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Abstract
There is a growing demand for performing larger-scale Bayesian inference tasks, arising from greater data availability
and higher-dimensional model parameter spaces. In this work we present parallelization strategies for the methodology of
integrated nested Laplace approximations (INLA), a popular framework for performing approximate Bayesian inference
on the class of Latent Gaussian models. Our approach makes use of nested thread-level parallelism, a parallel line search
procedure using robust regression in INLA’s optimization phase and the state-of-the-art sparse linear solver PARDISO. We
leverage mutually independent function evaluations in the algorithm as well as advanced sparse linear algebra techniques.
This way we can flexibly utilize the power of today’s multi-core architectures. We demonstrate the performance of our new
parallelization scheme on a number of different real-world applications. The introduction of parallelism leads to speedups of
a factor 10 and more for all larger models. Our work is already integrated in the current version of the open-source R-INLA
package, making its improved performance conveniently available to all users.

Keywords Bayesian inference · INLA · Parallelism · Mathematical software

1 Introduction

The methodology of integrated nested Laplace approxima-
tions (INLA) has become a widely spread framework for
performing complex Bayesian inference tasks, see e.g. (Rue
et al., 2017; Opitz, 2017; Bakka et al., 2018). INLA is appli-
cable to a wide subclass of additive Bayesian hierarchical
models. It employs a deterministic approximation scheme
that relies on Gaussian Markov random fields (GMRFs) in
the latent parameter space which enables the usage of effi-
cient sparse linear algebra techniques (Rue et al. 2009). A
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user-friendly implementation of INLA is available in the
form of an R-package under the same name, referred to as
R-INLA. It can be downloaded and installed as described on
www.r-inla.org, with the complete source code avail-
able on GitHub1. Since its inception there have been many
papers exploring advancements of theoretical concepts of the
INLAmethodology, also leading to a constant evolution of its
implementation. Their collection forms an impressive reper-
toire for fast, versatile and reliable approximate Bayesian
inference, see e.g. (Lindgren et al. 2011;Martins et al. 2013),
including a wide variety of applications, see e.g. (Batomen
et al. 2020; de Rivera et al. 2019; Lu et al. 2018; Arisido
et al. 2017; Bhatt et al. 2015; Konstantinoudis et al. 2021;
Mielke et al. 2020; Coll et al. 2019; Martínez-Minaya et al.
2018; Isaac et al. 2020; Lindenmayer et al. 2021; Pimont
et al. 2021; Pinto et al. 2020; Lillini et al. 2021; Sanyal et al.
2018; Shaddick et al. 2018; Kontis et al. 2020). Algorithmic
concepts and improvements concerning performancematters
of the continuously growing software library have been dis-
cussed much less, even though they are a key component to
INLA’s success. In this work we want to invite the reader to
look at the INLAmethodology with us from a more algorith-

1 https://github.com/hrue/r-inla.
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mic point of view. We will present a much more performant
implementation of R-INLA making use of OpenMP (Diaz
et al. 2018) parallelism and the state-of-the-art sparse linear
solver PARDISO (Bollhöfer et al. 2020; PARDISO 2022).

The introduction of OpenMP allows for the simultaneous
execution of multiple tasks within the algorithm operating
on sharedmemory.We have parallelized the computationally
intensive operations within INLA whenever the dependency
structure allowed it, which also opened the door for us to
add more robust approximation strategies. Internally, the
PARDISO library is also utilizing multiple hardware threads
which leads to a double layer of parallelism within INLA.
A large quantity of the algorithm’s overall runtime is spent
in an optimization routine to determine the posterior mode
of the model’s hyperparameters. The mode is found itera-
tively using a quasi-Newton method that requires gradient
information of the functional being maximized. Approxi-
mating the gradient in each iteration is a computationally
expensive task, which we were, however, able to parallelize.
Additionally, INLAperforms a line search procedure in every
iteration of the optimization to find a suitable parameter con-
figuration for the next step. Instead of sequentially looking
for a good candidate we have parallelized this process using
multiple threads. We now evaluate multiple candidates at
once within an interval along the search direction. We use
this information to construct a smooth local approximation
of the objective function fitted through a robust regression
scheme. The optimum of the local approximation becomes
the new parameter configuration. This allows us to save time
in each iteration. It additionally leads to more stability in the
optimization routine as it rectifies small numerical discon-
tinuities and can therefore also reduce the total number of
iterations required. To compute the posterior marginal distri-
butions of the latent parameters of the model partial matrix
inversions are necessary. For all computations INLA gen-
erally works with the sparse precision matrices instead of
their dense counterparts, the corresponding covariancematri-
ces. However, to obtain the marginal variances, inversions of
often high-dimensional precision matrices are necessary. A
time-consuming task which we have adapted to be executed
in parallel. The collection of these strategies forms the first
or top layer parallelism.

The original implementation of INLA employs the sparse
linear algebra library TAUCS (Toledo 2003) to perform
the required numerically intensive core operations. Fore-
most, these include Cholesky decompositions of matrices
with recurring sparsity patterns and the partial matrix inver-
sions. TAUCS is a well-designed and efficient library which
operates, however, sequentially and whose support was dis-
continued in the early 2000’s. Additionally, TAUCS does not
include a partial inversion routinewhichwas therefore imple-
mented by the authors of R-INLA, see (Rue and Martino
2007; Rue et al. 2009), in a sequentialmanner.While this was

done with much thought, effort and consideration, provid-
ing reliable results, improved parallel implementations have
emerged since (Verbosio et al. 2017; Li et al. 2008). They
were developed by experts in the field of high-performance
computing and sparse numerical solvers. The plan of inte-
grating PARDISO into INLA was first described by Van
Niekerk et al. (2021). The authors discuss the need for the
usage of faster numerical solvers within INLA to support
evolving statistical models of higher complexity and con-
tinuously growing availability of data. They also show the
efficiency and scalability with which PARDISO performs
the beforementioned numerically intensive core operations
like Cholesky decompositions and partial matrix inversions.
Especially for the latter task there are not many performant
libraries available whichmake PARDISO a particularly great
fit (Van Niekerk et al. 2021). Hence, the second layer of par-
allelism is formed by PARDISO as well as other parallelized
linear algebra operations like matrix-matrix or matrix-vector
products. We will present performance results for three dif-
ferent real-world applications, quantifying the improvement
compared to previous implementations in terms of speedup
and scalability. The case studies include a complex joint sur-
vival model containing 50 hyperparameters (Rustand et al.
2022), a brain activation model using fMRI data with very
high-dimensional spatial domains (Spencer et al. 2022) and a
smaller scale model describing spatial variation in Leukemia
survival data (Lindgren et al. 2011). All corresponding code
and data is publicly available.

The rest of the paper is organized as follows. We will
begin with a brief introduction of the INLA methodology,
presenting the class of applicable models and underlying
statistical concepts, with a particular focus on the compu-
tations they entail. Additionally we will provide an overview
of the fundamental numericalmethods and sparse linear alge-
bra operations involved in the implementation. Then we will
introduce the new parallelization schemes, before demon-
strating our improvements on the various applications.

2 Background

2.1 Latent gaussianmodels

The INLA methodology is applicable to the class of latent
Gaussian models (LGMs). They comprise a subclass of hier-
archical Bayesian additive models among which there are
many of the frequently used statistical models, like regres-
sion, mixed or spatio-temporal models as well as many
others, see e.g. (Rue et al. 2009; Martins et al. 2013; Rue
et al. 2017; Bakka et al. 2018) for details. Each observation
yi is assumed to belong to a distribution from the exponential
family and is associated with the additive linear predictor ηi
through a link function. The additive linear predictor ηi is
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defined as

ηi = βTZi + ui (wi ). (1)

It has fixed effects β with associated covariates Zi and
nonlinear random effects ui with associated covariates wi

representing e.g. temporal, spatial or spline effects. The
observations are assumed to be conditionally independent
given the parameters, such that

y | η, θ ∼
m∏

i=1

π(yi |ηi , θ), (2)

where θ are the hyperparameters of the model. The latent
parameter space of the model has traditionally been defined
as x = (β, u, η), but can now also be formulated without the
linear predictor as x = (β, u), which was recently presented
in Van Niekerk et al. (2022). The concepts discussed in this
work are equally applicable to the two formulations. In both
cases we assume that x forms a Gaussian Markov random
field (GMRF) with zero mean and sparse precision matrix
Qx (θ), i.e. x ∼ N (0, Qx (θ)−1). The sparse GMRF struc-
ture is one of the key components to INLA’s computational
efficiency. It allows for a very high-dimensional parameter
space without performance degradation due to the employed
sparse linear algebra operations (Rue and Held 2005). In
addition one adopts a prior π(θ) for the hyperparameters θ .
Thus, forming a three-stage model consisting of the hyper-
parameter distribution, the latent field and the likelihood. It
is also possible to account for constraints imposed on the
latent parameters x. A detailed discussion of what types of
constraints can be imposed and how this is accounted for are
e.g. presented in [Rue et al. 2005 Sect. 2.3.3]. For simplicity,
we will not discuss the constraint case in further detail, since
the same parallelization strategies are employed as in the
unconstrained framework. The speedup obtained in the par-
allel constraint case compared to the sequential constrained
case resembles the respective speedup of the unconstrained
problem.

The main objective in Bayesian analysis is to compute
the marginal posterior densities of the unknown parameters,
which in the case of latent Gaussian models are the latent
parameters x and the hyperparameters θ . For a further dis-
cussion of the model specifications or Bayesian hierarchical
models see (Rue et al. 2017; Congdon 2014).

2.2 Approximating�(�j|y)
INLA does not provide an estimate to the full joint poste-
rior π(x, θ | y) but instead computes the posterior marginal
distributions π(θ j | y) and π(xi | y) as well as other relevant
statistics (Rue et al. 2009). The first step is to construct
an approximation to the posterior of the hyperparameters

π(θ | y) that can be evaluated for fixed values of θ , see
Eq. (3). This is done through an approximation scheme using
Bayes’ rule (alternatively it can also be derived using Laplace
approximations) as follows

π(θ | y) = π(x, θ | y)
π(x|θ , y)

∝ π(θ)π(x|θ)π( y|x, θ)

π(x|θ, y)

≈ π(θ)π(x|θ)π( y|x, θ)

πG(x|θ, y)

∣∣∣∣
x=x∗(θ)

:= π̃(θ | y).
(3)

The goal is to find the mode of π̃(θ | y), denoted by θ∗, as it
is not known a priori. But first, we want to discuss the aris-
ing terms of Eq. (3) in more detail. Note that since π(θ | y)
is independent of x, the equality holds for any x. The poste-
rior conditional distribution πG(x|θ, y) denotes a Gaussian
approximation to π(x|θ, y). It is constructed by matching
the mode, which we denote by x∗(θ), as well as the curva-
ture at the mode, to the true conditional posterior, for details
see (Rue et al. 2009). The approach preserves the sparsity of
the prior precision matrix in the posterior precision matrix
Qx |y(θ) where we condition on the data. We can write the
log-density of πG as

log(πG(x|θ , y)) = −1

2

[
(n log(2π) − log(|Qx |y(θ)|)

+ (x∗(θ) − x)T Qx |y(θ)(x∗(θ) − x)
]
.

(4)

All computations are performed in log-scale as this is favor-
able for dependence structures and in terms of numerical
robustness. To compute π̃(θ | y) for a fixed value of θ ,
each term is evaluated individually. From a computational
perspective this is relatively cheap for the prior of the hyper-
parameters π(θ) and the likelihood π( y|x, θ) due to the
conditional independence assumption made in Eq. (2). The
prior of the latent parameters π(x|θ), on the other hand,
forms a potentially high-dimensional GMRF. To evaluate
this log-density one has to compute the normalizing con-
stant which includes the log-determinant of Qx (θ). The
computational complexity of computing the determinant of
a dense matrix is in general O(n3), where n denotes the
size of the matrix and corresponds in our case to the dimen-
sion of the latent parameter space. For sparse matrices, and
therefore also Qx (θ), this cost can often be lowered sig-
nificantly through employing specialized solution methods
but it nevertheless continues to pose an expensive computa-
tional task in high dimensions [Rue et al. 2005 Sect. 2.3].
To evaluate πG(x|θ, y) one also requires its normalizing
constant, and therefore the log-determinant of Qx |y . One,
additionally, needs to find its mode x∗(θ) (for the prior this
is known a priori, as it is defined to be the zero vector) and
precision matrix Qx |y , which is however straight-forward to
construct given θ and y. If the likelihood is Gaussian, x∗(θ)

can be found through a standard update for conditional nor-
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mal distributions, that requires solving a linear system of
equations involving Qx |y . When considering the case, where
the likelihood is non-Gaussian, we have to perform an itera-
tive optimization over x to find x∗(θ). As Qx |y depends on
the current vector x, a new normalizing constant and a new
mode are recomputed for every new vector x. Thus, requir-
ing more log-determinant evaluations and solutions to linear
systems of equations of size n × n, further increasing the
overall computational cost.

In the first phase of the INLA framework, an optimization
algorithm is employed to iteratively evaluate π̃(θ | y) for dif-
ferent values of θ to find the hyperparameter configuration
θ∗ for which θ∗ = argmax π̃(θ | y). Further details of how
this optimization problem is solved follow in Sect. 3.1. Once
the maximum is determined, the area around the mode is
explored. This is done through reparameterizing the param-
eter space using information from the Hessian at the mode,
and subsequently choosing a set of K selected integration
points {θk}Kk=1, at which π̃(θk | y) is evaluated. The values
are then used to approximate the posterior marginals for
each hyperparameter θ j using numerical integration. For a
detailed description we refer to Rue et al. (2009). From
a computational perspective the most expensive and hence
time-consuming kernel operations are the repeated evalu-
ations of Eq. (3), first during the optimization phase to
determine the mode θ∗, then for the Hessian approximation
(see Sect. 3.1 for details) at the mode and finally at the inte-
gration points {θk}Kk=1.

2.3 Approximating�(xi|y)
The posterior marginals π(xi | y) can be written as

π(xi | y) =
∫

π(θ | y)π(xi |θ, y)dθ , (5)

for which an approximation to the first factor of the right-
hand side and numerical integration points {θk}Kk=1 are
already known from the previous step. It remains to esti-
mate π(xi |θ , y). If the likelihood is normally distributed, the
Gaussian approximation πG(x|θ, y) from Eq. (3) is exact.
The posterior marginals of π(xi |θ , y) can then be approx-
imated by extracting the latent parameter configuration x
at the mode of π(θ | y) from which one can directly infer
the marginal means xi |x−i , θ , y. Here, x−i denotes the vec-
tor x without the i-th entry. The marginal variances are
computed from πG , again, evaluated at the modal config-
uration. This, however, requires at least a partial inversion
of the precision matrix of πG , a computationally intensive
operation especially, for high-dimensional latent parameters
spaces. In the non-Gaussian case, the approximation proce-
dure is more involved. An update for the correction of the
conditional mean of xi |x−i , θ , y for each i needs to be per-

formed.Additionally, themarginal variances are computed at
all integration points {θk}Kk=1 which entails a partial matrix
inversion for each precision matrix Qx |y(θk). This allows
INLA to more accurately account for the overall shape and
potential skewness in the distributions. Using this informa-
tion approximations to the marginal distributions π(xi |θ, y)
are constructed, which are then used in Eq. (5) to compute
the posterior marginals using numerical integration. For a
detailed overview we refer to Rue et al. (2009).

2.4 Sparse linear algebra

In this section we want to provide a quick overview of the
underlying sparse linear algebra techniques leveraged by
the R-INLA package. A sparse matrix is simply defined
as a matrix where the majority of its elements are equal to
zero. For sparse matrix algebra it is customary to only save
the non-zero entries of the matrix in so-called compressed
matrix formats, that store the non-zero values and their corre-
sponding position instead of large quantities of zero entries.
This allows to massively reduce the required memory and
computations but hence, also demands for solvers that are
especially tailored to sparse problems. These arise, however,
very commonly and are therefore extensively researched. For
introductory purposes see (Davis 2006; Saad 2003).

During the first stage of the INLA algorithm, see Sect. 2.2,
the log determinant of different precision matrices Q (to
obtain the corresponding normalizing constant) and the solu-
tion to linear systems of equations of the form Qx = b
(to obtain the mode of the associated normal distribution)
are required. Since the arising precision matrices are sym-
metric positive-(semi)definite, it is most efficient to perform
a Cholesky decomposition, where the original matrix Q
factors into Q = LLT , with L being a lower-triangular
matrix (Ascher and Greif 2011). The log determinant of
Q can easily be computed from the diagonal entries of L
as

∑n
i=1 2 log(Lii ) and the system Qx = b can quickly

be solved for x using forward-backward substitution. That
means first solving L y = b for y and then LT x = y for
x. These operations can be executed efficiently due to the
lower-triangular structure of L.

2.4.1 Matrix reordering

It is in most cases advantageous to apply a symmetric per-
mutation to the matrix Q (and hence b, respectively) before
computing the Cholesky decomposition. Even if the matrix
Q is very sparse, L can have a large fill-in, meaning that
there are many entries which are non-zero in L but equal to
zero in the lower-triangular part of Q. In the elimination pro-
cess that is used to compute L, similar to classical Gaussian
elimination, one can see how these non-zeros arise (Davis
2006). As an illustrative example, we consider a symmetric
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Fig. 1 Sparsity patterns of the four-by-four symmetric positive-definite
arrowhead matrices Q1 and Q2, where each x stands for a non-zero
entry and Q2 is a symmetric permutation of Q1. The sparsity patterns
of their Cholesky factors are represented by L1 and L2, respectively.
The matrix L1 is dense i.e. exhibits a large fill-in while L2 preserves
the sparsity pattern of Q2

positive-definite arrowhead matrix Q1 whose sparsity pat-
tern can be seen in Fig. 1. Its corresponding Cholesky factor
L1 is computed recursively, starting from the first diagonal
entry. To compute the off-diagonal entry (L1)32, we use that
(L1)32 = ((Q1)32 − (L1)31(L1)21)/(L1)22. Hence, even if
(Q1)32 = 0, (L1)32 is not equal to zero unless (L1)31 or
(L1)21 are. More generally one can observe a dependency
structure on previous columns of the i-th and j-th row. By
applying a symmetric permutation to Q1, we can obtain Q2.
If we now compute L2 we can see that (L2)32 = 0, since
(Q2)32, (L2)21 and (L2)32 are all equal to zero.

In general, fill-in can often be drastically reduced by find-
ing a suitable matrix reordering of Q which then lowers the
overall memory and computation requirements of L.

For each of the different arising precision matrices in
INLA the sparsity pattern never changes throughout the
optimization phase but only the numerical values of the non-
zero entries. Hence, it is sufficient to only compute suitable
reorderings once throughout the entire algorithm. Finding a
favorable permutation is, however, a challenging task (Yan-
nakakis 1981) and has hence been an active area of research
(Heath et al. 1991; Bichot and Siarry 2013).

A simple greedy strategy is theminimum degree ordering,
where columns are successively permuted to minimize the
number of non-zero off-diagonal entries of the current pivot
element (George and Liu 1989). Another popular class of
reordering strategies called nested dissection employs graph
partitioning techniques (George 1973; Bichot and Siarry
2013). A symmetric matrix can be associated with an undi-
rected graph, where each diagonal matrix entry represents a
node and each nonzero off-diagonal entry an edge between
the corresponding nodes. The graph is partitioned into two
roughly equal-sized independent subgraphs GA,GB which
are only connected through a separating set GS . The partition
is chosen such that the size of the separating set is minimized.
For the corresponding matrix this means that the associated
submatrices QA and QB can be written as block matrices
only connected through QS . Hence, all fill-in that can occur
is within QA, QB and QS , see Fig. 2.

For large graphs the computational cost is often too high
to compute an optimal separating set. Therefore, multilevel
strategies are used to recursively coarsen a large graph by
merging connected vertices until it is reduced to a tractable
size. For the coarse graph an edge cut can be defined which is
then recursively refined while being propagated back to the
original large graph. From the final edge cut we can deduce
a separating set GS (Karypis and Kumar 1998). The same
strategy of finding roughly balanced minimal separating sets
can be independently reapplied to QA and QB , leading to
the nested dissection approach.

A popular state-of-the-art library that computes such
heuristic matrix reorderings is called METIS (Karypis and
Kumar 1998) and is used by both, TAUCS as well as PAR-
DISO. While the previously employed TAUCS library is
limited to using fill-in reducing permutations, PARDISO can
additionally perform much of the Cholesky factorization in
parallel, making use of the independent submatrices arising
from the nested dissection reordering. This will be explained
in detail in Sect. 3.3.

2.4.2 Partial inversion

In the second stage of the INLA algorithm, see Sect. 2.3, an
estimate for the variances of the posterior marginals of the
latent parameters, i.e. π(xi | y) for all i , is obtained. To do so
INLA uses information from the Gaussian approximations
πG(x|θk, y) at the various integration points {θk}Kk=1. All
information about the marginal variances only exists, how-
ever, in form of the precision matrices. As the variances �i i

correspond to (Q−1)i i , they can only be obtained through
matrix inversions. If the full precision matrices had to be
inverted thiswould becomevery time- andmemory- consum-
ing if not infeasible for high-dimensional latent parameter
spaces as matrix inversions have a complexity of O(n3) for
a matrix of size n × n. Fortunately, there is an alternative
method for computing the marginal variances that is much
more efficient. There are two different approaches to derive
this recursive strategy. One is using the conditional indepen-
dence properties of GMRFs and their associated graphical
structure, andwas first described by Rue andMartino (2007).
The other one is based on a particular way of writing matrix
identities without a further interpretation but describing the
same recursion and was developed by Takahashi (1973)
almost 50 years ago.Wewill begin by considering the former.
The solution x to the problem LT x = z where z ∼ N (0, I)
is a sample from a GMRF with zero mean and precision
matrix Q = LLT (Rue and Held 2005). Since LT is an
upper triangular matrix, we can use a backward solve and
recursively compute

xn = zn
Lnn
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Fig. 2 From left to right: a Lower triangular part of the sparsity pattern
of a random symmetric positive definite matrix Q, with 70 non-zero
entries. b Cholesky decomposition L of Q, where L has 180 non-zero
entries. c Permuted matrix Qperm using (nested) dissection. d Cholesky
decomposition Lperm of Qperm, where Lperm has only 88 non-zero
entries. We can observe that Q was permuted such that it is separated in

two independent submatrices QA and QB , which are only connected
through entries that are now placed in the last two rows, which we refer
to as QS . This way there is no fill-in between QA and QB but only
within the before-mentioned submatrices. Thus, reducing the number
of non-zeros in the Cholesky factorization of Qperm. The strategy can
be applied recursively to each of the components QA and QB

xi = zi
Lii

− 1

Lii

n∑

k>i
Lki �=0

Lki xk (6)

for i = n−1, . . . , 1.We exclude all terms Lki from the sum-
mation directly that equate to zero. This way it becomes clear
that the more zeros we have in L, the less computations are
necessary. If we use the known expected value and variance
of z as well as Eq. (6), we can deduce the covariance matrix
� of x from first principles, obtaining

�i j = δi j

L2
i i

− 1

Lii

n∑

k>i
Lki �=0

Lki�k j , (7)

where δi j is one if i = j and zero otherwise. The entries can
only be computed recursively starting at i = n, traversing
the matrix from the bottom right to the top left.

Equivalentlywe canderiveEq. (7)without using statistical
properties. Instead we consider the slightly altered decom-
position Q = LLT = V DV T , i.e. L = V D1/2, where D is
a diagonal matrix and V a lower triangular matrix with ones
on the diagonal. The following matrix identity was proposed
by Takahashi in Takahashi (1973),

� = D−1V−1 + (I − V T )�. (8)

As � is a symmetric matrix, it is enough to compute its
upper triangular part. The term D−1V−1 is lower triangular
with (D−1V−1)i i = (D−1)i i , since V has a unit diagonal.
Writing out Eq. (8) as sums we obtain

�i j = δi j

Dii
−

∑

k>i
Vki �=0

Vki�k j , for i ≤ j
(9)

which we can compute recursively starting from �nn and
where again, δi j is equal to one for i = j and zero otherwise.
Eqs. (7) and (9) are equal since L = V D1/2. It is possible
to use these recursions to compute all entries of �, however,
in this case they do not give us a computational advantage
over traditional inversion algorithms. In both cases we have a
complexity of O(n3). If we are instead only interested in par-
ticular entries of�, e.g. only the diagonal, and if additionally
L (and then likewise V ) are sparse, a tremendous amount of
computational cost can be saved, as only the entries �i j for
which Li j is non-zero need to be computed. Hence, the less
non-zeros we have in the factor L, the smaller is the com-
putational need. This highlights the importance of finding
suitable permutations as described in the previous section.

PARDISO and INLA’s previous selected inversion rou-
tine both employ such a partial inversion strategy. While the
latter is sequential, PARDISO is using parallelized computa-
tions for a shorter time to solution, exploiting the particular
matrix structure given through the permutation, see Sect. 3.3
for details. The marginal variances �i i that we obtain are
then repermuted to correspond to the original ordering of the
parameters x. Afterwards, they can be used as described in
Sect. 2.3 to obtain estimates of the marginal posterior distri-
butions of the latent parameters.

2.5 BFGS algorithm

To solve the optimization problem described in Sect. 2.2,
INLA uses a BFGS algorithm. It is an iterative quasi-Newton
method for solving unconstrained nonlinear optimization
problems [Nocedal and Wright 2006 Ch. 6]. Quasi-Newton
methods resembleNewtonmethodswithout requiringknowl-
edge about the second order derivative. Instead they use
gradient information to form an approximation to theHessian
in every iteration. They exhibit better convergence properties
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than first order methods like gradient descent at almost no
increased cost. Among them the BFGS algorithm is the most
popular choice [Nocedal and Wright 2006 Ch. 6]. It mini-
mizes a differentiable function f (θ), starting from an initial
guess θ0 by using the following update formulae

θ l+1 = θ l − αlB
−1
l ∇ fθ l . (10)

Here ∇ fθ l denotes the gradient of f at θ l , Bl is the approx-
imation to the Hessian of f at θ l and 0 < αl < 1 is the
step size in iteration l. Information on the construction of Bl

and a general overview can be found in [Nocedal andWright
2006 Ch. 6]. Details on how this is implemented in INLA are
described in the next section, including gradient approxima-
tions for ∇ fθ l and finding appropriate step sizes αl , as they
are closely linked to opportunities for parallelism.

3 Parallelization scheme

In the following we present the novel parallelization strate-
gies that have been added to the current R-INLA implemen-
tation. There are four significant updates in the algorithm that
we want to discuss in detail. The first one comprises parallel
function evaluations of Eq. (3) for different values of θ . We
determined multiple occasions throughout the algorithm that
allow for such parallelism, and discuss the details in Sect. 3.1.
The second update consists of parallel precisionmatrix inver-
sions which are required to compute the posterior marginal
distributions of the latent parameters. Thirdly, we introduce
a parallel line search strategy within the optimization routine
of the algorithm, see Sect. 3.2 for details. The last update
applies to all stages of the algorithm and consists of the incor-
poration of the PARDISO library into R-INLA to handle all
required major sparse linear algebra operations, and will be
discussed in Sect. 3.3. The parallel operations are realized
through the usage of OpenMP, an application programming
interface that supports multiprocessing for shared-memory
architectures and allows to efficiently execute multiple tasks
at once. A schematic overview of the parallelization scheme
is presented in Fig. 3.

3.1 Level 1 parallelism – parallel function
evaluations

Among the computationally intensive and therefore time-
consuming operations in INLA are the function evaluations
of the posterior marginal distribution, i.e. computing π̃(θ | y)
at θ , as discussed in Sect. 2.2. Instead of evaluating the pos-
terior directly, we consider

f (θ) := −log π̃(θ | y). (11)

The logarithmic scale is introduced to enhance numeric
stability. Finding the mode θ∗ of the posterior becomes a
minimization problem through the sign switch in Eq. (11).
The employed BFGS algorithm requires knowledge of the
gradient of f , see Sect. 2.5.

We estimate it numerically using a finite difference
scheme (LeVeque 2007). Each partial derivative ∂ f /∂θi of
the gradient is approximated using either a first order forward
or central difference. As an example we show the central dif-
ference approximation

∂ f

∂θi
(þ) ≈ f (θ + εi ) − f (θ − εi )

2 ||εi || for all i, (12)

where the vector εi is of the samedimension as θ and contains
only zeros except for the i-th component which contains a
small value ε > 0. This way, the finite difference approxi-
mation is computed along the coordinate axes. It is, however,
also easily possible to use other bases. INLA makes use
of knowledge from previous iterations to choose directional
derivatives exhibiting more robust numerical properties and
hence faster overall convergence, see (Fattah et al. 2022) for
details. Independently of the choice of basis, the directional
derivatives are computed for each component of θ and each
time entail one or two function evaluations of f .

We can see from Eq. (12) that all function evaluations
are independent from each other. In the new parallelization
scheme we are using this to our advantage by computing
the function values, i.e. f (θ + ε1), f (θ − ε1), f (θ + ε2), ...

simultaneously in each iteration, see Fig. 3. Here, each f (θ il )
denotes a different function value f (θ ± εi ) during the l-th
iteration.

For a central difference schemeweneed two times asmany
function evaluations as there are hyperparameters, which can
now all be computed in parallel instead of sequentially, while
also computing f (θ) itself. So, if e.g. dim(θ) = 3, we can
theoretically have a 7-fold speedup during the gradient com-
putation. This means the introduced parallelism allows the
gradient to be computed at almost no further cost the already
necessary iterative evaluations of f (θ) for fixed values of θ ,
see Fig. 3.

There are other methods to obtain gradient information, in
particular automatic differentiation (Baydin et al. 2018). In
the ideal case it offers a highly accurate solution at runtimes
comparable to a single function evaluation (Baydin et al.
2018), similar to the parallelized finite difference approxi-
mation. It requires, however, an adaptation of the basic linear
algebra operations and then allows for parallelism within
these operations. This is not trivially done for non-standard
cases (VanMerriënboer et al. 2018) and would require major
changes in the PARDISO software library. Additionally, if
the likelihood is non-Gaussian we have the inner optimiza-
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Fig. 3 Simplified overview of the parallelization scheme within INLA
throughout the different phases of the algorithm. Each dashed blue box
indicates a region of level 1 parallelism. Each dotted red box indicates a
regionof level 2 parallelismwithin the parallel level 1 regions.At the end
of everyparallel region (level 1&2) there is an intrinsic synchronization,
where execution halts until all assigned threads have concluded their
tasks.

tion routine within each function evaluation, for which we
are not aware of existing automatic differentiation methods.

After the maximum of π̃(θ | y) is found, we compute the
Hessian at the mode using a second order finite difference
scheme. This requires further function evaluations that can
beperformed in parallel, seeFig. 3.Next,we can also perform
the function evaluations at the integration points {θk}Kk=1 in
parallel, see Sect. 2.2. Finally, we have to estimate the pos-
terior marginal variances. To do so we compute the partial
inverses of the precision matrices Qx |y(θk) at the integration
points {θk}Kk=1. We also implemented this to be executed
in parallel, as the arising precision matrices are completely
independent from each other.

Each described set of parallelizable operations are embar-
rassingly parallel, meaning that each task is completely
independent from the rest. From a theoretical perspective
we can therefore ideally expect that the number of employed
threads exactly corresponds to the observed speedup over the
sequential version throughout these parallel regions. There
is of course, a maximum number of tasks within each of
these parallel regions (indicated by the blue dashed boxes in
Fig. 3), e.g. the number of necessary function evaluations to
compute the gradient using a forward difference, which is
d(θ), in addition to evaluating f itself. Beyond this number
the increased thread count, is not beneficial anymore in all
phases of the algorithm.

3.2 Parallel line search

In addition to approximating the gradient, a value for the step
size αl needs to be chosen in every iteration of the optimiza-
tion routine. Determining a suitable value for αl is crucial to
the convergence of the overall algorithm and is done through
a line search procedure, see e.g. [Nocedal and Wright 2006
Ch. 3] for an overview. The most common approach is to use
a mixture of artificially chosen upper and lower bounds, as
well as the value from the previous iteration, to propose the
next step sizeαl . Then, a check is performed to see if a certain
condition is met to either accept or reject the suggested step
size. If it is rejected, the step size is reduced, and the check is
performed again, if it is accepted, θ l is updated as described
in Eq. (10) and one proceeds to the next iteration. For this
check, the function f is evaluated at the potential new candi-
datewhich, as discussed previously, is an expensive operation
to perform, but necessary in order to determine the validity
of the new step. Hence, every time a step is rejected another
sequentially computed function evaluation is required. To
be more efficient we introduce a parallel line search strat-
egy to make better use of the available resources. Instead of
computing different values for αl sequentially, we define a
search interval I = (θ l , θ l − γl pl), where pl := B−1

l ∇ fθ l
and γl > 0 is an upper bound to αl . Hence, I contains all
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possible solutions of Eq. (10) for 0 < αl ≤ γl . Depending on
the number of available threads we define a number of points
θ li on I for which we evaluate all f (θ li ) in parallel. The
easiest option would now be to choose the candidate θ li that
minimizes f as the next iterate. However, it has shown to be
advantageous to fit a second order polynomial q, through the
newly evaluated points using robust regression (Rousseeuw
and Leroy 2005; Atkinson et al. 2000). This way slight inac-
curacies in the function evaluations (that can e.g. arise from
more complicated choices of likelihood and require an inner
optimization loop) are counter balanced.We additionally add
twomore evaluation points in positive pl direction close to θ l
to stabilize the polynomial fitting process close to the global
optimum. This does not increase the overall runtime as they
can be evaluated in parallel with the other θ li . Robust regres-
sion differs from regular regression in the sense that each
pair (θ li , f (θ li )) gets assigned a weight wθ li

, which will
make it more or less influential on the overall fitting process.
There are a number of commonly used weighting functions
w. We have chosen to use the so-called bisquare weighting
as in our experience this has been giving the best results.
After finding the second order polynomial q, its minimum
is determined on I and chosen as the next iterate θ l+1. In
Fig. 4 we can see an illustration of the new strategy, while
Fig. 3 shows the parallel line search within the overall par-
allelization scheme. The advantages of the new strategy are
the mitigation of inherently sequential function evaluations
in the reject-accept check, as well as an improved step size
choice. This can lower the number of required iterations until
convergence, and hence also the overall runtime, see Sect. 4
for numerical results.

The theoretical speedup that can be obtained is hard to
predict, as it highly depends on the properties of f . If in
the sequential case a lot of new stepsize candidates get
rejected, and hence require additional function evaluations or
if there are larger numerical errors, the potential for speedup
is higher. However, this is of course not known a priori. As a
rule of thumb one can bear inmind that themore complicated
the model, and in particular the likelihood (or likelihoods if
there are multiple), the more significant is typically the gain
through employing the parallel line search routine.

3.3 Level 2 parallelism – parallelization within
PARDISO

The PARDISO library offers routines to efficiently pro-
vide solutions to various problems commonly arising in the
field of sparse linear algebra (Demmel 1997). In R-INLA
the PARDISO implementation for Cholesky decomposition,
subsequent forward-backward substitution and partial inver-
sion are invoked. PARDISO is a state-of-the-art direct solver
that has been in active development for many years. To
achieve excellent performance it relies on numerous strate-

Fig. 4 Illustration of the parallel line search using robust regression.
Let θ l be the current iterate with function value f (θ l ), new search direc-
tion pl , with search interval I = (θ l , θ l − γl pl ) on which points θ li
are defined, with θ l0 := θ l , and all f (θ li ) are evaluated in parallel. The
evaluation points θ l−1 , θ l−2 in positive pl direction are added for numer-
ical stabilization. The polynomial q is fitted using robust regression and
its minimum becomes the next iterate θ l+1

gies ranging from thorough algorithm selection to detailed
hardware considerations.

In this work we want to solely focus on the employed
parallelism and refer the interested reader to Bollhöfer et al.
(2020) for a comprehensive overview.

As described in Sect. 2.4.1, a symmetric permutation
found through nested dissection is applied to Q before
computing its Cholesky decomposition L. This reordering
technique does not only reduce the arising fill-in but also
creates independent block matrices QA, QB , see Fig. 2, that
are only connected through a small submatrix QS . Hence,
it is possible to factorize QA and QB in parallel, before
factorizing QS . The reordering generated through nested
dissection has a recursive pattern, and thus QA and QB
themselves exhibit the same structure. Both of them, again,
contain two independent blocks and a connecting subma-
trix which corresponds to the separating set of the associated
graph. The reordered matrix can therefore be factorized in
parallel, starting from the set of smallest block matrices. If
sufficient compute resources are a available this introduc-
tion of parallelism drastically reduces the computational time
and especially exhibits much better scaling. While it is not
possible to give precise bounds on expected speedup with-
out specifying more graph theoretical concepts and make
assumptions on the sparsity pattern of the matrix, one can see
that the recursive subdivisions induce a logarithmic growth.
For details see (Pan and Reif 1985).

A similar principle can be applied to determine the partial
inverse of Q, for which we have seen in Sect. 2.4.2 that only
the non-zero entries of L are required. We can compute the
same subgraphs in parallel, as in the Cholesky decomposi-
tion. This time, however, we first compute the values of the
submatrix connected to the separating set, and referred to as
QS in Fig. 2. Once we have recursively computed all neces-
sary inverse elements belonging to the indices of QS , we can
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determine the inverse elements of
∑

with indices belonging
to QA and QB in parallel. This is possible since QA and
QB are only connected through QS and these entries have
already been computed at this point. Since for larger matri-
ces, each submatrix QA, QB was again permuted following
the same strategy, we can recursively traverse the matrix,
in the opposite direction as in the Cholesky decomposition,
computing the required entries of

∑
in many parallel regions

(Bollhöfer et al. 2020).
PARDISO uses OpenMP to carry out the simultaneous

computations. Thus,weobtain a nestedOpenMPstructure, as
we have multiple matrix factorizations or inversions carried
out in parallel, see Sects. 3.1 and 3.2. Additionally to the
parallelismwithin PARDISO,OpenMP is used on the second
level to parallelize other matrix operations e.g. during the
computation of matrix-matrix or matrix-vector products and
while assembling matrices.

4 Results & benchmarks

In this section we present performance results of the newly
introduced parallelization strategies for various applications.
They are based on previously publishedmodels thatmake use
of the R-INLA package. We will not go into the details of the
individual application as all the details can be found in the
original publications, and instead focus on the computational
aspects involved. All numerical experiments for Case Study
I & II were performed on a single nodemachine with 755 GB
of main memory and 26 dual-socket Intel(R) Xeon(R) Gold
6230R CPU @ 2.10GHz, totaling 52 cores. The large num-
ber of cores allows us to demonstrate the full performance
gains that can be obtained through parallelism. All numerical
experiments for Case Study III were performed on an Apple
M1 Mac mini with 16 GB of memory, 4 performance and 4
efficiency cores. We chose this machine to illustrate that we
also obtain performance gains through parallelism on regu-
lar desktop computers, laptops and notebooks, although, of
course, to a smaller extent than compared to a larger com-
puter architecture.

Case Study I : Joint survival modeling of randomized clin-
ical trial. Recently, Rustand et al. (2022) presented a joint
survival model consisting of multivariate longitudinal mark-
ers paired with competing risks of events, available in the R
package INLAjoin 2. The different submodels are linked to
each other through shared or correlated random effects. The
authors consider a randomized placebo controlled trial for
the treatment of the rare autoimmune disease primary bil-
iary cholangitis (PBC) which affects the liver. They examine
how different biomarkers, in combination with the treatment
(medication vs. placebo), affect the competing risks of death

2 https://github.com/DenisRustand/INLAjoint.

Table 1 Overview parameters Case Study I

d(θ ) # Lat. par # of obs.

CS I 50 51 290 27 330

Table 2 Overview parameters Case Study II

d(θ ) Res. size # Lat. par # Of obs.

Med. CSII 9 5 000 35 544 2 541 396

Large CSII 9 25 000 183 624 13 129 116

and liver transplantation. Their model setup includes 7 differ-
ent correlated likelihoods which allows them to detect more
complex dependency structures, that go unseen in simpler
approaches. The resulting model has a particularly large
number of hyperparamter, with dimension d(θ) = 50, see
Table 1

Case Study II : Cortical surface modeling of human brain
activation.Spencer et al. show that functional brain responses
can be reliably estimated using cortical surface-based spa-
tial Bayesian generalized linear models (GLMs). Functional
magnetic resonance imaging (fMRI) data from individual
subjects is used to identify areas of significant activation dur-
ing a task or stimulus. The authors use the stochastic partial
differential equations approach (Lindgren et al. 2011, 2022;
Krainski et al. 2018) for manifolds to define a spatial GMRF
field on the surface of the brain employing geodesic dis-
tances. This allows to flexibly encode spatial dependency
structures in the model while maintaining sparsity in the
precision matrices. Their approach defines a GLM that fits
the framework presented in 2.1. The likelihood is assumed
to follow a Gaussian distribution and we therefore do not
require an inner optimization loop for every function eval-
uation. More details can be found in Spencer et al. (2022);
Mejia et al. (2020) which also includes information about
the corresponding R package BayesfMRI3. For this work
we fit a single subject, single repetition model using fMRI
data for 4 tasks. The dimension of the hyperparameter space
d(θ) = 9, two for the parameterization of the spatial field of
each task and a noise term for the observations. The images
are preprocessed for standardization and the surface of the
brain is discretized using a triangular mesh. We use two
different spatial discretizations that are determined by the
resampling size,which subsequently influence the dimension
of the latent parameter space and the number of considered
observations, as shown in Table 2.

Case Study III : Spatial variation in Leukemia survival
data. As a final example we consider a study on spatial
variation in Leukemia survival data from Henderson et al.

3 https://github.com/mandymejia/BayesfMRI(ver.0.1.8), https://githu
b.com/danieladamspencer/BayesGLM\_Validation.
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Table 3 Overview parameters Case Study III

d(θ ) # Lat. par # of obs.

CS III 3 7945 6174

(2002); Lindgren et al. (2011). The additive linear predictor
of the hazard function includes 5 fixed effects, which relate
to attributes like age, sex, economic status and inflamma-
tory markers. To capture the spatial variation it additionally
includes a spatialGMRF randomfield,which induces a three-
dimensional hyperparameter space, see Table 3

The fitted model provides survival estimates given the
covariates and spatial locations.

4.1 Leveraging level 1 parallelism

The level 1 parallelism enables simultaneous function
evaluations as described in Sect. 3.1which are relevant for the
gradient computation during the optimization, the Hessian
approximation at the mode, the evaluation of at the integra-
tion points as well as the partial inversion scheme around the
mode.

The speedup that can theoretically be obtained through
parallelization depends on the number of hyperparamters.
If a forward difference scheme is employed a maximum
speedup of d(θ) + 1, is possible during the gradient com-
putation. For a central difference scheme it is 2 · d(θ) + 1.
If not specified otherwise R-INLA employs a mix of for-
ward and central difference approximations. The theoretical
speedup during the Hessian approximation and the partial
inversion scheme depends on the number of integration
pointswhich, however, typically exceedd(θ)+1by far unless
the “empirical Bayes“ integration strategy is chosen. While
these are the computationally most costly operations, there
are other non-parallelizable steps required. Additionally,
setting up a parallel OpenMP environment always creates
overhead. Hence, the theoretical speedup can almost never
be attained. For relatively small applications the observed
speedup through parallelism is usually not as significant as
for larger problems, because the sequential parts and the
induced overhead make up a larger portion of the total run-
time. On the other hand, larger applications using a very large
number of threads might not exhibit further speedup after a
certain thread count as memory management can become
the limiting factor. We will be able to observe both effects
when looking at performance results of parallelizing level 1.
In Fig. 5 we provide scaling results with varying number of
threads on level 1 and a fixed number of threads on level 2
for Case Studies I & II. Instead of showing the total runtime
for each case, we divide it by the total number of function
evaluations of f , as the number of f evaluations can vary a

bit depending on randomly set initial values and numerical
imprecision due to different round-off errors.

For Case Study I we observe an almost ideal reduction in
time per f evaluation until 20 threads, yielding an impres-
sive speedup of a factor of 15 at 20 threads compared to
the single-threaded version. When employing more than 20
threads the parallel efficiency starts to reduce. Case Study
II has less hyperparameters, hence the maximum attainable
speedup on level 1 is lower, nevertheless providing signif-
icant improvements for up to 10 threads with a speedup of
almost 6 compared to the single-threaded version.

We also analyze the effects of level 1 parallelism for Case
Study III. This model is of much smaller dimension than the
first two and hence a larger part of the overall runtime is
dedicated to sequential operations like setting up or the ini-
tializations of the parallel regions. Nevertheless we observe a
speedup of a factor of 2 when using 4 instead of 1 thread, see
Table 4. The results confirm the theoretical expectation, that
the level 1 parallelism scales close to linearly, in particular
for thread counts smaller than d(θ) + 1.

4.2 Leveraging parallel line search

The accuracy of robust regression clearly depends on the
number of available regressors, which in turn is dependent
on the number of available threads. In our experiencemaking
use of the parallel line search implementation only becomes
advantageous if 8 threads or more are in use on level 1. Then
there are sufficiently many evaluation points in the search
interval I to adequately represent the original function. In
Fig. 6, we show the total runtime of Case Study I using vary-
ing numbers of threads on level 1 with and without enabling
the parallel line search. Since thismodel has a large number of
hyperparameters the computation of the posterior marginals
of the latent parameters using the simplifiedLaplace approxi-
mation strategywould be the dominating the overall compute
time. In this section we, therefore, used the computationally
cheaper empirical Bayes’ approximation, to be able to put the
emphasis on the optimization phase of the algorithm, where
the parallel line search feature is relevant. We can see that
it lowers the overall time to solution without requiring more
threads. It additionally exhibits a more stable scaling behav-
ior when it comes to reduction in runtime over an increasing
thread count.

4.3 Leveraging level 2 parallelism

The level 2 parallelism occurs within each call of the PAR-
DISO library as well as other matrix operations like matrix-
matrix multiplications, following the concepts described in
Sect. 3.3. The single-threaded version of the PARDISO
library is already very efficient for small to moderate sized
problems. The full effects of the parallelization start becom-
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Fig. 5 The solid line shows the total runtime in seconds divided by the number of function evaluations for different numbers of threads on level 1
with the number of level 2 threads fixed to one and without the parallel line search enabled. The dashed line shows the relative speedup over the
single-threaded version

Table 4 Effects of using different numbers of threads on level 1 for
Case Study III

# Threads level 1 1 2 3 4

Time per fn in sec 0.031 0.023 0.017 0.016

Speedup 1 1.4 1.8 2

Fig. 6 Runtime for Case Study I, with and without parallel line search
over varying numbers of threads on level 1. The number of threads on
level 2 is fixed to 1. The posterior marginals of the latent parameters
are approximated using the empirical Bayes integration strategy

ing visible for the latent parameter spaces of dimensions in
the range of 104 and larger, especially for models with a
three-dimensional structure.

We consider both examples of Case Study II in the per-
formance analysis of Fig. 7. For a fixed number of threads
on level 1, we observe a continuous speedup for increas-
ing numbers of threads on level 2 up until 8 threads for the
medium-sized Case Study II, leading to a maximum speedup
of almost 3 over the single-threaded version. In turn the
larger-sized Case Study II continues to exhibit a speedup
also beyond 8 threads, showing that larger latent parame-

ter spaces benefit more from level 2 parallelism, leading to a
speedup of almost 5 using 16 threads over the single-threaded
version. As expected from a theoretical point of view, we
do not observe a linear or close to linear speedup for the
level 2 parallelism. We can see that a higher dimensional
latent parameter space exhibits a higher speedup for the same
number of threads. The large Case Study II also continues
to benefit from higher thread counts when the medium-sized
Case Study II has already reached a saturation point.

4.4 Leveraging combined parallelism

In this section we want to present results for combined par-
allelization strategies and discuss how to choose a favorable
set up. The ideal approach clearly depends on the available
infrastructure and the problem at hand. In almost all cases the
number of available coreswill be limited.Often this limitwill
easily be reached as the total number of threads is equal to
(# threads L1) · (# threads L2). This poses the question of
how to best utilize the available resources. We have found
that hyperthreading often does not significantly increase the
performance (or is even counter productive) and therefore
only consider thread counts that are within the number of
physical cores. In the previous two sections we have seen
that smaller problems benefit less from larger thread counts
as the overhead of thread initialization can overshadow the
gain. We can see from both Figs. 5 & 7 that the parallel effi-
ciency is highest for smaller thread counts on both levels (in
cases where d(x) is sufficiently large). This implies that it is
often favorable to distribute the available number of threads
among both levels. This behavior can be observed empiri-
cally in Fig. 8, where we present the runtime of the INLA
algorithm in seconds for different thread configurations. As
a rule of thumb one might consider always assigning the first
d(θ)+1 threads to level 1. This has from a theoretical, as well
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Fig. 7 The solid line shows the total runtime in seconds divided by the number of function evaluations for different numbers of threads on level 2
with the number of level 1 threads fixed to one and without the parallel line search enabled. The dashed line shows the relative speedup over the
single-threaded version

Fig. 8 Runtime in seconds for different thread configurations. The first number represents the threads on level 1, the second number the threads on
level 2. The total number of threads is equal to (# threads level 1) · (# threads level 2)

as an empirical point of view, shown to be the best strategy.
If more threads are available, one can either add threads to
level 2 or further add to level 1, depending on the dimension
of the latent parameter space.

In general, it becomes clear that the introduction of paral-
lelism leads to a tremendous reduction in runtime. For Case
Study I, we observe speedups of a factor 20 andmore over the
single-threaded version. For the medium-sized Case Study II
we observe a speedup of a factor up to 15.While for the large
Case Study II we observe a speedup of more than 10 times
compared to the single-threaded version. For sufficiently
large multi-core architectures, the newly introduced updates
open the door to previously unfeasible modeling scales, and
drastically reduce waiting times for users.

5 Discussion

In this paper we presented novel parallelization strategies
for the INLA methodology. While INLA has always been
using optimized sparse linear algebra operations to be com-
putationally efficient, we have taken this a step further by
introducing parallelism using OpenMP. This allows for the
simultaneous execution of computationally expensive tasks
which are distributed over a specified number of cores. Our
approach contains two layers of parallelism.On the first layer
we have parallelized independent function evaluations dur-
ing INLA’s optimization phase to determine and explore the
posterior mode of the hyperparameters.
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Each evaluation requires the Cholesky factorization, a
computationally expensive task, of at least one sparse pre-
cision matrix whose size is tied to the potentially very
high-dimensional latent parameter space of the model. We
have additionally introduced a parallel line search routine
using robust regression to parallelize and stabilize the search
for each next step size, thus being able to lower the overall
number of required iterations. We were also able to paral-
lelize large parts of the computation of the posterior marginal
variances of the latent parameters which require a computa-
tionally expensive partial matrix inversion. The state-of-the-
art sparse solver PARDISO was included in INLA to handle
the most expensive linear algebra operations and makes up
the second layer of parallelism. PARDISOmakes use of intel-
ligent matrix reordering techniques that allow large parts
of the otherwise sequential computations to be parallelized.
Thus, PARDISO internally employs OpenMP for simultane-
ous operations within Cholesky factorizations, solutions to
linear systems of equations and partial matrix inversions.

We empirically demonstrated the performance and scala-
bility of the parallelization strategies on three case studies.
Each of themuses a different type ofmodel, hence posing dif-
ferent computational challenges. For all larger applications
we observed speeds up of a factor of 10-25 times compared
to the single-threaded version. Hence, lowering runtimes for
some models from almost seven hours to less than 30 min-
utes or frommore than two hours to just over tenminutes. For
smaller applicationswe still observe speedups but to a smaller
extend. Given that larger multi-core computer architectures
are becomingmore andmore accessible, these computational
advancements allow users to perform inference using more
complexmodels at higher resolution in shorter runtimes with
INLA.
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