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Abstract
The paper presents SIMABS, the first fully automated SMT-based approach to
synthesize an abstraction of one program (called target) that simulates another
program (called source). SIMABS iteratively traverses the search space of existential
abstractions of the target and choses the strongest abstraction among them that
simulates the source. Deciding whether a given relation is a simulation relation is
reduced to solving validity of ∀∃-formulas iteratively. We present a novel algorithm
for dealing with such formulas using an incremental SMT solver. In addition to
deciding validity, our algorithm extracts witnessing Skolem relations which further
drive simulation synthesis in SIMABS. Our evaluation confirms that SIMABS is able
to efficiently discover both, simulations and abstractions, for C programs from the
Software Verification Competition.
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1 Introduction

There is a growing interest to the problems of regression verification and program equivalence checking [22,
24, 12, 15, 8, 21, 7, 27, 17]. In general, the problem is to identify the condition under which two programs
(referred to as the source (S ) and the target (T )) are equivalent (i.e., satisfy the same properties) and to
check it. These approaches prevent the wasted efforts in re-analyzing equivalent parts of the programs.
For instance, while proving safety of two closely related programs, obtaining a proof of one program and
adapting it to another program can be more efficient than proving each program from scratch (e.g., [8, 7]).

For example, [7] applied the idea of adapting proofs to analyze whether compiler optimizations preserve
safety properties. While efficient, this method had a number of limitations. The most crucial one is that it
required a mapping between variables of S and T that was either guessed automatically or provided by
the user. The simplest mapping that equates variables of S and T based on their names (i.e., variable a
of S is mapped to a variable a of T ) used in [7] is often insufficient. In practice, it sometimes results in no
interesting facts lifted from S to T . As an example, consider compiler spilling that may introduce many new
variable names in T that did not appear in S .

In another example application [20, 21, 11], it is shown that a simulation relation is the most general
mapping to transfer proofs between S and T . However, discovering a simulation relation is difficult (e.g., [21]
expects the candidate relation to be provided by the user). Moreover, their result only applies when T actu-
ally simulates S . The tasks of regression verification rely on cases when T is obtained by a small modification
from S , but might not simulate S .

In this article, we address two problems: (1) the challenge of automatically constructing a simulation
relation between two arbitrary programs, and (2) if the target T does not simulate the source S , the challenge
of finding a strong abstraction of the target T that simulates the source S .
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Figure 1: (a) SIMABS and (b) its search space.

Our main contribution is an iterative abstraction-refinement approach called SIMABS, illustrated in
Fig. 1(a). The inputs are the source and the target programs S and T , respectively. The output is an ab-
straction of T (possibly T itself) that simulates S and a simulation relation ρ, or a step of S that cannot be
simulated by any abstraction of T (in the considered space of abstractions). SIMABS first guesses a relation
ρ between S and T (Synthesize step). Second, it checks whether ρ is a simulation relation between S and
the current abstraction of T (Solve step). Third, if the check succeeds, it refines the current abstraction of
T (Refine step) and synthesizes new relationρ. Otherwise, it looks for a better abstraction α of T (Abstract
step). The algorithm terminates when either no refinement or no abstraction is possible. The search space
of the algorithm is shown in Fig. 1(b). SIMABS explores the space of abstractions of T , starting with the
most general abstraction (called αT in Fig. 1(b)) that simulates S , and iteratively refines it until no further
refinement is possible.

In contrast to existing algorithms for checking whether a given relationρ is a simulation relation (e.g., [19,
14, 22]), we reduce the problem to deciding validity of ∀∃-formula. Intuitively, the formula says “for each
behavior of S there exists a corresponding behavior of [α]T ”. Our second contribution is a novel decision
procedure, AE-VAL, for deciding validity of ∀∃-formulas over Linear Real Arithmetic (LRA). Our procedure
is similar to the QE_SAT algorithm of [25]. However, in addition to deciding validity, we also extract a Skolem
relation to witness the existential quantifier. This Skolem relation (called Sk in Fig. 1(a)) is the key to the
Refine step of SIMABS.

We implemented SIMABS and AE-VAL on the top of the UFO framework [1, 16] and an SMT solver Z3 [5],
respectively. We evaluated SIMABS by discovering simulation relations between programs and their LLVM
optimizations. Our results show that SIMABS is able to efficiently find simulation relations between original
and optimized program versions in both directions.

In the rest of the article, is structured as follows. We list the related work in Sect. 2. Then, after defining
notation in Sect. 3, we describe how to reduce the problem of checking a simulation relation to a validity
check of a specific∀∃-formula in Sect. 4. The algorithm AE-VAL designed to solve such formulas and extract
Skolem relation is presented in Sect. 5. Sect. 6 provides implementation details for the algorithm SIMABS.
Sect. 7 presents an evaluation of our implementation of SIMABS. Finally, Sect. 9 concludes the article.

2 Related Work

The notion of simulation relation between programs dates back to Milner [19]. Apart from the first algebraic
formalization of simulation, this work also proposed an idea of abstracting some details from two programs
in order to prove that they realize the same algorithm. Since then, this concept has been widely used in
verification and other areas of computer science.

The first symbolic automatic construction of simulation relations was proposed by Dill et al. in [6]. How-
ever, that work was based on BDDs, so quantifiers are eliminated directly. We target to solve this problem
by exploiting recent advancements in SMT and thus allowing synthesis of non-trivial simulation relations.

The classical approach to check simulation relations is game-theoretic: the state space of the source and
the target programs is traversed by the evader and the pursuer players. For instance, Henzinger et al. [14]
apply it to prove validity of a simulation relation between infinite graphs. In our setting, this result can be
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used to extend SIMABS to deal with programs with different CPGs.
The problem of constructing and checking simulation relation arises in the area of translation valid-

ation. Necula [22] proposes to check automatically correctness of compiler optimizations by checking a
simulation relation. He also proposes a simple heuristic to construct simulation relations. Namjoshi et al.
in [21, 11] propose a more precise way to construct simulation relations, which requires augmenting a par-
ticular optimizer. In contrast, our SMT-based approach combines constructing and checking simulation
relations in the same procedure, and is not restricted to any specific program transformer.

Ciobâcă et al. [4] develop a parametric proof system for proving mutual simulation between programs
written in different programming languages. Strichman et al. [12] perform a program equivalence check in
alternative way, based on Bounded Model Checking. Both approaches do not consider cases when there is
only an abstract simulation, and when there is some other form of simulation relation rather than identity.
Our approach goes beyond these limitations.

Simulation relation is a sort of relative specifications: it describes how the behaviors of programs relate
to each other, but not how they behave individually. Inferring other types of relative specifications were
studied in [17, 9]. Lahiri et al. [17] propose to search for differential errors: whether there exist two beha-
viors of S and T starting from the same input, such that the former is non-failing and the latter is failing.
The proposed solution is by composing S and T into one program and running an off-the-shelf invariant
generator on it. Felsing et.al [9] aims at synthesizing coupling predicates, a stronger relationship than a
simulation relation, since it does not allow programs to have unmatched behaviors. In contrast to SIMABS,
their synthesis method is restricted to deal only with deterministic and terminating programs and does not
require quantifier elimination.

Apart from discovering simulation between programs, there exist other symbolic techniques to prove
equivalence between the programs. For example, [3] checks equivalence of a Verilog circuit and a C program
through encoding and solving quantifier-free SAT formula. [12, 15] attempt to perform the localized check
on the function-call-tree level of C programs. While checking absolute equivalence is hard, there is a group
of techniques [27, 8, 7] that check partial (or relative) equivalence with respect to some assertion (or a set
of assertions). For example, [7] tries to adapt safe inductive invariants corresponding to the nodes of the
program’s Cut Point Graph (CPG) [13]. In Sect. 6 of the paper, we adapt the discovery of inductive simulation
relation for the CPG edges, providing the mapping between variables to be potentially useful in [7].

3 Background and Notation

In this section, we give the necessary definitions of a program, a transition system, and a simulation re-
lation. We use vector notation to denote sets of variables and set-theoretic operations (e.g., subset ~u ⊆ ~x ,
complement ~x ~u = ~x \ ~u , union ~x = ~u∪ ~x ~u ). Throughout the article we assume all free variables are implicitly
universally quantified. For example, we write ϕ(~x ) for ∀~x .ϕ(~x ).

Definition 1. A program P is a tuple 〈Var, Init, Tr〉, where Var ≡V ∪ L ∪V ′ is a set of input, local, and output
variables; Init is a formula over V encoding the initial states; and Tr is a formula over Var encoding the
transition relation.

A state ~s ∈ S is a valuation to all variables in V . While Tr encodes entire computation between initial
and final states, the values of variables in L explicitly capture all intermediate states along the computation.
If for states ~s , ~s ′, there exists a valuation ~l to local variables in L , such that ~s ,~l , ~s ′ |= Tr, we call the pair (~s , ~s ′)
computable. V ′ is used to denote the values of variables of V at the end of the computation. Throughout,
we write ~s ′ for ~s (x ′) andS ′ for { ~s ′ | ~s ∈S }.

Definition 2. Given a program P= 〈Var, Init, Tr〉, a transition systemT (P ) = 〈S ,I ,R〉, whereI = {~s ∈S | ~s |= I ni t }
is the set of initial states,R = {(~s , ~s ′) | ~s ∈S , ~s ′ ∈S ′ . (~s , ~s ′) is computable} is a transition relation.

Throughout, we use programs and their transition systems interchangeably.

Definition 3. Program P1 = 〈V1∪L1∪V ′, Init1, Tr1〉 is an abstraction of program P2 = 〈V2∪L2∪V ′2 , Init2, Tr2〉
iff (1) V2 ⊆V1, (2) Init2 =⇒ Init1, (3) each (~s , ~s ′), that computable in Tr2, is also computable in Tr1.

An example of abstraction is shown in Fig. 2(b)-2(c), where non-determinism is introduced by making
an input variable of the while-loop local.
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int a = *; int b = *;
while(*){

a = a + b;
}

(a) The source

int a = *; int b = *;
while(*){

int c = a - b;
a = c;

}

(b) The target

int a = *;
while(*){

int b = *;
int c = a - b;
a = c;

}

(c) Abstraction of the target

Figure 2: Three programs in C.

Definition 4. Given transition systems S and T , a left-total relation ρ ⊆SS ×ST is a simulation relation if
(1) every state in IS is related by ρ to some state in IT , and (2) for all states ~s , ~s ′ and ~t , such that (~s , ~t ) ∈ρ
and (~s , ~s ′) ∈RS there is some state ~t ′, such that (~t , ~t ′) ∈RT and ( ~s ′, ~t ′) ∈ρ.

We write, T1 �ρ T2, to denote that a transition system T1 is simulated by a transition system T2 via a
simulation relation ρ. We write T1 � T2 to indicate existence of a simulation between T1 and T2. Identity
relation id i.e., pairwise-equivalence of values of common variables, is an example of ρ.

Lemma 1. If P2 is an abstraction of P1 then P1 �id P2.

Lemma 2. If P1 � P2 and P2 � P3 then P1 � P3.

Thus, each program S is simulated by the universal abstractionUof any other program T (which is in fact
the only common abstraction to all possible programs). In our approach we will algorithmically disqualify
such cases and aim at synthesizing total simulation relations to provide the strong level of equivalence
between S and (an abstraction of) T .

Note that the programs in scope of the article are not required to have an error location. Consequently,
the approach proposed in the following sections is not limited to dealing only with safe programs.

4 From Simulation to Validity

In this section, we show that deciding whether a given relation ρ is a simulation relation is reducible to
deciding validity of ∀∃-formulas. We then show how Skolem functions witnessing the validity of the quan-
tifiers are used to refine ρ.

4.1 Deciding Simulation Symbolically

Let S (~s , ~x , ~s ′) and T (~t , ~y , ~t ′) be formulas encoding transition relations of two programs, where ~s and ~t , ~s ′

and ~t ′, ~x and ~y are input, output, and local variables, respectively. Let InitS (~s ) and InitT (~t ) be formulas
encoding the initial states of S and T , respectively. Let ρ(~s , ~t ) denote a left-total relation between variables
of S and T . For simplicity, we omit the arguments and simply write S , T , and ρ, when the arguments are
clear from the context.

Lemma 3. A relation ρ is a simulation relation between S and T iff

InitS (~s ) =⇒ ∃~t .ρ(~s , ~t )∧ InitT (~t ) (1)

ρ(~s , ~t )∧∃~x .S (~s , ~x , ~s ′) =⇒ ∃ ~t ′, ~y . T (~t , ~y , ~t ′)∧ρ( ~s ′, ~t ′) (2)

Implication (1) reflects the matching of initial states of S and T by ρ. The left-hand-side of implica-
tion (2) reflects the set of all behaviors of S and the set of all input conditions matched by ρ. The right-
hand-side of (2) reflects the existence of a behavior in T and an output condition matched by ρ.

Example 1. Consider two programs in Fig. 2(a) and Fig. 2(b). For demonstration purposes, we focus on
the corresponding loop bodies in an arbitrary iteration.1 Assume, the input variables are assigned to some

1Looking ahead, note that checking simulation relation between generic programs with non-trivial Control-Flow-Graphs in our
approach is performed in several phases. While Example 1 demonstrates the phase of checking simulation relation between loop
bodies, the whole-program analysis is demonstrated in Example 5 in Sect. 6.
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constants (X , Y ), as in (3), so the computation starts at the identical states. The fragments of the transition
relation corresponding to the single loop body are encoded into (4):

InitS ≡ (aS = X )∧ (bS = Y ) InitT ≡ (aT = X )∧ (bT = Y ) (3)

S ≡ (a ′S = aS + bS ) T ≡ (cT = aT − bT )∧ (a ′T = cT ) (4)

where the subscript indicates in which program the variables are defined.
Let ρ be a relation between variables of S and T , defined in (5):

ρ ≡ (aS = aT )∧ (bS = bT ) ρ′ ≡ (a ′S = a ′T )∧ (bS = bT ) (5)

ρ is a simulation relation iff the two following formulas are valid:

InitS =⇒ ∃aT , bT . InitT ∧ρ ρ ∧S =⇒ ∃cT , a ′T . T ∧ρ′ (6)

Note that since T is deterministic, the existential quantifiers in (6) are eliminated trivially by substitution. In
our example, the left implication of (6) is valid, but the right implication of (6) simplifies to 0 = 1. Hence,
S 6� ρT .

4.2 Abstract Simulation

There is a practical significance to check whether a program S is simulated by an abstraction αT of a pro-
gram T via relation ρα in cases when the complete simulation is not proven. Our key result is to show that
such abstract-simulation checking can be done without constructing an abstraction explicitly.

We restrict our attention to existential abstraction [2], although the results extend to predicate abstrac-
tion as well. An existential abstraction, α∃~u , of T abstracts a subset of variables ~u from T . Formally, given
~u ⊆ ~t , Init∃

~u (T )
≡ ∃~u . InitT (~t ), and α∃~u (T ) ≡ ∃~u , ~u ′ . T (~t , ~y , ~t ′). For example, the program in Fig. 2(c) is an

existential abstraction of the program in Fig. 2(b), where ~u = {b }.
Deciding whether S is simulated by α∃~u (T ) via ρα(~s , ~t ~u ) (where ~t ~u is the complement of ~u in ~t ) can be

done if the variables ~u are treated as locals in T .

Lemma 4. A relation ρα is a simulation relation between S and α∃~u (T ) iff

InitS (~s ) =⇒ ∃~t ~u , ~u .ρα(~s , ~t ~u )∧ InitT (~t ) (7)

ρα(~s , ~t ~u )∧∃~x .S (~s , ~x , ~s ′) =⇒ ∃~u , ~y , ~t ′ ~u ′ , ~u
′ . T (~t , ~y , ~t ′)∧ρα( ~s ′, ~t ′ ~u ′ ) (8)

Recall that in Example 1, the loop-body S was shown to be not simulated by the loop-body T via identity
relation. Interestingly, this result is still useful to obtain a simulation relation between S and T by creating
an implicit abstraction of T and further refining it. We demonstrate this 2-steps procedure in Example 2.

Example 2. As the first (abstraction) step, we create the abstraction of T by choosing a variable (say b ) to be
existentially quantified. Note that the produced abstraction is equivalent to the program in Fig. 2(c). Instead
of encoding initial states InitαT and a transition system αT from scratch (similarly to (3) and (4)), we let
InitαT ≡ ∃bT . InitT and αT ≡ ∃bT . T .

Relation ρ (disproven to be a simulation between S and T ) is abstracted away in correspondence with
αT :

ρα ≡ (aS = aT ) ρ′α ≡ (a
′
S = a ′T ) (9)

ρα is a simulation relation between S and αT iff the following formulas are valid:

InitS =⇒ ∃aT , bT . InitT ∧ρα ρα ∧S =⇒ ∃cT , a ′T , bT . T ∧ρ′α (10)

Clearly, (10) are valid iff there is a Skolem function for the existentially quantified variable bT . Note that
skbT
(bS ) =−bS is such function:

InitS =⇒ (bT =−bS ) =⇒ ∃aT . InitT ∧ρα (11)

ρα ∧S =⇒ (bT =−bS ) =⇒ ∃cT , a ′T . T ∧ρ′α
As the second (refinement) step, skbT

is used to strengthen the simulation relation ρα between S and αT
to become (12).

ρext
α ≡ (aS = aT )∧ (bS =−bT ) ρ′ext

α ≡ (a ′S = a ′T )∧ (bS =−bT ) (12)

Note that ρext
α is a simulation relation between S and T .
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The detailed definition of the Skolem function, its generalization and application to the simulation-
relation-checking problem is given in Sect. 4.3.

4.3 Refining Simulation by Skolem Relations

We begin with a definition of a Skolem relation:

Definition 5. Given a formula ∃y . f (x , y ), a relation Sky (x , y ) is a Skolem relation for y iff (1) Sky (x , y ) =⇒
f (x , y ), (2) ∃y . Sky (x , y ) ⇐⇒ ∃y . f (x , y ).

In Def. 5, we allow Sky to be a relation between x and y such that (1) Sky maps each x to a value of y
that makes f true, (2.1) if for a given x , Sky maps x to some value of y then there is a value of y that makes
f valid for this value of x , (2.2) if for a given x , there is a value of y such that f holds, then Sky is not empty.
A Skolem relation Sky is functional iff it is given by the form Sky (x , y ) ≡ y = fy (x ) (also known as Skolem
function, as in [26]). Sk ~y is Cartesian if it is a Cartesian product of Skolem relations of individual variables
from ~y . Sk ~y is guarded if it is a guarded disjunction of Cartesian Skolem relations.

In other words, validity of a∀∃-formula is equivalent to existence of an appropriate total Skolem relation.
As sketched in Example 2, our use of a Skolem relation Sk witnessing the validity of the formulas (7,8) is to
refine an abstract simulation relation ρα to ρext

α = ρα ∧ Sk. However, ρext
α is guaranteed to be a simulation

relation only in case if the corresponding formulas (7,8) are valid, thus requiring an extra simulation-check.

Theorem 1. Let S (~s , ~x , ~s ′) and T (~t , ~y , ~t ′) be two programs, such that S �ρ T . Let ~u be a subset of variables in
T (i .e ., ~u ⊆ ~t ), such that S �ρα α

∃
~u (T ) andρ =⇒ ρα. Then, there exists a relation Sk(~s , ~u ) such that (1)ρα∧Sk

is a simulation relation between S and T and (2) Sk is a Skolem relation for ~u in (7) and (8).

Proof. Let ~t ~u be the complement of ~u in ~t , and ~t ′ ~u ′ be the complement of ~u ′ in ~t ′. Having in mindρ =⇒ ρα,
let Sk be a left-total relation over ~s , ~s ′, ~u and ~u ′, such that:

ρ(~s , ~t )≡ρα(~s , ~t ~u )∧Sk(~s , ~u )

ρ( ~s ′, ~t ′)≡ρα( ~s ′, ~t ′ ~u )∧Sk( ~s ′, ~u ′)
(13)

Substituting (13) into (1) and (2), we get (14) and (15) respectively:

InitS (~s ) =⇒ ∃~t ~u , ~u .ρα(~s , ~t ~u )∧Sk(~s , ~u )∧ InitT (~t ) (14)

ρα(~s , ~t ~u )∧Sk(~s , ~u )∧S (~s , ~s ′) =⇒
∃ ~t ′ ~u , ~u ′, ~y . T (~t ~u , ~u , ~y , ~t ′ ~u ′ , ~u

′)∧ρα( ~s ′, ~t ′ ~u ′ )∧Sk( ~s ′, ~u ′)
(15)

Then from (14) and (15), it easy to see that Sk(~s , ~u ) satisfies Def. 5 (it is a Skolem relation) for ~u , respect-
ively in (16) and in (17).

InitS (~s ) =⇒ ∃~t ~u , ~u .ρα(~s , ~t ~u )∧Sk(~s , ~u )∧ InitT (~t ) (16)

∃~u .ρα(~s , ~t ~u )∧S (~s , ~s ′) =⇒
∃ ~t ′ ~u , ~u ′, ~y . T (~t ~u , ~u , ~y , ~t ′ ~u ′ , ~u

′)∧ρα( ~s ′, ~t ′ ~u ′ )∧Sk( ~s ′, ~u ′)
(17)

Consequently, Sk(~s , ~u ) is a Skolem relation for ~u in (19), that is logically weaker than (17); and in (18),
that is logically weaker than (16).

InitS (~s ) =⇒ ∃~t ~u , ~u .ρα(~s , ~t ~u )∧ InitT (~t ) (18)

∃~u .ρα(~s , ~t ~u )∧S (~s , ~s ′) =⇒ ∃ ~t ′ ~u ′ , ~u , ~u ′, ~y . T (~t ~u , ~u , ~y , ~t ′ ~u , ~u ′)∧ρα( ~s ′, ~t ′ ~u ) (19)

Finally, (18) and (19) are respectively equivalent to the simulation-checking-formulas (7) and (8) for S and
α∃~u (T ).

In the next section we will show how formulas (1), (2), (7), and (8) can be solved by iterative quantifier
elimination. On the top of it, we will demonstrate the procedure for discovering guarded Skolem relations.
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5 Validity and Skolem Extraction

We present a novel algorithm, AE-VAL, for deciding validity of ∀∃-formulas and constructing witnessing
Skolem relations. Without loss of generality, we restrict the input formula to have the form S (~x ) =⇒ ∃~y . T (~x , ~y ),
where S has no universal quantifiers, and T is quantifier-free.

5.1 MBP for Linear Rational Arithmetic

Our algorithm is based on a notion of Model-Based Projection (MBP), introduced in [16], that under-approximates
existential quantification. An MBP is a function from models of the formula T (~x , ~y ) to quantifier-free for-
mulas T~y (~x ) iff:

∀m |= T (~x , ~y ) . m |=MBP(m ) (20)

∀m |= T (~x , ~y ) . MBP(m ) =⇒ ∃~y . T (~x , ~y ) (21)

That is, the only ~x variables appear in the image MBP(m ), m is a model of MBP(m ), and MBP(m ) is an
implicant of ∃~y . T (~x , ~y ). Furthermore, for fixed ~y and T , the function MBP is finite. Consequently, there
are finitely many projections T~y1

(~x ), T~y2
(~x ), . . . , T~yn

(~x ), such that ∃~y . T (~x , ~y ) =
∨n

i=1 T~yi
(~x ) for some n . In our

implementation, we are using an MBP function from [16] for Linear Rational Arithmetic (LRA) that is based
on Loos-Weispfenning [18] quantifier elimination.

Loos-Weispfenning (LW) method [18] applies for quantifier elimination in LRA (22). Consider formula
∃~y . T (~x , ~y ), where T is quantifier-free. Following the simplified presentation by Nipkow [23], ~y is singleton,
T is in Negation Normal Form, and y appears in the literals only of the form y = e , l < y or y < u , where
l , u , e are y -free.

∃y . T (~x )≡
� ∨

(y=e )∈lits(T )

T [e ]∨
∨

(l<y )∈lits(T )

T [l +ε]∨T [−∞]
�

(22)

In (22), lits(T )denote the set of literals of T , T [·] stands for a virtual substitution for the literals containing
y . In particular, T [e ] substitutes exact values of y (y = e ), T [l + ε] substitutes the intervals (l < y ) of
possible values of y , T [−∞] substitutes the rest of the literals. Consequently, a function LRAProjT is an
implementation of the MBP function for (22):

LRAProjT (M ) =











T [e ], if (y = e ) ∈ lits(T )∧M |= (y = e )
T [l +ε], else if (l < y ) ∈ lits(T )∧M |= (l < y )∧

∀(l ′ < y ) ∈ lits(T ) . M |= ((l ′ < y ) =⇒ (l ′ ≤ l ))
T [−∞], otherwise

(23)

Additionally, we assume that for each projection T~yi
, the MBP procedure gives a condition φi under

which T is equisatisfiable with T~yi
:

φi (~x , ~y ) =⇒
�

T~yi
(~x ) ⇐⇒ T (~x , ~y )

�

(24)

Such a relation φi is a natural by-product of the MBP algorithm in [16]. Intuitively, each φi captures the
substitutions made in T to produce T~yi

. We assume that eachφi is in the Cartesian form, i.e., a conjunction
of terms, in which each y ∈ ~y appears at most once. That is, for y ∈ ~y and ∼∈ {<,≤,=,≥,>},

φi (~x , ~y ) =
∧

y ∈~y

�

y ∼ fy (~x )
�

(25)

We write (T~yi
,φi )←GETMBP(~y , m , T (~x , ~y )) for an MBP algorithm that takes a formula T , a model m of

T and a vector of variables ~y , and returns a projection T~yi
of T that covers m and the corresponding relation

φi .

5.2 Deciding Validity of ∀∃-formulas

AE-VAL is shown in Alg. 1. Given two formulas S (~x )and∃~y . T (~x , ~y ), it decides validity of S (~x ) =⇒ ∃~y .T (~x , ~y ).
AE-VAL enumerates the models of S ∧T and blocks them from S . In each iteration, it first checks whether S
is non-empty (line 3) and then looks for a model m of S ∧T (line 7). If m is found, AE-VAL gets a projection

7



Algorithm 1: AE-VAL
�

S (~x ),∃~y . T (~x , ~y )
�

Input: S (~x ),∃~y . T (~x , ~y )
Output: r e s ∈ {VALID, INVALID} of S (~x ) =⇒∃~y . T (~x , ~y )
Data: Incremental SMTSOLVER, model m , MBP T~y (~x ), conditionφ(~x , ~y )

1 SMTADD(S (~x ));
2 forever do
3 if (ISUNSAT(SMTSOLVE())) then return VALID;
4 SMTPUSH();
5 SMTADD(T (~x , ~y ));
6 if (ISUNSAT(SMTSOLVE())) then return INVALID;
7 m← SMTGETMODEL();
8 (T~y ,φ(~x , ~y ))←GETMBP(~y , m , T (~x , ~y )));
9 SMTPOP();

10 SMTADD(¬T~y );

T~y1
(~x)

S(~x)

T~y2
(~x)

T~y3
(~x)

9~y · T (~x, ~y)

M1

M2

M3

Figure 3: A Venn diagram for formu-
las from Example 3 (S ,∃T – hexagons,
MBPs – ovals, models – points).

T~y of T based on m (line 8) and blocks all models contained in T~y from S (line 10). The algorithm iterates
until either it finds a model of S that can not be extended to a model of T (line 6), or all models of S are
blocked (line 3). In the first case, the input formula is invalid. In the second case, every model of S has been
extended to some model of T , and the formula is valid.

Possible three iterations of AE-VAL are depicted graphically in Fig. 3. In the first iteration, AE-VAL selects
a model m1 and generalizes it to a projection MBP(m1) = T~y1

. Then, it picks a model m2 that is not contained
in T~y1

and generalizes it to MBP(m2) = T~y2
. Finally, it picks a model m3 that is contained neither in T~y1

nor
in T~y2

, and generalizes it to MBP(m3) = T~y3
. At this point, all models of S are covered by ~y -free implicants of

∃~y . T (~x , ~y ), and the algorithm terminates. We demonstrate this further in the following example.

Example 3. Let ~x ≡ {a , b }, ~y ≡ {a ′, b ′}, and S and T be defined as follows:

S ≡ (a = b +2)

T ≡ (a ′ > a )∧ (b = 1 =⇒ b ′ = b )∧ (b = 2 =⇒ b ′ > b )∧ (b = 3 =⇒ b ′ < b )

We use Φi to denote the formula in the SMT context at the beginning of iteration i of AE-VAL. Initially,Φ1 = S.
The first model is m1 ≡ {a = 0, b =−2, a ′ = 1/2, b ′ =−5/2}. GETMBP(~y , m1, T ) returns:

T1 ≡ (b 6= 1)∧ (b 6= 2) φ1 ≡ (a ′ > a )∧ (b ′ < b )

In the second iteration, Φ2 =Φ1 ∧¬T1, m2 ≡ {a = 4, b = 2, a ′ = 9/2, b ′ = 5/2}, and GETMBP(~y , m2, T ) returns:

T2 ≡ (b 6= 1)∧ (b 6= 3) φ2 ≡ (a ′ > a )∧ (b ′ > b )

In the third iteration, Φ3 =Φ2 ∧¬T2, m3 ≡ {a = 3, b = 1, a ′ = 7/2, b ′ = 1}, and GETMBP(~y , m3, T ) returns:

T1 ≡ (b 6= 2)∧ (b 6= 3) φ3 ≡ (a ′ > a )∧ (b ′ = b )

Since Φ4 =Φ3 ∧¬T3 is unsatisfiable, AE-VAL returns VALID and terminates.

5.3 Extracting Skolem Relation

AE-VAL is designed to construct a Skolem relation Sk ~y (~x , ~y ), that maps each model of S (~x ) to a correspond-
ing model of T (~x , ~y ). We use a set of projections {T~yi

(~x )} for T (~x , ~y ) and the set of conditions {φi (~x , ~y )} that
make the corresponding projections equisatisfiable with T (~x , ~y ).

Lemma 5. For each i , the relationφi (~x , ~y ) is a Skolem relation for ~y in formula S (~x )∧T~yi
(~x ) =⇒ ∃~y . T (~x , ~y ).

Proof. Follows from (21), (24), and (25). Recall, by definition (24), φi (~x , ~y ) =⇒
�

T~yi
(~x ) ⇐⇒ T (~x , ~y )

�

.
Unfolding Def. 5, we need to show that:
1)φi (~x , ~y ) =⇒ (S (~x )∧T~yi

(~x ) =⇒ T (~x , ~y )) – by definition (24).
2) ∃y .φi (~x , ~y ) ⇐⇒ (S (~x )∧T~yi

(~x ) =⇒ ∃~y . T (~x , ~y )) – since by construction (25), φi is total relation, and an
implication in the definition of MBP (21) is valid.
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Intuitively, φi maps each model of the subset S ∧T~yi
of S to T . Moreover, φi are not disjoint (e.g., see

Fig. 3). Thus, to define the Skolem relation Sk, we need to address two issues: (1) we need to find a parti-
tioning {Ii }ni=1 of S , and (2) each partition must be associated with an appropriateφi .

The constraints on the partitions Ii are as follows. First, a partition Ii must cover all models of T~yi
that are

not already covered by other elements of Ii . Second, it should not include any models that are not contained
in T~yi

. Writing these requirements formally, we get the following system of constraints:











































S (~x )∧T~y1
(~x ) =⇒ I1(~x )

S (~x )∧T~y2
(~x )∧¬T~y1

(~x ) =⇒ I2(~x )
...

S (~x )∧T~yn
(~x )∧¬T~y1

(~x )∧¬T~y2
(~x )∧ ...∧¬T~yn−1

(~x ) =⇒ In (~x )
S (~x )∧ I1(~x )∧¬T~y1

(~x ) =⇒ ⊥
...

S (~x )∧ In (~x )∧¬T~yn
(~x ) =⇒ ⊥

(26)

Note that in (26), S and {T~yi
} are first-order formulas, and {Ii } are uninterpreted predicates. The set of con-

strains corresponds to a set of recursion-free Horn clauses. Thus, we can find an interpretation of the pre-
dicates {Ii } using a Horn-clause solver. In our implementation, we use the solver of Z3, but other solutions,
for example, based on interpolation, are also possible.

We now define the guarded Skolem relation Sk ~y (~x , ~y ) as follows:

Sk ~y (~x , ~y )≡



















φ~y1
(~x , ~y ) if I1(~x )

φ~y2
(~x , ~y ) else if I2(~x )

· · · · · ·
φ~yn
(~x , ~y ) else In (~x )

(27)

The following theorem states that for the chosen model ~x , Sk ~y (~x , ~y ) satisfies Def. 5, and that Sk ~y (~x , ~y ) is
defined for all models of ~x .

Theorem 2 (Soundness and Completeness of Skolem Relation). If the set {Ii (~x )} is a solution to (26), and
Sk ~y (~x , ~y ) is as in (27) then: (1) Sk ~y (~x , ~y ) is a Skolem relation for ~y in formula S (~x ) =⇒ ∃~y . T (~x , ~y ), (2)
S (~x ) =⇒

∨n
i Ii (~x ).

Proof. (1) follows immediately from Lemma 5 the last n constraints of (26). (2) follows immediately from
the first n constraints of (26).

Example 4. A partitioning I1, I2, I3 that determines a Skolem relation for Example 3 is: I1 ≡ (b 6= 1)∧ (b 6= 2),
I2 ≡ b ≥ 2, and I3 ≡ b = 1.

Constructing a Minimal Skolem relation. Any solution to (26) creates a Skolem relation. But not all
Skolem relations are equal. In practice, we often like a Skolem relation that minimizes the number of vari-
ables on which each partition depends. For example, in Example 4, we have chosen a partition that only
depends on the variable b alone. A simple way to find a minimal solution is to iteratively restrict the num-
ber of variables in each partition in (26) until no smaller solution can be found. We leave the problem of
finding the minimum partitioning for future work.

6 Simulation-Abstraction-Refinement Loop

This section generalizes the approach of the symbolic simulation discovery to programs with non-trivial
Control Flow Graphs. Assuming that programs S and T are loop-free, αT is an abstraction of T and ρα
encodes a relation between S and αT (as in Sect. 4), the check S �ρα αT is done by constructing two ∀∃-
formulas of the form (7) and (8), and by applying the AE-VAL algorithm to decide validity (as in Sect. 5.1).
Furthermore,ρα andαT might be refined by means of a Skolem relation (which extraction is shown in Sect. 5.3).

In contrast to the programs with simplified structure considered in Sect. 4, realistic programs involve
communication of two or more components with independent transition relations. Simulation relation
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Algorithm 2: SIMABS(S , T )

Input: programs S and T , quality metricQ :α→{>,⊥}
Output: an abstraction αext T ,
and a simulation relation ρext

α , such that S �ρext
α
αext T

1 αext T ← T ;
2 forever do
3 αpreT ←αext T ;
4 αT ,ρα← FINDABS(S , T );
5 if (αT 6=U) then
6 return U,∅
7 αext T ,ρext

α ← EXTEND(S ,αT ,ρα);
8 if (Q(αext T )∨ (αpreT =αext T )) then
9 return αext T ,ρext

α

Algorithm 3: FINDABS(S , T )

Input: programs S and T
Output: an abstraction αT , a simulation relation ρα,

such that S �ρα αT

1 for each (u , v ) ∈ E do
2 ρ(v )← SYNTHESIZE(τS (u , v ),τT (u , v ));
3 if (τS (u , v ) 6� ρτT (u , v )) then
4 αT ←WEAKEN(T , Var(u )∪Var(v ));
5 if (αT 6=U) then
6 return FINDABS(S ,αT );
7 else
8 return U,∅;
9 return T ,ρ;

Algorithm 4: EXTEND(S ,αT ,ρα)

Input: programS ,abstraction αT ,simulationrelation ρα
Output: abstraction αext T , simulation relation ρext

α

1 ρext
α ←ρα;

2 αext T ←αT ;
3 WL← E ;
4 while (W L 6=∅) do
5 (u , v )←GETEDGE (WL);
6 WL←WL \ {(u , v )};
7 if (τS (u , v )�ρext

α
ταext (T )(u , v )) then

8 ρext
α (u )←ρ

ext
α (u )∧SKOLEM(u , v,ρext

α );
9 αext T ← STRENGTHEN(αT ,Sk );

10 WL←WL∪{(u , x ) ∈ E | x ∈CP}∪ {(y , u ) ∈ E | y ∈CP};
11 else return αT ,ρα;
12 return αext T ,ρext

α ;

Algorithm 5: SYNTHESIZE(S , T )

Input: loop-free programs S , T
Output: a candidate relation ρ

1 return
∧

a ′S∈V ′S ,a ′T ∈V ′T
(a ′S = a ′T );

Algorithm 6: WEAKEN(T ,U )

Input: program T , U ⊆VarT

Output: abstraction αT
1 guess U ′ ⊆U ;
2 return α∃U ′ (T );

Algorithm 7: STRENGTHEN(αT ,Sk )

Input: abstraction αT , relation Sk
Output: abstraction αext T

1 U ext ←Var(Sk );
2 return α∃U ext (T );

should be discovered independently for each pair of the matched components and then inductively checked
for the compatibility with the pairs of the remaining components. We propose an algorithm SIMABS that
implements a complete Simulation-Abstraction-Refinement Loop and enables such inductive reasoning.

We use the Cut Point Graph (CPG) representation of a program and treat each program as a graph
〈CP, E 〉. Here CP is the set of locations which represent heads of the loops (called cutpoints), and E ⊆CP×CP
is the set of longest loop-free program fragments. For example, CPGs of programs in Fig. 2(a)-2(b) are shown
in Fig. 4(a)-4(b) respectively. We assume that the considered programs S and T share the graph 〈CP, E 〉, but
might have different labeling of the edges by first-order formulasτS ,τT : E → E x p r encoding the transition
relations of S and T respectively: τS 6=τT .

SIMABS gets as input two programs S and T . The output is an abstraction αT of T and a simulation re-
lationρext

α , such that S �ρext
α

T , if such abstraction exists. In the presentation, we assume that S and T share
the set of cutpoints CP, but might have different interpretation of control-flow edges by loop-free program
fragments. However, our algorithm extends to the general case where S and T have different cutpoints as
well.

SIMABS uses FINDABS (which in turn uses SYNTHESIZE) to guess an initial relationρ. The initial guess can
be an arbitrary total relation between the CPGs of S and T . In our implementation, for every cutpoint, we
take ρ to be the identity relation between the live variables2 of S and T at that cutpoint, that have identical
names. Then, FINDABS checks whether there exists an abstractionρα ofρ (includingρ itself) that is a sim-
ulation relation between S and a corresponding abstraction αT of T . If this succeeds, the method EXTEND

is used to refine the abstraction αT to αext T and the simulation relation ρα to ρext
α . This process continues

until the abstraction is satisfied by some quality metric Q (line 8) (for example, if it is sufficient to (dis-
)prove some safety property of T ) or it is equivalent to an abstraction produced in the previous iteration
(line 3). Otherwise, SIMABS goes into the next iteration and finds another abstraction. If the only universal
abstraction U can be constructed, SIMABS terminates with a negative result (line 5).

FINDABS (shown in Alg. 3) iteratively checks for each edge (u , v )∈E (line 3), whether a synthesized ρ is
a simulation relation between the loop-free program fragment τS (u , v ) labeling the (u , v )-edge in S and the
corresponding loop-free program fragment τT (u , v ) labeling the (u , v )-edge in T . If the check succeeds for
all edges, ρ is returned to the user. Otherwise, FINDABS chooses an abstraction αT of T using the method

2Informally, a variable is live if its current value is used in the program computations.
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CP0en a:=a+bb:= ⇤
a:= ⇤

(a)

CP0en c:=a-b
a:=c

b:= ⇤
a:= ⇤

(b)

Figure 4: CPGs of programs in Fig. 2(a)-2(b).

WEAKEN, and repeats the check for S and αT . WEAKEN introduces non-determinism to the interpretation
of control-flow edges of T . In our implementation, WEAKEN existentially abstracts of a subset of input vari-
ables (and its input variants) of the edge (u , v ) for which the simulation check has failed. For each iteration
of SIMABS, FINDABS is given a concrete program T , and always constructs a new abstraction from scratch.

EXTEND (shown in Alg. 4) gets as input S , αT , and ρα and constructs a refinement ρext
α of simulation

relation ρα, and the corresponding strengthening αext T of αT . EXTEND maintains a work-list WL of CPG
edges to be processed. Initially, WL is populated with all the CPG edges E (line 3). In each iteration, EXTEND

refines simulation relation by adding a Skolem relation Sk to ρα of the destination node of the current CPG
edge (line 8). Sk is produced for the existentially abstracted input variables of αT on the current CPG edge
and is also used to strengthen αT (line 9). Finally, EXTEND updates WL with the outgoing edges from u
and other incoming edges to u (line 10) and iterates until WL is empty (line 12). If in some iteration, a
strengthening is impossible, EXTEND returns the last successful values for ρext

α and αext T .
It is worth reminding that for every iteration of FINDABS, as well as for every iteration of EXTEND, there is

a need to decide validity of simulation-abstraction-checking formulas (7) and (8). For this goal, we invoke
AE-VAL (Alg. 1). Algorithm SKOLEM, used as a subroutine of EXTEND, is an essential extension AE-VAL that
produces a Skolem relation as in (27). Notably, it does not extract Skolem relation for local variables, but
does it only for existentially abstracted output variables of the current CPG egde.

Recall the source and the target programs from Fig. 2(a)-2(b). In Example 2, we found simulation re-
lation between their loop bodies. In the following, we show how SIMABS is used to discover a simulation
relation between whole-programs.

Example 5. The programs from the example share the set of cutpoints CP = {en, CP0}, and the set of CPG
edges E = {(en, CP0), (CP0, CP0)}. First, FINDABS considers the CPG edge (en, CP0), and synthesises an iden-
tity relation ρ ≡ (aS = aT )∧ (bS = bT ) which is then proven to be a simulation relation for the current edge.
Then FINDABS considers the CPG edge (CP0, CP0) and checks whether ρ (and its variant ρ′) is an inductive
simulation relation for the current edge. Since this check does not succeed (recall Example 1), WEAKEN pro-
duces an implicit abstraction of the target, by eliminating a (preferably, minimal) subset of variables (e.g.,
{b } ⊂ {a ,b }), and FINDABS recursively calls itself.

In the second iteration of FINDABS, E is traversed again, and relation ρα ≡ (aS = aT ) is checked w.r.t. the
source and the abstraction of the target. Since the check succeeds for all two edges, EXTEND extracts Skolem
relation and uses it to create ρext

α ≡ (aS = aT )∧ (bS = −bT ), and STRENGTHEN the abstraction of the target to
become the target itself. SIMABS successfully terminates, and discovery of simulation relation is completed for
the whole-programs.

7 Evaluating SimAbs and AE-VAL

We implemented SIMABS and AE-VAL in the UFO framework. As an SMT and Horn solver AE-VAL uses
Z3. We evaluated them on the Software Verification Competition (SVCOMP) benchmarks and constprop,
globalopt, instcombine, simplifycfg, adce, and mem2reg optimizations of LLVM.3 The constprop
performs constant propagation, the globalopt transforms global variables, the instcombine simplifies
local arithmetic operations, the simplifycfg performs dead code elimination and basic block merging,
the adce performs aggressive dead code elimination, and mem2reg promotes memory references to be re-
gister references. Notably, combinations of the optimizations provide more aggressive optimizations than
each individual optimization, thus increasing a semantic gap between the original and the optimized pro-
grams. In our evaluation, we aim at synthesizing simulation relations for programs with a bigger semantic
gap and empirically demonstrate the power of AE-VAL (that is expected to have a higher number of AE-VAL
iterations in such cases).

3LLVM optimizations are documented at http://llvm.org/docs/Passes.html.
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Figure 5: Pie chart and running times in the spherical coordinate system.

For each source program (S ) (300 - 5000 lines of source code), we created an optimized program (T ) by
combination of all optimizations and applied SIMABS to discover two simulations: S � T and T � S . We
chose 228 benchmarks for which SIMABS terminates within 10 minutes. We present the results in two dia-
grams in Fig. 5. Each diagram is a pie chart and a collection of SIMABS execution times for each benchmark
in the spherical coordinate system. The pie chart in Fig. 5(a) represents a proportion of four main classes
of SIMABS results:

: T simulates S via identity relation;

: T simulates S via some Skolem-relation-based ρ;

: some abstraction αT simulates S ;

: we did not find an abstraction αT that simulates S .

Each dot represents a runtime of SIMABS on a single benchmark. It is placed in one of the circular sectors,
, , or , with respect to the outcome, and is assigned the unique polar angle and the radial distance

to represent time in seconds. For example, a benchmark on which S�id T solved in 20 seconds is placed in
the sector in a distance 20 from the center. Being closer to the center means being faster. Runs that took
longer than 60 seconds are placed on the boundary. Fig. 5(b) is structured similarly, but with inverse order
of S and T .

The experiment shows that SIMABS is able to discover simulation relations between S and T in both
directions. While in many cases (101 in Fig. 5(a), and 65 in Fig. 5(b)) it proved simulation by identity, in
the remaining cases SIMABS goes deeper into the simulation-abstraction-refinement loop and in 124 and
160 cases respectively delivers either a complete simulation or an abstract simulation. SIMABS is effective
in both directions of S � T , and terminates with a positive result in all, but 3 pairs of programs (this cases
correspond to the disqualified simulations by the universal abstraction).

The core solving engine, AE-VAL, invoked in the low level of SIMABS was shown to be effective while
eliminating quantifiers. Overall, it solved 84587 formulas (each formula contains up to 1055 existentially
quantified variables, and requires up to 617 iterations to decide validity), and extracted 3503 Skolem rela-
tions.

7.1 Evaluating other optimizations

In addition to simulation discovery for the combination of optimizations (described in Sect. 7 and depicted
in Fig. 5), we applied SIMABS to discover simulation relations between the source program and the target
program resulted from individual (and therefore, less aggressive) optimizations.
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Figure 6: constprop, globalopt, adce

...
..

..
....

...

.. .

...

. .

..

...

.

.
.
.
.

.

.

.

.

. . .

.

.

.

. ... .. . ...... .. .. . ..

.

..

.

.

. . .. .

.

.

.

.
. .

.

.

.

.
.

.

.
.

.
.

. . .

.

.

.
.

.
..
.

.
.

. . .
.

. .
.

..
.

. . . . .
.
.
.. .

. .

.

.

.. ..

. .

....
.
.
.
.

.

.

.
. .
........

.

. . .

.

.. .. ... . ... ................................

..

.

.

.
.
..

..
..

..
.

.
.

.
.......... 20 40 60

sec

S � TS � ↵T

S 6� ↵T S � T
id

(a) Simulation of S by T

...

..

........
.

.
.

.
.

.
.

.
........

.

.

.

.
..

..
.. .
.

.

...

..

..

.. .

.

.
.. .

.

.. .

.. . .. ... ... . . . ..

....

..

..

.

... . .

.

.

.
.

.

. .

.

.

.

.
..

.

.

.
.

.

.
.

.
.

.

. . .

.

.

.
.

.
.
.
.

.
.

. .
.

.
.

.
.

..
.

.
.

.
. .

..
........ ... .

.
. .

..

.

.
. .

.

.. ..

.

.

..

.

.. ... ..............................

..

.

.

.
.
..

..
..

..

.
.
.

.
20 40 60

sec

id

T � S

T � ST � ↵S

T 6� ↵S

(b) Simulation of T by S

Figure 7: instcombine, simplifycfg

Fig. 6 depicts the effect of optimizationsconstprop, globalopt, adce. SIMABS was able to discover
mutual simulation relation between S and T in 223 cases out of 228 ones. This can be explained by our
intuition that the considered optimizations are relatively lightweight.

Fig. 7 depicts the effect of optimizations instcombine, simplifycfg. SIMABS performs similarly to
the experiment in Fig. 5, but it was able to discover 3 more total simulation relations in the direction S � T
and 2 more total simulation relations in the direction T � S .

Our experiments for discovering simulation relations individually for instcombine, were identical to
the case of instcombine, simplifycfg. We therefore omit presenting the corresponding figures.
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Figure 8: Discovering simulation for program mutants.

7.2 Application to mutation testing

We demonstrate the applicability of SIMABS to a rather different scenario from proving correctness of com-
piler optimizations. Mutation testing is used to evaluate the quality of program specification. The idea is
to generate a so called program mutant using a small random change. It could change arithmetic oper-
ations (e.g., “+” to “-”, as in Fig. 2(a)-2(b)). Finally, the goal of testing is to kill such mutant (i.e., to prove
that it is inconsistent with the given specification), and therefore to demonstrate that the change brakes the
specification.

We expand this idea and move it into the verification domain. More specifically, for a given program
S , we generate a mutant program T and then proceed with synthesizing a simulation relation between S
and T . The results of the experiment are shown in Fig. 8. SIMABS was applied to 352 pairs of S and T , but
succeeded in synthesis of total simulation relation (i.e., S � T ) less than in 10% of cases (21 cases for S � T
and 34 cases for T � S ). On the the other hand, SIMABS was unable to find any abstraction αT , such that
S �αT in more than in 8% cases (45 cases for S 6�αT and 31 cases for T 6�αS ). Both numbers significantly
differ from the correspondent ones in the experiments from Sect. 7.1: number of ? � ? results was much
larger, and the number of ? 6�α?was much lower. Intuitively, this means that our mutation was successful,
and the correspondent program mutants were killed.

8 Experimental data

In this section, we present the raw data from our experiment, explained in details in Sect. 7. There are 2
tables corresponding to the following cases:

• Table 1 for S and T mutually simulated (via identity relation or some synthesised relation);

• Table 2 for S and T mutually simulated on abstraction level.

Each Table gathers the experimental data corresponding to the SIMABS run for different optimization
passes. The more aggressive optimizations are highlighted by the darker color. The columns with the less
dark color (the leftmost and the rightmost) correspond to the less aggressive optimizations: constprop,
globalopt, adce (depicted in Fig. 6). The columns with the middle dark color correspond toinstcombine,
simplifycfg optimizations (depicted in Fig. 7). Finally, the columns with the darkest color (two central
ones) correspond to the most aggressive optimizations (combination of all, depicted in Fig. 5). For all 6
experiments, we provide the result of simulation discovery and the total execution time. Full results are
available at http://www.inf.usi.ch/phd/fedyukovich/niagara.
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Benchmark acronym

-constprop
-globalopt
-adce

-instcombine
-simplifycfg

-constprop
-globalopt
-adce
-instcombine
-simplifycfg

-constprop
-globalopt
-adce
-instcombine
-simplifycfg

-instcombine
-simplifycfg

-constprop
-globalopt
-adce

Result Time Result Time Result Time Result Time Result Time Result Time
module_drbd_u0 S �id T 1.04 S �id T 1.03 S �id T 1.07 T �id S 1 T �id S 1.06 T �id S 1.07
module_drivers_u3 S �id T 1.09 S �id T 1.05 S �id T 0.99 T �id S 1.1 T �id S 1.04 T �id S 1.04
usb_s0 S �id T 235.51 S �id T 262.28 S �id T 258.88 T �id S 207.08 T �id S 211.8 T �id S 236.39
32_vp7045_main0_s3 S �id T 19.03 S �id T 19.79 S �id T 19.16 T �id S 19.2 T �id S 19.04 T �id S 19.1
32_vp7045_main1_s3 S �id T 95.43 S �id T 95.69 S �id T 95.53 T �id S 95.13 T �id S 96.34 T �id S 94.9
32_tps6105x_s0 S �id T 3.68 S �id T 3.52 S �id T 3.59 T �id S 3.62 T �id S 3.62 T �id S 3.57
32_tps6105x_s3 S �id T 1.54 S �id T 1.35 S �id T 1.3 T �id S 1.52 T �id S 1.54 T �id S 1.56
32_isdn_u0 S �id T 4.86 S �id T 5.08 S �id T 4.93 T �id S 4.92 T �id S 5.3 T �id S 4.97
32_isdn_u3 S �id T 4.54 S �id T 4.67 S �id T 4.69 T �id S 4.64 T �id S 4.61 T �id S 4.72
32_vivi_u0 S �id T 291.23 S �id T 291.21 S �id T 291.38 T �id S 289.51 T �id S 294.87 T �id S 293.4
32_scsi_u0 S �id T 19.56 S �id T 19.59 S �id T 19.65 T �id S 19.59 T �id S 19.45 T �id S 19.43
32_keucr_u0 S �id T 4.76 S �id T 2.58 S �id T 2.49 T �id S 4.77 T �id S 4.8 T �id S 4.71
32_usb_u0 S �id T 7.1 S �id T 3.74 S �id T 3.81 T �id S 3.82 T �id S 3.71 T �id S 7.03
diskperf_simpl1_s0 S �id T 82.15 S �id T 78.69 S �id T 78.07 T �id S 79.25 T �id S 80.96 T �id S 80.63
kbfiltr_simpl2_u0 S �id T 2.26 S �id T 2.1 S �id T 2.14 T �id S 2.2 T �id S 2.27 T �id S 2.22
kbfiltr_simpl2_u3 S �id T 1.94 S �id T 1.97 S �id T 1.9 T �id S 1.9 T �id S 1.91 T �id S 1.9
kbfiltr_simpl1_s0 S �id T 0.54 S �id T 0.42 S �id T 0.4 T �id S 0.54 T �id S 0.51 T �id S 0.46
kbfiltr_simpl2_s0 S �id T 0.34 S �id T 0.31 S �id T 0.38 T �id S 0.34 T �id S 0.34 T �id S 0.35
diskperf_s3 S �id T 1.46 S �id T 1.22 S �id T 1.18 T �id S 1.43 T �id S 1.45 T �id S 1.42
kundu_s3 S �id T 290.52 S �id T 260.55 S �id T 256.66 T �id S 290.03 T �id S 297.13 T �id S 287.81
kundu1_u3 S �id T 5.34 S �id T 5.51 S �id T 5.42 T �id S 5.62 T �id S 5.53 T �id S 5.28
kundu2_u3 S �id T 225.29 S �id T 219.85 S �id T 220.45 T �id S 221.87 T �id S 225.33 T �id S 221.92
pc_sfifo_1_s3 S �id T 22.43 S �id T 22.72 S �id T 22.98 T �id S 22.44 T �id S 22.78 T �id S 22.75
pc_sfifo_1_u3 S �id T 13.64 S �id T 13.39 S �id T 13.68 T �id S 13.72 T �id S 13.49 T �id S 13.8
pc_sfifo_2_s3 S �id T 28.71 S �id T 28.47 S �id T 28.92 T �id S 29.23 T �id S 28.57 T �id S 28.47
pc_sfifo_2_u3 S �id T 26.91 S �id T 27.66 S �id T 27.31 T �id S 27.26 T �id S 26.97 T �id S 26.87
token_ring.01_s3 S �id T 3.02 S �id T 3.23 S �id T 3.12 T �id S 3.28 T �id S 3.14 T �id S 3.1
token_ring.01_u3 S �id T 1.62 S �id T 1.6 S �id T 1.74 T �id S 1.54 T �id S 1.66 T �id S 1.69
token_ring.02_s3 S �id T 18.34 S �id T 18.37 S �id T 17.86 T �id S 18.18 T �id S 18.41 T �id S 18.16
token_ring.02_u3 S �id T 17.48 S �id T 17.78 S �id T 17.7 T �id S 17.4 T �id S 17.37 T �id S 17.47
token_ring.03_s3 S �id T 169.52 S �id T 171.06 S �id T 170.95 T �id S 171.27 T �id S 170.48 T �id S 170.67
token_ring.03_u3 S �id T 174 S �id T 175.24 S �id T 176.84 T �id S 176.25 T �id S 175.79 T �id S 176.13
transmitter.01_u3 S �id T 1.87 S �id T 1.84 S �id T 1.77 T �id S 1.88 T �id S 1.86 T �id S 1.84
transmitter.02_u3 S �id T 7.84 S �id T 7.75 S �id T 7.7 T �id S 8.05 T �id S 7.68 T �id S 7.49
transmitter.03_u3 S �id T 78.9 S �id T 78.1 S �id T 77.78 T �id S 77.2 T �id S 77.64 T �id S 78.67
mps3_01_u3 S �id T 0.58 S �id T 0.58 S �id T 0.65 T �id S 0.6 T �id S 0.58 T �id S 0.6
mps3_02_u0 S �id T 0.6 S �id T 0.64 S �id T 0.65 T �id S 0.59 T �id S 0.54 T �id S 0.62
mps3_04_u0 S �id T 0.76 S �id T 0.8 S �id T 0.79 T �id S 0.8 T �id S 0.81 T �id S 0.77
mps3_05_u0 S �id T 0.64 S �id T 0.6 S �id T 0.59 T �id S 0.63 T �id S 0.6 T �id S 0.61
mps3_05_u3 S �id T 0.63 S �id T 0.56 S �id T 0.58 T �id S 0.6 T �id S 0.61 T �id S 0.56
mps3_08_u0 S �id T 0.8 S �id T 0.75 S �id T 0.81 T �id S 0.72 T �id S 0.77 T �id S 0.86
mps3_08_u3 S �id T 0.79 S �id T 0.79 S �id T 0.79 T �id S 0.77 T �id S 0.77 T �id S 0.75
mps3_10_u0 S �id T 0.59 S �id T 0.58 S �id T 0.61 T �id S 0.64 T �id S 0.61 T �id S 0.62
mps3_10_u3 S �id T 0.61 S �id T 0.59 S �id T 0.61 T �id S 0.6 T �id S 0.6 T �id S 0.56
mps3_11_u3 S �id T 0.75 S �id T 0.75 S �id T 0.7 T �id S 0.87 T �id S 0.78 T �id S 0.76
mps3_12_u0 S �id T 0.8 S �id T 0.73 S �id T 0.76 T �id S 0.81 T �id S 0.8 T �id S 0.8
mps3_12_u3 S �id T 0.78 S �id T 0.83 S �id T 0.8 T �id S 0.92 T �id S 0.83 T �id S 0.81
mps3_14_u0 S �id T 0.65 S �id T 0.6 S �id T 0.62 T �id S 0.67 T �id S 0.62 T �id S 0.59
mps3_15_u3 S �id T 0.72 S �id T 0.79 S �id T 0.76 T �id S 0.87 T �id S 0.73 T �id S 0.84
mps3_16_u3 S �id T 0.73 S �id T 0.84 S �id T 0.74 T �id S 0.78 T �id S 0.8 T �id S 0.83
mps3_17_u0 S �id T 0.61 S �id T 0.6 S �id T 0.62 T �id S 0.64 T �id S 0.62 T �id S 0.56
mps3_17_u3 S �id T 0.62 S �id T 0.59 S �id T 0.61 T �id S 0.6 T �id S 0.62 T �id S 0.64
mps3_18_u3 S �id T 0.6 S �id T 0.58 S �id T 0.65 T �id S 0.62 T �id S 0.63 T �id S 0.6
mps3_21_u0 S �id T 0.62 S �id T 0.58 S �id T 0.61 T �id S 0.65 T �id S 0.58 T �id S 0.66
mps3_22_u0 S �id T 0.62 S �id T 0.66 S �id T 0.6 T �id S 0.61 T �id S 0.6 T �id S 0.59
mps3_22_u3 S �id T 0.59 S �id T 0.6 S �id T 0.59 T �id S 0.6 T �id S 0.61 T �id S 0.6
mps3_24_u0 S �id T 0.85 S �id T 0.78 S �id T 0.78 T �id S 0.79 T �id S 0.72 T �id S 0.74
mps3_24_u3 S �id T 0.75 S �id T 0.84 S �id T 0.77 T �id S 0.85 T �id S 0.81 T �id S 0.86
mps3_26_u3 S �id T 0.62 S �id T 0.65 S �id T 0.62 T �id S 0.63 T �id S 0.6 T �id S 0.66
mps3_27_u3 S �id T 0.81 S �id T 0.83 S �id T 0.8 T �id S 0.75 T �id S 0.78 T �id S 0.76
mps3_28_u0 S �id T 0.77 S �id T 0.79 S �id T 0.8 T �id S 0.73 T �id S 0.85 T �id S 0.8
mps3_28_u3 S �id T 0.84 S �id T 0.76 S �id T 0.74 T �id S 0.74 T �id S 0.73 T �id S 0.79
mps3_29_u0 S �id T 0.62 S �id T 0.62 S �id T 0.64 T �id S 0.59 T �id S 0.63 T �id S 0.65
mps3_30_u3 S �id T 0.63 S �id T 0.6 S �id T 0.56 T �id S 0.61 T �id S 0.58 T �id S 0.6
mps3_03_u0 S �id T 0.93 S �id T 0.88 S �id T 0.76 T �ρα∧sk S 4.01 T �ρα∧sk S 4.25 T �ρα∧sk S 3.92

mps3_07_u0 S �id T 0.94 S �id T 0.79 S �id T 0.77 T �ρα∧sk S 4.06 T �ρα∧sk S 4.04 T �ρα∧sk S 4.23

mps3_11_u0 S �id T 0.96 S �id T 0.79 S �id T 0.74 T �ρα∧sk S 4.15 T �ρα∧sk S 3.98 T �ρα∧sk S 4.05

mps3_15_u0 S �id T 0.97 S �id T 0.78 S �id T 0.76 T �ρα∧sk S 3.95 T �ρα∧sk S 4 T �ρα∧sk S 4.16

mps3_19_u0 S �id T 0.91 S �id T 0.74 S �id T 0.76 T �ρα∧sk S 4.03 T �ρα∧sk S 3.98 T �ρα∧sk S 4

mps3_23_u0 S �id T 0.84 S �id T 0.76 S �id T 0.76 T �ρα∧sk S 4.22 T �ρα∧sk S 3.97 T �ρα∧sk S 3.95

mps3_27_u0 S �id T 1 S �id T 0.74 S �id T 0.82 T �ρα∧sk S 3.98 T �ρα∧sk S 4.23 T �ρα∧sk S 4.12

mps3_31_u0 S �id T 0.91 S �id T 0.76 S �id T 0.78 T �ρα∧sk S 4.14 T �ρα∧sk S 3.9 T �ρα∧sk S 4.2

pc_sfifo_1_s0 S �id T 2.37 S �id T 2.3 S �id T 2.37 T �ρα∧sk S 13.53 T �ρα∧sk S 13.4 T �ρα∧sk S 13.32

pc_sfifo_1_u0 S �id T 1.88 S �id T 1.95 S �id T 1.92 T �ρα∧sk S 9.92 T �ρα∧sk S 9.85 T �ρα∧sk S 9.95

Table 1: Mutual simulation for 3 types of optimizations.

9 Conclusion and Future Work

We proposed a solution to the problem of automated discovery of simulations between programs. Our
main contribution is SIMABS, a novel algorithm to automatically synthesize both, abstractions and simu-
lations, between the source and the target programs. If the target does not simulate the source, SIMABS

iteratively performs abstraction-refinement reasoning to detect an abstraction of the target that simulates
the source. In contrast to existing techniques, SIMABS operates by deciding validity of ∀∃-formulas iter-
atively. The second contribution of the paper is AE-VAL, a novel decision procedure that extracts Skolem
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Benchmark acronym

-constprop
-globalopt
-adce

-instcombine
-simplifycfg

-constprop
-globalopt
-adce
-instcombine
-simplifycfg

-constprop
-globalopt
-adce
-instcombine
-simplifycfg

-instcombine
-simplifycfg

-constprop
-globalopt
-adce

Result Time Result Time Result Time Result Time Result Time Result Time
module_mISDN_cil0 S �id T 6.44 S �αT 30.87 S �αT 31.14 T �αS 99.1 T �αS 97.97 T �id S 6.32
module_mISDN_0 S �id T 6.37 S �αT 31.23 S �αT 30.83 T �αS 98.75 T �αS 98.23 T �id S 6.36
usb_usbmouse0 S �id T 20.54 S �αT 14.15 S �αT 14.22 T �αS 113.44 T �αS 111.81 T �id S 21.17
usb_usbhid0 S �id T 17.23 S �αT 13.68 S �αT 13.69 T �αS 115.1 T �αS 113.97 T �id S 17.39
usb_keyspan_cil0 S �id T 8.99 S �αT 6.48 S �αT 6.4 T �αS 39.19 T �αS 39.07 T �id S 8.92
usb_keyspan_0 S �id T 8.81 S �αT 6.41 S �αT 6.58 T �αS 38.79 T �αS 39.41 T �id S 8.72
usb_tablet_cil0 S �id T 7.7 S �αT 5.26 S �αT 5.08 T �αS 31.84 T �αS 32.41 T �id S 7.73
usb_tablet_0 S �id T 7.55 S �αT 4.98 S �αT 5.13 T �αS 32.01 T �αS 31.57 T �id S 7.87
usb_ttusb_cil3 S �id T 289.11 S �αT 516.36 S �αT 505.87 T �αS 315.9 T �αS 323.52 T �id S 291.79
usb_ttusb_3 S �id T 291.58 S �αT 513.93 S �αT 510.35 T �αS 318.29 T �αS 317.8 T �id S 290.5
usb_i14800 S �id T 128.21 S �αT 151.89 S �αT 152.07 T �αS 158.85 T �αS 159.11 T �id S 128.19
32_vp7045_main0_s0 S �id T 7.12 S �id T 7.1 S �αT 12.48 T �ρα∧sk S 24.57 T �id S 7.04 T �id S 7.06

32_vp7045_main1_s0 S �id T 27.06 S �id T 27.58 S �αT 67.05 T �ρα∧sk S 104.16 T �id S 27.8 T �id S 26.83

kbfiltr_u3 S �id T 28.72 S �αT 27.53 S �αT 27.8 T �id S 28.6 T �id S 28.71 T �id S 29.17
mps1_35_u0 S �id T 12.55 S �αT 136.76 S �αT 134.1 T �αS 106.9 T �αS 104.75 T �id S 12.69
mps1_35_u3 S �id T 12.05 S �αT 121.56 S �αT 109.38 T �αS 74.78 T �αS 83.87 T �id S 12.36
mps1_36_u3 S �id T 13.68 S �αT 149.49 S �αT 153.29 T �αS 150.43 T �αS 142.55 T �id S 13.58
mps1_40_u0 S �id T 30.11 S �αT 305.11 S �αT 372.42 T �αS 179.68 T �αS 152.76 T �id S 29.61
mps1_40_u3 S �id T 18.63 S �αT 210.03 S �αT 201.54 T �αS 176.14 T �αS 148.22 T �id S 18.27
mps1_44_u0 S �id T 19.96 S �αT 190.6 S �αT 194.84 T �αS 91.4 T �αS 90.21 T �id S 19.9
mps1_45_s0 S �id T 5.04 S �αT 25.59 S �αT 32.13 T �αS 16.23 T �αS 22.47 T �id S 5.08
mps1_46_s0 S �id T 5.03 S �αT 29.42 S �αT 28.23 T �αS 15.96 T �αS 16.02 T �id S 5.22
mps1_47_s3 S �id T 9.66 S �αT 94.59 S �αT 102.35 T �αS 63.32 T �αS 48.54 T �id S 9.79
mps1_50_u0 S �id T 5.89 S �αT 53.21 S �αT 44.99 T �αS 48.83 T �αS 43.38 T �id S 5.9
mps1_51_u3 S �id T 11.24 S �αT 117.74 S �αT 105.49 T �αS 107.44 T �αS 118.9 T �id S 11.36
mps1_53_u0 S �id T 6.32 S �αT 52.62 S �αT 53.28 T �αS 64.14 T �αS 68.74 T �id S 6.22
mps1_57_s0 S �id T 6.64 S �αT 49.37 S �αT 47.54 T �αS 58.76 T �αS 53.36 T �id S 6.62
mps1_58_s0 S �id T 6.58 S �αT 52.07 S �αT 52.57 T �αS 50.36 T �αS 52.53 T �id S 6.54
mps1_59_s3 S �id T 13.4 S �αT 133.44 S �αT 129.44 T �αS 84.63 T �αS 69.41 T �id S 13.65
mps1_61_s0 S �id T 7.88 S �αT 47.26 S �αT 57.12 T �αS 53.19 T �αS 61.27 T �id S 7.78
mps2_37_s0 S �id T 5.18 S �αT 49.98 S �αT 50.62 T �αS 44.64 T �αS 44.05 T �id S 5.16
mps2_38_s0 S �id T 5.02 S �αT 50.42 S �αT 50.69 T �αS 51.22 T �αS 47.66 T �id S 5.29
mps2_41_u0 S �id T 6.45 S �αT 43.95 S �αT 47.97 T �αS 31.51 T �αS 31.28 T �id S 6.52
mps2_42_u0 S �id T 6.37 S �αT 42.58 S �αT 47.04 T �αS 30.15 T �αS 27.69 T �id S 6.34
mps2_49_s3 S �id T 6.28 S �αT 62.74 S �αT 61.59 T �αS 64.71 T �αS 56.55 T �id S 6.27
mps2_57_s0 S �id T 10.32 S �αT 80 S �αT 85.82 T �αS 88.55 T �αS 93.79 T �id S 10.17
mps2_58_s0 S �id T 10.11 S �αT 92.56 S �αT 76.19 T �αS 76.64 T �αS 86.53 T �id S 10.3
mps2_58_s3 S �id T 6.32 S �αT 61.04 S �αT 62.16 T �αS 65.21 T �αS 70.27 T �id S 6.44
mps3_33_s3 S �id T 5.27 S �αT 35.37 S �αT 40.08 T �αS 30.43 T �αS 29.32 T �id S 5.23
mps3_34_s0 S �id T 5.96 S �αT 45.22 S �αT 42.44 T �αS 42.09 T �αS 40.99 T �id S 5.89
mps3_38_s0 S �id T 7.36 S �αT 52.28 S �αT 51.01 T �αS 32.14 T �αS 32.57 T �id S 7.12
mps3_41_s3 S �id T 7.06 S �αT 29.94 S �αT 31.84 T �αS 34.34 T �αS 33.95 T �id S 6.99
mps3_42_s3 S �id T 7.1 S �αT 34.12 S �αT 29.85 T �αS 25.18 T �αS 33.84 T �id S 7.14
mps3_45_s0 S �id T 8.93 S �αT 56.64 S �αT 51.56 T �αS 41.95 T �αS 33.66 T �id S 8.82
mps3_45_s3 S �id T 5.38 S �αT 29.25 S �αT 29.33 T �αS 27.11 T �αS 27.88 T �id S 5.33
mps3_46_s3 S �id T 5.33 S �αT 31.39 S �αT 34.8 T �αS 23.93 T �αS 22.65 T �id S 5.37
mps3_49_s0 S �id T 9.59 S �αT 71 S �αT 68.14 T �αS 73.4 T �αS 74.45 T �id S 9.46
mps3_49_s3 S �id T 5.86 S �αT 43.3 S �αT 48.14 T �αS 44.73 T �αS 39.46 T �id S 5.89
mps3_50_s0 S �id T 9.91 S �αT 64.25 S �αT 54.84 T �αS 84.53 T �αS 62.79 T �id S 9.7
mps3_50_s3 S �id T 6.39 S �αT 55.01 S �αT 46.67 T �αS 48.33 T �αS 49.02 T �id S 6
mps3_54_s3 S �id T 5.97 S �αT 51.36 S �αT 49.42 T �αS 14.52 T �αS 19.42 T �id S 5.71
mps3_58_s0 S �id T 10.44 S �αT 78.93 S �αT 95.22 T �αS 68.7 T �αS 92.07 T �id S 10.18
mps3_62_s0 S �id T 13.45 S �αT 91.56 S �αT 92.41 T �αS 87.8 T �αS 85.97 T �id S 13.1
mps3_63_u3 S �id T 24.67 S �αT 194.53 S �αT 196.87 T �ρα∧sk S 50.94 T �ρα∧sk S 50.38 T �id S 24.64

mps3_64_u3 S �id T 53.1 S �αT 457.96 S �αT 484.61 T �ρα∧sk S 166.27 T �ρα∧sk S 169.04 T �id S 52.67

mps4_36_u0 S �id T 7.22 S �αT 217.19 S �αT 48.78 T �αS 89.67 T �αS 164.98 T �ρα∧sk S 27.27

mps4_37_u0 S �id T 6.73 S �αT 45.33 S �αT 44.13 T �αS 41.89 T �αS 36.19 T �id S 6.59
mps4_39_u3 S �id T 14.64 S �αT 125.57 S �αT 120.03 T �αS 84.97 T �αS 92.06 T �id S 14.68
mps4_44_u3 S �id T 32.07 S �αT 165.83 S �αT 216.61 T �αS 109.93 T �αS 109.13 T �id S 32.72
mps4_46_u0 S �id T 8.3 S �αT 42.03 S �αT 39.82 T �αS 43.37 T �αS 40.87 T �id S 8.27
mps4_47_u3 S �id T 16.79 S �αT 130.55 S �αT 147.91 T �αS 119.25 T �αS 97.76 T �id S 16.58
mps4_52_s3 S �id T 5.51 S �αT 38.16 S �αT 32.75 T �αS 44.96 T �αS 41.46 T �id S 5.39
mps4_60_s0 S �id T 39.91 S �αT 365.53 S �αT 353 T �αS 344.47 T �αS 302.85 T �id S 40.84
mps4_60_s3 S �id T 25.09 S �αT 249.36 S �αT 243.1 T �αS 159.49 T �αS 166.34 T �id S 25.24
mps4_61_s0 S �id T 10.24 S �αT 65.14 S �αT 68.52 T �αS 57.94 T �αS 57.92 T �id S 10.32
mps4_64_s3 S �id T 35.41 S �αT 267.25 S �αT 251.15 T �αS 61.64 T �αS 60.15 T �id S 34.84
mps5_35_s0 S �id T 5.6 S �αT 135.36 S �αT 37.59 T �αS 66.19 T �αS 172.94 T �ρα∧sk S 21.89

mps5_36_s3 S �id T 5.66 S �αT 43.54 S �αT 37.09 T �αS 44.5 T �αS 37.91 T �id S 5.77
mps5_37_s0 S �id T 5.37 S �αT 46.87 S �αT 45.75 T �αS 32.29 T �αS 31.79 T �id S 5.26
mps5_39_s3 S �id T 15.78 S �αT 104.21 S �αT 89.5 T �αS 74.92 T �αS 102.1 T �id S 15.43
mps5_41_s0 S �id T 5.3 S �αT 32.81 S �αT 30.45 T �αS 34.13 T �αS 28.85 T �id S 5.16
mps5_43_s3 S �id T 26.65 S �αT 200.42 S �αT 210.09 T �αS 157.04 T �αS 132.25 T �id S 26.5
mps5_44_s0 S �id T 35.87 S �αT 283.5 S �αT 291.14 T �αS 274.21 T �αS 303.94 T �id S 36.26
mps5_45_s0 S �id T 8.44 S �αT 66.99 S �αT 69.62 T �αS 46.51 T �αS 50.73 T �id S 8.38
mps5_46_s0 S �id T 8.36 S �αT 61.68 S �αT 66.03 T �αS 32.89 T �αS 47.04 T �id S 8.26
mps5_47_s3 S �id T 20.51 S �αT 173.93 S �αT 178.49 T �αS 110.35 T �αS 110.08 T �id S 20.43
mps5_52_s3 S �id T 8.51 S �αT 63.57 S �αT 71.86 T �αS 71.36 T �αS 70.13 T �id S 8.58
mps5_53_s0 S �id T 7.77 S �αT 71.27 S �αT 66.18 T �αS 34.58 T �αS 35.49 T �id S 7.87
mps5_57_s0 S �id T 7.89 S �αT 58.96 S �αT 56.08 T �αS 51.87 T �αS 53.13 T �id S 7.89
mps5_59_s3 S �id T 20.95 S �αT 189.17 S �αT 174.64 T �αS 186.28 T �αS 187.45 T �id S 20.79
mps5_61_s0 S �id T 11.88 S �αT 89.11 S �αT 80.67 T �αS 82.29 T �αS 92.25 T �id S 12.04
mps5_61_s3 S �id T 6.17 S �αT 46.61 S �αT 43.05 T �αS 16.06 T �αS 16.49 T �id S 6.06
mps5_62_s3 S �id T 6.09 S �αT 36.21 S �αT 43.56 T �αS 16.45 T �αS 16.19 T �id S 5.93

Table 2: Abstract simulation for 3 types of optimizations (fragment).

relations from valid ∀∃-formulas in Linear Rational Arithmetic. The third contribution is our implementa-
tion of SIMABS and AE-VAL that supports (and not limited by) different LLVM optimizer and mutator passes.

In future, we plan to use simulation relations produced by SIMABS to migrate the safe inductive invari-
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ants across program transformations, thus achieving a property-directed equivalence between programs [7].
AE-VAL can be used as a stand-alone solver. We believe, it has a great potential, and in future we plan to
apply it for other tasks (e.g., [10]) of realizability and synthesis.
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