receiver receiving m10 right after m6, and therefore detect-
ing a gap of three messages, might be able to deliver m10 immediately after checking that none of the missing
messages (attached to m10) matches its subscriptions. The question then becomes how to compile a compact
and yet informative publication record.

In topic-based pub/sub systems this is easily achieved by attaching the topic of the last k messages to each
new publication. Things are not as simple in content-based publish/subscribe systems, although it is possible
to attach a summary of the content of the previous k messages. A good encoding for this summary is a message
representation based on Bloom filters that we developed for B-DRP. The salient properties of this encoding,
which we detail elsewhere [6], are that it is compact and it admits to a fast matching algorithm, but it may
incur false positives, meaning that an encoded message may be found to match the interests of the receiver
while the original message would not. This does not compromise correctness but may lead to unnecessary
delays. Nevertheless, given that in general only a small percentage of the publications of a publisher match
the interests of a given subscriber, in most cases this simple method is effective in preventing unnecessary
delivery delays. We call this the enhanced mode of the probabilistic FIFO ordering protocol as opposed to the
basic mode in which messages do not carry any publication record.

As mentioned above at the end of Section 3.5, when the sequence number gap contains more than one
message, in basic mode the receiver has to consider only the latest missing message. Instead, in enhanced
mode, the receiver has to consider only the latest missing message that is found to match local subscriptions.
Referring to the example where a receiver receives message m6 immediately followed by m10, if the receiver
detects that m9 does not match local interests (through the publication record attached to m10) but m8 is of
interest, it takes m8 into account to calculate δ in Equation (4) since m9 will not be received anyway.

The size of the publication record attached to each message is controlled by the publisher. A larger record
translates into shorter delivery delays, at the expense of a greater bandwidth consumption. In general, high
publication rates require large publication records because the interval between publications is smaller and
thus the probability of out-of-order deliveries is higher. We are currently studying ways in which we can ex-
ploit temporal locality of events to increase efficiency of our encoding scheme. Generally speaking, temporal
locality of events implies that events published close to each other in time (by the same publisher) are likely to
have similar contents, which could lead to additional compression in publication records and therefore to the
reduction of transmission overhead.

4 Algorithmic Description

Algorithm 1 shows the core of our probabilistic FIFO ordering mechanism. A receiver (subscriber) executes
a separate instance of this algorithm for each sender (publisher) from which it receives messages, and main-
tains a separate set of variables associated with that sender. The configurable parameters of the algorithm are
the FIFO violation coefficient Pt and the size q of the ring buffer that stores the delay-difference samples.

The main algorithm (starting on line 5) is executed for each message received from the publisher. A variable
called base stores the previously received message with the highest sequence number. The algorithm starts by
computing the delay difference with respect to base, and uses that to update the parameters of the distribution
of delay difference (line 7). If the received message mn causes a gap in the sequence number, the algorithm
assesses a latch time based on the difference in departure time between mn and the latest missing message
that is known (in enhanced mode) or assumed (in basic mode) to match the local subscriptions. In particular,
in basic mode the relevant message is assumed to be the immediate predecessor mn−1 whose departure time
is attached to mn . Conversely, in enhanced mode, the receiver looks in the publication record (attached to
mn) for the latest missing message that matches its subscriptions (line 18). If no such message is found in the

8

1: procedure initialize
2: b a s e ←⊥ {last in-order received message}
3: β ← 0 {scale factor of the distribution of delay difference}
4: Q←RingBuffer(q) {ring buffer of size q}

5: upon receiving mn from publisher do
6: if base 6=⊥ then
7: x ← [arrival(mn)−arrival(base)]− [departure(mn)−departure(base)]
8: u p d a t e (x) {update the distribution}
9: n← sequence(mn)

10: if n = 0 or n = sequence(base)+1 then
11: schedule(mn , 0) {schedules mn for immediate delivery}
12: else if n < sequence(base) then
13: schedule(mn , 0)
14: return
15: else
16: if publication_record(mn) 6=⊥ then
17: R← publication_record(mn)
18: m∗← latest message in R that matches local subscriptions and was not already received
19: if m∗ =⊥ then
20: m∗← earliest message in R
21: t∗← read departure(m∗) from R
22: δ← departure(mn)− t∗
23: else
24: tn−1← read departure(mn−1) from mn

25: δ← departure(mn)− tn−1

26: τ← l a t c h_t i m e (δ)
27: schedule(mn ,τ)
28: b a s e ←mn

29: function l a t c h_t i m e (δ)
30: τ←β [ω(4e−2(−Pt))+2]−δ {(Pt ≤ 0.5)}
31: return τ

32: procedure u p d a t e (x)
33: Q .a p p e nd (x) {add the sample to the ring buffer}
34: β ← 2

3q

∑

xi ∈Q |x i | {update scale factor of the distribution}

Algorithm 1: Probabilistic ordering FIFO algorithm run by a recipient for each publisher

publication record then the receiver conservatively assumes that the latest matching message was published
at the same time as the earliest message in the publication record (line 20).

Having computed an appropriate latch time τ, the receiver schedules the message for delivery to the re-
ceiver application. This is done through a procedure schedule(m ,τ) that also assures the ordered delivery of
all scheduled messages. This procedure (not shown in the listing) is analogous to the mechanisms found in
most sliding-window protocols. In essence, the scheduler maintains a queue of pending messages and a set of
corresponding timers. A message is queued until its timer expires or all earlier messages have been delivered,
at which point the message is also delivered to the application and removed from the queue.

Since the ordering protocol is probabilistic, the latch time of a set of messages may not be large enough
to cover the time needed for the missing messages to arrive. In such cases, the timer associated with the
latched messages expires and the messages are delivered. When the missing messages are received, they might
be simply dropped or delivered to the application, thereby causing a FIFO violation (see line 13). We have
implemented this treatment as a configurable parameter of the ordering protocol.

5 Evaluation

We implemented the recovery protocol as a pluggable module which integrates into any publish/subscribe ap-
plication and protocol. Specifically, the publication record and other metadata that is required by the ordering
protocol is attached to messages as an array of bytes, perceived by brokers as application payload.3

We now present the experimental evaluation of the FIFO ordering method proposed in this paper. This
evaluation addresses three high-level questions. First, it validates the statistical models, developed in Sec-

3Most implementations of the Java Messaging Service (JMS) are capable of carrying an opaque payload.

9

tion 3, upon which the method is built. Second, it evaluates the benefits, costs, and scalability of the method
in its basic and enhanced form. Third, it evaluates the ability of the method to respond and adapt to dynamic
workloads.

We ran all our experiments on a testbed consisting of a cluster of Dell PowerEdge with two dual core
2GHz AMD Opteron processors and 4GB of main memory running Linux with a 2.6.32 kernel. Connectivity
is through an isolated high-throughput Gigabit Ethernet switch. B-DRP is implemented in Java and runs on
the 64-bit open-JDK VM.

5.1 Network delay model validation

This first experiment we describe corresponds to the scenario described in Section 2. However, whereas in
Section 2 we compared global statistics of throughput and FIFO violations for ActiveMQ and B-DRP, here we
focus on B-DRP (because we are interested in modeling best-effort delivery) and look closer at the distribution
of end-to-end delays and their variations.

0 50 100 150 200 250 300 350 400
Delay (milliseconds)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

P
ro

b
a
b

ili
ty

Figure 3: Distribution of end-to-end delay for all of the delivered messages during the first 90 seconds of the experiment.

Figure 3 shows a histogram of the end-to-end delay for nearly 250000 messages that were delivered across
the network during the first 90 seconds of the experiment. Recall that this initial phase is characterized by
a slow (and slowly growing) flow of publications. Below we also examine the later phases of the experiment
when high-rate publishers cause congestion, and therefore cause a significant shift in the delay distribution.
The histogram shows 4 distinct clusters corresponding to the hop-distance between publisher and subscriber.
For example, messages that pass through 3 brokers (two broker-to-broker hops) have a transmission delay of
around 100 milliseconds. The histogram of Figure 3 is qualitatively consistent with our model of end-to-end
delay. Now, in order to validate the model more precisely, we isolate a single publisher/subscriber pair and
measure end-to-end delays and delay differences.

We first examine the delay of pairs of consecutive messages recorded over the entire duration of the ex-
periment. The results are reported in the scatter-plot of Figure 4a. The plot highlights two facts. First, the
delays of two consecutive messages are highly correlated; second, the delays vary significantly throughout the
experiment, and since the data refers to a single sender/receiver pair, this indicates the effect of significant
queuing delays. We also note that we purposely select a sender/receiver pair that experiences an intense flow
of messages that ultimately causes congestion in the intermediate brokers.

We now take a closer look at the effect of delays and congestion on delay variation. In particular, we test
our intuition that queuing delays do not have any substantial effect on the distribution of delay variation. To
do that, we compute the distribution of delay variations between consecutive messages for pairs of messages
subject to delays within two ranges, corresponding to the areas marked with dotted lines in Figure ??. The
resulting histograms, plotted in Figure 4, demonstrate that the delay variations are essentially independent
from the delay.

To confirm this visual analysis, we use Wilcoxon rank-sum test whether this data is consistent with our
hypothesis that the two datasets follow the same distribution. The resulted p-value of the Wilcoxon test is 0.35
which confirms that the evidence is compatible with our hypothesis with a high statistical significance.

5.2 E�ectiveness of the ordering protocol

We evaluated the effectiveness of the ordering protocol through various experiments. In general, these exper-
iments are intended to measure both the reduction in FIFO violations and the additional latency incurred by

10

0 500 1000 1500 2000 2500 3000
Delay(Mn) (milliseconds)

0

500

1000

1500

2000

2500

3000
D

e
la

y
(M

n
+

1)
 (

m
ill

is
e
co

n
d
s)

60 40 20 0 20 40 60
Delay Variation (milliseconds)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

P
ro

b
a
b
ili

ty

60 40 20 0 20 40 60
Delay Variation (milliseconds)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

P
ro

b
a
b
ili

ty

(a) (b) (c)

Figure 4: (a) End-to-end delays of every two consecutive messages for a chosen pair of sender and receiver. (b) and (c) De-
lay variation distribution for messages with end-to-end delay of delay(m)≤ 1500ms and delay(m)> 1500ms respectively.

the protocol. Specifically, to characterize the trade-offs between these benefits and costs, and also to obtain a
comparative baseline, we juxtapose the performance of our probabilistic protocol with that of a simpler pro-
tocol that uses a static latch time. This protocol latches each message that creates a gap for a fixed amount of
time. However, to obtain the most conservative comparison, we first select the parameters of our probabilistic
protocol and measure its performance in terms of FIFO violations, and then configure the static protocol with
the optimal latch time that achieves the same (or nearly the same) level of FIFO violations. (We determine the
optimal static latch time experimentally with a trial-and-error binary search.)

We set up and perform each experiment so that receivers run multiple instances of static and probabilistic
ordering protocols with different parameters. This enables us to compare the efficiency of the protocols and
the effect of different parameters in the exact same scenario.

W/O CST-15 CST-30 P-0.05-0 P-0.2-0
Transport Protocol

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

F
IF
O
V
io
la
ti
o
n
s

CST-15 CST-30 P-0.05-0 P-0.05-5 P-0.05-25 P-0.2-0 P-0.2-5 P-0.2-25
Transport Protocol

0

50

100

150

200

250

300

350

A
v
g
.
E
x
tr

a
D

e
la

y
(m

ill
is

e
c.

)

(a) Number of FIFO violations (b) Average extra delay

Figure 5: Effectiveness of different FIFO algorithms in an 8 broker setup. (a) Total number of incurred FIFO violations
with and without ordering. (b) Average extra delay caused by different ordering algorithms.

We report the results of our experiments in figures 5 and 6. Each data set corresponding to the static proto-
col is labeled “CST-t ,” where t is the constant latch time (milliseconds); and each set of the probabilistic FIFO
ordering protocol is labeled “P-x -y ,” where x is the probabilistic FIFO coefficient Pt , and y is the number of
previously published messages whose encoded Bloom filters are attached to each message (in the enhanced
version of the algorithm). The probabilistic FIFO ordering protocol also uses a sample buffer Q of size 25 in
all the experiments, and uses an encoding of the publication record that uses 16 bytes per message, so for
example, “P-0.2-5” and “P-0.2-25” indicate experiments in which the enhancement of the publication record
introduces an overhead of 80 and 400 bytes, respectively.

Figure 5a compares the total number of FIFO violations observed by 400 receivers, with and without or-
dering mechanisms. Note that for a given Pt , the size of the publication record does not have any effect on the
performance of the protocol in terms of the number of reduced FIFO violations. Recall in fact that the use of
the publication record allows the receiver to assess a reduced latch time, but does not change the behavior of
the protocol in terms of FIFO violations. Hence, we only plot the number of FIFO violations for the basic mode
of the probabilistic protocol. For example, in Figure 5a with Pt equal to 0.05, the number of FIFO violations
for P-0.05-0 is the same for P-0.05-25; what differs is the extra delay, as we will show later. In total there were
almost 173000 out-of-order receptions. The probabilistic FIFO ordering with Pt set to 0.05 mitigated more
than 99% of the FIFO violations, performing as well as CST-30. With Pt = 0.2, the probabilistic FIFO algorithm

11

reduced FIFO violations by about 91%.
To demonstrate the benefit of the probabilistic FIFO ordering algorithm with respect to minimizing the

overall delivery delay when compared to the static protocol, we first define a measure we call the average extra
delay. If M is the set of all the messages that a given subscriber received from a given publisher, we define the
average extra delay for the messages of that stream as 1

|M |

∑

m∈M latch_time(m).
Figure 5b presents the average extra delay caused by the static and probabilistic FIFO algorithms for all

of the pairs of sender and receiver. Unsurprisingly, the static algorithm with constant latch time induces the
same average extra delay for all nodes. P-0.05-25 performs better than CST-30 in terms of average extra delay.
P-0.05-0 (basic mode) causes much larger extra delays, but when enhanced with a publication record of only
5 messages (P-0.05-5), it incurs a considerably smaller extra delay. Note that the large average extra delay in
basic mode is largely due to the intentionally extreme scenario in which two high-rate publishers are com-
bined with subscribers configured to receive a very high portion of their publications (more than 80%). This
is an extreme case that is relatively uncommon in a publish/subscribe network. In other words, whenever the
publisher sends messages at lower rates, the difference in the average extra delay between the static protocol
and our adaptive protocol increases significantly. This is because the adaptive protocol is sensitive to the time
difference between two consecutive publications while any static protocol latches messages irrespective of the
publication rate.

W/O CST-100 CST-250 P-0.05-0 P-0.2-0
Transport Protocol

0

20000

40000

60000

80000

100000

120000

F
IF
O
V
io
la
ti
o
n
s

CST-100 CST-250 P-0.05-0 P-0.05-5 P-0.05-25 P-0.2-0 P-0.2-5 P-0.2-25
Transport Protocol

0

200

400

600

800

1000

A
v
g
.
E
x
tr
a
D
e
la
y
(m
ill
is
e
c.
)

(a) Number of FIFO violations (b) Average extra delay

Figure 6: Effectiveness of different FIFO algorithms in a 46-broker setup. (a) Total number of FIFO violations with and
without ordering. (b) Average extra delay caused by different ordering algorithms.

To demonstrate the performance of the protocol in larger networks, in Figure 6 we present the performance
of the probabilistic ordering in a network of 46 brokers where each broker serves 10 clients. We use a workload
with similar characteristics to the 8-broker experiment, except that this one runs for 240 seconds. We choose
a low-degree network topology with a graph diameter of 15. Due to this larger diameter, constant latch times
of 30 or 50 milliseconds are not effective. Indeed, like in the previous experiments, we ran several setup exper-
iments to find the optimal constant latch time for our comparative analysis. On the other hand, the adaptive
nature of our algorithm captures very well the dynamics of larger-diameter networks. In this experiment, there
are more than 115000 out-of-order receptions without any ordering algorithm in place, and our probabilistic
ordering algorithm with Pt = 0.05 is able to prevent 99.5% of such FIFO violations. This mitigation in basic
mode comes at a cost of a maximum 960 milliseconds in average additional delivery delay, while with a publi-
cation record of 25, this cost is nearly zero for more than 50% of the nodes and less than 190 milliseconds for
90% of them.

5.3 Adaptivity of the protocol

Figure 7 shows the dynamics of the FIFO-ordering protocol for a publisher/subscriber pair in response to
changes in publication rate. The top frame pin-points out-of-order deliveries in the message stream; the sec-
ond frame shows the publication rate of the publisher (messages per second); the third frame plots the changes
in FIFO-violation probability calculated by our algorithm; and the two bottom frames show the changes in
latch time when the publication record is 0 (basic mode) and 25 (enhanced mode).

The FIFO violation probability and the latch time follow the trend in the changes of publication rate. This
is the result of delay variation and change of time gap between two consecutive messages. Observe that, in the
basic version of the protocol, where there is no publication record attached to messages, the latch time spikes

12

0

50

100

500

250

0.5
0.4
0.3
0.2
0.1
0.0

50

0

100

Time (seconds)
0 50 100 150 200 250 300

Latch time, y=0

Latch time, y=25

Probability

Notifications

Figure 7: From top to bottom: timestamps of out of order receptions; publication rate; probability of a FIFO violation;
latch time in enhanced mode with a publication record of size 25; latch time in basic mode.

more frequently, for there are many cases when the missing message does not match the subscriptions of the
receiver but the ordering algorithm latches the messages for that specific time frame.

6 Related Work

The out of order reception of messages due to parallelism and queuing complexities has been acknowledged
and studied by the networking community. In particular, Bennet et al. suggest that IP packet reordering is not
a pathological behavior but rather, an inevitable outcome of highly parallelized processing [11, 12, 13].

As for content-based communication, systems can be generally divided into two categories with respect
to their message ordering guarantees: those that provide an ordered delivery service and those that provide a
best-effort service. Systems in the first category are designed to offer a safer abstraction for applications, and
are typically implemented with a store-and-forward mechanism. Systems in the second category work under
the assumption that ordering violations are reasonably rare, and/or applications can tolerate them, and favor
a design that enhances throughput.

Bhola et al. [14] propose a form of store-and-forward mechanism in which publishers and subscribers
together with brokers form a tree called “knowledge graph.” Soft-state messages labeled “knowledge” and “cu-
riosity” flow downstream and upstream on the tree, and ensure ordered one-time delivery even in the presence
of failure. This method can guarantee FIFO and total order, but it introduces complexities in the implementa-
tion of the broker and does not easily integrate with existing broker technology.

Aguilera and Storm [15]propose another form of store-and-forward network that guarantees deterministic,
uniform total order of messages. In this network, some of the nodes act as merger nodes, each one responsible
for a subset of the subscribers. All messages go through a sequence of merger nodes to be ordered in a globally
uniform manner before they are forwarded to the subscribers. This ordering algorithm assumes that publish-
ers have access to synchronized clocks and that they have a known publication rate. Although this algorithm
has the interesting ability to determine an upper bound on the delivery delay, it is prone to substantial delays
and has limited scalability. Furthermore, the scheme requires a balanced assignment of subscribers to merger
nodes to prevent overloading of some mergers.

The main pitfall of the store-and-forward design is that it induces high delivery delays. Moreover, when
the publication rate is high, logging messages onto disk might induce congestion. On the contrary, best-effort
systems do not generally log messages onto stable storage, nor they require acknowledgments, and in general
do not include any reliability mechanism within the broker network [16, 2, 17]. This results in a streamlined
processing of messages that yields high delivery rates and reduces the failures caused by congestion. This
difference is evidenced by an experimental comparison between B-DRP, ActiveMQ, and WebSphereMQ [6].

13

7 Final remarks

In this paper we presented our approach to enhance FIFO ordering in best-effort, content-based publish/subscribe
networks. Our general idea is to implement an end-to-end, probabilistic algorithm to avoid FIFO violations.
More specifically, first we studied and modeled the causes of FIFO violations, and showed experimentally that
the major cause of FIFO violations is the variation in end-to-end delays. Then, based on a simple analytical
model of the end-to-end delay, we developed a method to quantify its variation, which we also validated ex-
perimentally. This allowed us to devise an algorithm to estimate the probability of a FIFO violation whenever
there is a gap in the sequence number of an incoming message stream. The same estimation also allows us to
find an adequate latch time for some of the received messages in order to reduce the FIFO-violation probabil-
ity below a desired threshold. Through experiments, we showed that this method can mitigate up to 99.5% of
the FIFO violations while keeping the unnecessary delivery delay to a minimum.

The work presented in this paper is part of a larger project to develop what amounts to a transport layer for
a content-based network. Our current and future plans are to develop other traditional functions of a transport
layer, such as a method to increase reliability and a method to prevent or control congestion. In this pursuit,
we can of course draw from the extensive literature and technical progress in traditional networking. However,
we argue that the content-based communication model—and in particular its lack of explicit addresses and
therefore its lack of identifiable end-to-end connections—poses interesting and challenging problems also for
these other transport-layer functions.

A Statistics of the sum of two Laplacian random variable

The probability density function of a Laplacian random variable is of the following form:

f X (x) =
1

2b
e−

|x−µ|
b (6)

where b is the scale factor andµ is called the location factor of the distribution. Assume Y =X1+X2 is a random
variable defined as the sum of two independent and identically distributed Laplacian random variables with µ
equal to zero and equal scale factor of b . We will derive probability density function, cumulative distribution
function and quantile function of Y . Also we derive the parameter estimator of b . Note that due to linearity of
expectations, E [Y] is zero.

A.1 Probability Density Function

In order to find the probability density function of Y we note that X1, X2 and Y can assume negative and
positive values. Hence, we need to separate cases when Y is positive from when it is negative. Here we show
how f Y (y) can be derived for positive values of y . To do that, we need to consider three cases: when X1 >
0 , X2 > 0, when X1 > 0 , X2 < 0 and when X1 < 0 , X2 > 0. Now, assuming Y > 0 , X1 > 0 , X2 > 0, we have
X2 = Y −X1 and X1 ∈ [0, Y]. Since X1 and X2 are two independent and identically distributed random variables
we have

f Y (y) = f X1,X2 (x1,x2) = f X (x1) . f X (x2) s u c h t ha t x1+x2 = y

and from there

f Y (y) =

∫ y

0

f X (x1) . f X (y −x1) d x =

∫ y

0

1

2b
e−

x1
b .

1

2b
e−

(y−x1)
b d x =

1

4b 2
e−

y
b

∫ y

0

d x =

y

4b 2
e−

y
b (X1 > 0 , X2 > 0)

Now we find f Y (y) for cases when Y > 0 , X1 > 0 , X2 < 0. Similar to what we have above, writing X2 as
X2 = Y −X1 implies that X1 ∈ [Y ,∞) and hence

14

f Y (y) =

∫ ∞

y

f X (x1) . f X (y −x1) d x =

∫ ∞

y

1

2b
e−

x1
b .

1

2b
e
(y−x1)

b d x =
1

4b 2
e

y
b

∫ ∞

y

e−
2x
b d x =

1

8b
e−

y
b (X1 > 0 , X2 < 0) (7)

Due to symmetry of the Laplace distribution, the third case where X1 < 0, X2 > 0 yields the same result as
Formula 7. Now f Y (y) is the sum of three cases:

f Y (y) =
1

8b
e−

y
b +

1

8b
e−

y
b +

y

4b 2
e−

y
b =
(b + y)

4b 2
e−

y
b (y ≥ 0)

By following the same method for cases when y < 0 we can find the general formula of the density function for
positive and negative values of y which is the following

f Y (y) =
(b + |y |)

4b 2
e−

|y |
b

A.2 Cumulative Density Function and Quantile Function

To find the cumulative density function denoted by FX (x), we can conveniently utilize the symmetry of the
density function. Therefore, we begin by finding FX (x) for cases when x is negative. We have

FX (x) =

∫ x

−∞

(b −x)
4b 2

e
x
b d x =

1

4b 2

∫ x

−∞
(b −x) e

x
b d x

Using integration by parts, the above integral yields

FX (x) =
1

4b 2
[(b −x).(b e

x
b)+

∫ x

−∞
b e

x
b d x] =

(2b −x)
4b

e
x
b (x ≤ 0)

and from there we can derive FX (x) for positive values of x which yield the follwoing formula

FX (x) = 1−
(2b +x)

4b
e−

x
b (x ≥ 0) (8)

The general form of FX (x) for both negative and positive values of x can be written as the following

FX (x) = 0.5 [1+ s g n (x)(1−
(2b + |x |)

2b
e−

|x |
b)]

where s g n (x) is the sign of x . In order to to find F−1(p), the quantile function, we note that for p ≤ 0.5, the
value of F−1(p) is negative and for p ≥ 0.5 it is positive. Now assuming that p ≥ 0.5, we find the inverse of the
Equation 8. Denoting FX (x) by p we have

p = 1−
(2b +x)

4b
e−

x
b t hu s

1−p =
(2+ x

b
)

4
e−

x
b so

− (2+
x

b
) e−

x
b = 4(p −1) w hi c h c a n b e w r i t t e n a s

− t e−t = 4 e−2 (p −1) w he r e t =
x

b
+2

15

The above equation is solved by ω, the Lambert Omega Function. This function solves the equation y = x e x

by x =ω(y) . As such, the anwser to the above equation is

t =−ω(4 e−2 (p −1))

By substituting t back, we get the final form of the quantile function

F−1(p) =−b [ω(4 e−2 (p −1))−2)] (0.5≤ p ≤ 1)

A.3 Parameter Estimation

Having a set of n samples x1, ...,xn , the parameter of the probability density function can be found trough
maximum likelihood estimation. We denote the estimator of b by β . Given that the values of each sample is
independent of the other samples we have

p (x1, ...,xn |β) =
n
∏

i=1

p (x i |β) =
1

(4β 2)n

n
∏

i=1

(β + |x i |) e−
|xi |
β

The objective is to find the value of β that maximizes the preceding function. Since it is a positive value (the
product of some probabilities) it follows that maximizing its natural logarithm is equal to maximizing the
function itself. Taking natural log from the function we have

ln(p (x1, ...,xn |β)) = ln(
1

(4β 2)n

n
∏

i=1

(β + |x i |) e−
|xi |
β) =

−n ln(4β 2)+
n
∑

i=1

(β + |x i |)−
n
∑

i=1

|x i |
β

(9)

Formula 9 can be seen as a function of β . To find the value of β that maximizes the value of this function, we
take its derivative with respect to β . Equating the resulted function to zero and solving for β , yields the answer.
Thus, after taking deravative and equating to zero we have

−
2n

β
+

n
∑

i=1

1

(β + |x i |)
+

n
∑

i=1

|x i |
β 2
= 0 so

n
∑

i=1

|x i |+β 2
n
∑

i=1

1

(β + |x i |)
−2nβ = 0 (10)

The above equation does not have a close form answer. In order to approximate its root we approximate the
second term of the left side of the equation as seen below. Showing expected value of the random variable X
by E [X]we see that

E [
1

(β + |x |)
] =

∫ ∞

−∞

1

(β + |x |)
f X (x) d x = 2

∫ ∞

0

1

(β +x)
f X (x) d x =

2

∫ ∞

0

1

(β +x)
(β +x)

4β 2
e−

x
β d x =

1

2β 2

∫ ∞

0

e−
x
β d x =

1

2β

Therefore

E [
n
∑

i=1

1

(β + |x |)
] =

n

2β

16

Substituting this value back in Equation 10 we will have

n
∑

i=1

|x i |+
βn

2
−2nβ = 0 t ha t g i v e s

β =
2

3n

n
∑

i=1

|x i |

References

[1] R. Baldoni, C. Marchetti, A. Virgillito, and R. Vitenberg, “Content-based publish-subscribe over structured overlay
networks,” in ICDCS ’05. Washington, DC, USA: IEEE Computer Society, 2005.

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and evaluation of a wide-area event notification service,” ACM
Trans. Comput. Syst., vol. 19, no. 3, 2001.

[3] E. Fidler, H.-A. Jacobsen, G. Li, and S. Mankovski, “The padres distributed publish/subscribe system,” in In 8th Inter-
national Conference on Feature Interactions in Telecommunications and Software Systems, 2005.

[4] V. Ramasubramanian, R. Peterson, and E. G. Sirer, “Corona: a high performance publish-subscribe system for the
world wide web,” in NSDI’06. Berkeley, CA, USA: USENIX Association, 2006.

[5] V. Hadzilacos and S. Toueg, Fault-tolerant broadcasts and related problems. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 1993.

[6] A. Carzaniga, G. Toffetti Carughi, C. Hall, and A. L. Wolf, “Practical high-throughput content-based routing using
unicast state and probabilistic encodings,” Faculty of Informatics, University of Lugano, Tech. Rep. 2009/06, Aug.
2009.

[7] H. Zhang, A. Goel, and R. Govindan, “An empirical evaluation of internet latency expansion,” SIGCOMM Comput.
Commun. Rev., vol. 35, no. 1, 2005.

[8] A. Mukherjee, “On the dynamics and significance of low frequency components of internet load,” Internetworking:
Research and Experience, vol. 5, 1992.

[9] S. Asmussen, O. Nerman, and M. Olsson, “Fitting phase-type distribution via the em algorithm,” Scandinavian Jour-
nal of Statistics, vol. 23, 1996.

[10] S. Nadarajah and S. Kotz, “On the linear combination of laplace random variables,” Probab. Eng. Inf. Sci., vol. 19, no. 4,
2005.

[11] J.-C. Bolot, “End-to-end packet delay and loss behavior in the internet,” in SIGCOMM ’93: Conference proceedings on
Communications architectures, protocols and applications, 1993.

[12] V. Paxson, “End-to-end internet packet dynamics,” SIGCOMM Comput. Commun. Rev., vol. 27, no. 4, 1997.

[13] J. C. R. Bennett, C. Partridge, and N. Shectman, “Packet reordering is not pathological network behavior,” IEEE/ACM
Trans. Netw., vol. 7, no. 6, 1999.

[14] S. Bhola, R. E. Strom, S. Bagchi, Y. Zhao, and J. S. Auerbach, “Exactly-once delivery in a content-based publish-
subscribe system,” in DSN ’02. Washington, DC, USA: IEEE Computer Society, 2002.

[15] M. K. Aguilera and R. E. Strom, “Efficient atomic broadcast using deterministic merge,” in PODC 2000, 2000.

[16] P. Jokela, A. Zahemszky, C. E. Rothenberg, S. Arianfar, and P. Nikander, “LIPSIN: Line Speed Publish/Subscribe Inter-
networking,” in SIGCOMM ’09, 2009.

[17] A. C. Snoeren, K. Conley, and D. K. Gifford, “Mesh-based content routing using xml,” SIGOPS Oper. Syst. Rev., vol. 35,
no. 5, 2001.

17

	Introduction
	Overview of Problem and Solution
	FIFO ordering

	Probabilistic FIFO Ordering
	Model of end-to-end delay
	Measuring delay differences
	End-to-end delay distribution
	Distribution of delay differences
	Determining the latch time
	Publication record

	Algorithmic Description
	Evaluation
	Network delay model validation
	Effectiveness of the ordering protocol
	Adaptivity of the protocol

	Related Work
	Final remarks
	Statistics of the sum of two Laplacian random variable
	Probability Density Function
	Cumulative Density Function and Quantile Function
	Parameter Estimation

