
GAMLNet: a graph based framework for the
detection of money laundering

Julien Schmidt & Dimosthenis Pasadakis & Madan Sathe & Olaf Schenk

Abstract—The accuracy of classification algorithms in detecting
fraudulent financial activity is critical in assisting human analysts
in the task of preventing financial crime. We consider financial
transactions in the form of a directed graph, and propose
a Graph Neural Network (GNN) model for the identification
of money laundering activity. Our method generates a set of
structurally aware and statistically significant features for each
graph node, and utilizes them as input to the GNN classifier,
that comprises of the combination of the layers of two recently
proposed message passing architectures. The effectiveness of our
approach is demonstrated in experiments with synthetic data
that simulate real-world behaviour, and are infused with seven
anomalous money laundering topologies. The accuracy of our
method is consistently higher than that of other GNNs and tree-
based classification methods over datasets of increasing size and
increasing imbalance between the fraudulent and benign classes.

Index Terms—Anomaly detection, anti-money laundering,
Graph Neural Networks

I. INTRODUCTION

Anti-money laundering (AML) is the problem of preventing
the flow of illicit funds through the financial system. These
illicit transactions manifest as anomalies, or rare observations,
that differ from the expected transactional behaviour of the data.
It is estimated that between 2-5% of the global Gross Domestic
Product is laundered each year [1]. For the detection of this
fraudulent behavior financial institutions traditionally use rule-
based monitoring IT systems to receive alerts on suspicious
transactions. Nevertheless, the evergrowing volume of monetary
transactions and complexity of fraudulent behavior, makes it
increasingly difficult to detect anomalies solely through these
expert systems. This necessitates the development of more
advanced solutions for AML, through the incorporation of
artificial intelligence and the usage of graph based methods [2].

However, due to the sensitive nature of the problem, real-
world data is scarcely available, and significant recent efforts
exist in the direction of creating realistic artificial instances [3],
[4]. The relational nature of these transactional datasets is
commonly represented by a directed graph, with its nodes
representing the financial entities involved, e.g., companies,
individuals, and the edges describing details regarding the
transactions, e.g., amount and time. This latent graphical
structure offers a global perspective and reveals fraudulent
behavior as anomalies in the graph, that will otherwise be
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unnoticed if transactions are described as independent vectors
of characteristics.

Anomaly detection approaches for such graphs are commonly
based on neural networks that learn representations on which
anomalies are spotted. Generative adversarial networks have
also been proposed that employ long short-term memory
autoencoders (LSTMs) to separate fraudulent and benign nodes
using their historical data [5]. In [6] the authors propose a
semi-supervised learning approach based on encoder-decoder
GNNs. A key challenge for all aforementioned methods is
the highly imbalanced nature of the problem, with money
laundering topologies typically accounting for a very small
fraction of the data, thus hindering the ability of the algorithms
to learn the characteristics of the anomalous nodes [2].

We propose a framework for the detection of money
laundering activity that employs a tailored GNN architecture
for the classification of fraudulent accounts. Initially, we
generate a set of features that are both structurally aware and
statistically significant, and are specifically selected in order
to provide distinguishable characteristics for each account. We
then consider the latest research conducted in Message Passing
Neural Networks (MPNNs) [7] , and introduce the Graph
Anti-Money Laundering Network (GAMLNet). The proposed
architecture is designed to maximize the discovery of similar
fraudulent subgraph structures, and to identify the statistical
patterns present in the features of a node and those of its
neighbors. Our GNN model comprises of a combination of
Graph Isomorphism Network (GIN) [8] and GraphSAGE [9]
convolutional layers.

In the remainder of this text we discuss the generated features,
and the proposed GNN model in Section II. Then in Section III
we present our experimental setting, and our numerical results
in the created artificial instances. Last, in Section IV, we draw
conclusions from this work.

II. A STRUCTURE-INFORMED GNN FOR ANOMALY
DETECTION

We initially compute in Subsection II-A a set of meaningful
node features from the input financial network, and extract node-
specific structural data and monetary transactional statistics.
The second segment of our approach is the model training and
the evaluation procedure presented in Subsection II-B.

The financial networks considered are multigraphs
G(V,E,W), comprising of V nodes representing bank ac-
counts, and E directed edges capturing the transactions between
them. Nodes are assigned account balances, and each edge
a weight wij with the transaction amount from node i to



Fig. 1: Visualization of the anomalous topologies that are embedded in the data. Starting from the left: cycle, fan-in, fan-out, gather-scatter, scatter-gather,
bipartite, and stacked bipartite.

node j, while the initial and final balance of each node are
also known. The generated feature set is computed from these
transaction amounts, the account balances, and the information
encoded in the adjacency matrix W. Embedded in this financial
network are known money laundering topologies following the
same transaction and temporal rules as benign accounts. The
infused anomalous topologies are visualized in Figure 1, and
the process of generating these synthetic graphs is summarized
in Section III.

A. Feature generation

The node feature generation process provides the model
with a total of l latent statistics that will be utilized in
the learning and classification decisions. We initially con-
sider the structurally informative in-, out-, and total degree
di =

∑n
j=1 wij in both the multigraph and the simple graph

setting, where the multiple edges connecting nodes i, j are
aggregated in a single directed edge. We then compute the
degree frequency of a node i as qi = ds

i/d
m
i , where ds

is the total degree in the simple graph, and dm the total
degree in the multigraph. The next structural features are
based on [10], and are the geometric average of weights of a

node, GAWi =
(∏

j∈N(i) wi

)(⌈r∗dout
i ⌉)−1

, where N(i) is the
neighborhood of node i, wi the arranged in ascending order
incoming and outgoing weights of node i, dout

i the simple graph
out-degree, and r = 1 is a scalar parameter controlling the
percentage of considered out-degrees. The GAW is additionally
computed for the heaviest 10% and 20% of the connected edges
of each node, with r being 0.1 and 0.2, respectively. As a last
structural statistic, we include the z-score of the node degree
of the simple graph based on its mean and standard deviation,
in order to capture when the degree is larger or smaller than
expected at random.

Subsequently, we record incoming and outgoing node trans-
action statistics with the minimum and maximum transaction
amounts, along with their means and standard deviations, and
with the aggregated totals of these transactions. Node features
are also generated based on the minimum, maximum, starting,
and ending balance of each node, and based on the maximum
balance shift, i.e., the minimum account balance subtracted
from the maximum one, and on the limit balance shift, i.e.,
the ending balance subtracted from the starting one.

B. Model description

We propose GAMLNet, a GNN architecture that combines
the strengths of both GIN [8] and GraphSAGE [9] for node
classification. The motivation of our model is based on the
nature of the directed graphs under question, i.e., monetary
transaction networks with scattered anomalous topologies
that exhibit similar structure. The advantage of GIN over
other GNN variants lies in its ability to discern structural
isomorphisms between subgraphs. Using as input only a limited
set of structural features of the graph, and following layers
of propagation and aggregation, it maps nodes with identical
anomalous neighborhood structure to the same embedding
space, thus promoting their discovery. These new latent node
embeddings are concatenated to the full list of generated node
statistics, outlined in Subsection II-A, and form an enhanced,
structurally informed feature set. Subsequently, GraphSAGE
succeeds at learning the statistical nature of anomalies in the
graph, with its mean aggregator function capable of learning
feature distributions. In a feature rich environment such as
the one we provide it with, it excels at identifying anomalous
nodes based on their features, and on those of their neighbors.

Algorithm 1 GAMLNet forward pass algorithm

Input:
Graph G(V,E,W), feature matrix X ∈ R|V |×l,
degree structural features sidx,
number of layers K1,K2

Output: ŷ ∈ R|V |×1 predicted node classification

1: h
(0)

= X[:, sidx]
2: for k = 1 to K1 do
3: for i ∈ V do
4: h

(k)

i =

tanh

MLP(k)((1 + ϵ(k))h
(k−1)

i +
∑

j∈N(i)

h
(k−1)

j )


5: h(0) = concat(X, ϕ1(h

(K1)))
6: for k = 1 to K2 do
7: for i ∈ V do
8: h

(k)
i =

ReLU

(
Θ

(k)
1 h

(k−1)
i +Θ

(k)
2 · mean

j∈N(i)
h
(k−1)
j

)
9: ŷ = argmax(ϕ2(h

(K2)))
10: return ŷ

The GAMLNet architecture is outlined in Algorithm 1.
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Fig. 2: Accuracy in the retrieval of fraudulent nodes for (a) datasets of increasing node size n, and (b) datasets of decreasing anomaly percentage ξ.

Initially, the reduced node feature matrix h
(0)

, containing only
the in- and out-degree features (Line 1), is used as input to
the K1 layers of the GIN model (Line 4). This involves a
multilayer perceptron MLP(k) for the hi node representation
vectors, where N(i) is again the neighborhood of node i, and a
learnable parameter ϵ that scales the weight of each node feature
vector at each layer. The output embedding of GIN is passed
through a linear layer ϕ1, and concatenated with the full feature
matrix X (Line 5) producing a new node representation h(0), to
then serve as input to the K2 layers of the GraphSAGE model
(Line 8). This involves a ReLU activation function with two
learnable parameter matrices Θ1,Θ2, and the representation
vectors hi of node i, and hj of its neighborhood. Last, the
output h(K2) is passed though a linear layer ϕ2 to classify the
nodes into fraudulent or bening (Line 10).

Our model is trained using an Adam optimizer [11] and
a weighted binary cross entropy loss, where the majority
class weight β is scaled between 0 and 1. Optimal model
hyperparemeters are selected via a grid search, and the model
is built and trained using PyTorch and PyTorchGeometric [12],
using the implementations of the GIN and GraphSAGE
convolution layers under the message passing paradigm.

III. NUMERICAL RESULTS

In order to demonstrate the effectiveness of the GAMLNet
model in AML tasks, in Subsection III-A we report the setup
of our experiments, and in III-B the accuracy of classification
assignments for datasets of increasing size and decreasing
anomaly percentage. Then, in Subsection III-C we focus on
its ability to identify the different fraudulent topologies.

Our source code is available at https://github.com/
schmidtjulien/GAMLnet, and the synthetic financial datasets
that were used in our experiments can be downloaded from
https://drive.switch.ch/index.php/s/Sc5o5B7ASni9DHW.

A. Experimental setup

We create synthetic test instances using the AMLSim multi-
agent simulator [3], that generates synthetic banking transaction
data together with a set of known money laundering topologies.
These anomalies include the seven structural patterns, i.e.,
cycle, fan-in, fan-out, gather-scatter, scatter-gather, bipartite,
and stacked bipartite, that are illustrated in Figure 1, and
have a varying number of participating nodes. We consider
cases with a fixed percentage of anomalies ξ = 5% and an
increasing number of nodes n ∈ {8, 16, 32, 64, 128} × 103.
Then, for the case with n = 128×103, we create datasets with
a decreasing percentage of anomalies ξ ∈ {10, 5, 1, 0.5}%.
The classification accuracy of our approach is compared
against (1) GraphSAGE [9], (2) GIN [8], and the decision-
tree based methods, (3) Random Forests (RF) [13], and (4)
XGBoost [14]. For all methods under consideration, the same
set of node features was used, and a grid search was conducted
to identify the optimal hyperparameter setting. We report the
mean and standard deviation after 10 runs, and consider the
train, validation, and test splits, being 50%, 15%, and 35%
respectively, and randomly shuffled across the runs.

Results concerning the accuracy of classification are reported
in terms of F1 score and in terms of the percentage of true
positives, captured in the ACC metric [15]. For both F1 and
ACC a score of 1 suggests a perfect classification accuracy,
while smaller values suggest worse recovery success.

B. Anomaly detection accuracy

We present in Figure 2 comparative results regarding the
accuracy of our method in detecting accounts involved in money
laundering activities. In Figure 2a, for datasets of increasing
size, GAMLNet attains the best accuracy in terms of F1-
score for all cases with F1 = 0.79, 0.80, 0.82, 0.84, and 0.84,
respectively, with the sole other method following closely being
GraphSAGE, and reporting on average 1.2% worse recovery
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Fig. 3: True positive recovery rate of the different fraudulent topologies for all the methods under consideration for the dataset with size n = 128× 103, and
anomaly percentage ξ = 0.5.

rates. The higher accuracy for larger datasets is anticipated due
to the larger size of the training set the algorithms have access
to. In Figure 2b we investigate the performance for test cases
with a fixed number of nodes n = 128×103, and a decreasing
anomaly percentage. The classification accuracy decreases
for smaller percentages of anomalies, as the datasets become
more imbalanced. GAMLNet reports the best accuracy in all ξ
regimes with F1 = 0.84, 0.84, 0.80, and 0.77, respectively. The
largest benefits over all other methods are notably observed
for the most imbalanced case with ξ = 0.5, which is an
anomaly ratio that accurately reflects real-world transaction
networks [2]. There GAMLNet attains F1 = 0.77, and the
second best GraphSAGE F1 = 0.74.

C. Topology identification accuracy

We analyze further the rate of accurate retrieval for each
of the anomalous topologies that are embedded in the test
graphs. For the case with n = 128 × 103 and ξ = 0.5%, we
present in Figure 3 the classification accuracy for the considered
anomalies. GAMLNet achieves an ACC score of 0.82 (cycle),
0.83 (fan-in), 0.48 (fan-out), 0.84 (gather-scatter), 0.94 (scatter-
gather), 0.40 (bipartite), and 0.33 (stacked bipartite). In contrast
to every other model considered, GAMLNet reports either the
top accuracy (cycle, fan-in, gather-scatter, and scatter-gather
topologies), or is less than 1% worse than the top method (RF
for fan-out, GraphSAGE for bipartite and stacked bipartite).
The efficacy of our model to combine the benefits of the GIN
and the GraphSAGE architectures is thus highlighted by its
consistent capability to maintain a top-tier classification score,
regardless of the topology in question.

IV. CONCLUSION & OUTLOOK

In this work, we developed an anomaly detection method for
financial data that are expressed in the form of a directed graph.
We generated a set of structurally informed and statistically

significant features for each node of the graph, and used this
set as input to our GAMLNet model that combines layers from
two state-of-the-art message passing architectures. Our model
detects isomorphisms between graph substructures, and excels
in taking advantage of the rich feature space that we supply
it with. This enabled the accurate identification of accounts
that were involved in money laundering schemes, manifested
as anomalous topologies on the graph. Increased accuracy
gains were exhibited over the competing methods for highly
imbalanced datasets, that are accurate representations of real-
world transaction networks. We intend to further explore the
potential gains of estimating additional node and edge features
that will augment the classification accuracy of our approach.
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