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Abstract

A semiparametric multiplicative error model (MEM) is proposed. In tradi-

tional MEM, the innovations are typically assumed to be Gamma distributed

(with one free parameter that ensures unit mean of the innovations and thus

identifiability of the model), however empirical investigations unveils the inap-

propriateness of this choice. In the proposed approach, the conditional mean

of the time series is modeled parametrically, while we model its conditional

distribution nonparametrically by Dirichlet process mixture of Gamma dis-

tributions. Bayesian inference is performed using Markov chain Monte Carlo

simulation. This model is applied to the time series of daily realized volatility

of some indices, and is compared to similar parametric models available in

the literature. Our simulations and empirical studies show better predictive

performance, flexibility and robustness to mis-specification of our Bayesian

semiparametric approach.

Keywords: Dirichlet process mixture model, multiplicative error model, slice

sampler, realized volatility, parameter expansion.

1 Introduction

In the context of financial time series analysis, one of the interesting problems is

to model nonnegative persistence time series. For instance, durations between the

transactions in the financial markets, number or volume of transactions within a

fixed time interval, absolute returns, the low/high range of price of assets within an

interval, bid/ask spread, estimators of integrated volatility such as realized volatility,

etc. A common feature of these times series, besides their persistence, is that they

are, by definition, nonnegative and might touch the zero lower bound or assume,

with positive probability, values arbitrarily close to zero. As discussed in Engle,

2002, there are two näıve approaches to this problem: The first is to employ an

additive model (a zero mean noise added to the conditional mean of the process µt),
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and the second is to model their logarithm. As pointed out in Engle, 2002, in order

to let the model assign positive probabilities to values arbitrarily close to zero, the

support (and the higher moments) of the distribution of the additive noise should

change through time, and must be discontinue at −µt. This results in difficult es-

timation of these models. The second approach, in turn, has its own pitfalls: The

presence of zero observations makes the log-transformation infeasible (and therefore

the zeros should be substituted by arbitrary small values), and the presence of very

small observations (very large negative values in the log-transformation) influences

the estimators dramatically. As a consequence of the above considerations, an ap-

propriate treatment of these processes should consider their nonnegativity in the

model construction, and accommodate the presence of zero values in small samples

with positive probability.

The dominant structure of the models that have been proposed for this class of

financial time series has a multiplicative form. For studying the durations between

the transaction in financial markets, Engle and Russell, 1998, introduced the Au-

toregressive Conditional Duration (ACD) model. More precisely for the nonnegative

process xt we have,

E(xt|Ft−1) = µt(Ft−1; θ) =: µt > 0

where Ft−1 is the information set available at time t − 1, θ is the vector of param-

eters, and xt = µtεt, where εt’s are i.i.d. from a random variable indexed by the

parameters φ, and with support [0,+∞). In order to ensure the identifiability of

the model, we should restrict εt to have unit mean. As a consequence, for all t,

and for any arbitrarily small δ > 0, we have P(xt < δ|xt−1) = Fε (δ/µt) > 0 (where

Fε(·) is the cdf of ε). The ACD model originally proposed for the duration, was gen-

eralized by Engle 2002 for a wider set of applications and renamed Multiplicative
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Error Model (MEM). Chou, 2005, applied MEM for modeling the low/high range of

prices in daily and weekly scales, and used a Weibull distribution for the innovations.

Since then, several extensions of MEM have appeared in the literature. Extensions

include generalization of the univariate model to multivariate settings and flexible

structure for the conditional mean equation, more precisely modeling the conditional

distribution of the process through generalizations of the innovation’s distribution

to more flexible families.

In this paper we propose a Bayesian semiparametric MEM in which the dis-

tribution of the innovations is modeled nonparametrically. In particular we use a

countable infinite mixture of Gamma distributions with two free parameters. Using

this rich family allows us to approximate any continuous distribution on the positive

axis to any precision level. The advantage of the Bayesian approach is that using a

mixture distribution provides a very flexible model for the innovations, without the

need to fix the number of components of the mixture a priori. Inference is performed

by Markov chain Monte Carlo (MCMC) simulation using a sampling scheme based

on slice sampler for mixture models (Kalli et al 2011). A final contribution of this

paper is to present a new modification of the sampling scheme that improves the

mixing of the MCMC dramatically.

The rest of this paper is organized as follows: In Section 2 the MEM is intro-

duced and our semiparametric extension is presented. In the following section the

sampling scheme of the MCMC for conducting Bayesian inference on the proposed

model is presented. The model and the sampling scheme are evaluated, via a sim-

ulation study, in Section 4, and in the following section the model is fitted to real

financial time series. The last section is devoted to the conclusions.
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2 The Model

In this section the MEM formulation is explained. In the first part we focus on the

parametric MEM that has been developed in the literature in the recent decade.

Our semiparametric extension is then proposed.

2.1 The Multiplicative Error Model

In MEM, as its name suggests, the stochastic process xt is constructed by multiplying

the innovation term εt, by the conditional mean of the process µt := E(xt|Ft−1),

where Ft−1 is the information set available at time t − 1. In other words, for the

discrete time stochastic process, {xt}+∞
t=1 , we have:

xt = µt(θ)εt

where, for any t, µt(θ) is a nonnegative process, measurable with respect to the

sigma algebra Ft−1 (where θ is the vector of parameters to be estimated), and εt is

restricted to have conditionally unit mean:

E(εt|Ft−1) = 1

The unit mean constrain is necessary to ensure identifiability of the model. In most

applications εts are i.i.d. draws from a unit mean distribution, i.e. xts, conditional

on Ft−1, are draws from a scale-family of distributions, in which the scale parameter

evolves in time according to µt, and the shape of the distribution remains unchanged.

But in principle, as long as the conditional unit mean constraint is honored, the shape

of this distribution can be seen as a function of the elements of the information set

Ft−1, and may change through time. For instance Drost and Werker 2004, argue

that the i.i.d. assumption for the innovations, is too strong, and they let this distri-
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bution depend on Ht−1 ⊂ Ft−1.

In the base MEM, µt is formulated as a linear combination of the first p and q

lagged xts and µts, respectively:

µt = ω +

p∑
j=1

αjxt−j +

q∑
i=1

βiµt−i

With this structure, the persistence property of xt can be modeled parsimoniously.

It is well known that this model for µt is equivalent to an ARMA(max(p, q), q) model

for xt, in which ηt = xt−µt (that is a Martingale difference sequence) plays the role

of the innovations. With p = q = 1 we obtain the base MEM(1, 1) (from now on

MEM for brevity):

µt = ω + αxt−1 + βµt−1 (1)

that is usually sufficient in empirical studies.

Several generalization of the base MEM have been proposed. In the asymmetric

MEM, the conditional mean reacts asymmetrically to the sign of some elements of

the information set. For instance, it has been shown that the conditional mean of

realized volatility of an equity, reacts asymmetrically in response to positive and

negative returns. It is also possible to include other Ft−1-measurable variables z
(k)
t−1,

in the conditional mean equation:

µt = ω +

p∑
i=1

αixt−i +

q∑
j=1

βjµt−j +
r∑

k=1

γkz
(k)
t−1

In our empirical analysis, we consider the following asymmetric MEM (AMEM from

now on):

µt = ω + αxt−1 + βµt−1 + γ|rt−1|I(rt−1 < 0) (2)
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where I(·) is the indicator function, and rt is the daily return.

To model the intra daily volume forecasting, Brownlees, Cipollini and Gallo,

2009, developed the component MEM (CMEM). In this model the conditional mean

is broken down into three multiplicative components which model the daily dynamic,

intra daily periodic, and intra daily dynamic of the conditional mean. Obviously the

base MEM family is not rich enough to reproduce such a dynamic in the conditional

mean. In another extension, the conditional mean has a composite structure, since

it is modeled as the summation of a time-varying level and an additive stationary

noise (for example see Brownlees, Cipollini and Gallo 2012 for its univariate, and

Cipollini and Gallo 2012 for its multivariate extension).

In parametric MEMs, the common choices for the distribution of innovations

have been Weibull (Engle and Russell 1998, Chou 2005), Gamma (Engle and Gallo

2006), log-Normal and inverse Gamma. In order to model the non trivial fraction of

zeros in high-frequency cumulated trading volumes, Hautsch, Malec, Schienle 2010,

proposed a mixture of a point probability mass at ε = 0 and a continuous distribution

on the positive real line. A univariate mixture MEM is proposed in Lanne 2006, later

generalized to a bivariate version by Ahoniemi and Lanne 2009, and applied to the

put and call implied volatilities. Although these papers show that using a mixture

of two components improves the forecast performance of the model, fixing a priori

the number of components of the mixture seems restrictive. Ahoniemi and Lanne

2011, generalize the mixture MEMs allowing the mixing probabilities to change

through time. In the next subsection we illustrate the proposed framework where

the distribution of the innovations in modeled nonparametrically by a Dirichlet

process mixture, with Gamma as the kernel distribution.
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2.2 The Semiparametric Multiplicative Error Model

A common technique for modeling a complex distribution is to consider it as a

mixture of simpler distributions. From a Bayesian perspective, a finite mixture

model with K components can be formulated as follows:

εt | dt,φ ∼ F (φdt)

dt | p ∼ Discrete(p1, ..., pK)

where φ = (φ1, ..., φK), p = (p1, ..., pK) and dt are categorical variables that de-

termine to which mixture component the observation εt belongs. In order to fully

specify this model in a Bayesian setting, we should assign priors to φd and p:

φd ∼ G0

p ∼ Dirichlet(α/K, ..., α/K)

where G0 is a distribution on the parameter space of F , and Dirichlet(α/K, ..., α/K)

is the Dirichlet distribution on the K-dimensional simplex. There are two important

problems with the finite component mixtures: It is usually difficult to determine the

number of components a priori, and they lack the degree of flexibility that is needed

in many applications. Dirichlet process mixture (DPM) models, first introduced by

Antoniak 1974, can be seen as the limit of the finite mixture model specified above,

when K approaches infinity.

The main building block of DPM, is the Dirichlet process (DP, Ferguson 1973),

which, in the Bayesian nonparametric framework, provides a prior on the space of

distributions. Assume G0 is a probability distribution on the measurable space Θ,

and let α be a positive real number. A random probability distribution G is a draw

from the DP with parameters G0 and α, DP(G0, α), if, for any finite measurable
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partition (Θ1, ...,Θn) of Θ, we have:

(G(Θ1), ..., G(Θn)) ∼ Dirichlet(αG0(Θ1), ..., αG0(Θ1))

The probability distribution G0, and the scalar α are called the centering (or base)

measure, and the concentration parameter, respectively. From the definition it fol-

lows that, for any measurable set A, G(A) has a Beta distribution:

G(A) ∼ Beta(αG0(A), αG0(Ac))

As a consequence E[G(A)] = G0(A) and V[G(A)] = G0(A)[1 − G0(A)]/(α + 1). In

other words, the random probability distribution G is centered at the base mea-

sure G0, and its dispersion is inversely proportional to the concentration parameter

α. Moreover, using the normalized gamma process representation of DP, it can be

shown that G is, almost surely, a discrete distribution.

The definition of DP given above is non-constructive, while the stick-breaking

representation of DP (Sethuraman 1994), provides a constructive definition. Assume

vj
iid∼Beta(1, α), and define the stick-breaking weights wj = vj

∏
k<j(1 − vk). More-

over assume φj
iid∼G0 (and independent from vj), and define the random probability

distribution G:

G(·) =
+∞∑
i=1

wjδφj(·)

where δφj is the point mass distribution with unit mass at φj. The weights wj could

be thought as the result of breaking a stick of unit size in countably infinite parts.

In the first step, the stick is broken in two parts with length v1 and 1 − v1, and

the weight of the first component in the infinite mixture is set to be equal to the

first part of the stick: w1 := v1. Then, the remaining part (having length 1 − v1)

9



is broken in two further fragments with proportions v2 and 1 − v2, so that the two

fragments have length (1−v1)v2 and (1−v1)(1−v2) respectively. We set the weight

of the second component in the infinite mixture equal to the length of the first one

(of these two additional fragments), w2 := (1 − v1)v2. This procedure is continued

infinitely many times in order to determine all the weights. It can be shown that

G, constructed as detailed above, is distributed according to a DP with centering

measure G0 and concentration parameter α (Sethuraman 1994). In order to repre-

sent the weight process w = (w1, w2, ...), we use the notation w ∼ GEM(α), where

GEM stands for Griffiths, Engen and McCloskey (Piman 2002).

As mentioned earlier, samples from a DP are almost surely discrete, which is

not a desirable fact when modeling nonparametrically continuous distributions. To

handle this problem a hierarchical model can be employed. We assume the obser-

vations εt are conditionally independent from a parametric family of distributions,

parameterized by the vector, θt ∼ G: εt|θt ∼ k(·|θt). If we put a DP prior on G,

G ∼ DP(α,G0), the result is called a DPM (Antoniak 1974 and Lo 1984). In other

words, a DPM is the result of nonparametric DP mixing of a parametric family of

distributions:

fε(·) =

∫
k(·|θ)dG(θ)

G ∼ DP(α,G0)

The stick breaking representation of DP implies that:

fε(·) =
+∞∑
j=1

wj k(·|θj)

w ∼ GEM(α)

θj
iid∼ G0
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A computationally convenient choice for k and G0 could be a member of exponen-

tial family and its conjugate prior distribution, respectively. It can be shown that

DPM is the limiting model of a K-component mixture model, when K → +∞ (Neal

2000). Therefore this nonparametric model bypasses the issue of choosing the correct

number of components in a finite mixture model.

In the proposed semiparametric MEM we suggest to model the innovations by a

DPM. Since in this model the innovations are nonnegative, we should use a suitable

kernel distribution. Our suggestion is to use the Gamma distribution. As men-

tioned earlier, in parametric MEMs, the distribution of the innovations is usually

restricted to have unit mean. At first glance it seems thus natural to use the Gamma

distribution with unit mean as the kernel distribution of our DPM:

fε(ε) =

∫
k(ε|φ)dG(φ)

G ∼ DP(α,G0)

k(ε|φ) =
φφ

Γ(φ)
εφ−1 exp(−φε)

Since the kernel k(ε|φ), by construction, has unit mean for any φ > 0, also the DPM

fε(ε) has unit mean. However extending the unit mean constraint to all the mixture

components may be too bounding for some applications. In fact it can be easily

shown that the random distribution fε(ε) does not range over all distributions on

the positive axis. Since this kernel has only one free parameter, introducing compo-

nents with thicker tails in the mixture (components with smaller φ), will increase,

at the same time, the probability of the neighborhood around zero; Hence in pres-

ence of fat tail innovations in the data, while this DPM attempts to assign higher

weights to the components with smaller φ, it will, at the same time, increase the

likelihood of the innovations close to zero. As a consequence, this model, de facto, is

not nonparametric, because it does not range over all potentially true distributions
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on the positive axis. This is the first nonparametric model for the distribution of

innovations that will be studied in this paper (since this is a DPM of Gammas with

one free parameter, the resulting models will be called DPMG1-MEM and DPMG1-

AMEM, when it is combined with Eq. 1 and Eq. 2, respectively). Our empirical

investigations demonstrate that DPMG1-MEM and DPMG1-AMEM (although they

improve the forecast performance in comparison with their parametric counterparts)

are not flexible enough to model the empirical financial data properly, however they

might be sufficient for other applications.

In a more flexible view, we replace the kernel with a Gamma distribution with

two free parameters:

k(ε|φ,m) =
φφ

mφΓ(φ)
εφ−1 exp(− φ

m
ε)

where φ is the shape parameter and m is the expected value of the kernel. Wu

and Goshal, 2008, have demonstrated the Kullback-Leibler property (positivity of

the prior probability in a Kullback-Leibler neighborhood of the true density) of

the mixture of Gamma distribution, assuming very mild conditions for the true

distribution.

The stick breaking representation of the model is:

fε(ε) =
+∞∑
j=1

wjk(ε|φj,mj)

where w ∼ GEM(α). By this definition, clearly fε(ε) does not have unit mean:

m̄ := Efε(ε) =
+∞∑
j=1

wjmj 6= 1

A potential solution to this unidentifiability issue, is to restrict the constant term

of the conditional mean to unity, in other words for the base MEM(1, 1) we would
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have:

µ∗t = 1 + α∗xt−1 + βµ∗t−1 (3)

and similarly for the Asymmetric-MEM(1, 1) we should use:

µ∗t = 1 + α∗xt−1 + βµ∗t−1 + I(rt−1 < 0)γ∗|rt−1|

(where in this new parametrization, ω is the mean of the innovations, µ∗t = µt/ω,

α∗ = α/ω and γ∗ = γ/ω.) In theory this will solve the problem, and a Metropolis-

within-Gibbs can be designed for iteratively sampling the parameters of µt and fε.

However this parametrization will cause slow mixing of the MCMC simulation as

explained below. In a parametric MEM, ω is strongly correlated with α and β and

in the proposed semiparametric model, this correlation translates into a strong cor-

relation among (w1,m1, w2,m2, ...) and (α∗, β) which are sampled in different stages

of the Gibbs sampler, thus resulting in slow mixing of the Markov chain.

As an alternative the support of the random distribution of the innovations may

be restricted to have unit mean by modifying the priors. More specifically, the

distribution of the innovations could be specified as the follows:

gε(ε) =
+∞∑
j=1

wjk(ε|φj,mj/m̄)

which, by construction, ensures Egε(ε) = 1. Combining this model for the distribu-

tion of innovations with Eq. 1 and Eq. 2, results in two models that will be called

DPMG2-MEM and DPMG2-AMEM, respectively. Unfortunately direct sampling

of these models by the sampling schemes available in the literature is not possible,

since the kernel of each of the components of the mixture depends on all wj and mj,

and this makes the sampling scheme very complicated (if not impossible).
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In this paper, we propose to use the unconstrained DPM for the distribution of

the innovations and unconstrained conditional mean equation:

fε(ε) =

∫
k(ε|θ)dG(θ)

G ∼ DP(α,G0)

k(ε|φ,m) =
φφ

mφΓ(φ)
εφ−1 exp(− φ

m
ε)

where θ = (φ,m). That is a parameter expanded (PX, in the sense of Liu and Wu

1999, van Dyk and Meng 2000 and Liu, Rubin and Wu 1998) version of the model

with unit-mean DPM. In a similar manner this model may be considered as the

parameter expanded version of the model with constrained mean for the distribution

of innovations. Combining this model for the distribution of innovations with Eq.

1 and Eq. 2, results in two models that will be called PX-DPMG2-MEM and PX-

DPMG2-AMEM, respectively. The use of proper priors results in proper posteriors

for these models (even if the likelihood is improper). Note that a prior on the

parameter space of the PX-models induces a prior on the parameters of the original

models. We call these priors the induced or implied priors. An MCMC simulation

can be set up to target the PX-model, at the end of which the sample obtained are

post-processed by transforming each sampled model to an equivalent model in the

family of identifiable models (for instance the family of DPMG2-MEM and DPMG2-

AMEM as defined above). Note that, after post-processing the models, the obtained

sample is a sample from the posterior of DPMG2-MEM and DPMG2-AMEM (whose

prior is the prior induced by the prior on the PX-model). For instance for the PX-

DPMG2-MEM, either of these reduction functions that map the sampled model to

a model in the family of models with unit-mean distribution of innovations or family
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of models with unit mean innovations, may be used:

(ω, α, β,w,φ,m) → (m̄ω, m̄α, β,w,φ,m/m̄) (4)

(ω, α, β,w,φ,m) → (1, α/ω, β,w,φ, ωm) (5)

Equivalently for PX-DPMG2-AMEM, the following mappings may be used:

(ω, α, β, γ,w,φ,m) → (m̄ω, m̄α, β, m̄γ,w,φ,m/m̄) (6)

(ω, α, β, γ,w,φ,m) → (1, α/ω, β, γ/ω,w,φ, ωm) (7)

Note that, in order to use the reduction functions (4) and (6), we need also to

sample m̄, the mean of the DPM, that is an infinite sum. The distribution of the

mean of DP and DPM has been the subject of several studies (for instance see Lijoi,

Regazzini, 2004, among others), however sampling directly from this distribution

is not trivial. In fact even evaluation of the distribution of the mean of a DP (in

very simple examples) might be subject to computation of some numerical integrals.

Here we propose to approximate the infinite sum of m̄ by a finite sum in such a way

that the truncated sum of weights is close to 1. In practice, at the tolerance ε, in

order to obtain a sample from the mean of the DPM, we need to truncate the DPM

at Kε, where:

Kε = inf{j ∈ N; 1−
j∑

k=1

wj < ε}

(In our simulations we have set ε = 10−10.) In Muliere and Tardella, 1998, it has

been shown that,

Kε − 1 ∼ Poisson(−α log ε)

Therefore the expected value of the truncation level is proportional to − log(ε), so

15



that, with small and moderate values of precision parameter, extremely accurate

results may be obtained in a reasonable computational time.

This strategy (sample from the posterior of the PX-model using an MCMC sim-

ulation, and then post-process the path of the Markov chain in order to obtain

a sample from the posterior of the original model) has been used also in Gelman

2006. In this paper, in order to facilitate the sampling in a hierarchical model, a

PX-version of the original model is considered. Post-processing of a sample drawn

from the posterior of the PX-model (via a Gibbs sampler), results in a sample from

the posterior of the original hierarchical model.

Although there is a relatively rich literature on Bayesian nonparametric mod-

elling with constraint on the median (see Hanson and Johnson 2002, Burr and Doss

2005, among others), the nonparametric modelling of distributions with moments

constraints have been considered only recently. Yang, Dunson and Baird, 2010, esti-

mate a semiparametric latent factor model that involves nonparametric estimation

of the distribution of latent factors with constrained moments. Our sampling al-

gorithm resembles theirs, however they approximate the DPM by a finite mixture

obtained by truncating the stick breaking representation of DP (Ishwaran and James

2001). This approximation enables them to implement a Gibbs sampler (Ishwaran

and Zarepour 2000).

Here we give a straightforward justification of the validity of the applied sampling

strategy. Assume the parameters of the original model is θ ∈ Θ, and let l(θ) be the

likelihood of this model. Moreover let ϑ = (θ, α) be the parameters of the PX-model

(where α ∈ A), with likelihood l∗(ϑ) = l(R(θ, α)), in which R : Θ × A → Θ is

the reduction function (that maps an unidentifiable model to an equivalent model

in the family of identifiable models.) Define A(θ) = {(θ∗, α∗);R(θ∗, α∗) = θ}, and
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let h∗(ϑ) = h∗(θ, α) be the prior on the parameter space of the PX-model. We

sample from the posterior of the PX-model π∗(θ, α) = h∗(θ, α)l(R(θ, α)), and them

post-process the sample using the reduction function R(θ, α). The distribution of

the obtained sample is

π(θ) =

∫
A(θ)

π∗(θ∗, α∗)dθ∗dα∗

=

∫
A(θ)

h∗(θ∗, α∗)l(R(θ∗, α∗))dθ∗dα∗ = l(θ)

∫
A(θ)

h∗(θ∗, α∗)dθ∗dα∗

Therefore π(θ) is the posterior of the original model, with prior h(θ) =
∫
A(θ)

h∗(θ∗, α∗)dθ∗dα∗,

that is the prior induced on the parameter space of the original model by h∗(θ, α).

3 Bayesian Inference

The analytical intractability of DPM had restricted its application until the mid 90s.

By popularization of Markov chain Monte Carlo methods in Bayesian inference, and

their particular application to DPM (Escobar 1994, and Escobar and West 1995),

these models found several applications in a variety of fields. In Escobar 1994, and

Escobar and West 1995, a Pólya urn representation of DPM is employed to design

the posterior sampling scheme. The main pitfall of this algorithm is its poor mixing.

Improved versions of the algorithm have been presented in Bush and MacEachern,

1996 (the partially collapsed Gibbs sampler), Neal, 1991 and MacEachern,1994 (the

fully collapsed Gibbs sampler). These algorithms rely on the conjugacy properties of

the model (i.e. the kernel distribution and the centering distribution of the DP need

to be conjugate). For dealing with non-conjugate models, West, Müller and Escobar

1994, proposed to use numerical integration to evaluate the integral of the kernel

distribution with respect to the centering distribution. Alternative approaches to

deal with the non-conjugate models, are the “no-gaps” algorithm of MacEachern and
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Müller, 1998, the Metropolis-Hastings updates of the indicator variables, introducing

the temporarily auxiliary variables of Neal 2000, and the “split-merge” algorithm

of Jain and Neal 2004 and 2007. The above mentioned algorithms are examples

of marginal methods, because, in principle, they are based on integrating out the

random distribution that is an infinite dimensional object.

A parallel family of methods for inference in DPM are the so called conditional

methods that rely on the stick-breaking representation of the DP. Ishwaran and

James 2000 truncated the infinite sum of the stick-breaking representation and pro-

posed to use a blocked Gibbs sampler. Since the weights of the infinite mixture in

the stick-breaking representation decays exponentially in expectation, the truncated

mixture could provide an acceptable approximation to the exact model. A part from

this approximate inference, other exact MCMC sampling schemes based on the stick-

breaking representation have been proposed in the recent years. Among them it is

worth mentioning the retrospective sampler of Papaspiliopoulos and Roberts 2005,

the slice sampler of Walker 2007, its improved version by Papaspiliopoulos 2008

and the independent slice-efficient sampler of Kalli, Griffin and Walker, 2011. Kalli,

Walker and Damien 2011 use the latter for inference in a semiparametric GARCH

model. Here we briefly explain how the slice-efficient sampler can be adapted to con-

duct Bayesian inference also in our setting. Following Walker 2007, by augmenting

the model with the latent variable u, the joint density of (ε, u) is:

fε,u(ε, u) =
+∞∑
j=1

I(wj > u)k(ε|θj)

where, in DPMG1-MEM and DPMG1-AMEM, θj = φj and k(·|φ) is the unit mean

Gamma probability density function with shape parameter φ, and, in PX-DPMG2-

MEM and PX-DPMG2-AMEM, θj = (φj,mj) and k(·|φ,m) is the Gamma proba-

bility density function with shape parameter φ and mean m. Therefore, given u,

the infinite mixture will reduce to a finite mixture (since only a finite number of
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weights wj could be bigger than the given positive real number u). Moreover, by

introducing the latent allocation variable d (indicating to which component of the

mixture ε belongs), the joint density of (ε, u, d) will be:

fε,u,d(ε, u, d) = I(wd > u)k(ε|θd)

Clearly it is not possible to sample the infinite set of parameters θj, however it can

be show that, by augmenting the model with the latent variable u, we only need

to sample a finite set of these parameters, still guaranteeing that the Markov chain

retains the correct target as its stationary distribution.

Based on this result, Walker 2007, presents a Gibbs sampler for inference in

stick-breaking mixture models. By augmenting the model with the latent variables

ut and dt for 1 ≤ t ≤ T , the posterior will be:

Priors ×
T∏
t=1

1(ut < wdt)
1

µt
k

(
xt
µt

; θdt

)

where µt is the conditional mean in the MEM formulation. In order to improve

the efficiency of the slice sampler of Walker 2007, the slice-efficient sampler (Kalli,

Griffin and Walker, 2011) was proposed. The Authors suggest to rewrite the joint

density of (ε, u, d) as

fε,u,d(ε, u, d) = I(ξd > u)
wd
ξd
k(ε|θd)

where ξd is an infinite series decreasing in d. Introducing the ξd series enhances

the sampling efficiency dramatically, mainly because, in the original slice sampler of

Walker 2007, u and w are strongly correlated. In principle the ξd series could be any

decreasing series, however it controls the efficiency and the computational time of

the algorithm. Kalli, Griffin, and Walker 2011 found that the mixing depends on the

rate of increase of E(wj)/ξj; A higher rate of increase implies a better mixing and,
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at the same time, a longer simulation time. In their examples they find that with

E(wj)/ξj ∝ 1.5j an acceptable balance is achieved. Here we set ξj = g(j), where

g(j) is a deterministic decreasing function of d and g(d) ∝ E(wj)/1.5
j.

By introducing ξd, the posterior of our models becomes:

Priors ×
T∏
t=1

1(ut < ξdt)
wdt
ξdt

1

µt
k

(
xt
µt

; θdt

)

In our MCMC simulations we sample (vj, θj) for j = 1, 2, ..., (dt, ut) for t = 1, ..., T ,

and the parameters of the conditional mean’s equation. In the case of the PX-

DPMG2-MEM and PX-DPMG2-AMEM, we post-process the obtained sample by

the transformation (4) and (6), respectively, in order to obtain a sample from the

posterior of DPMG2-MEM and DPMG2-AMEM. In the next subsections we show

how the parameters of the all four models maybe sampled using a Metropolis-within-

Gibbs strategy.

a. Sampling ut

In all four models, the full conditional of ut is: p(ut|·) ∝ 1(ut < ξdt), therefore,

conditionally on the remaining parameters, ut are uniformly distributed on (0, ξdt).

b. Sampling vj

In all four models, the full conditional of vj is:

p(vj|·) ∝ π(vj)
∏

t;dt≥vj

wdt

∝ vj(1− vj)M
∏
t;dt=j

vdt
∏

t;dt>vj

(1− vdt)

= v
1+nj

j (1− vj)1+n′
j

where nj =
∑T

t=1 1(dt = j) and n′j =
∑T

t=1 1(dt > j). Therefore, conditioned on the
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rest of the parameters, the vj’s follow a Beta distribution:

vj|· ∼ Beta(1 + nj,M + n′j)

Note that, nj = 0 for any j > d̄, and n′j = 0 for any j ≥ d̄ where d̄ = max{dt} is a

finite integer. This means that the distribution of vj will be updated if and only if

there exists at least one innovation associated with the component k of the mixture

where k ≥ j. Otherwise the full conditional of vj is equal to the prior distribution.

Therefore at this step of the Gibbs sampler we only need to sample a finite number

of vjs, namely v1, ..., vd̄.

c. Sampling φj

In the DPMG1-MEM and DPMG1-AMEM, the full conditional of φ is:

p(φj|·) ∝ p(φj) ×
∏
t;dt=j

φ
φj
j

Γ(φj)

x
φj−1
t

µ
φj
t

exp

(
−φj

xt
µt

)

∝
φ
njφj+a0−1
j

[Γ(φj)]nj
P
φj−1
j exp

(
−Sjφj −

a0

b0

φj

)

while the full conditional of φj in PX-DPMG2-MEM and PX-DPMG2-AMEM is:

p(φj|·) ∝ p(φj) ×
∏
t;dt=j

φ
φj
j

Γ(φj)

x
φj−1
t

(µtmj)φj
exp

(
− φj
mj

xt
µt

)

∝
φ
njφj+a0−1
j

[Γ(φj)]njm
njφj
j

P
φj−1
j exp

(
− Sj
mj

φj −
a0

b0

φj

)

where Pj =
∏

t;dt=j
xt
µt

and Sj =
∑

t;dt=j
xt
µt

, and a Gamma prior with shape param-

eter a0, and mean b0 is used. We should note that, for the empty components of

the infinite mixture (i.e. components with no innovation assigned to them), we have

nj = 0, Pj = 1, and Sj = 0, and this will reduce the full conditional given above to

the prior. As a consequence, again we need to sample at most the first d̄ elements of
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(φ1, φ2, ...). It can be shown that these two full conditionals, despite not being stan-

dard distributions, are log-concave and thus, to sample them, the adaptive rejection

sampling of Gilks and Wild 1992, can be used. We prefer instead to implement a

Metropolis-Hastings sampler with Gamma proposal distribution whose parameters

depend on the current state of the Markov chain as detailed below. The mode, φ̃j, of

the log-concave distribution of φj can be found easily and extremely fast. We thus

use a Gamma proposal with mode equal to φ̃j and set the decay rate of its logarithm

approximately equal to the decay rate of the full conditional of φj at points
φ̃j
λ

and

λφ̃j (for some constant λ > 1). In particular, the shape and scale parameters of the

Gamma approximation to the full conditional φj are:

αq =
1

2

(
h′1

λ
φ̃j
− 1

φ̃j

+
h′2

1
λφ̃j
− 1

φ̃j

)
+ 1

βq =
φ̃j

αq − 1

where h′1 and h′2 are the first derivative of the logarithm of full conditional of φj at

the points
φ̃j
λ

and λφ̃j respectively (Here we have dropped the j’s subscripts for ease

of notation). Using this approximation (with λ = 3) an almost perfect fit of the full

conditional is obtained and using this approximation as the proposal distribution of

the MH step, an average acceptance rate above 99% is achieved.

d. Sampling mj

The full conditional of mj in the PX-DPMG2-MEM and PX-DPMG2-AMEM is:

p(mj|·) ∝ p(mj) ×
∏
t;dt=j

φ
φj
j

(µtmj)φjΓ(φj)
x
φj−1
t exp(− φj

µtmj

xt)

∝ p(mj)
1

m
njφj
j

exp(−φjSj
mj

)
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Therefore the conjugate prior of mj is the Inverse-Gamma distribution:

p(mj) ∝
1

mc+1
j

exp(− d

mj

)

where c and d are the shape and scale parameters, and this implies:

mj|· ∼ InvGamma(njφj + c, φjSj + d)

Here as well, only a finite number mjs will be sampled in each sweep of the Gibbs

sampler, since the full conditional of the rest of them is equal to their prior.

e. Sampling dt

In all four models, the full conditional of dt is:

p(dt = i|·) ∝ 1(ut < ξi)
wi
ξi
k(xt;φi, µtmi)

where i is a positive integer. Since ξi = g(i) is a decreasing series in i, for every

i ≥ g−1(ut), we have ξi ≤ ut, that implies p(dt = i|·) = 0. Consequently, conditioned

on all other parameters, dt takes values on the finite set {1, ..., dg−1(ut)e − 1}, and

therefore its sampling is trivial.

f. Sampling conditional mean parameters

The full conditional of the parameters of the conditional mean, η = (ω, α, β) for

MEM and η = (ω, α, β, γ) for AMEM, is:

p(η|·) ∝ p(η) ×
T∏
t=1

1

µt(η)
k

(
xt
µt

; θdt

)

which is not a standard distribution. For the prior of η we use an independent
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truncated Normal distribution with very large variances:

p(η) = 2d ϕd(η; 0d, sId) I(η ∈ Rd
+)

where d = 3 for MEM and d = 4 for AMEM, and 0d, Id and ϕd are the vector

of zeros, the identity matrix and the pdf of a d-dimensional multivariate Normal

distribution, respectively. Moreover s is a large positive constant (in our simulation

we set s = 100).

To sample η an adaptive version of the Metropolis-Adjusted Langevin algorithm

(MALA, Roberts and Tweedie 1996, and Roberts and Rosenthal 1998) is used. Our

proposal distribution is:

Q(ηk+1|·) = Nd
(
ηk +

λ2

2
Λk∇ log p(ηk|·), λ2Λk

)

In the DPMG1-MEM and DPMG1-AMEM, Λk = Σk, where Σk is the empirical

covariance matrix of (η1..., ηk). The choice of Λk is more delicate in the PX-models.

In this case we propose Λk = C(m̄k) ◦ Σk, where for PX-DPMG2-MEM

C(m̄k) =


m̄−2
k m̄−2

k m̄−1
k

m̄−2
k m̄−2

k m̄−1
k

m̄−1
k m̄−1

k 1

 ,

and for PX-DPMG2-AMEM

C(m̄k) =



m̄−2
k m̄−2

k m̄−1
k m̄−2

k

m̄−2
k m̄−2

k m̄−1
k m̄−2

k

m̄−1
k m̄−1

k 1 m̄−1
k

m̄−2
k m̄−2

k m̄−1
k m̄−2

k


,

“◦” is the Hadamard operator, and Σk is the empirical covariance matrix of (η̃1, ..., η̃k),
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where η̃j = (m̄jωj, m̄jαj, βj) in PX-DPMG2-MEM, and η̃j = (m̄jωj, m̄jαj, βj, m̄jγj)

in PX-DPMG2-AMEM. In our proposal λ is a constant parameter that should be

tuned; after few pilot runs we set λ = 1.

At the k-th iteration, Σn changes only by O(1/k), therefore this adaptation mech-

anism satisfies the diminishing adaptation condition (Roberts and Rosenthal 2007),

and thus the correct target distribution is preserved.

In our simulations (for all models) we use N0 = 2×103 iterations as the burn-in,

and then run the MCMC for N = 104 iterations. Samples from the posterior of

DPMG2-MEM and DPMG2-AMEM are derived by post-processing the samples ob-

tained from the posterior of the PX-DPMG2-MEM and PX-DPMG2-AMEM using

the transformations 4 and 6, respectively. The simulation time on a desktop com-

puter with the CPU running at 2.70GHz and 8GB RAM is around 4-5 minutes.

4 Simulation Study

To study the performance of our models and the proposed sampling scheme, the

following simulation study has been conducted. For the sake of brevity only the

results for the MEM models are reported (similar results are obtained for AMEM).

We have generated a sample of 3000 observation from a symmetric MEM with

parameters ω = 0.4, α = 0.3 and β = 0.65:

µt = ω + αxt−1 + βµt−1

xt = µtεt
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Table 1: Estimation of the MEM in a simulation study with ω = 0.4, α = 0.3 and
β = 0.65. Standard errors are reported in parentheses.

ω̂ α̂ β̂

Gamma-MEM (MLE Estimates) 0.442 (0.059) 0.286 (0.016) 0.658 (0.019)
DPMG1-MEM 0.437 (0.057) 0.285 (0.014) 0.657 (0.017)
DPMG2-MEM 0.429 (0.058) 0.288 (0.014) 0.658 (0.016)

where the innovations εt are i.i.d. draws from a mixture of Gamma and LogNormal

distributions:

εt
iid∼ p Gamma (φ, 1) + (1− p) LN

(
−σ2/2, σ2

)
with p = 0.7, φ = 15 and σ = 0.45, where the logarithm of LN (a, b2) is Normal with

mean a and variance b2. Both components of the mixture are unit mean distribu-

tions, so the distribution of the innovations has unit mean by construction. We have

found the MLE by assuming a parametric model with Gamma distributed innova-

tions. The MLE along with their standard errors are reported in Table 1 (first row).

Figure 1 shows the simulated time series and the QQ-Plot of the empirical quantiles

of the estimated innovations (using the parametric MEM with Gamma distribution).

On the same simulated data we also estimate DPMG1-MEM and DPMG2-MEM.

In Table 1 the estimates of the parameters of the conditional mean equation are re-

ported (second and third row). The MCMC traces, the posterior distribution of the

parameters and the autocorrelation function (ACF) along the chains are presented

in Figure 2 and 3. Moreover in Figure 4 we show the posterior distribution of the

innovations (1000 samples) along with the true distribution (the thick black curve),

and the QQ-Plot of the empirical quantiles of the estimated innovations. As it can

be seen in the plot of the posterior distribution of fε, the mixture of unit mean

Gamma distributions is not able to appropriately fit the left tail of the distribution:
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Figure 1: The simulated time series (left) and the QQ-Plot of the estimated inno-
vations of the parametric MEM with Gamma distributed innovations.

The DPMG1-MEM has improved the fitting in the left tail of the distribution, but

this comes at the cost of a worse fit in the zero neighborhood (Because the kernel

of the mixture has only one free parameter φ. By decreasing φ the left tail of the

kernel becomes thicker, while, at the same time, the probability of the zero neigh-

borhood increases.) In contrast to this, the prior of DPMG2-MEM assigns positive

probability in a Kullback-Leibler neighborhood of the true distribution of innovation

(Kullback-Leibler property), and therefore the model can consistently estimate this

distribution. As we can see in Figure 4 this model has almost perfectly recovered

the true distribution of the innovations.

As pointed out in Section 2, an alternative to the parameter expanded model,

is to restrict the constant term of the conditional mean to unity and model the

distribution of the innovations by a DPM of Gamma distributions:

µt = 1 + α∗xt−1 + βµt−1

xt = µtεt
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Figure 2: Simulation study: MCMC traces, posterior distributions, and ACF of
DPMG1-MEM
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Figure 3: Simulation study: MCMC traces, posterior distributions, and ACF of
DPMG2-MEM

We can adapt our sampling scheme also to this setting. However since the parame-

ters (α∗, β) are highly anti-correlated to the mean parameters of the components of

the DPM, the resulting Markov chain mixes extremely slowly (In this formulation,

for the true parameters used in the simulations, the correlation between the MLE

estimates ω, and α and β are −0.93 and −0.63, respectively). Figure 5 shows the

106 MCMC traces of ω, α∗ and β, along with their auto-correlation function (ACF).
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Figure 4: Simulation study: Posterior distribution along with the true distribution
(the black thick line) of the innovations and the corresponding QQ-Plot of the DPG1-
MEM (top) and DPG2-MEM (bottom)

Note that the ACF remain significant even up to 2 × 104 lags. Comparing this to

Figure 3 demonstrates that the algorithm proposed for inference in DPMG2 MEM

is significantly more efficient than the sampling schemes implemented on the näıvely

reparameterized model.
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Figure 5: Estimation of the semiparametric model with the formulation µt = 1 +
α∗xt−1+βµt−1, and innovations modeled by a DPM with unrestricted mean: MCMC
traces and their ACF

5 Empirical Analysis

The proposed semiparametric models is now fitted to the daily realized volatility of

Standard & Poor 500 (S&P 500), Dow Jones Industrial Average (DJIA) and FTSE

100. The data is obtained from the Oxford-Man Institute’s “realised library” pub-

licly available1. In particular we have used the realized kernel (Barndorff-Nielsen,

Hansen, Lunde, and Shephard 2008) that is proved to be robust to market mi-

crostructure noises. The data covers the period from Jan. 1996 to Feb. 2009 for

the S&P 500 and DJIA (3261 observations) and from Nov. 1997 to Feb. 2009 for

the FTSE (2844 observations). In our empirical analysis, the Realized Kernel time

series, RKt, is transformed to annualized realized volatility in percentages:

xt :=
√

252 RKt × 100

1http://realized.oxford-man.ox.ac.uk/
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The proposed semiparameteric models is fitted to these time series and inference

is conducted by MCMC simulation using the algorithm detailed in the previous

sections. Figures 6 and 7 present the traces of the MCMC simulations for estimation

of DPMG1-MEM and DPMG2-MEM for the realized volatility of S&P 500, along

with the posterior distributions of the parameters, and the ACF of the Markov chain

(for the sake of brevity, very similar figures for DJIA and FTSE, and for DPMG1-

AMEM and DPMG2-AMEM are not reported). The estimated parameters ω̂, α̂ and

β̂ are reported in Table 2 and 3.
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Figure 6: S&P 500: MCMC traces, posterior distributions, and ACF of DPMG1-
MEM

Table 2: Estimation of DPMG1-MEM and DPMG2-MEM

DPMG1-MEM DPMG2-MEM

ω̂ α̂ β̂ ω̂ α̂ β̂

S&P 500 0.369 0.378 0.591 0.346 0.363 0.611
DJIA 0.354 0.386 0.583 0.358 0.377 0.596
FTSE 100 0.144 0.281 0.704 0.153 0.27 0.719

Figure 8 exhibits the QQ-Plots of the estimated innovations of these time series

obtained by the parametric Gamma-MEM, DPMG1-MEM and DPMG2-MEM. We

observe that a parametric MEM is not able to fit the conditional distribution of

31



0 5000 10000

0

0.2

0.4

0.6

ω
MCMC Traces of SP500

0 0.2 0.4 0.6 0.8
0

1000

2000
Histograms of SP500

0 10 20 30 40 50
−0.5

0

0.5

1
ACF

0 5000 10000
0.2

0.3

0.4

0.5

α

0.2 0.3 0.4 0.5
0

500

1000

1500

0 10 20 30 40 50
−0.5

0

0.5

1

0 5000 10000
0.5

0.6

0.7

0.8

β

0.5 0.6 0.7 0.8
0

1000

2000

0 10 20 30 40 50
−0.5

0

0.5

1

Figure 7: S&P 500: MCMC traces, posterior distributions, and ACF of DPMG2-
MEM

Table 3: Estimation of DPMG1-AMEM and DPMG2-AMEM

DPMG1-AMEM DPMG2-AMEM

ω̂ α̂ β̂ γ̂ ω̂ α̂ β̂ γ̂

S&P 500 0.458 0.242 0.673 0.091 0.447 0.244 0.677 0.089
DJIA 0.401 0.258 0.668 0.077 0.405 0.262 0.668 0.076
FTSE 100 0.180 0.185 0.770 0.055 0.181 0.181 0.777 0.052

the realized volatility. In comparison, the DPMG1-MEM has a better performance:

QQ-Plots show a better fit for the right tail of the distribution, however on the other

hand, the fit has worsen in the neighborhood of zero. Finally an almost perfect fit

can be achieved using the DPMG2-MEM. (The very similar graphs obtained for

AMEM models have been dropped for the sake of brevity.)

We have also compared the models in terms of their (in the sample) predictive

performance. In particular we have used the log-predictive score and log-predictive
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Figure 8: The QQ-Plots of the estimated innovations of the parametric MEM with
Gamma distributed innovations (first row) and the semiparametric MEM models
DPMG1-MEM (second row) and DPMG1-MEM (third row).
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tail score (LPS and LPTS) of Delatola and Griffin 2010:

LPS := − 1

n

n∑
t=1

log f̂xt(xt) = − 1

n

N∑
t=1

log

(
1

µ̂t
f̂ε(xt/µ̂t)

)
LPTSq := − 1∑n

t=1 1(xt > qα)

n∑
t=1

1(xt > qα) log f̂xt(xt)

= − 1∑n
t=1 1(xt > qα)

n∑
t=1

1(xt > qα) log

(
1

µ̂t
f̂ε(xt/µ̂t)

)

where qα is the quantile of xt (In our comparisons we have used have used α = 0.95

and α = 0.99). The probability density function of the innovations in the DPMG1-

MEM and DPMG1-MEM have been estimated by

f̂ε(ε) =
1

N

N∑
i=1

+∞∑
j=1

w
(i)
j Gam(ε;φ

(i)
j , 1)

Similarly for DPMG2-MEM and DPMG2-AMEM we have used the following esti-

mator:

f̂ε(ε) =
1

N

N∑
i=1

+∞∑
j=1

w
(i)
j Gam(ε;φ

(i)
j , µ

(i)
j )

(where N = 104 is the number of MCMC sweeps.) The inner summation has

been truncated in such way that
∑N

(Trunc)
i

j=1 wj > 0.999. By this definition, a lower

LPS or LPTS is an indication of a better (in the sample) predictive performance.

We have reported the LPS and LPTS of the parametric and the semiparametric

models in Table 4 and Table 5. The results demonstrate that the DPMG1-MEM

and DPMG1-AMEM perform better than thier parametric counterparts. More-

over DPMG2-MEM and DPMG2-AMEM outperform DPMG1-MEM and DPMG1-

AMEM. The above comparisons are true for all three financial time series considered.

An out of sample test has also been performed. Both the parametric and semi-
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Table 4: LPS and LPTS of the parametric MEM, DPMG1-MEM and DPMG2-MEM
(in the sample, using the whole sample)

Gamma-MEM DPMG1-MEM DPMG2-MEM

LPS 2.5753 2.5600 2.5482
S&P 500 LPTS 5% 4.4552 4.4171 4.3341

LPTS 1% 5.2798 5.1340 5.0178
LPS 2.4683 2.4421 2.4306

Dow Jones Industrial LPTS 5% 4.5489 4.2928 4.2052
LPTS 1% 5.6303 5.2286 5.0814
LPS 2.5158 2.4668 2.4528

FTSE 100 LPTS 5% 5.0485 4.5209 4.3950
LPTS 1% 7.3766 6.1834 5.8474

Table 5: LPS and LPTS of the parametric AMEM, DPMG1-AMEM and DPMG2-
AMEM (in the sample, using the whole sample)

Gamma-AMEM DPMG1-AMEM DPMG2-AMEM

LPS 2.5316 2.5113 2.5032
S&P 500 LPTS 5% 4.2516 4.1883 4.1396

LPTS 1% 5.087 4.8136 4.7518
LPS 2.4292 2.3987 2.3918

Dow Jones Industrial LPTS 5% 4.3621 4.1095 4.0485
LPTS 1% 5.2931 4.9619 4.8668
LPS 2.4867 2.4375 2.4269

FTSE 100 LPTS 5% 4.9357 4.3588 4.267
LPTS 1% 7.0836 6.026 5.7249
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Table 6: LPS and LPTS of the parametric MEM, DPMG1-MEM and DPMG2-MEM
(out of sample)

Gamma-MEM DPMG1-MEM DPMG2-MEM

LPS 2.4684 2.4483 2.4395
S&P 500 LPTS 5% 4.3523 4.3391 4.2858

LPTS 1% 5.7612 5.6096 5.4449
LPS 2.3804 2.3439 2.3365

Dow Jones Industrial LPTS 5% 4.7351 4.4303 4.3348
LPTS 1% 6.3302 5.8249 5.5693
LPS 2.3922 2.3757 2.3647

FTSE 100 LPTS 5% 5.0034 4.5131 4.3961
LPTS 1% 6.7100 6.2676 5.9387

parametric models have been estimated using the training dataset (first half of the

samples). Then the estimated models have been used to predict the realized volatil-

ity on the test dataset (second half of the samples). Using the estimated innovations’

distribution and the estimated parameters ω̂, α̂ and β̂ (all estimated using the train-

ing dataset), we have computed the LPS and LPTSs for the test dataset. The results

of the out of sample test are reported in Table 6 and Table 7 and confirm the same

ordering of the models observed in the sample test.

6 Conclusions

This paper offers a novel contribution both on the modeling and on the compu-

tational aspects of Bayesian MEM. We propose semiparametric MEMs where the

distribution of the innovations is modeled by a DPM resulting in a more flexible and

efficient framework in comparison with the standard parametric setting. Both sym-

metric (MEM) and asymmetric (AMEM) models have been considered. Bayesian

inference is conducted via MCMC simulations. A sampling algorithm is proposed

that is based on a parameter expanded model and results in an efficient and fast

simulation algorithm. Our empirical studies show that the proposed semiparametric
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Table 7: LPS and LPTS of the parametric AMEM, DPMG1-AMEM and DPMG2-
AMEM (out of sample)

Gamma-AMEM DPMG1-AMEM DPMG2-AMEM

LPS 2.4235 2.3969 2.3902
S&P 500 LPTS 5% 4.2284 4.1756 4.1491

LPTS 1% 5.4846 5.2963 5.2103
LPS 2.3424 2.2987 2.2934

Dow Jones Industrial LPTS 5% 4.6186 4.2984 4.2257
LPTS 1% 6.1527 5.6346 5.4481
LPS 2.4032 2.3727 2.3613

FTSE 100 LPTS 5% 5.0000 4.4246 4.3242
LPTS 1% 6.9320 6.2166 5.9100

models are able to fit the financial time series better than their parametric counter-

parts. Also in terms of orediction (in and out of sample), the proposed models show

a better performance for all three financial time series considered (S&P 500, Dow

Jones Industrial and FTSE 100 ).
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