
A Highly Available Log Service for
Distributed Transaction Processing

Lásaro Camargos‡? Marcin Wieloch? Fernando Pedone?

Edmundo Madeira‡

?Faculty of Informatics
University of Lugano

6900 Lugano, Switzerland

‡Institute of Computing
University of Campinas

3084-971 Campinas-SP, Brazil

University of Lugano
Faculty of Informatics

Technical Report No. 2006/08
December 2006

Abstract

Processing distributed transactions hinges on enforcing atomicity and durability: resource man-
agers participating in a transaction must agree on its outcome and the transaction updates must be
permanent. We introduce the log service abstraction, which gathers resource managers’ votes to
commit or abort a transaction and their updates, and outputs the transaction’s outcome. Updates are
made durable and non-concurrent transactions are totally ordered by the service. The sequence of
updates performed by a resource manager is available as a means to consistently recover resource
managers without relying on their local state. As a consequence, a remote process, whose state will
be recovered from the log service, can reincarnate a crashed resource manager. Moreover, the service
ensures that only one process plays the role of a given resource manager at any time. We present two
highly available implementations of this service and evaluate their performance running TPC-C and
a microbenchmark on a distributed database.

Contents

1 Introduction 1
1.1 Atomic Commit and Paxos Commit . 1
1.2 The Highly Available Log Service . 1
1.3 From specs to implementations . 2
1.4 Theory and practice of termination . 2
1.5 Recovering resource managers . 2
1.6 Our contributions . 3

2 Problem statement 3

3 The Log Service 4
3.1 Terminology and notation . 4
3.2 The Log Service specification . 5
3.3 Termination and Recovery . 5
3.4 Correctness . 7

4 From abstract specifications to distributed implementations 7
4.1 Processes, communications and failures . 7
4.2 Leader-election oracle . 8
4.3 Consensus . 8

5 Coordinated Implementation 8
5.1 RM Stubs . 9
5.2 Log Service . 10

6 Uncoordinated Implementation 10
6.1 Transaction Termination . 12
6.2 Recovering from Failures . 12

7 Evaluation 12
7.1 Micro-benchmark . 14
7.2 The TPC-C benchmark . 14

8 Related Work 15

9 Conclusion 16

A Log Service 17
A.1 Log Service Constants . 17
A.2 Log Service Specification . 17
A.3 Correctness . 23

B Coordinated Implementation 27
B.1 Specification . 27
B.2 Implementation Proof . 36

i

C Uncoordinated Implementation 40
C.1 Specification . 40
C.2 Implementation Proof . 49

ii

1 Introduction

1.1 Atomic Commit and Paxos Commit

The problem of atomic termination of transactions is central to any distributed database system aiming
at strong consistency. Terminating a distributed transaction is normally performed by an atomic commit-
ment protocol, which gathers votes from all resource managers involved in the transaction and decides on
the transaction’s outcome based on these votes. If all votes are for commit, the transaction is committed;
otherwise it is aborted. To avoid blocking when a resource manager is not available to vote, a weaker
version of atomic commitment requires the outcome to be commit if none of the participants is suspected
to have failed and all vote to commit the transaction. This weaker problem is called non-blocking atomic
commitment.

In a recent paper, Gray and Lamport have introduced Paxos Commit, a non-blocking atomic com-
mitment protocol based on the Paxos consensus algorithm [5]. In Paxos Commit each resource manager
uses a consensus instance to vote. If a resource manager suspects that another one has crashed and cannot
vote, the first one votes on behalf of the second resource manager, proposing in its consensus instance
to abort the transaction. If more than one vote is issued for a resource manager (e.g., it is wrongly sus-
pected), consensus ensures that participants will agree on the vote of each participant.1 Paxos Commit
is not only an elegant but also an efficient solution to non-blocking atomic commitment. It has the same
latency as two-phase commit (2PC) without blocking if the transaction coordinator fails. It is cheaper
than three-phase commit (3PC) and has a simpler termination protocol in case of failure of the coordina-
tor [2]. Instead of keeping the participant votes at the coordinator, in Paxos Commit this information is
stored at the acceptors, the processes responsible for consensus decisions.

1.2 The Highly Available Log Service

Paxos Commit suggests that information critical to transaction termination should reside neither at the
coordinator, as in 2PC, nor at the resource managers, as in 3PC, but at a third party, the acceptors, whose
availability can be easily parameterized. Inspired by Paxos Commit, we abstract transaction termination
in terms of a highly available log service. This approach is justified by the following reasons:

• Simplicity. A non-blocking atomic commitment protocol based on a highly available log service
is quite intuitive: Transaction participants submit their votes to the remote log; as soon as there
is one commit vote for each participant or one abort vote stored in the log, the outcome of the
transaction can be determined. Even if more than one vote is issued for a resource manager,
should it be suspected to have failed, the ordering in which the votes are kept in the log ensures
that the transaction outcome is deterministic.

• Performance. By defining transaction termination in terms of a log service, we allow other im-
plementations to take advantage of our approach to non-blocking atomic commitment. In fact,
we present in the paper an implementation of the log service that has better performance than a
Paxos Commit-like implementation. We substantiate this claim with experimental results using
the TPC-C benchmark and a micro-benchmark running in a cluster of nodes.

• Fault-tolerance. The log can be made highly available using standard replication techniques (e.g.,
state machine replication). Moreover, if a resource manager fails, then another instance of it can

1Notice that in Paxos not all consensus participants are required to propose a value.

1

be created on an operational node using the state stored in the log. Thus, the recovery of the node
hosting the resource manager is not needed for the system to resume operation, increasing the
availability of resource managers.

1.3 From specs to implementations

We discuss in detail two implementations of the log service, uncoordinated, inspired by Paxos Commit,
and coordinated. Both implementations rely on a series of consensus executions. The main difference
between them concerns the ordering of these executions, and therefore the ordering of committed trans-
actions in the log. While there is a separate sequence of consensus instances per resource manager
in the uncoordinated implementation, leading to a partial order of committed transactions in the log,
there is a single sequence of consensus in the coordinated version, ensuring a total order of committed
transactions in the log. In the coordinated implementation, instead of using consensus to vote, resource
managers send their votes to the coordinator, which submits the votes in a consensus instance. The nature
of each approach has performance implications on both the termination of transactions (Section 3.3) and
the recovery of resource managers (Section 3.3).

1.4 Theory and practice of termination

The coordinated implementation requires one more communication step than the uncoordinated imple-
mentation, corresponding to the vote sent by the participants to the coordinator. Notice that the coor-
dinator here does not play the same role as the transaction coordinator in 2PC or 3PC. The role of the
transaction coordinator in the coordinated log implementation is to gather all votes and propose them in
a consensus instance. Just like in Paxos, if the coordinator fails, it can be promptly replaced by another
process.

In theory, the coordinated log implementation should take longer to execute than the uncoordinated
log implementation. However, performance experiments revealed that, contrary to the expectations, the
coordinated approach largely outperforms the uncoordinated technique in a clustered environment. This
is due to the fact that by having a single coordinator, votes from all participants in an atomic commit-
ment, and also from concurrent atomic commitment executions, can be batched by the coordinator and
proposed in a single consensus instance, saving not only in the number of messages but also in the pro-
cessing done by the acceptors. These savings largely make up for the additional message latency of the
coordinated approach.

1.5 Recovering resource managers

The ordering of transactions in the log has an impact on the recovery of resource managers. Upon
recovery, a resource manager should find out the outcome of transactions in whose termination it was
involved before the failure. The question is: How many consensus instances should be inspected until
a resource manager can rebuild a consistent image of the local database? The answer to this question
can be simple if the log implementation is coordinated: It suffices for the resource manager to send
a “flush” request to the coordinator and wait until this request is decided in some instance. Once the
request is decided in instance i , it follows from the total order of log entries that any pending transactions
concerning the resource manager must have been decided before instance i . The coordinator may have
them cached locally, or learn their values by re-executing the consensus instances for the missing values.

2

Recovery with an uncoordinated log implementation is more complex and depends on the recovery
strategy and the maximum number k of transactions allowed to execute concurrently at the resource
manager:

• If resource managers are statically assigned to nodes, and a node crashes, the resource manager
will only recover after the node is operational again. In this case, the resource manager proposes
“flush” values using its local sequence of consensus until the value is decided in some instance i .
Once this happens, it should find out the decision of instances i +1, i +2, ..., i + k − 1 since there
could have been up to k concurrent transactions in execution.

• If a resource manager is dynamically assigned to a node and this one is suspected to have crashed,
another instance of it is reincarnated on an available node. In the best case, the procedure described
above may work here too, but if the original node did not crash, there could be two operational
processes incarnating the same resource manager simultaneously, and they would propose val-
ues in the same consensus stream, an undesired situation. Eventually the “flush” request will be
delivered, and then k − 1 more instances should be executed.

1.6 Our contributions

Section 2 reviews the atomic commit problem and specifies a property for consistent recovery. Section 3
introduces the log service specification and shows how it can be used by resource managers. Some
implementation considerations are discussed in Section 4, and the coordinated and uncoordinated log
implementations are presented in Sections 5 and 6, respectively. These approaches are compared in
Section 7. Section 8 reviews related work and Section 9 concludes the paper.

2 Problem statement

Transactions are executed by a collection of processes called resource managers (RMs). When a trans-
action ends, a special process called transaction manager (TM) starts an atomic commit (AC) protocol,
in which every RM participating in the transaction votes for its commit or abort. Processes may fail by
crashing and never behave maliciously (i.e., no Byzantine failures).

Atomic commit is defined by the following properties.

• AC-Validity If an RM decides to commit a transaction, then all RMs voted to commit the transac-
tion.

• AC-Agreement It is impossible for one RM to commit a transaction and another one to abort the
transaction.

• AC-Non-Triviality If all RMs vote to commit the transaction and no RM is suspected throughout
the execution of the protocol, then the decision is commit.

• AC-Termination Non-faulty RMs eventually decide.

AC-Non-Triviality assumes that RMs can be “suspected” to have failed. The only assumption that
we make about failure detection is that if an RM fails, then it will eventually be suspected by the other

3

processes.2 Therefore, resource managers may be incorrectly suspected to have failed, in which case
transactions would be unnecessarily aborted.

Atomic commit defines how distributed transactions terminate. A related problem is building a con-
sistent state of a recovering resource manager. Intuitively, the problems are related because after re-
covering from a crash, an RM should find out which transactions were committed before the failure.
Determining such transactions requires identifying previous instances of atomic commit executions.

The following property characterizes correct recovery from failures. R-Consistency can be ensured,
for example, by replaying the write operations of committed transactions in the order in which these
transactions committed.

• R-Consistency The database state of an RM after the recovery from a failure is the same as its
committed state before the failure.

3 The Log Service

In the following we discuss how atomic commitment and recovery of resource managers can be imple-
mented using an abstract log service. Before explaining the abstract algorithms, some formalism must
be introduced.

3.1 Terminology and notation

The symbol “ ∆= ” should be read as “is defined as”. For example,

IF(a, b, c) ∆= if a then b else c

means that IF(a, b, c) evaluates to b, if a is true, and it evaluates to c, otherwise; and

ADDVALTOB(val) ∆= B ← B + val

increments B by the value val . let and in specify the scope of a definition. For example,

let SUM(a, b) ∆= a + b in SUM(SUM(1, 2), SUM(3, 4))

defines SUM(a, b) in the expression on the right of in only, evaluated to 10. For simplicity we assume
that, with one exception (Algorithm 1 in Section 3.3), all definitions presented in the paper are performed
atomically.

We use angle brackets to enclose a sequence of values as a tuple; 〈〉 is the tuple with no elements,
and 〈a, b, c〉 is the tuple with elements a, b and c, in this order. The symbol “ ” in a tuple matches
any element. That is, 〈a, b〉 = 〈 , b〉 and 〈 , b〉 = 〈c, b〉 even if c 6= a . We denote by Len(s) the
number of elements of sequence s , and use the square brackets to index its elements, e.g., 〈a, b, c〉[2]
is the element b. a <s b (resp. >s) holds if and only if a and b happen only once in s and s[i] = a
and s[j] = b implies i < j (resp. i > j). s • e is defined as the sequence s appended by element e
(e.g., 〈a, b〉 • c = 〈a, b, c〉). If ss is a sequence of sets, then ss ⊕ e adds element e to the last set in ss ,
ss[Len(ss)], (e.g., 〈{a, b}, {c}〉 ⊕ d = 〈{a, b}, {c, d}〉).

2This property is similar to the completeness property of Chandra and Toueg’s failure detectors [3].

4

3.2 The Log Service specification

Algorithm 1 presents the abstract behavior of the log service (lines 1–40) and of transaction termination
and resource manager recovery (lines 41–54, in page 6). In Sections 4–6 we show how these behaviors
can be implemented in a shared-nothing asynchronous distributed system.

The algorithm uses five data-structures:

V The set of received votes, initially empty.

T A partially ordered set (S ,�), where S is the set of committed transactions, and � is partial order
relation over the elements of S . Non-concurrent transactions in S are totally ordered by �, ac-
cording to their commit order. For simplicity, we represent T as a sequence of sets of committed
transactions such that, given two sets T [i] and T [j] in T , i < j implies that for all transactions t
and u , t ∈ T [j] and u ∈ T [j], t � u .

C and LastC Helpers on building T . C is the set of non-terminated transactions whose votes have been
issued; LastC is the subset of C with transactions concurrent to the last committed one. Both are
initially empty.

R A mapping from resource managers to the processes that are currently “incarnating” them. Initially,
all resource managers are mapped to no process (i.e., ⊥ is an invalid process identifier).

OUTCOME(t) defines the result of transaction t . It is determined by checking whether at least one
vote for t is ABORT, in which case the outcome is ABORT, or if all votes are COMMIT, in which case
the outcome is COMMIT. If not all votes are known to the log service, but all the votes known so far are
COMMIT, the outcome is UNDEFINED.

ISINVOLVED(t , rm) evaluates to TRUE if rm is a participant in t and to FALSE, otherwise, by
checking if rm is in the participant list (tset) of any known vote for t . Because RMs may vote to ABORT

a transaction at any time during its execution, including before learning about the other participants,
ABORT votes may not contain the complete list of participants. Therefore, ISINVOLVED may not have
conclusive information if all known votes for t are ABORT; in such a case the answer is UNKNOWN.

VOTE defines how votes are added to V . A vote is added only if no previous vote for the same
resource manager to the same transaction was added before. This ensures that if suspecting and suspected
processes issue conflicting votes, only one vote per participant will be kept.

UPDATES(rm) evaluates to the sequence of sets of updates performed by resource manager rm ,
partially ordered accordingly to T .

3.3 Termination and Recovery

Resource managers use the log service to terminate transactions and recover after crashes, as defined in
Algorithm 1 (lines 41–54, in page 7). INCARNATE is used by process pid to incarnate resource manager
rm , be it the first process to do it or a replacement incarnation. Firstly, the process setsR[rm] to pid and
then evaluates UPDATES, described above, to get the updates executed by the previous rm incarnation.
updates is then scanned in order from the first to the last set, and all updates in one set are applied to the
database before all the ones in the next set; no order among elements in the same set is required.

At the end of INCARNATE, if R[rm] = pid , then pid has successfully incarnated rm and recovered
the previous incarnation’s state. pid will accept and process new transactions until it crashes or another
process incarnates rm (i.e., pid 6= R[rm]). If more than one process try to incarnate rm , only the last
one to execute INCARNATE will succeed.

5

Algorithm 1 Log service specification

1: Initially:
2: V ← ∅ / The history of votes.
3: T ← 〈〉 / Sequence of sets of committed transactions.
4: C ← ∅ / Set of concurrent transactions.
5: LastC ← ∅ / Set of concurrent transactions.
6: ∀r ∈ RM ,R[r]← ⊥ / Processes incarnating RMs.

7: OUTCOME(t)
∆
=

8: if ∃〈 , t , , ABORT, 〉 ∈ V / Any ABORTs?
9: ABORT

10: else if∃〈 , t , tset , , 〉 ∈ V : ∀p ∈ tset :

〈p, t , tset , COMMIT, 〉 ∈ V / All COMMITs?
11: COMMIT
12: else
13: UNDEFINED / Neither one nor the other

14: ISINVOLVED(t , rm)
∆
=

15: if ∃〈 , t , tset , , 〉 ∈ V : rm ∈ tset / Is rm in any list?
16: TRUE
17: else if∃〈 , t , , v , 〉 ∈ V : v = COMMIT / Has t committed?
18: FALSE
19: else
20: UNKNOWN / I don’t know...

21: VOTE(〈rm, t , tset , vote, update〉) ∆
=

22: if OUTCOME(t) = UNDEFINED / If t has not terminated yet
23: C ← C ∪ {t} / add it to C.
24: if ¬∃〈rm, t , , , 〉 ∈ V / Has rm voted yet?
25: prevState ← OUTCOME(t) / ABORT or UNDEFINED.
26: V ← V ∪ {〈rm, t , tset , vote, update〉} / Keep this vote
27: if (prevState = UNDEFINED) ∧ (OUTCOME(t) = COMMIT)

28: if t ∈ LastC / If t can be added to the last set...
29: T ← T ⊕ t / ...do it...
30: else
31: T ← T • {t} / ...else add it to a new set
32: LastC ← C / With a new LastC .
33: C ← C\{t}

34: UPDATES(rm)
∆
= / Set incarnating process.

35: let UPD(i) ∆
=

36: if i = 0
37: 〈〉
38: else
39: UPD(i − 1) • {upd : 〈rm, t , , COMMIT, upd〉 ∈ V :

t ∈ T [i]∧ ISINVOLVED(rm, t)}
40: in UPD(Len(T)) / Return updates for rm

A resource manager rm uses TERMINATE to vote at the termination of transaction t , of which it is a
participant. If rm is willing to commit the transaction, then vote equals COMMIT and upd contains the
updates performed by t . To abort the transaction vote equals ABORT and upd is the empty set. After
casting its vote, rm waits until it learns t’s outcome. While waiting, rm monitors the other resource
managers in tset , also involved in t . If rm suspects that some participant crashed, it votes ABORT on its
behalf. After learning that t committed, rm will apply its updates (and possibly release the related locks,
depending on the database). If rm learns that t aborted, it locally aborts the transaction. Updates are

6

Algorithm 1 (cont’d) Resource manager specification

41: INCARNATE(rm, pid)
∆
=

42: R[rm]← pid

43: updates ← UPDATES(rm) / Get committed state.
44: for i = 1 to Len(updates) / For each set of committed transaction...
45: apply updates in updates[i] / ...apply it to the database.

46: TERMINATE(rm, t , tset , vote, upd)
∆
=

47: VOTE(〈rm, t , tset , vote, upd〉)
48: while OUTCOME(t , rm) = UNDEFINED

49: wait (OUTCOME(t , rm) 6= UNDEFINED) ∨ (suspect r ∈ tset)
50: if suspected r ∈ tset

51: VOTE(〈r , t , tset ,Abort , ∅〉)
52: if OUTCOME(t , rm) = ABORT

53: abort t in the database
54: else
55: apply upd to database

made durable by the log service. We assume that the TERMINATE definition is not atomic, so multiple
resource managers can vote in parallel, as well as the same resource manager can terminate distinct
transactions in parallel, if its scheduling model allows it.

3.4 Correctness

Algorithm 1 solves non-blocking atomic commitment. AC-Validity and AC-Agreement are ensured by
having the votes added to V , from which OUTCOME deterministically evaluates to the transaction’s out-
come. If no resource manager is suspected and all vote COMMIT for a given transaction, then only COM-
MIT votes will be added to V , and COMMIT is the only possible outcome for such a transaction, satisfying
the AC-Non-Triviality property. Finally, since crashed resource managers are eventually suspected and
have votes issued on their behalf, the protocol eventually terminates, satisfying the AC-Termination
property.

The state of resource managers is changed by applying updates from write transactions. If these up-
dates are deterministic, then given two copies of a resource manager in the same initial state and applying
the same sequence of updates leads to the same final state. Assuming that transactions terminating con-
currently do not interfere with each other and that update operations are deterministic, the partial order
on updates provided by the log service and the deterministic method to apply them when reincarnating a
resource manager, specified in Algorithm 1, correctly recovers the state before the crash and satisfies the
R-Consistency property.

Formal proofs that the log service provides these properties as well as that it is implemented by
protocols in Section 5 and 6 are given at Section 9.

4 From abstract specifications to distributed implementations

In this section we define the system model and some building blocks used in our implementations.

4.1 Processes, communications and failures

7

We assume a shared-nothing asynchronous distributed system composed of a set {p1, p2, ..., pn} of pro-
cesses. Processes may fail by crashing. Communication is by message passing using the primitives
send and receive. These primitives guarantee quasi-reliable communication, that is, they ensure that if
neither the sender nor the receiver of a message crashes, then the message is eventually delivered. This
abstraction can be implemented on top of fair-lossy channels, for example, by periodically resubmitting
messages until an acknowledgment is received by the sender. Quasi-reliable channels also ensure that
messages are neither corrupted nor duplicated.

4.2 Leader-election oracle

Our coordinated implementation of the log service assumes a leader-election oracle. Participants use
this oracle to determine the current coordinator. The leader-election oracle guarantees that eventually
all participants will elect the same non-faulty process as the leader. Obviously, this can only be ensured
if there is at least one process that eventually remains operational “forever”—in practical terms, long
enough so that some useful computation can be done (e.g., deciding on a transaction’s outcome).

4.3 Consensus

In the consensus problem, a set of processes tries to agree on a common value. As in [9], we define
the consensus problem over three process roles: proposers can propose a value (i.e., the request to be
executed by the service), acceptors interact to choose a proposed value, and learners must learn the
decided value. A process can play any number of these roles, and it is dubbed non-faulty if it remains
up long enough to perform the consensus algorithm. Let n be the number of acceptors in the system
and f < n/2 the maximum number of faulty processes. A correct consensus algorithm satisfies three
properties:

C-Nontriviality Only a proposed value may be learned.

C-Consistency Any two learned values must be equal.

C-Progress For any proposer p and learner l , if p, l and more than n/2 acceptors are non-faulty, and p
proposes a value, then l must learn a value.

The algorithms in Sections 5 and 6 use many instance of consensus. Therein, the primitive propose(i , v)
is used to propose a value v in the consensus instance i . The decision of instance i is the v in decide(i , v).

5 Coordinated Implementation

The coordinated implementation is named after the coordinator, a process that serves as the log service’s
interface to resource managers. The coordinator receives the votes from resource managers, makes them
durable, and informs the resource managers about the transaction’s outcome. Votes are durable once they
have been decided in some consensus instance; the coordinator proposes them in a sequence of instances,
batching as many votes as possible to amortize the cost of termination.

For high availability, the service should replace the coordinator as soon as it is suspected to have
failed. However, suspecting the coordinator too aggressively may incur unnecessary changes and differ-
ent views among resource managers about which process is the coordinator. Resource managers use the
leader-election oracle to elect the coordinator. The use of consensus ensures that safety is not violated

8

even if several processes become coordinators simultaneously. Once the leader-election oracle works
properly, liveness will be ensured.

The implementation of the log service is decomposed in two parts. In Section 5.1 we present a set of
stubs that run at the RMs and are used by Algorithm 1 to interact with the coordinator; in Section 5.2 we
present the coordinator’s protocol.

5.1 RM Stubs

The first part of Algorithm 2 initializes the data structures kept by the stubs: outcome is the local view
of OUTCOME, and myInc and rmPID implementR[rm] locally.

Algorithm 2 Stubs to implement Algorithm 1.

1: Initially:
2: ∀t , outcome[t]← UNDEFINED / All transactions are undecided.
3: myInc ← ⊥ / Have not incarnated yet.
4: rmPID ← ⊥ / Have not incarnated yet.

5: INCARNATE(rm, pid)
6: send 〈RECOVER, pid , rm〉 to current coordinator.
7: wait until receive 〈RECOVERED, rm, upd , inc〉
8: myInc ← inc
9: rmPID ← pid / pid has incarnated rm .

10: return upd

11: R[rm]
12: return rmPID / Either my own pid or ⊥.

13: VOTE(〈rm, t , tset , vote, upd〉)
14: if vote = ABORT
15: outcome[t]← ABORT / Quickly abort.
16: send 〈VOTE, rm,myInc, t , tset , vote, upd〉 to coordinator

17: OUTCOME(t)
18: return outcome[t]

19:when receive 〈TERMINATED, t , out〉 / Learn decision.
20: outcome[t]← out / Learn t’s outcome.

21: when receive 〈INCARNATE, rm,newInc〉 / Was replaced.
22: newInc > myInc
23: rmPID ← ⊥ / No longer incarnates rm .

The INCARNATE stub sends a message RECOVER to the coordinator requesting to exchange the
incarnation of resource manager rm to process pid , and waits for confirmation that the change was
performed. The confirmation carries the updates executed by previous incarnations and the incarnation
number of rm . R[rm] = pid evaluates to TRUE until the stub learns a bigger incarnation number,
indicating that another processes took over the rm . The case in which more than one process believe to
hold the rights on the rm is handled by the coordinator. To account for coordinator crashes, every time a
process executes INCARNATE, it does it with a different pid .

VOTE forwards the resource manager’s vote to the coordinator. As an optimization, if the vote is for
ABORT, the resource manager aborts the transaction locally, as ABORT is the unique possible outcome
of such a transaction.

9

The when clauses at the end of the algorithm execute fairly and atomically once their conditions
become TRUE.

5.2 Log Service

The coordinator runs Algorithm 3. Tc implements T ; besides the votes of committed transactions, it also
keeps the incarnation requests. Vc implements V as in the specification. B is the set of votes received but
not yet treated by the coordinator. The coordinator executes a series of consensus instances, and i is the
identifier of the instance the coordinator is waiting to terminate. Finally, recSet is the set of reincarnation
requests awaiting to be decided.
R[rm] is not explicitly kept in any data structure, but lies implicit in the subsequence of INCARNATE

votes in Tc : R[rm] equals the process in the last INCARNATE vote in Tc .
When VOTE messages are received by the coordinator, they are added to B , to be proposed in the next

consensus instance. Once B is no longer empty, the coordinator proposes it on instance i . For simplicity,
we assume that B always fits in a consensus proposal. In some implementations of consensus, proposals
may have bounded size. In such cases, B would have to be split and proposed in several consensus
instances.

The coordinator waits the decision of instance i and postpones the learning of decisions of later
instances. Once the coordinator learns the decision D , it first removes it from B , and then processes
each of its elements. If the element is a vote then the coordinator determines its final meaning before
adding it to Vc . A vote’s final meaning is ABORT if its issuer no longer equalsR[rm]; otherwise, it is the
issuer’s proposed vote. This ensures that upon recovery the new rm learns all committed transactions.
〈RECOVER, pid , rm〉messages asking the coordinator to change theR[rm] to pid are handled in the

last part of the algorithm. Once such a message is received, the coordinator adds an INCARNATE vote
to B . 〈INCARNATE, pid , rm〉 requests are handled after all the normal votes. They are simply appended
to Tc , meaning that R[rm] has been set to pid until another 〈INCARNATE, pid ′, rm〉 is appended to Tc .
Once the coordinator learns that R[rm] changed to pid , it gathers the updates performed by rm . These
updates are sent to process pid , the new incarnation of rm , and a warn about the change is sent to all
resource managers.

6 Uncoordinated Implementation

The main idea behind the uncoordinated log service implementation is to save time by not going through
a central process. Instead of forwarding messages to the coordinator and waiting for replies as in the
coordinated version, participants access local data structures and execute consensus.

Algorithm 4 defines stubs to Algorithm 1. The resource manager rm keeps Vrm , the set of votes
it has received, commitCounter , the counter of committed transactions involving rm , and rmPID ,
used to locally evaluate R[rm]. The system’s multiprogramming level, that is, the maximum number
of transactions that can be executed concurrently by a resource manager corresponds to k . Therefore,
k is also the maximum number of started transactions yet to commit, and is paramount to the uncoor-
dinated approach. In the coordinated approach, the coordinator changes the incarnation of a resource
manager by having an INCARNATE transaction added to Tc . Because Tc grows deterministically due to
the ordering of consensus instances and their decisions, any process acting as the coordinator will see
incarnation requests in the same order. In the uncoordinated approach, however, there is no total order
of decisions, and a process can consider itself incarnated only after a consensus instance corroborates it,

10

Algorithm 3 Coordinator’s protocol.

1: Initialization:
2: Tc ← ∅ / The sequence of terminated transactions.
3: Vc ← ∅ / The set of durable votes.
4: B ← ∅ / Votes to be broadcast.
5: i ← 0 / Current consensus instance.
6: recSet ← 0 / Awaiting reincarnation transactions.

7: R[rm]
8: rrm ← r = 〈INCARNATE, pid , rm〉 ∈ Tc : ∀r ′ = 〈INCARNATE, pid ′, rm〉 ∈ Tc , r >Tc r ′

9: return rrm[2]

10: whenreceive 〈VOTE, rm, pid , t , tset , vote, upd〉
11: if¬∃〈rm, , t , , , 〉 ∈ B

12: B ← B ∪ {〈rm, pid , t , tset , vote, upd〉} / Only the first vote is considered.

13: whenB 6= ∅
14: propose(i ,B) / Propose B on instance i .

15:when decide(i ,D) / Decided D on instance i .
16: B ← B \D / Remove from next proposals.
17: C ← ∅ / Temporary variable.
18: for all〈rm, pid , t , tset , vote, upd〉 ∈ D

19: if ¬∃〈rm, , t , , , 〉 ∈ Vc

20: prevState ← OUTCOME(t)

21: ifR[rm] 6= pid / If rm has been reincarnated
22: Vc ← Vc ∪ 〈rm, t , tset , ABORT, ∅〉 / turn the vote into ABORT

23: else
24: Vc ← Vc ∪ {〈rm, t , tset , vote, upd〉} / otherwise add it to the set of votes.
25: if(prevState = UNDEFINED) ∧ (OUTCOME(t) = COMMIT) / If vote lead to commit of t

26: C ← C ∪ {t} / add it to C

27: ∀p ∈ tset , send message 〈TERMINATED, t , OUTCOME(t)〉 to p / and warn participants.
28: else if vote = ABORT / If lead to abortion of t

29: ∀p ∈ tset , send message 〈TERMINATED, t , ABORT〉 to p / warn all possible.
30: Tc ← Tc • C / Store the partial order.
31: for all d = 〈INCARNATE, , 〉 ∈ D / Process INCARNATE votes.
32: Tc ← Tc • d
33: i ← i + 1 / Process the next batch.

34:when receive 〈RECOVER, pid , rm〉 / Upon request to recover
35: tinc ← 〈INCARNATE, pid , rm〉 / create a “reincarnation transaction”
36: recSet ← recSet

⋃
{tinc} / put it in the awaiting set

37: B ← B
⋃

tinc / and make it terminate.

38: when ∃ tinc = 〈INCARNATE, pid , rm〉 ∈ recSet : tinc ∈ Tc / Once a reincarnation transaction terminates
39: recSet ← recSet \ {tinc}
40: Vrm ← {e = 〈rm, t , , , 〉 ∈ Vc : (OUTCOME(t) = COMMIT) ∧ (t <Tc tinc)} / determine the updates already

performed
41: Urm ← 〈u : 〈rm, , , u〉 ∈ Vrm〉,∀〈rm, t1, , u1〉, 〈rm, t2, , u2〉 ∈ Vrm , u1 <Urm u2 ⇒ t1 <Tc t2} / ordered as in
T .

42: inc ←| {r = 〈INCARNATE, , rm〉 ∈ T : r <T 〈INCARNATE, pid , rm〉} | / Determine the incarnation number
43: send 〈RECOVERED, rm,U rm , inc〉 to rm / and warn interested processes.
44: send 〈INCARNATE, rm, inc〉 to all resource managers

11

i.e., an INCARNATE transaction is decided, and it is sure that all the consensus instances that the previous
incarnation had possibly voted have been treated. There can be up to k − 1 of such consensus instances.

6.1 Transaction Termination

The VOTE stub proposes rm’s vote for transaction t on consensus instance inst(rm, t). If the rm is
voting on its own behalf, the current consensus instance is stored locally. To vote for other processes,
the rm must know the instances they attributed to t—notice that the rm only cares about other resource
managers if it is voting COMMIT. The rm can learn the consensus instance of other rm’s from the
transaction manager, when it receives the commit request. The transaction manager receives the con-
sensus instance from the resource managers during the execution of the transactions. With the vote, the
resource manager proposes also the number of transactions already committed, commitCounter . This
information is used later during recovery, as we be explain below.

The decision of a consensus instance j is learned by rm if it is one of its instances, or one associated
to a transaction in which rm is participant. This decision can be of three types: (i) a vote, in which case
it is added to Vrm ; (ii) a change of incarnation of another resource manager, in which case it is added to
Vrm as an ABORT vote; and (iii) a change of rm’s incarnation to process pid ′, in which case the process
pid 6= pid ′ currently incarnating learns that its incarnation lasts only until instance j + k . The when
clause that processes the decisions is only activated once the resource manager has completed recovery.

6.2 Recovering from Failures

The INCARNATE stub determines the updates performed by previous incarnations and in which instance
the new incarnation starts. The procedure consists of three steps: in the first step, pid (i.e., the process
incarnating rm) proposes 〈INCARNATE, pid , rm〉 in its first consensus instance and until such a value is
decided in an instance i , at which point pid becomes the incarnation of rm for transactions associated
with consensus instances i + k , until displaced by another process. The second step terminates the
transactions associated with instances i + 1 to i + k − 1, belonging to the incarnations being replaced.
The third step determines the outcome of all transactions associated with instances smaller than i + k .

The protocol terminates by gathering the updates of committed transactions in the sequence Urm .
Elements in Urm are ordered according to the commit counter in each vote, making it consistent with the
commit order of non-concurrent transactions. Algorithm 4 does not keep the T data structure nor any
abridged version of it; the order of committed transactions is forgotten by the resource managers once
their updates are applied. Upon recovery, Urm is created and kept just until the recovery is terminated.

To improve performance, implementations should use checkpoints and reduce the number of con-
sensus instances in which resource managers must propose. Most of the remaining instances can run in
parallel to reduce the recovery latency.

7 Evaluation

We performed the experiments in a cluster of nodes from the Emulab testbed [13]. Nodes were equipped
with 64-bit Xeon 3GHz processors, and interconnected through a Gigabit Ethernet switch. Our commu-
nication library used datagrams of size up to 7500B.

In the graphs, points represent the average of values sampled after execution stabilization in each run
of an experiment.

12

Algorithm 4 Algorithm 1 stubs and Algorithm 1 uncoordinated implementation, with multi-
programming level equal to k (at resource manager rm).

1: Initialization
2: Vrm ← ∅ / Votes I have seen.
3: commitCounter ← 0 / How many transactions I committed.
4: rmPID ← ⊥ / Have not incarnated yet.

5: R[rm]
6: return rmPID / Either my own pid or ⊥.

7: OUTCOME(t)
8: if ∃〈 , t , , ABORT, 〉 ∈ Vrm / Any ABORTs?
9: ABORT

10: else if ∃〈 , t , tset , , 〉 ∈ Vrm : ∀s ∈ tset :

〈s, t , tset , COMMIT, 〉 ∈ Vrm / All COMMITs?
11: COMMIT
12: else
13: UNDEFINED / Neither one nor the other

14: VOTE(〈rm, t , tset , vote, updaterm〉)
15: propose(inst(rm, t), 〈rm, t , tset , vote, upd ,Len(Trm)〉) / Vote + number of committed.

16: when decide(j , d) / [Decided on instance j .]
17: ifd = 〈r , t , tset , vote, upd , cn〉), rm ∈ tset

18: Vrm ← Vrm ∪ {〈r , t , tset , vote, upd〉}
19: else if d = 〈INCARNATE, , r〉, r 6= rm / Someone else was substituted.
20: Vrm ← Vrm ∪ {〈r , t , {r , rm}, ABORT, ∅〉}, inst(rm, t) = j / Make d an ABORT vote.
21: else if d = 〈INCARNATE, pid ′, rm〉, pid 6= pid ′ / rm has been reincarnated,
22: rmPID ← ⊥ / so give it up.

23: INCARNATE(rm)
24: tranSet ← ∅
25: i ← 0 / Assume that 0 is the first instance identifier.
26: whileTRUE
27: propose(i , 〈INCARNATE, pid , rm〉) / Vote until incarnation changes,
28: wait until decide(i , d)
29: if d = 〈INCARNATE, pid , rm〉
30: pidRM ← pid / Reincarnated
31: break / Stop the first iteration.
32: else
33: tranSet ← tranSet

⋃
{d}

34: i ← i + 1
35: for j ← 1..k − 1 / and then, for k − 1 possibly open instances,
36: propose(i + j , 〈rm, t , {rm}, ABORT, ∅, 0〉) / vote to close them.
37: wait until decide(i + j , d)
38: if d = 〈INCARNATE, , rm〉 / Someone else is recovering.
39: rmPID ← ⊥ / Give up the resource manager
40: return 〈〉 / and stop looking for updates.
41: tranSet ← tranSet

⋃
{d}

42: for each 〈rm, t , l , v , u, cn〉 ∈ tranSet / Close all of those transactions:
43: if ¬∃〈p′, t , l ′, ABORT, ∅, cn ′〉 ∈ Vrm / If t was not aborted,
44: for all p′ ∈ l ,¬∃〈p′, t , l , v ′, u ′, cn ′〉 ∈ Vrm / make sure to terminate it
45: propose(inst(p′, t), 〈p′, t , l , ABORT, ∅, 0〉) / voting for others if needed.
46: wait until decide(inst(p′, t), d)
47: Vrm ← Vrm

⋃
{d}

48: if d = 〈p′, t , , ABORT, , 〉 / Stop on ABORT.
49: break
50: Urm ← 〈u1, ..., um〉 : ek = 〈rm, tk , lk , vk , uk , cnk 〉 ∈ Vrm , / Now order updates of known transactions
∀p ∈ lk ,∃〈p, tk , lk , COMMIT, up〉 ∈ Vrm , / that committed
∀i < j , cni < cnj / in commit order.

51: return Urm

13

7.1 Micro-benchmark

In the first experiment we used a micro-benchmark of non-conflicting transactions, each comprising one
update operation being executed in parallel at 8 RMs, and resulting, at each of them, in 100 or 7000 B of
data to be logged. Figure 1 shows that for both update sizes the coordinated implementation outperforms
the uncoordinated one by an order of magnitude. In case of small updates the coordinated version must
perform eight times less consensus instances and in addition the coordinator can batch votes from up
to nine transactions executed concurrently, while our implementation of a single RM is not capable of
this grouping. For big updates the coordinator has to run as many instances as the uncoordinated version
does, but the difference might be explained by the consensus executions’ time: The coordinator serializes
its instances so they do not interfere with each other and can be timely finished, what is supported by
our observation that only a few retries happened. In the uncoordinated implementation all the RMs try
to execute their instances at the same time, and as the network contention leads to many unsuccessful
termination attempts, the execution becomes driven by the timeouts used.

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10 100 1000

Re
sp

on
se

 ti
m

e
[m

se
c]

Throughput [tps]

1

2
4
8

16

uncoordinated 100B
uncoordinated 7000B

coordinated 100B
coordinated 7000B

Figure 1: Throughput versus response time of the micro-benchmark. The number of clients is shown
next to the lines.

7.2 The TPC-C benchmark

For TPC-C the read-only Items table was replicated on all RMs and other tables were range partitioned
among RMs according to the warehouse id, so at most 15% transactions involved more than one RM.
Update transactions were 92% of the workload and none of them produced data to be logged exceeding
1500B.

As Figure 2 shows, very small loads do not differ significantly in performance between configura-
tions. By higher loads the coordinated version outperforms the uncoordinated one and the former scales
much better with the number of transactions executed concurrently, which is determined by the number
of client threads and RMs. Although in 85% of the cases a single transaction requires one consensus
instance regardless of the termination protocol, the coordinated version can group at least five simulta-
neous requests, and even when a single RM could perform the batching on its own the coordinator still
have higher potential for that as it can combine data from different RMs.

14

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250 300 350 400 450

Re
sp

on
se

 ti
m

e
[m

se
c]

Throughput [tps]

2

18

36

72

96

uncoordinated 8 RMs
uncoordinated 16 RMs

coordinated 8 RMs
coordinated 16 RMs

Figure 2: Throughput versus response time of TPC-C transactions. The number of clients is shown next
to the curves.

8 Related Work

Stamus and Cristian [12] propose to aggregate log records generated by resource managers at the trans-
action managers and logged there. This approach resembles the log service we are proposing. In fact, the
transaction manager acts as a log service to the transactions it managers. However, their approach uses
a byzantine agreement abstraction with strong synchrony assumptions, and do not consider recovery of
resource and transaction managers in nodes different from the initial ones.

The log service proposed by Daniels et al. [4] does consider recovery on different machines, but it
considers one instance of the service per resource manager instead of a shared one, and therefore cannot
provide the termination facilities of our approach.

The use of consensus or agreement protocols in atomic commitment protocols has been explored
in some other works, but none of them considers the problem of interleaving commits and transaction
ordering. Mohan et al. [11] used byzantine tolerant agreement abstractions to extend a two phase commit
protocol with byzantine reliability. As in our protocols, the recovery of resource managers in their
approach is based on the log provided by the agreement boxes, although not abstracted by a log service.
However, they keep the “two-phases approach”, even though one agreement phase should suffice to solve
the problem.

Guerraoui et al. [6] presented a non-blocking protocol that terminates transactions in three commu-
nication steps, from termination request to transaction termination, in good runs (i.e., without failures
and suspicions). In bad runs, the protocol resorts to consensus to agree on the outcome, exchanging at
least one communication step for a consensus instance.

More recently, Lamport and Gray [5] presented the Paxos Commit protocol, a non-blocking gen-
eralization of two-phase commit using the Paxos consensus protocol. The biggest difference between
this protocol and the previous one is that Paxos Commit uses consensus to decide on votes, not on the
transaction’s outcome. As Paxos does not require all participants to propose, a suspicious resource man-
ager votes on the suspect’s behalf as soon as suspecting it, and may have its conservative vote or the
suspect’s original vote decided in two communication steps, increasing the protocol’s latency by the time
to suspect a participant. Having several consensus instances in parallel, for possibly many transactions,
has a bad impact on the overall performance. We looked for a way to isolate this impact and it was by
mimicking Paxos’ separation of concerns that the log service was devised.

15

9 Conclusion

In this paper we have introduced the specification of a log service for transaction processing systems.
The log service provides atomicity and durability to transactions through a non-blocking termination
protocol. The service totally orders non-concurrent transactions and, should a resource manager fail, the
service can be used to recover the resource manager’s state prior to the crash and start a copy of it on a
different and functional node. The service safely copes with multiple copies of a resource manager.

We also presented two highly available implementations of our log service, namely coordinated
and uncoordinated, and provided a comparative experimental performance evaluation. In the studied
scenarios, a coordinated approach has led to a much higher transaction throughput and smaller response
times.

References
[1] M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical Computer Science, 82(2):253–

284, 1991.
[2] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Systems.

Addison-Wesley, 1987.
[3] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Communications

of the ACM, 43(2):225–267, 1996.
[4] D. S. Daniels, A. Z. Spector, and D. S. Thompson. Distributed logging for transaction processing. In U. Dayal

and I. Traiger, editors, Proceedings of the ACM SIGMOD Annual Conference, pages 82–96, San Francisco,
CA, 1987. ACM, ACM Press.

[5] J. Gray and L. Lamport. Consensus on transaction commit. ACM TODS, 31(1):133–160, March 2006.
[6] R. Guerraoui, M. Larrea, and A. Schiper. Reducing the cost for non-blocking in atomic commitment. In

ICDCS ’96: Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS
’96), page 692, Washington, DC, USA, 1996. IEEE Computer Society.

[7] L. Lamport. Introduction to tla. Technical Report 1994-001, Palo Alto, CA, 1994.
[8] L. Lamport. Refinement in state-based formalisms, 1996.
[9] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, May 1998.

[10] L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers.
Addison-Wesley Professional, July 2002.

[11] C. Mohan, R. Strong, and S. Finkelstein. Method for distributed transaction commit and recovery using
byzantine agreement within clusters of processors. SIGOPS Oper. Syst. Rev., 19(3):29–43, July 1985.

[12] J. W. Stamos and F. Cristian. Coordinator log transaction execution protocol. Distributed and Parallel
Databases, 1(4):383–408, 1993.

[13] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and A. Joglekar.
An integrated experimental environment for distributed systems and networks. In Proc. of the Fifth Sympo-
sium on Operating Systems Design and Implementation, pages 255–270, Boston, MA, Dec. 2002. USENIX
Association.

16

A Log Service

The specifications presented in Sections 3, 5, and 6 are simplified versions of our real specifications.
For the unabridged versions, we used Lamport’s Temporal Logic of Actions (TLA+) specification lan-
guage [10]. The language borrows most of its formalism from basic mathematics, and reading it should
be straightforward except maybe for a few constructs. The cheat-sheet in [7] should be enough to clarify
any other doubts.

A.1 Log Service Constants

This module specifies constants used by all the other specifications.
MODULE LogServiceConstants

This module specifies the LogService’s constants.

The service’s constant parameters:
RM the set of resource managers.
TID the set of transaction ids.
Update the type update.
ApplyUpdate interface to database.
GetUpdate update at r, by t.

CONSTANTS RM , TID , Update,
ApplyUpdate(),
GetUpdate(,)

NoRM ∆= CHOOSE r : r /∈ RM

NoTID ∆= CHOOSE t : t /∈ TID

The environments’s constant parameters:
PID the set of all processes.

CONSTANTS PID

NoPID ∆= CHOOSE p : p /∈ PID

A.2 Log Service Specification

MODULE LogService
This module specifies the LogService . That is, it specifies a centralized log service would look like, and how resource managers
should use it.

EXTENDS Naturals, FiniteSets, Sequences,
LogServiceConstants

The environment’s variables:
badProc crashed processes
suspect suspicions.

VARIABLES badProc, Environments’s

suspect Who suspects whom?

17

The Service’s variables:
vHist the history of votes.
tHist the history of committed transactions
LastConcSet LastConcSet concurrent to the last committed.
terminatingAt transactions terminating at rm.
terminatedAt transactions terminated at rm.

VARIABLES vHist , tHist , rm2pid , Log service’s

LastConcSet

The Resource Managers’ variables:
terminatingAt transactions terminating at rm.
terminatedAt transactions terminated at rm.

VARIABLES terminatingAt , Resource Manager’s

terminatedAt ,
pid2rm

The Transaction Managers’s variables:
termReq transactions requested to terminate.
part participants on each transaction.

VARIABLES termReq , Transaction Managers’

part

Defining some aliases.

svars ∆= 〈vHist , tHist , LastConcSet , rm2pid〉
rvars ∆= 〈terminatingAt , terminatedAt , pid2rm〉
tvars ∆= 〈part , termReq〉
evars ∆= 〈badProc, suspect〉
avars ∆= 〈svars, rvars, tvars, evars〉

Types
UNKNOWN ∆= CHOOSE v : v /∈ {TRUE, FALSE}

Votes ∆= [rm : RM , tr : TID , tset : SUBSET RM , vt : {“Commit”, “Abort”}, upd : Update]

Invariants

Type invariant.

TypeInvariant ∆=
∧ vHist ∈ SUBSET Votes
∧ tHist ∈ Seq(SUBSET TID)
∧ LastConcSet ∈ SUBSET TID
∧ rm2pid ∈ [RM → PID ∪ {NoPID}]
∧ terminatingAt ∈ [PID → SUBSET TID]
∧ terminatedAt ∈ [PID → SUBSET TID]
∧ pid2rm ∈ [PID → RM ∪ {NoRM }]
∧ part ∈ [TID → UNION {[S → PID] : S ∈ SUBSET RM }]
∧ termReq ∈ SUBSET TID

18

∧ badProc ∈ SUBSET PID
∧ suspect ∈ [PID → [PID → BOOLEAN]]

Initial State
Init ∆=

∧ vHist = {} No vote received.

∧ tHist = 〈〉 No transaction committed,

∧ LastConcSet = {}
∧ rm2pid = [r ∈ RM 7→ NoPID] No RM is incarnated.

∧ terminatingAt = [p ∈ PID 7→ {}] No transactions terminating at any RM .

∧ terminatedAt = [p ∈ PID 7→ {}] No transactions terminating at any RM .

∧ pid2rm = [r ∈ PID 7→ NoRM] No RM is incarnated.

∧ part = [t ∈ TID 7→ [e ∈ {} 7→ {}]] No participant in any transaction.

∧ termReq = {} No termination request issued.

∧ badProc = {} No bad process.

∧ suspect = [p ∈ PID 7→ [q ∈ PID 7→ FALSE]]

Operators

Operator IsInvolved(t , rm) checks whether rm is involved in transaction t .

IsInvolved(t , rm) ∆= IF ∃ v ∈ vHist : v .tr = t ∧ rm ∈ v .rm
THEN TRUE

ELSE IF ∃ v ∈ vHist : v .tr = t ∧ v .vt = “Commit”
THEN FALSE

ELSE UNKNOWN

Operator Updates(rm) gets the updates performed by rm in committed transactions.

Updates(rm) ∆=
LET UpdateOn(t) ∆= (CHOOSE v ∈ vHist : v .tr = t ∧ v .rm = rm).upd

upd [i ∈ 0 . . Len(tHist)] ∆=
IF i = 0
THEN 〈〉
ELSE Append(upd [i − 1], {UpdateOn(t) : t ∈ {e ∈ tHist [i] :

IsInvolved(rm, e) = TRUE}})

IN upd [Len(tHist)]

Operator Outcome(h, t) gives the termination status of transaction t , considering the history of votes h .

Outcome(h, t) ∆= IF ∃ v ∈ h : v .tr = t ∧ v .vt = “Abort”
THEN “Abort”
ELSE IF ∃ v ∈ h :

∧ v .tr = t
∧ ∀ p ∈ v .tset :
∃ vv ∈ h : ∧ vv .rm = p

∧ vv .tr = t

19

∧ vv .vt = “Commit”
THEN “Commit”
ELSE “Undefined”

Actions

Environment

This action crashes a good process.

Crash ∆= ∧ ∃ p ∈ (PID \ badProc) : badProc′ = badProc ∪ {p}
∧ UNCHANGED 〈suspect〉

This action changes the suspicion status.

ChangeSuspicion ∆= ∧ ∃ p ∈ (PID \ badProc), q ∈ PID :
∧ p 6= q
∧ suspect ′ = [suspect EXCEPT ![p][q] = ¬@]

∧ UNCHANGED 〈badProc〉

EnvActions:
• process crash.
• change suspicions.

EnvActions ∆= ∧ ∨ Crash
∨ ChangeSuspicion

∧ UNCHANGED 〈svars, rvars, tvars〉

Transaction Manager

Adds a resource manager to a non-terminated transaction.

The transaction manager will only succeed in the adding a resource manager r to a transaction t if r was not crashed by the
time it was contacted, and replied to operation request.

AddRM ∆= ∧ ∃ t ∈ (TID \ termReq), t has not tried to terminate yet.

r ∈ {r ∈ RM : ∧ rm2pid [r] 6= NoPID r has been incarnated,

∧ rm2pid [r] /∈ badProc} : replied to an operation,

∧ r /∈ DOMAIN part [t] and was not a participant yet

∧ part ′ = [part EXCEPT ![t] =
[e ∈ DOMAIN @ ∪ {r} 7→ IF e ∈ DOMAIN @

THEN @[e]
ELSE rm2pid [r]]] now it is.

∧ UNCHANGED 〈termReq , rm2pid〉

Request the termination of a transaction.

The transaction manager can, at any time, try to terminate a transaction it has not tried to terminate before, and that executed
some operation.

RequestTerm ∆= ∧ ∃ t ∈ (TID \ termReq) : t has not tried to terminate yet.

∧ part [t] 6= 〈〉
∧ termReq ′ = termReq ∪ {t}

20

∧ UNCHANGED 〈part , rm2pid〉

The disjunction of Transaction Manager’s actions.
• Add a resource manager as a participant.
• Try to terminate a transaction.

TMActions ∆= ∧ ∨AddRM
∨ RequestTerm

∧ UNCHANGED 〈svars, rvars, evars〉

Log Service

Action Incarnate(pid , rm) is executed by process pid to incarnate resource manager rm .

Incarnate ∆=
LET ApplyUpdates(u) ∆=

LET apply [i ∈ 1 . . Len(u)] ∆=
IF i = Len(u) THEN ApplyUpdate(u[i])

ELSE ApplyUpdate(u[i]) ∧ apply [i + 1]

IN IF u = 〈〉 THEN TRUE

ELSE apply [1]

IN ∃ p ∈ PID \ badProc, r ∈ RM :
∧ pid2rm[p] = NoRM but is not incarnating,

∧ ∨ rm2pid [r] = NoPID and r is not incarnated

∨ rm2pid [r] 6= NoPID ∧ suspect [p][rm2pid [r]] or its process is supected.

∧ rm2pid ′ = [rm2pid EXCEPT ![r] = p]
∧ pid2rm ′ = [pid2rm EXCEPT ![p] = r]
∧ApplyUpdates(Updates(r))
∧ UNCHANGED 〈terminatingAt , terminatedAt , vHist , tHist , LastConcSet〉

Action Vote(v) adds v to vHist , if not there yet.

Vote(v) ∆=
LET ConcSet(vh) ∆= {t ∈ {v .tr : ∧ v ∈ vh} : Voted transactions

Outcome(vh, t) = “Undefined”} not terminated yet.

Commits ∆= ∧Outcome(vHist ′, v .tr) = “Commit”
∧ ∨ ∧ v .tr ∈ LastConcSet

∧ tHist ′ = [tHist EXCEPT ![Len(tHist)] = @ ∪ {v .tr}]
∧ LastConcSet ′ = LastConcSet \ {v .tr}

∨ ∧ v .tr /∈ LastConcSet
∧ tHist ′ = Append(tHist , {v .tr})
∧ LastConcSet ′ = ConcSet(vHist ′) \ {v .tr}

∧ UNCHANGED rm2pid

Aborts ∆= ∧Outcome(vHist ′, v .tr) = “Abort”
∧ UNCHANGED 〈tHist , LastConcSet , rm2pid〉

21

IN ∧ ¬∃ ov ∈ vHist : ∧ ov .rm = v .rm
∧ ov .tr = v .tr Add v to vHist

∧ vHist ′ = vHist ∪ {v}
∧ StayUndef ∨ Commits ∨Aborts

Action Terminate(rm, t) is executed by rm to step towards transaction t’s termination.

VoteForMyself (r , t) ∆=
∧ t ∈ (termReq
\ (terminatingAt [rm2pid [r]] ∪ terminatedAt [rm2pid [r]])) and has not tried to terminate t .

∧ terminatingAt ′ = [terminatingAt EXCEPT ![rm2pid [r]] = @ ∪ {t}] Start the termination

∧ ∨Vote([rm 7→ r , tr 7→ t , tset 7→ DOMAIN part [t],
vt 7→ “Commit”, upd 7→ GetUpdate(r , t)]) voting commit.

∨Vote([rm 7→ r , tr 7→ t , tset 7→ {r}, vt 7→ “Abort”, upd 7→ {}]) voting abort.

∧ UNCHANGED 〈terminatedAt〉

VoteForOthers(r , t) ∆=
∧ t ∈ terminatingAt [rm2pid [r]] rm tried to terminate t

∧Outcome(vHist , t) = “Undefined” t is stuck.

∧ ∃ s ∈ DOMAIN part [t] :
∧ suspect [rm2pid [r]][rm2pid [s]]
∧Vote([rm 7→ s, tr 7→ t , tset 7→ DOMAIN part [t],

vt 7→ “Abort”, upd 7→ {}])
∧ UNCHANGED 〈terminatingAt , terminatedAt〉

Learn(r , t) ∆=
∧Outcome(vHist , t) 6= “Undefined” t has terminated.

∧ terminatingAt ′ = [terminatingAt EXCEPT ![rm2pid [r]] = @ \ {t}] So rm learns it.

∧ terminatedAt ′ = [terminatedAt EXCEPT ![rm2pid [r]] = @ ∪ {t}]
∧ UNCHANGED 〈svars〉

Terminate ∆=
∃ r ∈ RM , t ∈ TID :
∧ r ∈ DOMAIN part [t] r is a participant of t .

∧ part [t][r] /∈ badProc the process is alive,

∧ part [t][r] = rm2pid [r] and is still the same

∧ ∨VoteForMyself (r , t)
∨VoteForOthers(r , t)
∨ Learn(r , t)

∧ UNCHANGED 〈pid2rm〉

RMActions ∆=
∧ ∨ Incarnate
∨ Terminate

∧ UNCHANGED 〈tvars, evars〉

22

Specification
Next ∆= ∨ RMActions

∨ TMActions
∨ EnvActions

Spec ∆= Init ∧2[Next]〈svars, tvars, rvars, evars〉

Theorems
The specification is type safe.

THEOREM Spec ⇒ 2TypeInvariant

AC-Validity If an RM decides to commit a transaction, then all RMs voted to commit the transaction.

AC Validity ∆= ∀ t ∈ TID : Outcome(vHist , t) = “Commit”
⇒ ∀ r ∈ DOMAIN part [t] :

∃ v ∈ vHist : ∧ v .rm = r
∧ v .tr = t
∧ v .vote = “Commit”

AC-Agreement It is impossible for one RM to commit a transaction and another one to abort the transaction.

AC Agreement ∆= TRUE From the definition of Outcome .

AC-Non-Triviality If all RMs vote to commit the transaction and no RM is suspected throughout the execution of the protocol,
then the decision is commit.

AC Non Triviality ∆= ∀ t ∈ TID : ∧ ∀ r , s ∈ part [t] : 2(¬suspect [rm2pid [r]][rm2pid2[s]])
∧ ∀ r ∈ part [t] : ∃ v ∈ vHist : ∧ v .rm = r

∧ v .t = t
∧ v .vt = “Commit”

⇒
∧3Outcome(vHist) = “Commit”

AC-Termination Non-faulty RMs eventually decide.

AC Termination ∆= ∧ ∀ t ∈ TID : 32(Outcome(vHist , t) ∈ {“Commit”, “Abort”})
∧ ∀ t ∈ TID : ∀ r ∈ part [t] : 32(t ∈ terminatedAt [r])

THEOREM Spec ⇒ ∧AC Validity ∧AC Non Triviality ∧AC Termination

A.3 Correctness

We want to prove that the log service’s specification (LSS) we gave at Section 3 satisfies the atomic com-
mitment and the R-Consistency properties, recalled below. We first prove an invariant of the algorithm
and then proceed to prove each property individually.

• AC-Validity If an RM decides to commit a transaction, then all RMs voted to commit the transac-
tion.

• AC-Agreement It is impossible for one RM to commit a transaction and another one to abort the
transaction.

23

• AC-Non-Triviality If all RMs vote to commit the transaction and no RM is suspected throughout
the execution of the protocol, then the decision is commit.

• AC-Termination Non-faulty RMs eventually decide.

• R-Consistency The database state of an RM after the recovery from a failure is the same as its
committed state before the failure.

Invariant 1 At any point in time there is at most one process incarnating any given resource manager.

PROOF: At the initial state, defined by Init , no resource manager is incarnated by any process. Resource
managers are incarnated only by executing action Incarnate , that replaces the previous resource manager
by the new one. Therefore, at most one process can be incarnating a resource manager at any point in
time, and this relation is kept in rm2pid .

Invariant 2 Given a transaction t , if Outcome(vHist , t) 6=“Undefined” at some point in time, then it
will equal Outcome(vHist , t) at any later time.

PROOF: The variable vHist is only changed in action Vote , where a vote v is added to vHist only if
there was no other vote for the same transaction v .tr and resource manager v .rm invHist . Therefore,
the only change allowed to vHist is the addition of new votes.
At the initial state vHist = {} and, by the definition of action Outcome , Outcome({}, t) equals “Unde-
fined”. From this state, “Abort” and “Commit” votes for t can be added to vHist .
By the definition of Outcome , if an “Abort” is ever added, then Outcome(vHist , t) will equal “Abort”
at any future evaluation. If a “Commit” vote is added for each resource manager involved in t , then
Outcome(vHist , t) will equal “Commit” and, because no “Abort” vote for t could be added later, it will
equal “Commit” at any future evaluation.

Proposition A.1 (AC-Valitidy) LSS satisfies the AC-Validity property.

PROOF: By the specification, the only action that issues “Commit” votes is VoteForMyself . As its name
suggests, the action is executed for a resource manager r only to cast its own vote and, therefore, a vote
v such that v .vt =“Commit” and v .rm = r can only be casted by r itself.
By specification, Outcome(vHist , t) will equal “Commit” only if a “Commit” vote has been issued for
t from all resource managers involved. By the previous paragraph, we know that each resource manager
involved in t must have issued its own “Commit” vote for t , and the AC-Validity property is true.

Proposition A.2 (AC-Agreement) LSS satisfies the AC-Validity property.

PROOF: Suppose that Outcome(vHist , t) evaluated to “Commit” at some point in time for some trans-
action t . By the initial state it was initially evaluated to “Undefined” and turned to “Commit” at some
later state. By the Invariant A.2, it must have turned directly from “Undefined” to “Commit”, and will
be “Commit” on any future evalution. Therefore, any resource manager either sees “Commit” or “Unde-
fined”; because a resource manager will give t for terminated only if Outcome(vHist , t) 6=“Undefined”,
all resource managers will see the same termination outcome. Changing “Commit” for “Abort” renders
the equivalent result, and therefore the AC-Agreement property is true.

24

Proposition A.3 (AC-Non-Triviality) LSS satisfies the AC-Non-Triviality property.

PROOF: By the specification, for any transaction t , a resource manager will only vote “Abort” abort on
behalf of another resource manager if it suspects that it is crashed. If there are no suspicions, then all
resource manager will vote for themselves. If no resource manager votes “Abort” for itself, then only
“Commit” votes will be issued and added to vHist . Because, by assumption, all crashes are eventu-
ally suspected, the lack of suspicions implies that no resource manager crashed. Therefore, eventually
all resource managers involved in t will have their votes added to vHist and, at this point in time,
Outcome(vHist , t) will turn from “Undefined” to “Commit”, satisfying the AC-Non-Triviality prop-
erty.

To prove the next property we must assume some kind of fairness on the system; we assume the
following: actions that become enabled and remain in such state until executed, are eventually executed.
This property is equivalent to the Weak Fairness described in [10].

Proposition A.4 (AC-Termination) LSS satisfies the AC-Termination property.

Assuming that any transaction t that is started will eventually be requested to terminate, resource man-
agers will eventually crash or vote for themselves. As, by assumption, non-faulty resource managers
eventually suspect any crashed ones and vote on their behalf if they have issued their own votes, even-
tually some “Abort” vote or all “Commit” votes for t will be gathered by the log service, t will be ter-
minated, and resource managers that did not crash will learn the transaction’s outcome, hence, satisfying
the AC-Termination property.

Proposition A.5 (R-Consistency) LSS satisfies the R-Consistency property.

Let s be the state of some given database. We denote by s.u the state obtained by an update u
to the database at state s . To prove the the R-Consistency property we use the following assumptions
regarding this change of states. We call two transactions “non-concurrent” if their termination procedure
was executed within non-overlapping periods of time.

Assumption 1 Applying an update is a deterministic operation. That is, given two databases at states
s1 and s2 and and update u , (s1 = s2)⇒ (s1.u = s2.u).

Assumption 2 Updates to different data items are commutable. That is, given two updates u1 and u2

and a database in some state s , if u1 and u2 do not write to the same data item, then s.u1.u2 = s.u2.u1.

Assumption 3 Concurrent transactions do not access the same data items. I.e., if two transactions
execute their commit procedure in parallel, then they do not read items written by each other.

PROOF SKETCH: We divide the proof in several steps. First we show that any non-concurrent transactions that committed, who
possibly accessed the same data items, are totally ordered in tHist , according to their termination order. Then we show that
the reincarnation procedure apply the updates of committed transactions in the same order they were committed (the order in
tHist) and, finally, show that this ensures that a recovered resource manager has the same committed stated as before crashing
or being replaced.

25

1. ASSUME: (C ,≤C) is the poset where C is the set of committed transactions of some run of the
system, ≤C their commit order, and
vHist = (H ,≤H).

PROVE: ∀t1, t2 ∈ C : t1 ≤C t2 ⇒ t1 ≤H t2
PROOF: Let t1 and t2 be two non-concurrent transactions that committed and, without loss of gener-
ality, let t1 be the one to be committed first. By the specification, all resource managers involved in t1
executed the action Vote with “Commit” vote for t1 before any has voted for t2.
By the definition of Vote , when the first vote for t1 was issued, t1 was added to ConcSet . After the
last vote, t1 was removed from ConcSet and added to vHist , and LastConcSet was changed to a set
not containing t2. When t2 receives its first vote to commit, it is added to ConcSet , and upon the last
vote, it is removed from ConcSet and added to vHist . Because t2 cannot belong to the LastConcSet
defined when t1 was committed, t2 will belong to a set in tHist different from the one t1 belongs.
Recalling the meaning of the data-structure tHist , if a transaction t1 belongs to the set tHist [i] for
some natural number i , then t1 ≤H t2, for any transaction t2 that belongs to tHist [j] for any j > i .

2. ASSUME: r is a resource manager,
t is a transaction that committed, and
r was involved in t .

PROVE: If Updates(r) is evaluated after t committed, then
∃i ∈ 1..Len(Updates(r)) : Updates(r)[i] = u ,
where u are the updates executed by r on transaction t .

PROOF: Because t committed, by the definition of Vote , there must be a set in tHist to whom t
belongs. By de definition of Updates and IsInvolved , r will be identified as participant of t and, by
the definition of UpdateOn , inside the definition of Updates , r ’s updates on t are in Updates(r).

3. ASSUME: r is a resource manager,
t1 and t2 are non-concurrent transactions,
t1 and t2 committed,
t1 committed before t2,
r was involved in t1 and t2,
r ’s updates on t1 and t2 are u1 and u2, respectively.

PROVE: (Updates(r)[i] = u1) ∧ (Updates(r)[j] = u2)⇒ i < j
PROOF: The definition of Updates constructs Updates(r) accessing tHist backwards, but orderly.
Because each update is added to before the previous one in the sequence, the final result is that updates
are in the same order as their respective transaction. By the step 2, both u1 and u2 are in Updates(r)
and, by step 1, t1 is ordered before t2 in tHist , and u1 appear before u2 in Updates(r).

4. Q.E.D.
PROOF: By the definition of ApplyUpdates , updates are applied sequentially. Consequently, by steps
1,2, and 3, all updates of non-concurrent transactions are applied in the recovering resource manager
in the same order they were originally executed. By Assumption 3, concurrent transactions access
only different items and are, by Assumption 2, commutable. Finally, by Assumption 3, the recovering
resource manager must have the same committed as in the previous incarnation.

26

B Coordinated Implementation

B.1 Specification

MODULE CoordLogService
This module is specifies the log service’s Coordinated Implementation.

EXTENDS Naturals, FiniteSets, Sequences,
LogServiceConstants,
Consensus

CONSTANTS Coord

The environment’s variables:
badProc processes that crashed
suspect process X process suspicions.
msgs messages sent.

VARIABLES badProc,
suspect ,
msgs

The Coordinators’s variables:
vHistAt votes received per coordinator.
tHistAt transactions that committed.
recSet set of awaiting recovery transactions.
bSet sets of votes to be proposed.
instances instance to be used by the coordinator(s).

VARIABLES vHist ,
tHist ,
recSet ,
bSet ,
instances

The Resource Managers’ variables:
terminatingAt transactions terminating at rm.
terminatedAt transactions terminated at rm.
pid2rm PID 7→ RM.
incarns the incarnation of each rm.
outcome local view of Outcome.

VARIABLES terminatingAt ,
terminatedAt ,
pid2rm,
incarns,
outcome

The Transaction Managers’s variables:
termReq transactions requested to terminate.
part participants on each transaction, and incarnating process.

VARIABLES termReq ,
part

27

Defining some aliases.

svars ∆= 〈vHist , tHist , recSet , bSet , instances〉
rvars ∆= 〈terminatingAt , terminatedAt , pid2rm, incarns, outcome〉
tvars ∆= 〈part , termReq〉
evars ∆= 〈badProc, suspect〉
ovars ∆= 〈decision〉
avars ∆= 〈svars, rvars, tvars, evars, ovars, msgs〉

Types
Incarnating ∆= CHOOSE p : p /∈ (PID ∪ {NoRM })

Vote extended with PID

EVotes ∆= [rm : RM , tr : TID , tset : SUBSET RM ,
vt : {“Commit”, “Abort”}, upd : Update, pid : PID]

Votes to incarnate a resource manager.

IncarnT ∆= [vt : {“Incarnate”}, pid : PID , rm : RM]

Types of messages exchanged.

Msgs ∆= [type : {“Recover”}, rm : RM , pid : PID] ∪
[type : {“Recovered”}, rm : RM , pid : PID ,
upd : Seq(Update), inc : Nat] ∪
[type : {“Incarnated”}, rm : RM , inc : Nat] ∪
[type : {“Vote”}, rm : RM , pid : PID , tr : TID ,
tset : SUBSET RM , vt : {“Commit”, “Abort”}, upd : Update] ∪
[type : {“Terminated”}, tr : TID , out : {“Commit”, “Abort”}]

Invariants

Type invariant.

TypeInvariant ∆=
∧ vHist ∈ SUBSET EVotes
∧ tHist ∈ Seq(TID ∪ IncarnT)
∧ bSet ∈ [Coord → SUBSET (EVotes ∪ IncarnT)]
∧ recSet ∈ SUBSET IncarnT
∧ instances ∈ Nat
∧ terminatingAt ∈ [PID → SUBSET TID]
∧ terminatedAt ∈ [PID → SUBSET TID]
∧ pid2rm ∈ [PID → RM ∪ {Incarnating , NoRM }]
∧ outcome ∈ [PID → [TID → {“Undefined”, “Abort”, “Commit”}]]
∧ part ∈ [TID → UNION {[S → PID] : S ∈ SUBSET RM }]
∧ termReq ∈ SUBSET TID
∧ badProc ∈ SUBSET PID
∧ suspect ∈ [PID → [PID → BOOLEAN]]
∧msgs ∈ SUBSET Msgs

28

∧ ConsensusTypeInv

Initial State
Init ∆=

∧ vHist = {} No vote received.

∧ tHist = 〈〉 No transaction committed,

∧ bSet = [c ∈ Coord 7→ {}]
∧ recSet = [c ∈ Coord 7→ {}]
∧ instances = 0
∧ terminatingAt = [p ∈ PID 7→ {}] No transactions terminating.

∧ terminatedAt = [p ∈ PID 7→ {}] No transactions terminating.

∧ pid2rm = [r ∈ PID 7→ NoRM] No RM is incarnated.

∧ outcome = [p ∈ PID 7→ [t ∈ TID 7→ “Undefined”]]
∧ incarns = [p ∈ PID 7→ 0]
∧ part = [t ∈ TID 7→ [e ∈ {} 7→ {}]] No transaction started.

∧ termReq = {} No termination request issued.

∧ badProc = {} No bad process.

∧ suspect = [p ∈ PID 7→ [q ∈ PID 7→ FALSE]]
∧msgs = {}
∧ ConsensusInit

Operators

The pid of the currently incarnating r .

rm2pid(r) ∆=
IF ∃ p ∈ PID , i ∈ 1 . . Len(tHist) :
∧ tHist [i] = [vt 7→ “Incarnate”, pid 7→ p, rm 7→ r]
∧ ¬∃ j ∈ i + 1 . . Len(tHist), op ∈ PID :

tHist [j] = [vt 7→ “Incarnate”, pid 7→ op, rm 7→ r]
THEN CHOOSE p ∈ PID :

∃ i ∈ 1 . . Len(tHist) :
∧ tHist [i] = [vt 7→ “Incarnate”, pid 7→ p, rm 7→ r]
∧ ¬∃ j ∈ i + 1 . . Len(tHist), op ∈ PID :

tHist [j] = [vt 7→ “Incarnate”, pid 7→ op, rm 7→ r]
ELSE NoPID

Operator Outcome(h, t) gives the termination status of transaction t , considering the history of votes h .

Outcome(h, t) ∆=
IF ∃ v ∈ h : v .tr = t ∧ v .vt = “Abort”
THEN “Abort”
ELSE IF ∃ v ∈ h :

∧ v .tr = t
∧ ∀ p ∈ v .tset :

∃ vv ∈ h : ∧ vv .rm = p

29

∧ vv .tr = t
∧ vv .vt = “Commit”

THEN “Commit”
ELSE “Undefined”

Actions

Environment

This action crashes a good process.

Crash ∆=
∧ ∃ p ∈ (PID \ badProc) : badProc′ = badProc ∪ {p}
∧ UNCHANGED 〈suspect〉

This action changes the suspicion status.

ChangeSuspicion ∆=
∧ ∃ p ∈ (PID \ badProc), q ∈ PID :
∧ p 6= q
∧ suspect ′ = [suspect EXCEPT ![p][q] = ¬@]

∧ UNCHANGED 〈badProc〉

EnvActions:
• process crash.
• change suspicions.

EnvActions ∆= ∧ Crash ∨ ChangeSuspicion
∧ UNCHANGED 〈msgs, svars, tvars, rvars, ovars〉

Transaction Manager

Adds a resource manager to a non-terminated transaction.

The transaction manager will only succeed in the adding a resource manager r to a transaction t if r was not crashed by the
time it was contacted, and replied to operation request.
AddRM ∆=

∧ ∃ t ∈ (TID \ termReq), t has not tried to terminate yet.

r ∈ {r ∈ RM : ∧ rm2pid(r) 6= NoPID r has been incarnated,

∧ rm2pid(r) /∈ badProc} : replied to an operation,

∧ r /∈ DOMAIN part [t] and was not a participant yet

∧ part ′ = [part EXCEPT ![t] =
[e ∈ DOMAIN @ ∪ {r} 7→ IF e ∈ DOMAIN @

THEN @[e]
ELSE rm2pid(r)]] now it is.

∧ UNCHANGED 〈termReq〉

Request the termination of a transaction.

The transaction manager can, at any time, try to terminate a transaction it has not tried to terminate before, and that executed
some operation.

30

RequestTerm ∆= ∧ ∃ t ∈ (TID \ termReq) : t has not tried to terminate yet.

∧ part [t] 6= 〈〉
∧ termReq ′ = termReq ∪ {t}

∧ UNCHANGED 〈part〉

The disjunction of Transaction Manager’s actions.
• Add a resource manager as a participant.
• Try to terminate a transaction.

TMActions ∆= ∧ ∨AddRM
∨ RequestTerm

∧ UNCHANGED 〈rvars, evars, svars, msgs, ovars〉

Log Service

Starts the incarnate procedure.

IncarnateStart(p, r) ∆=
∧ pid2rm[p] = NoRM p is neither incarnating nor trying

∧ ∨ rm2pid(r) = NoPID and r is not incarnated

∨ rm2pid(r) 6= NoPID ∧ suspect [p][rm2pid(r)] or its process is supected.

∧ pid2rm ′ = [pid2rm EXCEPT ![p] = Incarnating]
∧msgs ′ = msgs ∪ {[type 7→ “Recover”, pid 7→ p, rm 7→ r]}
∧ UNCHANGED 〈incarns〉

Ends the incarnate procedure.

IncarnateEnd(p, r) ∆=
LET ApplyUpdates(u) ∆=

LET apply [i ∈ 1 . . Len(u)] ∆=
IF i = Len(u) THEN ApplyUpdate(u[i])

ELSE ApplyUpdate(u[i]) ∧ apply [i + 1]

IN IF u = 〈〉 THEN TRUE

ELSE apply [1]

IN ∧ pid2rm[p] = Incarnating
∧ ∃m ∈ msgs :
∧m.type = “Recovered”
∧m.pid = p
∧m.rm = r
∧ pid2rm ′ = [pid2rm EXCEPT ![p] = r]
∧ incarns ′ = [incarns EXCEPT ![p] = m.inc]
∧ApplyUpdates(m.upd)

∧ UNCHANGED 〈msgs〉

Executed by process p to give up incarnating r , when another process incarnates it.

Desincarnate(p, r) ∆=
∧ incarns[p] > 0
∧ ∃m ∈ msgs :

31

∧m.type = “Incarnated”
∧m.rm = r
∧m.inc > incarns[p]

∧ incarns ′ = [incarns EXCEPT ![p] = 0]
∧ UNCHANGED 〈msgs, pid2rm〉

IncarnateStub is a “stub” to the abstract log service Incarnate action.

IncarnateStub ∆=
∧ ∃ p ∈ PID \ badProc, r ∈ RM : p is good

∨ IncarnateStart(p, r)
∨ IncarnateEnd(p, r)
∨Desincarnate(p, r)

∧ UNCHANGED 〈terminatingAt , terminatedAt , outcome〉

VoteForMyself is executed to vote on some transaction.

VoteForMyself (r , t) ∆=
∧ t ∈ (termReq \ (terminatingAt [part [t][r]] ∪ terminatedAt [part [t][r]])) rm has not tried to terminate t .

∧ terminatingAt ′ = [terminatingAt EXCEPT ![part [t][r]] = @ ∪ {t}] Start the termination

∧ ∨msgs ′ = msgs ∪ {[type 7→ “Vote”, pid 7→ part [t][r], rm 7→ r ,
tr 7→ t , tset 7→ DOMAIN part [t],
vt 7→ “Commit”, upd 7→ GetUpdate(r , t)]} voting commit.

∨msgs ′ = msgs ∪ {[type 7→ “Vote”, pid 7→ part [t][r], rm 7→ r ,
tr 7→ t , tset 7→ {r}, vt 7→ “Abort”, upd 7→ {}]} voting abort.

∧ UNCHANGED 〈terminatedAt , outcome〉

VoteForOthers is executed to vote for some slow participant.

VoteForOthers(r , t) ∆=
∧ t ∈ terminatingAt [part [t][r]] rm tried to terminate t

∧ outcome[part [t][r]][t] = “Undefined” but did not succeed yet.

∧ ¬∃m ∈ msgs :
∧m.type = “Terminated”
∧m.tr = t

∧ ∃ s ∈ DOMAIN part [t] :
∧ suspect [part [t][r]][part [t][s]]
∧msgs ′ = msgs ∪ {[type 7→ “Vote”, pid 7→ part [t][s], rm 7→ s, tr 7→ t ,

tset 7→ DOMAIN part [t], vt 7→ “Abort”, upd 7→ {}]} voting abort.

∧ UNCHANGED 〈terminatingAt , terminatedAt , outcome〉

Learn action is performed when a new transaction has terminated.

Learn(r , t) ∆=
∧ outcome[part [t][r]][t] = “Undefined” outcome[t] is undefined

∧ ∃m ∈ msgs : but t terminated.

∧m.type = “Terminated”
∧m.tr = t
∧ outcome ′ = [outcome EXCEPT ![part [t][r]][t] = m.out]

∧ terminatingAt ′ = [terminatingAt EXCEPT ![part [t][r]] = @ \ {t}]

32

∧ terminatedAt ′ = [terminatedAt EXCEPT ![part [t][r]] = @ ∪ {t}]
∧ UNCHANGED 〈msgs〉

Action TerminateStub is executed by rm to step towards transaction t’s termination.

It is a “stub” to the abstract log service’s Terminate action.

TerminateStub ∆=
∧ ∃ r ∈ RM , t ∈ TID :
∧ r ∈ DOMAIN part [t] r is a participant of t .

∧ part [t][r] /∈ badProc the process is still alive,

∧ pid2rm[part [t][r]] = r and sees itself as the rm .

∧ ∨VoteForMyself (r , t) first attempt to terminate t .

∨VoteForOthers(r , t) other attempts

∨ Learn(r , t) Learn that it was decided.

∧ UNCHANGED 〈incarns, pid2rm〉

The disjunction of Resource Manager’s actions.
• Execute the incarnation procedure.
• Try to terminate a transaction.

RMActions ∆=
∧ ∨ IncarnateStub
∨ TerminateStub

∧ UNCHANGED 〈tvars, evars, ovars, svars〉

IncarnateRequest ∆=
∧ ∃ p ∈ PID , r ∈ RM , c ∈ Coord , m ∈ msgs :
∧m.type = “Recover” ∧m.pid = p ∧m.rm = r
∧ ¬∃ i ∈ 1 . . Len(tHist) :

tHist [i] = [vt 7→ “Incarnate”, pid 7→ p, rm 7→ r] p is not incarnating.

∧ recSet ′ = [recSet EXCEPT ![c] = @ ∪ {[vt 7→ “Incarnate”, pid 7→ p, rm 7→ r]}]
∧ bSet ′ = [bSet EXCEPT ![c] = @ ∪ {[vt 7→ “Incarnate”, pid 7→ p, rm 7→ r]}]

∧ UNCHANGED 〈vHist , tHist , instances, ovars, msgs〉

IncarnateReply ∆=
LET Urm(tinc) ∆=

LET try [i ∈ 0 . . tinc] ∆=
IF i = 0
THEN 〈〉
ELSE try [i − 1] ◦ IF ∧ tHist [i] ∈ TID Not reincarn transaction,

∧ ∃ v ∈ vHist :
∧ v .tr = tHist [i] is committed before tinc,

∧ v .rm = tHist [tinc].rm r took part in it.

THEN 〈(CHOOSE v ∈ vHist :
∧ v .tr = tHist [i]
∧ v .rm = tHist [tinc].rm).upd〉

ELSE 〈〉

33

IN try [tinc]

Inc(tinc) ∆= Cardinality({i ∈ 1 . . tinc :
∧ tHist [i] /∈ TID
∧ tHist [i].rm = tHist [tinc].rm})

IN ∃ tinc ∈ 1 . . Len(tHist), c ∈ Coord :
∧ tHist [tinc] ∈ recSet [c]
∧ recSet ′ = [recSet EXCEPT ![c] = @ \ {tHist [tinc]}]
∧msgs ′ = msgs ∪ {[type 7→ “Recovered”, rm 7→ tHist [tinc].rm, upd 7→ Urm(tinc),

inc 7→ Inc(tinc), pid 7→ tHist [tinc].pid],
[type 7→ “Incarnated”, rm 7→ tHist [tinc].rm, inc 7→ Inc(tinc)]}

∧ UNCHANGED 〈vHist , tHist , bSet , instances, ovars〉

VoteRequest ∆=
∃ c ∈ Coord , m ∈ msgs :
∧m.type = “Vote”
∧ ¬∃ ev ∈ (bSet [c] ∩ EVotes) ∪ vHist :
∧ ev .rm = m.rm
∧ ev .tr = m.tr
∧ bSet ′ = [bSet EXCEPT ![c] = @ ∪ {[pid 7→ m.pid , rm 7→ m.rm, tr 7→ m.tr ,

tset 7→ m.tset , vt 7→ m.vt , upd 7→ m.upd]}]
∧ UNCHANGED 〈vHist , tHist , recSet , instances, msgs, ovars〉

CoordPropose ∆=
∧ ∃ c ∈ Coord :
∧ bSet [c] 6= {}
∧ Propose(instances, bSet [c])

∧ UNCHANGED 〈svars, msgs〉

CoordDecide ∆=
LET D ∆= Decide(instances)

EVotesInD ∆= {v ∈ D : ∧ v .vt ∈ {“Commit”, “Abort”}
∧ ¬∃ ov ∈ vHist : ∧ ov .rm = v .rm

∧ ov .tr = v .tr}

V 2V (v) ∆= [rm 7→ v .rm, tr 7→ v .tr , tset 7→ v .tset , pid 7→ v .pid ,
vt 7→ IF rm2pid(v .rm) = v .pid THEN v .vt ELSE “Abort”,
upd 7→ IF rm2pid(v .rm) = v .pid THEN v .upd ELSE {}]

VotesInD ∆= {V 2V (v) : v ∈ EVotesInD}

Set2Seq(S) ∆=
LET set2seq [SS ∈ SUBSET S] ∆=

IF SS = {} THEN 〈〉
ELSE LET ss ∆= CHOOSE ss ∈ SS : TRUE

IN Append(set2seq [SS \ {ss}], ss)

34

IN set2seq [S]

newCommitted ∆= {t ∈ TID : ∧Outcome(vHist , t) = “Undefined”
∧Outcome(vHist ′, t) = “Commit”}

newTermMsgs ∆= {[type 7→ “Terminated”, tr 7→ t , out 7→ “Commit”] :
t ∈ newCommitted}

∪
{[type 7→ “Terminated”, tr 7→ v .tr , out 7→ “Abort”] :

v ∈ {vv ∈ VotesInD : vv .vt = “Abort”}}

IncarnationReqInD ∆= {i ∈ D : i .vt = “Incarnate”}

IN ∧D 6= NoProposal
∧ vHist ′ = vHist ∪VotesInD
∧msgs ′ = msgs ∪ newTermMsgs
∧ tHist ′ = tHist ◦ (IF newCommitted 6= {} THEN Set2Seq(newCommitted) ELSE 〈〉)

◦ Set2Seq(IncarnationReqInD)
∧ instances ′ = instances + 1
∧ bSet ′ = [c ∈ Coord 7→ bSet [c] \D]
∧ UNCHANGED 〈recSet , ovars〉

The disjunction of Coordinator’s actions.
• Process requests to incarnate a resource manager.
• Process votes from resource managers.
• Handle consensus instances.

CoordActions ∆=
∧ ∨ IncarnateRequest ∨ IncarnateReply
∨VoteRequest
∨ CoordPropose ∨ CoordDecide

∧ UNCHANGED 〈tvars, evars, rvars〉

Specification
The next-state action, as a disjunction of all possible action.

Next ∆=
∨ RMActions ∨ CoordActions Implement RMActions

∨ TMActions Implement TMActions

∨ EnvActions Implement EnvActions

The specification.

Spec ∆= Init ∧2[Next]〈avars〉

Refinement Mapping

35

rm pid2rm ∆= [r ∈ RM 7→ IF pid2rm[p] = “Incarnating” THEN NoRM ELSE pid2rm[p]]

rm rm2pid ∆= [r ∈ RM 7→ rm2pid(r)]

rm LastConcSet ∆= {}

rm vHist ∆= {[f ∈ DOMAIN v \ {“pid”} 7→ v .f] : v ∈ vHist}

rm tHist ∆= LET Test(e) ∆= e /∈ IncarnT
IN SelectSeq(vHist , Test)

B.2 Implementation Proof

To prove that the Coordinated Log Service (CLS) is, indeed, an implementation of the Log Service’s
specification (LS) we give a refinement mapping of the CLS’s variables to the LS’s, and show that the
execution of CLS’s actions implies the execution of one of LS’s actions, or in a stuttering step. For a
thorough explanation of refinement mappings the reader is referred to [8] and [1].

We substitute every expression of the specification for an overlined expression with the same name,
meaning that any variable defined in its scope is replaced by an overlined one, with the same name; these
overlined variables witness the implementation of the specification. We prove that these witnesses exist
by defining them from the variables in the implementation, i.e., by giving a refinement mapping.

The actual refinement is defined at the end of the specification. Below we simply rename each
definition to conform the overlined notation. Variables that are not redefined are the same as in the
implementation.

pid2rm ∆= rm pid2rm

rm2pid ∆= rm rm2pid

LastConcSet ∆= rm LastConcSet

vHist ∆= rm vHist

tHist ∆= rm tHist

Proposition B.1 Spec ⇒ Spec

1. ASSUME: Init
PROVE: Init
PROOF: Except for LastConcSet and rm2pid , all the variables are initialized in Init exactly as their
overlined counterparts in Init . By the refinement mapping, LastConcSet is always the empty set,
therefore conforming the initialization in Init . Finally, by the definition of operator rm2pid , tHist =
〈〉 implies that rm2pid maps from all resource managers to NoPid .

2. ASSUME: Next
PROVE: Next ∨ UNCHANGED 〈svars, tvars, rvars, evars〉

2.1. ASSUME: RMActions
PROVE: RMActions

36

2.1.1. ASSUME: IncarnateStub ∧ UNCHANGED 〈tvars, evars〉
PROVE: 3 ∧ Incarnate ∨ UNCHANGED 〈svars, rvars〉

∧ UNCHANGED 〈tvars, evars〉
PROOF SKETCH: We want to show that the execution of IncarnateStart(p, r) for some process p and resource manager
r leads to the execution IncarnateEnd(p, r), if p does not crash and its messages are lost. Because IncarnateEnd(p, r)
can only be executed if IncarnateStart(p, r) was previously executed and because the pre-conditions of Incarnate
shared with IncarnateStart do not change until IncarnateEnd is executed, and the conditions of Incarnate shared with
IncarnateEnd complement the set of Incarnate pre and post-conditions already true, the execution of IncarnateEnd
implies an Incarnate step. If just the start action is performed, then it implies a stuttering step of Spec.

PROOF: The IncarnateStub action is a disjunction of actions
• IncarnateStart ,
• IncarnateEnd , and
• Desincarnate

It is clear by the specification that action IncarnateEnd(p, r) cannot execute for a resource man-
ager r and process p before an IncarnateStart(p, r) is executed: IncarnateEnd(p, r) only ex-
ecutes after receiving a message m = [type 7→ 〈Recovered〉, rm 7→ r , pid 7→ p], and such mes-
sage will not be sent by action IncarnateReply before a vote v = [vt 7→ “Incarnate′′, pid 7→
p, rm 7→ r] is added to tHist . Hence, v will only be added to tHist in action CoordDecide ,
after being proposed in action CoordPropose . CoordPropose can only propose such value if
it belongs to bSet [c], for some coordinator c, what can only happen if a request message for
p to incarnate r is received in action IncarnateRequest , and such message is only sent by the
execution of action IncarnateStart(p, r).
When IncarnateStart(p, r) is executed, it adds a “Recover” message with fields pid = p
and rm = r to msgs; this is the first pre-condition for IncarnateRequest(p, r) to execute.
The second pre-condition is satisfied until action CoordDecide adds the “Incarnate” vote
for p and r to tHist , what can only happen if IncarnateRequest has been executed first, since
IncarnateRequest is the only action that creates “Incarnate” votes.
When the action IncarnateRequest is executed, it adds an “Incarnate” vote for p and r to
bSet [c], for some coordinator c, making it not empty. This is the only pre-condition for the
CoordPropose action execute for coordinator c, and the action is eventually executed. Since
coordinators insist on proposing its bSet [c] until it is empty, and only removes votes from it
if they are decided in some instance, c will keep proposing the “Incarnate” vote until it is
decided or c crashes. Coordinators are deterministic state machines, and can be replicated at
will (their state is only based on the outcomes of consensus instances) and, therefore, as long as
coordinators can recover after crashes or infinitely many of them are available, some coordinator
eventually completes the execution of IncarnateRequest and IncarnateReply .
By the consensus problem definition, C-Progress ensures that a decision will eventually be
reached on each instance (given that the minimum number of acceptors eventually stay up long
enough for the instances to finish). If p crashes, then the request for incarnation is simply dis-
carded or is decided but will be followed by another request for the same r .
When an instance containing the vote for p to incarnate r is decided, the vote is added to tHist ,
and action IncarnateReply will be enabled for all coordinators that proposed it. If c crashes
before this action is performed, p will be blocked and never execute another action, as if it had
crashed. Because the change made by IncarnateStart(r , p) to variable pid2rm[p] does not
affect pid2rm , this would imply that 〈svars, rvars〉 did not change.
Once IncarnateReply is performed, p will eventually receive the “Recovered” message, un-
less c crashes, enabling action IncarnateEnd . By the definition of Urm , p will receive all the

37

updates performed by previous incarnations of r . By the definition of ApplyUpdates , the p will
apply all the updates and recover the committed state r had on its previous incarnation. The pre
condition of IncarnateStub, IncarnatedStart , and IncarnatedEnd , and the post-conditions of
IncarnateEnd imply the pre and post-conditions of Incarnate .
By the assumption, variables in 〈tvars, evars〉 do not change.

2.1.2. ASSUME: TerminateStub ∧ UNCHANGED 〈tvars, evars, ovars, svars〉
PROVE: 3 ∧ Terminate ∨ UNCHANGED 〈svars, rvars〉

∧ UNCHANGED 〈tvars, evars〉
PROOF SKETCH: The pre-conditions of action TerminateStub are the same as those of Terminate . Therefore, it is
enough to show that each of TerminateStub’s sub-actions, VoteForMyself , VoteForOthers , Learn , and the actions
they lead to, imply a step of their equivalent overlined actions.

2.1.2.1. ASSUME: VoteForMyself (r , t)
PROVE: 3 ∧VoteForMyself (r , t) ∨ UNCHANGED 〈terminatingAt , vHist , tHist〉

∧ UNCHANGED 〈terminatedAt〉
Because the pre-condition and the first post-condition of both actions are the same, it is enough
to prove that the second post-condition of VoteForMyself (r , t), the addition of a message
m to msgs , may the execution of Vote(v), where m is “Vote” message and v is a vote,
and the fields vt , upd , tr , tset , and rm of m and v are equal, or has no effect on variables
〈terminatingAt , vHist , tHist〉.
If message m is received by some coordinator c, a vote with its contents, therefore equal
to v , is added to bSet [c], enabling the action CoordPropose . Action CoordPropose will
be executed with a proposal containing this vote until it is decided and added to vHist by
action CoordDecide , where all coordinators can see it (vHist is changed deterministically
based on the consensus outcomes, and would be the same for all coordinators if represented
independently at each one.), or until c crashes. If no coordinator succeeds in getting the vote
decided, then either another vote, resulting from the execution of VoteForOthers(r , t) will
be decided, or all resource managers involved in transaction t will have crashed before their
“Vote” messages are seen by non-faulty coordinators. It is up to the transaction manager, to
then vote to abort the transaction; in the case the transaction manager also crashes and no vote
for t is ever decided, t is simply forgotten, implying that 〈svars, rvars〉 is kept unchanged.
CoordDecide also appends newly committed transactions to tHist : each transaction is added
in a different set, as if they were not concurrent, and LastConcSet is always empty, ensuring
its type invariance and constructing tHist in a way compatible with the specification of tHist .
Because this is the only action to change vHist and tHist , the mapping to vHist and tHist is
correct.
〈tvars, evars〉 are kept since none of actions changes them.

2.1.2.2. ASSUME: VoteForOthers(r , t)
PROVE: 3 ∧VoteForOthers(r , t) ∨ UNCHANGED 〈vHist , tHist〉

∧ UNCHANGED 〈terminatedAt , terminatingAt〉
PROOF: It is true by the same arguments of step 2.1.2.1.

2.1.2.3. ASSUME: Learn(r , t)
PROVE: ∧Learn(r , t) ∨ UNCHANGED 〈terminatedAt , terminatingAt〉

∧ UNCHANGED 〈svars〉
PROOF: As action Learn(r , t) has the same post-conditions of Learn(r , t), it is enough to
show that the pre-conditions of the first imply the pre-conditions of the latter. Since the recep-
tion of “Terminated” message for transaction t implies that it was sent and since it is only

38

sent by action CoordDecide if the transaction has terminated, the reception of such message
implies that the Outcome(vHist , t) 6= “Undefined′′.

2.1.2.4. Q.E.D.
2.1.3. Q.E.D.

2.2. TMActions ⇒ TMActions
2.2.1. AddRM ⇒ AddRM

PROOF: Trivially true, since the their definitions are equal.
2.2.2. RequestTerm ⇒ RequestTerm

PROOF: Trivially true, since the their definitions are equal.
2.2.3. UNCHANGED 〈rvars, evars, svars,msgs, ovars〉 ⇒ UNCHANGED 〈svars, rvars, evars〉

PROOF:Clearly true since either the left-hand side of the expression contains all variables in the
spec.

2.2.4. Q.E.D.
2.3. EnvActions ⇒ EnvActions

PROOF: Trivially true, since their definitions are equal.
2.4. Q.E.D.

3. Q.E.D.

39

C Uncoordinated Implementation

C.1 Specification

MODULE UnCoordLogService
This module is specifies the log service’s Uncoordinated Implementation.

EXTENDS Naturals, FiniteSets, Sequences,
LogServiceConstants,
Consensus

The implementation’s constants:
MPL RM’s multi-programming level.
VoteSort Function that sorts votes according to the commit counter.

CONSTANTS MPL, MultiProgrammingLevel

VoteSort()
The environment’s variables:
badProc processes that crashed
suspect process X process suspicions.

VARIABLES badProc, Environments’s

suspect Who suspects whom?

The Resource Managers and processes that might incarnate resource managers’ variables:
terminatedAt transactions terminated at rm.
terminatingAt transactions terminating at a process.
pid2rm PID 7→ RM.
instances PID 7→ consensus instance to be used.
countdown number of consensus instances yet to be closed.
incarnation status of the incarnation procedure.

VARIABLES terminatedAt ,
terminatingAt ,
pid2rm,
instances,
countdown,
incarnation

The Transaction Managers’s variables:
termReq transactions requested to terminate.
part participants on each transaction, and incarnating process.
inst RM X TID 7→ IID.
nextInst RM 7→ the next IID to be attributed to a transaction.

VARIABLES termReq ,
part ,
inst ,
nextInst

Defining some aliases.

rvars ∆= 〈terminatingAt , terminatedAt , pid2rm, instances,

40

countdown, incarnation〉
tvars ∆= 〈part , termReq , nextInst , inst〉
evars ∆= 〈badProc, suspect〉
ovars ∆= 〈decision〉
avars ∆= 〈rvars, tvars, evars, ovars〉

Types

Vote is extended with commit counter.

EVotes ∆= [rm : RM , tr : TID ∪ {NoTID}, tset : SUBSET RM ,
vt : {“Commit”, “Abort”}, upd : Update, cn : Nat]

Votes to incarnate a resource manager.

IncarnT ∆= [vt : {“Incarnate”}, pid : PID]

Invariants

Type invariant.

TypeInvariant ∆=
∧ terminatingAt ∈ [PID → SUBSET TID]
∧ terminatedAt ∈ [RM → SUBSET TID]
∧ pid2rm ∈ [PID → RM ∪ {NoRM }]
∧ instances ∈ [PID → Nat]
∧ incarnation ∈ [PID → {“NotInc”,

“Inc1”, “Inc2”, “Inc3”, “Inc4”, “Inc”,
“DeInc”}]

∧ countdown ∈ [PID → Nat]
∧ part ∈ [TID → UNION {[S → PID] : S ∈ SUBSET RM }]
∧ termReq ∈ SUBSET TID
∧ nextInst ∈ [RM → Nat]
∧ inst ∈ [RM → [TID → Nat ∪ {NoIID}]]
∧ badProc ∈ SUBSET PID
∧ suspect ∈ [PID → [PID → BOOLEAN]]
∧ ConsensusTypeInv

Initial State
Init ∆=
∧ terminatingAt = [p ∈ PID 7→ {}] No transaction terminating.

∧ terminatedAt = [r ∈ RM 7→ {}] No transaction terminated .

∧ pid2rm = [p ∈ PID 7→ NoRM] No RM is incarnated.

∧ instances = [p ∈ PID 7→ 0] No consensus instance started.

∧ incarnation = [p ∈ PID 7→ “NotInc”] No process is recovering.

∧ countdown = [p ∈ PID 7→ MPL− 1] No process is recovering.

∧ part = [t ∈ TID 7→ [e ∈ {} 7→ {}]] No transaction started.

41

∧ termReq = {} No termination request issued.

∧ nextInst = [r ∈ RM 7→ 0] No operation executed.

∧ inst = [r ∈ RM 7→ [t ∈ TID 7→ NoIID]] No instance used.

∧ badProc = {} No bad process.

∧ suspect = [p ∈ PID 7→ [q ∈ PID 7→ FALSE]] No suspicion.

∧ ConsensusInit

Operators
The pid of the process currently incarnating r .

rm2pid(r) ∆=
IF ∃ i ∈ Nat :
∧Decide(〈r , i〉) 6= NoProposal If there is a vote

∧Decide(〈r , i〉).vt = “Incarnate” to incarnate r ,

THEN CHOOSE p ∈ PID : choose the process p

∃ i ∈ Nat :
∧Decide(〈r , i〉) 6= NoProposal
∧Decide(〈r , i〉).vt = “Incarnate” who voted for last.

∧Decide(〈r , i〉).pid = p
∧ ¬∃ j ∈ Nat : ∧ j > i

∧Decide(〈r , j 〉) 6= NoProposal
∧Decide(〈r , j 〉).vt = “Incarnate”

ELSE NoPID Choose NoPID otherwise.

Operator Outcome(r , t) gives the termination status of transaction t , considering the decisions learned by r .

Outcome(r , t) ∆=
IF ∧Decide(〈r , inst [r][t]〉) 6= NoProposal If r ’s vote

∧ ∨Decide(〈r , inst [r][t]〉).vt = “Incarnate” was to change incarnation

∨Decide(〈r , inst [r][t]〉).vt = “Abort” or to Abort

∨ ∧Decide(〈r , inst [r][t]〉).vt = “Commit” or to commit but

∧ ∃ or ∈ Decide(〈r , inst [r][t]〉).tset : another participant

∧Decide(〈or , inst [or][t]〉) 6= NoProposal has a voted to

∧ ∨Decide(〈or , inst [or][t]〉).vt = “Incarnate” change incarnation

∨Decide(〈r , inst [r][t]〉).vt = “Abort” or to Abort

THEN “Abort” then it is Abort .

ELSE IF ∨Decide(〈r , inst [r][t]〉) = NoProposal If r ’s vote has not been decided

∨ ∧Decide(〈r , inst [r][t]〉) 6= NoProposal or it has

∧Decide(〈r , inst [r][t]〉).vt = “Commit” and is Commit , but

∧ ∃ or ∈ Decide(〈r , inst [r][t]〉).tset : someone else’s

Decide(〈or , inst [or][t]〉) = NoProposal has not.

THEN “Undefined” then it is Undefined .

ELSE “Commit” Otherwise it is Commit .

Actions

42

Environment

This action crashes a good process.

Crash ∆= ∧ ∃ p ∈ (PID \ badProc) : badProc′ = badProc ∪ {p}
∧ UNCHANGED 〈suspect〉

This action changes the suspicion status.

ChangeSuspicion ∆= ∧ ∃ p ∈ (PID \ badProc), q ∈ PID :
∧ p 6= q
∧ suspect ′ = [suspect EXCEPT ![p][q] = ¬@]

∧ UNCHANGED 〈badProc〉

EnvActions is the disjunction of the environment’s actions.
• process crash.
• change suspicions.

EnvActions ∆= ∧ Crash ∨ ChangeSuspicion
∧ UNCHANGED 〈tvars, rvars, ovars〉

Transaction Manager

Adds a resource manager to a non-terminated transaction.

The transaction manager will only succeed in the adding a resource manager r to a transaction t if r was not crashed by the
time it was contacted, and replied to the operation request.
AddRM ∆=

LET processingAt(r) ∆= {tr ∈ TID : ∧ r ∈ DOMAIN part [tr]
∧ tr /∈ terminatedAt [r]}

Smaller(r) ∆= LET instS ∆= {inst [r][t] : t ∈ processingAt(r)}
IN CHOOSE i ∈ instS : ∀ j ∈ instS : i ≤ j

CanProcess(r) ∆= processingAt(r) 6= {}
⇒ nextInst [r]− Smaller(r) < MPL

IN ∧ ∃ t ∈ (TID \ termReq), t has not had terminaiton requested.

r ∈ {r ∈ RM : rm2pid(r) 6= NoPID} : r has been incarnated,

∧ incarnation[rm2pid(r)] = “Inc”
∧ rm2pid(r) /∈ badProc and is contactable,

∧ r /∈ DOMAIN part [t] and is not a participant of t

∧ CanProcess(r) and has free slots.

∧ part ′ = [part EXCEPT ![t] = Now it is a participant.

[e ∈ DOMAIN @ ∪ {r} 7→ IF e ∈ DOMAIN @
THEN @[e]
ELSE rm2pid(r)]]

∧ inst ′ = [inst EXCEPT ![r][t] = nextInst [r]]
∧ nextInst ′ = [nextInst EXCEPT ![r] = @ + 1]

∧ UNCHANGED 〈termReq〉

Request the termination of a transaction.

43

The transaction manager can, at any time, request the termination a transaction it has not requested to terminate before, as long
as it has some participant.

RequestTerm ∆= ∧ ∃ t ∈ (TID \ termReq) : t has not tried to terminate yet.

∧ part [t] 6= 〈〉
∧ termReq ′ = termReq ∪ {t}

∧ UNCHANGED 〈part , nextInst , inst〉

The disjunction of Transaction Manager’s actions.
• Add a resource manager as a participant.
• Try to terminate a transaction.

TMActions ∆= ∧ ∨AddRM
∨ RequestTerm

∧ UNCHANGED 〈rvars, evars, ovars〉

Resource Manager

For a process p to incarnate a resource manager r it must go through several steps.

In the first step, p is marked as incarnating.

IncStart(p, r) ∆=
∧ incarnation[p] = “NotInc” p is neither incarnating nor trying

∧ ∨ rm2pid(r) = NoPID and r is not incarnated

∨ ∧ rm2pid(r) 6= NoPID
∧ suspect [p][rm2pid(r)] or its process is supected.

∧ pid2rm ′ = [pid2rm EXCEPT ![p] = r]
∧ incarnation ′ = [incarnation EXCEPT ![p] = “Inc1”]
∧ UNCHANGED 〈terminatingAt , terminatedAt , instances, countdown, ovars, nextInst〉

In the second step p tries to pass an Incarnate vote.

Inc1Step(p, r) ∆=
∧ incarnation[p] = “Inc1” p is in the first loop of incarnate,

∧ pid2rm[p] = r to incarnate r ,

∧ Propose(〈r , instances[p]〉,
[vt 7→ “Incarnate”, pid 7→ p]) and votes to incarnate r .

∧ UNCHANGED 〈terminatingAt , terminatedAt , pid2rm, incarnation, instances,
countdown, nextInst〉

Inc1BreakOrLoop(p, r) ∆=
∧ incarnation[p] = “Inc1” p is in the first loop of incarnate,

∧ pid2rm[p] = r to incarnate r ,

∧Decide(〈r , instances[p]〉) 6= NoProposal something got decided

∧ ∨ ∧Decide(〈r , instances[p]〉).vt = “Incarnate” it was an incarnation request

∧ ∨ ∧Decide(〈r , instances[p]〉).pid = p and it was its own

∧ incarnation ′ = [incarnation EXCEPT ![p] = “Inc2”] so move on.

∨ ∧Decide(〈r , instances[p]〉).pid 6= p or it’s someone else’s.

∧ UNCHANGED 〈incarnation〉
∨ ∧Decide(〈r , instances[p]〉).vt ∈ {“Commit”, “Abort”} or just something else.

∧ UNCHANGED 〈incarnation〉

44

∧ instances ′ = [instances EXCEPT ![p] = @ + 1] anyway, move to the next instance.

∧ UNCHANGED 〈terminatingAt , terminatedAt , pid2rm, countdown, ovars, nextInst〉

In the second step, p makes sure that MPL possibly open instances are closed.

Inc2Step(p, r) ∆=
∧ incarnation[p] = “Inc2” p is in the second loop of incarnate,

∧ pid2rm[p] = r to incarnate r ,

∧ countdown[p] > 0 and there is some instance to close,

∧ Propose(〈r , instances[p]〉,
[rm 7→ r , tr 7→ NoTID , tset 7→ {r}, vt 7→ “Abort”,
upd 7→ {}, cn 7→ 0]) so propose.

∧ UNCHANGED 〈terminatingAt , terminatedAt , pid2rm, incarnation, instances,
countdown, nextInst〉

Inc2BreakOrLoop(p, r) ∆=
∧ incarnation[p] = “Inc2” p is in the 2nd step of incarnate,

∧ pid2rm[p] = r to incarnate r ,

∧ ∨ ∧ countdown[p] = 0 and is done closing instances,

∧ incarnation ′ = [incarnation EXCEPT ![p] = “Inc3”] and will move to the 3rd step.

∧ UNCHANGED 〈countdown, instances〉
∨ ∧ countdown[p] > 0 but it is not done closing instances

∧Decide(〈r , instances[p]〉) 6= NoProposal so it checks what has been decided

∧ ∨ ∧Decide(〈r , instances[p]〉).vt = “Incarnate” and sees a new incarnation of r

∧ incarnation ′ = [incarnation EXCEPT ![p] = “DeInc”] and gives up.

∧ UNCHANGED 〈instances, countdown〉
∨ ∧Decide(〈r , instances[p]〉).vt 6= “Incarnate” and sees some vote,

∧ countdown ′ = [countdown EXCEPT ![p] = @− 1] decreases the count of instances

∧ instances ′ = [instances EXCEPT ![p] = @ + 1] and move to the 2nd step.

∧ UNCHANGED 〈incarnation〉
∧ UNCHANGED 〈terminatingAt , terminatedAt , pid2rm, ovars, nextInst〉

In the 3rd step, p makes sure to know the outcome of all transactions that possibly committed.

Inc3Step(p, r) ∆=
∧ incarnation[p] = “Inc3” p is in the 3rd step of incarnate,

∧ pid2rm[p] = r to incarnate r ,

∧ ∨ ∃ i ∈ 0 . . instances[p]− 1 :
∧Decide(〈r , i〉) 6= NoProposal There is a vote

∧Decide(〈r , i〉).vt = “Commit” to commit a transaction

∧Outcome(r , Decide(〈r , i〉).tr) = “Undefined” that did not finish,

∧ ∃ or ∈ Decide(〈r , i〉).tset : because some participant has not voted

Propose(〈r , inst [or][Decide(〈r , i〉).tr]〉,
[rm 7→ or , tr 7→ Decide(〈r , i〉).tr ,
tset 7→ Decide(〈r , i〉).tset ,
vt 7→ “Abort”, upd 7→ {}, cn 7→ 0]) so vote to Abort for it.

∧ UNCHANGED 〈incarnation〉
∨ ∧ incarnation ′ = [incarnation EXCEPT ![p] = “Inc4”] Move to the last step.

∧ UNCHANGED 〈ovars〉

45

∧ UNCHANGED 〈terminatingAt , terminatedAt , pid2rm, instances,
countdown, nextInst〉

IncEnd(p, r) ∆=
LET CVrm ∆= {Decide(〈r , i〉) : Votes for instances that committed.

i ∈ {j ∈ 1 . . instances[p]− 1 :
∧Decide(〈r , j 〉).vt = “Commit”
∧Outcome(r , Decide(〈r , j 〉).tr) = “Commit”}}

ApplyUpdates(u) ∆=
LET apply [i ∈ 1 . . Len(u)] ∆=

IF i = Len(u) THEN ApplyUpdate(u[i])
ELSE ApplyUpdate(u[i]) ∧ apply [i + 1]

IN IF u = 〈〉 THEN TRUE

ELSE apply [1]

IN ∧ incarnation[p] = “Inc4” p is on the last step of incarnate

∧ pid2rm[p] = r to incarnate r ,

∧ incarnation ′ = [incarnation EXCEPT ![p] = “Inc”] and is moving forward;

∧ApplyUpdates(VoteSort(CVrm)) it is applying the updates,

∧ nextInst ′ = [nextInst EXCEPT ![r] = instances[p]] and setting the first instance accordingly.

∧ UNCHANGED 〈terminatingAt , terminatedAt , pid2rm, instances,
countdown, ovars〉

Desincarnate is executed when p sees that another process has incarnated r .

Desincarnate(p, r) ∆=
∧ incarnation[p] = “Inc” p is incarnating

∧ pid2rm[p] = r r

∧ ∃ i ∈ instances[p] . . nextInst [r] : but there is a new vote

∧Decide(〈r , i〉) 6= NoProposal
∧Decide(〈r , i〉).vt = “Incarnate” to incarnate r

∧Decide(〈r , i〉).pid 6= p from another process.

∧ incarnation ′ = [incarnation EXCEPT ![p] = “DeInc”]
∧ UNCHANGED 〈terminatingAt , terminatedAt , pid2rm, instances,

countdown, nextInst , ovars〉

IncarnateStub is the disjunction of the steps needed to incarnate or desincarnate a resource manager.

It is a “stub” to the abstract log service’s Incarnate action.

IncarnateStub ∆=
∃ p ∈ PID \ badProc, p is good

r ∈ RM :
∨ IncStart(p, r) and wants to incarnate

∨ Inc1Step(p, r) ∨ Inc1BreakOrLoop(p, r)
∨ Inc2Step(p, r) ∨ Inc2BreakOrLoop(p, r)
∨ Inc3Step(p, r)
∨ IncEnd(p, r)
∨Desincarnate(p, r) or desincarnate r .

46

Executed by r to issue its own vote for transaction t .

VoteForMyself (r , t) ∆=
LET CommittedCounter ∆= Cardinality({i ∈ Nat : Decide(〈r , i〉) 6= NoProposal})
IN ∧ t ∈ (termReq \ (terminatingAt [part [t][r]] ∪ terminatedAt [r]))

∧ terminatingAt ′ = [terminatingAt EXCEPT ![part [t][r]] = @ ∪ {t}] Try to terminate

∧ ∨ Propose(〈r , inst [r][t]〉, [rm 7→ r , tr 7→ t , tset 7→ DOMAIN part [t],
vt 7→ “Commit”, upd 7→ GetUpdate(r , t), voting commit.

cn 7→ CommittedCounter])
∨ Propose(〈r , inst [r][t]〉, [rm 7→ r , tr 7→ t , tset 7→ DOMAIN part [t],

vt 7→ “Abort”, upd 7→ {}, cn 7→ 0]) voting abort.

∧ UNCHANGED 〈terminatedAt , instances, countdown, incarnation〉

Executed by r to issue votes on behalf of other resource managers.

VoteForOthers(r , t) ∆=
∧ t ∈ terminatingAt [part [t][r]] r tried to terminate t

∧Outcome(r , t) = “Undefined” but did not succeed yet

∧ ∃ or ∈ DOMAIN part [t] : because some participant did not vote

∧ suspect [part [t][r]][part [t][or]] \ * and I don’t want to wait

∧ Propose(〈or , inst [or][t]〉, [rm 7→ or , tr 7→ t , tset 7→ DOMAIN part [t],
vt 7→ “Abort”, upd 7→ {}, cn 7→ 0]) so vote Abort on its behalf.

∧ UNCHANGED 〈terminatingAt , terminatedAt , instances, countdown, incarnation〉

Executed by r to learn that transaction t terminated.

Learn(r , t) ∆=
∧Outcome(r , t) 6= “Undefined” The instance is finished

∧ t ∈ terminatingAt [part [t][r]] \ terminatedAt [r] but r did not know

∧ terminatingAt ′ = [terminatingAt EXCEPT ![part [t][r]] = @ \ {t}] so take note.

∧ terminatedAt ′ = [terminatedAt EXCEPT ![r] = @ ∪ {t}]
∧ UNCHANGED 〈instances, countdown, incarnation, ovars〉

TerminateStub is executed by a resource manager to step towards the termination of some transaction.

It is a “stub” to the abstract log service’s Terminate action.

TerminateStub ∆=
∧ ∃ r ∈ RM , t ∈ TID :
∧ r ∈ DOMAIN part [t] r is a participant of t .

∧ part [t][r] /∈ badProc The process is still alive.

∧ incarnation[part [t][r]] = “Inc” and sees itself as rm’s incarnation.

∧ ∨VoteForMyself (r , t) first attempt to terminate t .

∨VoteForOthers(r , t) other attempts

∨ Learn(r , t) Learn that it was decided.

∧ UNCHANGED 〈pid2rm, nextInst〉

The disjunction of resource managers actions.

RMActions ∆= ∧ IncarnateStub ∨ TerminateStub
∧ UNCHANGED 〈part , termReq , inst , evars〉

47

Specification
Next ∆= ∨ RMActions Implement RMActions

∨ TMActions Implement TMActions

∨ EnvActions Implement EnvActions

Spec ∆= Init ∧2[Next]〈avars〉

Refinement Mapping

rm pid2rm ∆= [p ∈ PID 7→ IF incarnation[p] = “Inc” THEN pid2rm[p] ELSE NoRM]

rm rm2pid ∆= [r ∈ RM 7→ rm2pid(r)]

rm LastConcSet ∆=
LET LastToCommitAt(r) ∆=

CHOOSE t ∈ TID : Last to commit as some resource manager.

∧Outcome(r , t) = “Commit”
∧ ¬∃ ot ∈ TID :
∧Outcome(r , ot) = “Commit”
∧Decide(〈r , inst [r][ot]〉).cn > Decide(〈r , inst [r][t]〉).cn

LastToCommit ∆= Last to commit on each resource managers.

{LastToCommitAt(r) : r ∈ {
or ∈ RM :
∃ t ∈ TID :

Outcome(r , t) = “Commit”}}

DistLastToCommit ∆=
{t ∈ LastToCommit : Last to commit globally.

¬∃ r ∈ RM :
∃ ot ∈ TID :
∧Outcome(r , ot) = “Commit”
∧Decide(〈r , inst [r][ot]〉).cn > Decide(〈r , inst [r][t]〉).cn

}

ConcToLast ∆= {ot ∈ TID : Concurrent to the last to commit.

∃ r ∈ RM , t ∈ DistLastToCommit :
∧Decide(r , inst [r][ot]).cn = Decide(r , inst [r][t]).cn}

IN ConcToLast

rm terminatedAt ∆=
LET IncInstOf (p) ∆=

CHOOSE i ∈ IID : ∧ i [1] = pid2rm[p] The instance that incarnated p

∧Decide(i).vt = “Incarnate”
∧Decide(i).pid = p

48

DeIncInstOf (p) ∆=
CHOOSE i ∈ IID : ∧ i [1] = pid2rm[p] The instance that desincarnated p

∧ i [2] > IncInstOf (p)[2]
∧Decide(i).vt = “Incarnate”
∧ ¬∃ j ∈ IID : ∧ j [2] > IncInstOf (p)[2]

∧ j [2] < i [2]
∧Decide(j).vt = “Incarnate”

FirstInstOf (p) ∆= 〈pid2rm[p], IncInsOf (p)[2] + MPL〉 p’s first instance.

LastInstOf (p) ∆= 〈pid2rm[p], DeIncInsOf (p)[2] + MPL− 1〉 p’s last instance.

TermTransOf (p) ∆=
{t : ∧Outcome(pid2rm[p], t) = “Commit”
∧ inst [pid2rm[p]][t][2] > FirstInstOf (p)[2]
∧ ∃ i ∈ IID : ∧ i [1] = pid2rm[p] The instance that desincarnated p

∧ i [2] > IncInstOf (p)[2]
∧Decide(i).vt = “Incarnate”
⇒ inst [pid2rm[p]][t][2] ≤ LastInstOf (p)[2]

}

IN [p ∈ PID 7→ IF pid2rm[p] = NoRM THEN {} ELSE TermTransOf (p)]

rm vHist ∆=
LET TheVote(i) ∆=

IF Decide(i).vt ∈ {“Abort”, “Incarnate”}
THEN [rm 7→ i .[i], tr 7→ CHOOSE t ∈ TID : inst [i [1]][t] = i ,

tset 7→ DOMAIN part [t], vt 7→ “Abort”, upd 7→ {}]
ELSE LET v ∆= Decide(i)

IN [rm 7→ v .rm, tr 7→ v .tr , tset 7→ v .tset , vt 7→ v .vt , upd 7→ v .upd]

IN {TheVote(i) : i ∈ {oi ∈ IID : ∧ ∃ t ∈ TID : inst [i [1]][t] 6= NoIID
∧Decide(i) 6= NoProposal}}

rm tHist ∆= CHOOSE s ∈ Seq({t ∈ TID : ∃ r ∈ RM : Outcome(r , ot) = “Commit”}) :
∀ i , j ∈ DOMAIN s :
∀ r ∈ (DOMAIN part [i] ∩ DOMAIN part [j]) :

Decide(〈r , inst [r][i]〉).cn < Decide(〈r , inst [r][j]〉).cn
⇒ i < j

C.2 Implementation Proof

The refinement mapping is given below.

pid2rm ∆= rm pid2rm

49

rm2pid ∆= rm rm2pid

LastConcSet ∆= rm LastConcSet

terminatedAt ∆= rm terminatedAt

vHist ∆= rm vHist

tHist ∆= rm tHist

Proposition C.1 Spec ⇒ Spec

1. ASSUME: Init
PROVE: Init
PROOF: Variables terminatingAt , part , termReq , badProc and suspect are initialized in Init ex-
actly as specified in Init . By the refinement mapping, LastConcSet is initially the empty set and
terminatedAt maps each process to the empty set, conforming with their initialization in Init . By the
definition of operator rm2pid and because no value has neither been proposed nor decided, rm2pid
maps from all resource managers to NoPID , as specified in Init . By the refinement mapping and
because no has been decided at the initial state, vHist = {} and tHist = 〈〉, according to Init .

2. ASSUME: Next
PROVE: Next ∨ UNCHANGED 〈svars, tvars, rvars, evars〉

2.1. ASSUME: RMActions
PROVE: RMActions

2.1.1. ASSUME: IncarnateStub ∧ UNCHANGED 〈part , termReq , inst , evars〉
PROVE: 3 ∧ Incarnate ∨ UNCHANGED 〈svars, rvars〉

∧ UNCHANGED 〈tvars, evars〉
PROOF: The Incarnate action is implemented by a series of steps, implemented by actions
• IncStart(p, r),
• Inc1Step(p, r),
• Inc1BreakOrLoop(p, r),
• Inc2Step(p, r),
• Inc2BreakOrLoop(p, r),
• Inc3Step(p, r),
• IncEnd(p, r), and
• Desincarnate(p, r),

where p is a process and r the resource manager p is trying to incarnate. These actions exe-
cute in a specific order, according to the state of the variable incarnation[p]: IncStart(p, r)
requires incarnation[p] = “NotInc′′, and changes it to “Inc1′′. Inc1Step(p, r) requires
incarnation[p] = “Inc1′′, and does not change it, possibly being executed until it changes
to “Inc2”. Action Inc1BreakOrLoop(p, r) also has incarnation[p] = “Inc1′′ as a pre-
condition, but changes it to “Inc2” if some conditions are met. Action Inc2Step(p, r) requires
incarnation[p] = “Inc2′′, and executes until it turns to “Inc3”. Inc2BreakOrLoop(p, r) has
incarnation[p] = “Inc2′′ as pre-condition and changes incarnating [p] to “Inc3”. The change
of incarnating [p] from “Inc3” to “Inc4” is done by action Inc3Step(p, r) and, finally, action
IncEnd(p, r) requires incarnation[p] = “Inc4′′ and changes it to “Inc”, when the incarnation

50

procedure is over. Once the first step is finished, the process q that previously incarnated r ei-
ther crashes or eventually learns about p, by the termination property of consensus, and executes
action Desincarnate(q , r).
The initial steps in this series serves the purpose of determining the updates executed by previous
incarnations of r , ensuring that the consensus instances possibly used by previous incarnations
of r are terminated. Because none of the actions, except for the last, changes any of the overlined
variables, their execution implies in stuttering steps of Spec. When the last action, IncEnd(p, r),
is executed, an equivalent Incarnate step is executed;
The specification does not ensure that Inc1BreakOrLoop will ever succeed in incrementing the
variable instances[p], but once it is done, the process incarnating r will crash or eventually learn
that it was replaced, since there is a maximum number of consensus instances it can start before
learning the outcome of the previous ones (MPL), by the C-Termination property of consensus.
If the process previously incarnating r is not crashed, then it may proceed executing transactions,
and p will eventually learn that it made a mistake and crash itself (although this behavior is not
specified, it is clearly correct, as p is allowed to crash at any moment). For the same reason,
once incarnation[p] equals “Inc2”, p will crash or eventually execute the other actions of
IncarnateStub, learning the updates of all transactions executed by previous incarnations of
r . This is performed by simply enforcing the termination of the consensus instances used on
those incarnations and by the other resource managers involved in such transactions. Due to
the agreement property of consensus, the outcome of each committed transaction is seen by any
process that executes the incarnation procedure.
The order p applies these updates is determined by the VoteSort operator, that orders updates
according to the cn field contained in their respective votes. Because non-concurrent transactions
are guaranteed to have different cn , ordering the updates according to cn ensures that updates of
non-concurrent transactions are ordered in the order they committed.

2.1.2. ASSUME: TerminateStub ∧ UNCHANGED 〈part , termReq , inst , evars〉
PROVE: 3 ∧ Terminate ∨ UNCHANGED 〈svars, rvars〉

∧ UNCHANGED 〈tvars, evars〉
PROOF: The first two pre-conditions are the same for both actions. The third pre-condition of
TerminateStub is true iff t is in the range of transactions in which r was incarnated by part [t][r]
and the action Desincarnate has not been executed by the process. If Desincarnate is not
enabled, then the incarnating process cannot have executed action IncEnd and the part [t][r] is
still incarnating r . Otherwise, although this pre-condition is true, the action will not succeed
adding a vote to vHist , since the consensus instance it would use has been already decided by the
second step of the incarnation of process of the process starting to incarnate r .
The action VoteForMyself (r , t) has equivalent pre-conditions in both specifications and similar
first post-condition. By the consensus properties, the second post-condition ensures that r ’s vote
for t is added to vHist , if part [t][r] is not suspected of having crashed, as specified in Vote .
Otherwise it implies a stuttering step of Spec. By the definition of vHist , deciding on a vote
implies in adding a vote to vHist . If the vote leads to the ”Commit” of a transaction, then
LastConcSet becomes the set of transactions for which votes have been issued with the same
commit counter as those for the transaction just committed.
As the case for VoteForMyself and VoteForMyself , VoteForOthers has conditions that are
equivalent to those in VoteForOthers . By the same argumentation as in the previous paragraph,
the execution of a Propose ensures that either a vote for the other resource manager will be added
to vHist , if part [t][r] does not crash, or it will imply in a stuttering step of Spec.

51

A Learn step clearly implies a Learn step, since all conditions for the latter are also stated for
the first.

2.1.3. Q.E.D.
2.2. TMActions ⇒ TMActions

2.2.1. AddRM ⇒ AddRM
PROOF: Trivially true, since all of AddRM pre and post-conditions are also conditions for
AddRM .

2.2.2. RequestTerm ⇒ RequestTerm
PROOF: Trivially true, since their definitions are equal.

2.3. EnvActions ⇒ EnvActions
PROOF: Trivially true, since their definitions are equal.

2.4. Q.E.D.
3. Q.E.D.

52

	Introduction
	Atomic Commit and Paxos Commit
	The Highly Available Log Service
	From specs to implementations
	Theory and practice of termination
	Recovering resource managers
	Our contributions

	Problem statement
	The Log Service
	Terminology and notation
	The Log Service specification
	Termination and Recovery
	Correctness

	From abstract specifications to distributed implementations
	Processes, communications and failures
	Leader-election oracle
	Consensus

	Coordinated Implementation
	RM Stubs
	Log Service

	Uncoordinated Implementation
	Transaction Termination
	Recovering from Failures

	Evaluation
	Micro-benchmark
	The TPC-C benchmark

	Related Work
	Conclusion
	Log Service
	Log Service Constants
	Log Service Specification
	Correctness

	Coordinated Implementation
	Specification
	Implementation Proof

	Uncoordinated Implementation
	Specification
	Implementation Proof

