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1 Introduction

A univariate subdivision scheme S, with arity m > 2 is based on repeated application of the refinement rule

= aimifl, i€z o)
JEZ
to generate the refined data f! = {ff : i € 7} for £ > 1 from some initial data f = f° = {f}:ieZ}. The
coefficients a = {a; : i € Z} in (1) constitute the so called subdivision mask, a compactly supported sequence
of real numbers. By attaching the data f to the parameter values ¢! with 7! A tt!=m-fori€Z ( €N one
can establish a notion of convergence to a continuous limit function gy by requiring that the piecewise linear
functions F¢ which interpolate the data at level ¢,

F'th=f, Ff|[t5,,;+l] emn, ieZ, (€N,
where 7; denotes the space of polynomials of degree d, converge in the uniform norm with
gr=1lim F*. )
{—00

It is clear that this limit always exists as long as the subdivision scheme applied to the initial data 6 ={0,:i € Z}
converges in the sense of (2) to the so-called basic limit function ¢, = g5, because by the linearity of the refine-
ment rule we then have
gr=2 pal-—)f’
JEZ
for any initial data sequence f. For more background on subdivision, we refer to the seminal work of Cavaretta,
Dahmen, and Micchelli [1] and the survey by Dyn and Levin [10].
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In this paper, we only consider subdivision schemes that are convergent and non-singular, so that gg =0
if and only if f = 0. Under these assumptions we are interested in schemes that reproduce polynomials in the
following sense.

Definition 1.1. A subdivision scheme S, reproduces polynomials of degree d if it is convergent and if g = p for
any polynomial p € 11,4 and initial data f? = p(t)), i € Z.

Polynomial reproduction is a desirable property because it is directly related to the approximation order of
a subdivision scheme. Indeed, it is straightforward to show that if a scheme reproduces polynomials of degree
d, then the limit function generated from initial data, that was created by uniformly sampling some function
f € C+1 with distance h, approximates f with an error of the order O(h?+1); see [21].

Despite the importance of this property, remarkably few results for systematically deriving the degree of po-
lynomial reproduction can be found in the literature. Most papers either conclude it directly from the scheme’s
construction [3, 4, 8, 19] or show it by explicitly verifying that the refinement rule (1) maps data from some po-
lynomial of low degree to refined data from the same polynomial [11, 13, 15, 24]. Hormann and Sabin [16] were
the first, to the best of our knowledge, to derive the degree of polynomial reproduction for a family of schemes
using simple algebraic considerations and the method was later generalized by Dyn et al. [9] for analysing arbi-
trary primal and dual binary schemes. The main contribution of this paper is to further extend their results and
to derive a unified condition for polynomial reproduction that covers symmetric and non-symmetric schemes
and naturally applies to m-ary subdivision schemes as well (see Section 4). An application of this condition is
the construction of general m-ary pseudo-splines (see Section 5.4), which generalizes the families of primal and
dual binary pseudo-splines in [5] and [9], respectively.

Besides convergence and approximation order, two other important properties of a subdivision scheme are
the support size and the smoothness of its basic limit function. Both are mutually conflicting because a higher
degree of smoothness generally requires a larger support, thus leading to a more global influence of each initial
data value on the limit function. Raising the arity of the subdivision scheme provides a way to overcome this
dilemma to some extent. For example, the ternary and quaternary 4-point schemes discussed in [19] and [24],
respectively, have smaller support and higher smoothness than the classical binary 4-point scheme [6], and all
three schemes reproduce cubic polynomials by construction.

A simple formula for computing the support size of an m-ary subdivision scheme S, can be derived as fol-
lows; compare [17]. Suppose that the mask a is supported on [0, N], thatis, a; =0for i <0 and i > N, and
that the data f* at level ¢ is supported on [0, M]. It then follows from (1) that the refined data f**! is sup-
ported on [0, N + 1m]\£4 ]. For the initial data & we thus conclude by induction over ¢ that the refined data &° is

—m

supported on [0, =N ], and so the support of the corresponding piecewise linear interpolating function is

supp(Af) = # [-1 Lm’ gy 1]. Therefore,

> 1-m
—1i 0 _ N
supp(¢a) = lim supp(A") = [0, ﬁ] .

Despite the advantages of schemes with arbitrary arity regarding the tradeoff between small support size
and smoothness, most of the recent work in this direction [11, 14, 15, 19, 22, 23, 24, 28, 29] did not go beyond
the investigation of quaternary schemes, because the computational effort of a subdivision scheme increases
linearly with the arity. Nevertheless, we believe that having a unified condition for polynomial reproduction of
subdivision schemes with any arity m > 2 is elegant from a theoretical point of view as well as useful for the
design of new schemes.

Another, less explored approach to increase the smoothness of the limit functions is to give up symmetry and
consider subdivision schemes with non-symmetric masks and our condition for polynomial reproduction can
help finding them. As an example we derive a non-symmetric binary 3-point scheme with approximation order
3 which has C? limit functions, while the limit functions of its symmetric sibling are only C! (see Section 5.5).

1.1 Algebraic tools

Many properties of stationary subdivision schemes can be read off the subdivision mask, or equivalently, can be
deduced from algebraic properties of its symbol

az)=) a:z',  zeC\{o},
i€Z
the Laurent polynomial associated with the mask a. For example, a well-known necessary condition for an
m-ary subdivision scheme S, to be convergent is that the symbol a(z) satisfies

a)=m and a(¢ly=0, j=1,...m-—1, (3)



where {4, = exp(% j) are the m-th roots of unity. For binary schemes (m = 2) this was proven by Cavaretta et
al. [1] and Dyn [7], and a proof for general arity can be found in [12] and [18], for example. An alternative form
of condition (3) is
D amia=1,  1=0,..,m-1, @)
i€Z
and under this condition it follows directly from (1) that constant functions are reproduced.
Another property that can be derived easily from the symbol is that a convergent subdivision scheme ge-
nerates polynomials up to degree d (that is, 74 is contained in the space of all limit functions), if and only if

a®giy=0, j=1,...m-1, k=0,..,d. (5)

For binary schemes, this result was first shown by Cavaretta et al. [1] and for arbitrary m > 2 it can be deduced
from [21] as well as from the Strang-Fix conditions [27] by following the explanation in [26]. Clearly, condition (5)
is equivalent to requiring that the symbol a(z) is of the form

__mAd+l
a(z)=(1+z+~-+z'”1)‘“119(2):(11—2) b(z) 6)

for some Laurent polynomial b(z) with b(1)=1/m¢?.

Summarizing the above, polynomial generation is guaranteed by the “correct” behaviour of the symbol a(z)
and its derivatives at all m-th roots of unity ¢ , except ¢ ‘)n =1, and if a(z) behaves “correctly” at this last root of
unity z =1 in addition, then the scheme reproduces polynomials of degree zero. This observation led us to the
idea that polynomial reproduction of higher degree might be connected to the behaviour of the derivatives of
a(z) at z =1, and the main purpose of this paper is to report that this is indeed so.

We first noticed (see Section 2) that the conditions for polynomial generation themselves already have a
strong impact on the values a(¥)(1) and then discovered (see Section 4) that the remaining condition for polyno-
mial reproduction of degree d is

k-1
a(k)(l)zml_[(’r—l), k=0,...,d, @
=0

where 7 is related to the parameterization of the subdivision scheme (see Section 3).

In a nutshell, any convergent subdivision scheme reproduces constant functions. If it further generates
linear functions, then it also reproduces them with respect to the appropriate parameterization, which deter-
mines 7. And if the scheme generates polynomials of degree d > 1 and its symbol further satisfies (7), then it
also reproduces polynomials of degree d and thus has approximation order d + 1.

An important aspect of conditions (5) and (7) is that they are given in terms of specific values of the symbol’s
derivatives at certain points, which is likely to be generalized to the multivariate setting.

2 Subsymbols and their derivatives

We denote the subsymbols of a subdivision symbol a(z) by

ai(z)= amiz", 1=0,..,m=1, zeC\{0}, ®)
i€Z

and remark that the k-th derivative of a subsymbol is

k . -
a )(Z)=qu,z(l)ami+zzml+l 5

i€Z

where gi,; € ny are the polynomials
k-1

qei(x)=] J(mx+1-n). ©)

n=0

We can now establish a remarkable equivalence between the conditions for polynomial generation (5) and the
behaviour of the derivatives of the symbol and its subsymbols at z = 1.



Lemma 2.1. The k-th derivative of a subdivision symbol a(z) satisfies
Ky y— -
al )(qn)_o, j=1....m-1,
if and only if the k -th derivatives of all its subsymbols evaluate to the same value at z =1, namely
a(lk)(l)za(k)(l)/m, [1=0,....m—1.

Proof. Since the subsymbols are related to the symbol by

m—1
a(z)=>Y_ai(2), (10)
=0

we have forany j =0,...,m —1,

m—1 m—1 . m—1 o
a®(zi)=>"a)=> (@) griamia @)™ =D (@) aP ),
1=0 1=0 1=0

i€Z

because (¢ ],-,,)ml =1for all i € Z. This can be rewritten as the linear system

(a'P1)
a®(1) 11 1 1 :
a®(l) ISR (49 RN (49 a® (1) an
. =1. . . . . (k) )
: : : : . : aq (1)
a®@Ep ) 1 gmro@my? e gmey! :
\a'?,(1))

where n € {0,...,m — 1} such that k = n (mod m). Note that the system matrix V in (11) is the non-singular
Vandermonde matrix associated with the distinct values ¢7,, j=0,...,m—1. Moreover, since the m-th roots of

unity clearly satisfy
— " 0, forj=1,....m-1,
we have
a®™(1) a®(1)/m
0
' =V : . (12)
0 a®(1)/m

As V is non-singular, it is then clear that the vectors on the left hand sides of (11) and (12) are identical if and
only if the vectors on the right hand sides are. O

Note that the equivalence of conditions (3) and (4) follows from Lemma 2.1 by considering the special case
k=0.

3 Parameterization

Let us now take a look at the simplest case of polynomial reproduction, namely the reproduction of constant
functions. Given some polynomial p € 7y, p(x) = a, with a € R, we define the initial data by sampling p at the
parameter values ¢}, that is, f? = p(t]) = a for i € Z. Now if S, is a convergent subdivision scheme, its mask a
satisfies condition (4) and according to the refinement rule (1) we then have ff =qforallieZ, ¢ eN,and so the
limit function is g¢(x)= a. By Definition 1.1, the scheme hence reproduces polynomials of degree 0.

We conclude that all convergent subdivision schemes reproduce constants, so let us raise the bar and consi-
der the reproduction of linear polynomials. Again, we start by sampling some polynomial p € 7, so that
2 =p(t?) for i € Z, and now the question is, under which conditions does a subdivision scheme S, generate
g = p as the limit function for this initial data f %, In addition to being convergent, the scheme should cer-
tainly generate linear polynomials, because we want 77, to be among all possible limit functions. It then turns



out that these two necessary conditions are also sufficient for linear reproduction, but only with respect to the
appropriate parameterization.

So far, we did not assume anything special about the parameter values !, except that they are uniformly
spaced with distance m ¢, that is, tf = tg +i/mt. Hence, all parameter values are uniquely determined by the
value tg and the relative shifts t, = (tg - Ifg“)mf+1 between the parameterizations at level £ and £ + 1 for { € N.
In order to simplify the analysis, the value 7y and all relative shifts are often set to zero, resulting in the standard
parameterization tf =i/m!, because most of the properties of a subdivision scheme (for example, convergence,
smoothness, support, degree of polynomial generation, reproduction of constants) do not depend on these
values. They are, however, crucial for polynomial reproduction of degree d > 1.

Theorem 3.1. LetS, be a convergent subdivision scheme that generates linear polynomials. Then S, also repro-
duces linear polynomials if and only if the relative shifts between the parameterizations are v, = a’(1)/m for all
{eN.

Proof. According to Dyn et al. [9, Corollary 4.5], for convergent subdivision schemes, polynomial reproduction
is equivalent to polynomial reproduction in each subdivision step, hence it suffices to show that ff = p(tf ),
i € Z implies ff“ = p(tf“), i € Z for any { € N. Moreover, as any convergent subdivision scheme reproduces
constants, we only need to consider the monomial p(x) = x. So let{ € N and f! = ¢/, i € Z. Then by (1) and
Lemma 2.1 for k =1, we have forany [ =0,...,m —1land i € Z,

{+1 { __ { L l_]
fm+i+l _Zam(i—j)Hfj _Zamjﬁ—lf,;j _Zamj+l (to +W)

JEZ JEZ JEZ
¢, mi+l mj+1
= ampt |+~ | = D amp
JEZ JEZ

. /
_ o mi+l\  aj(l)
=ai(1) (t0+ mit | T gt

_ (t(f— a’(l)/m) N mi+1

mit! i’
which is equal to

+1  _ +1
tmi+l - tO +

mi+1 ¢ T mi+l
mir 0T e m+!

ifand only if 7, = a’(1)/m. O

So the good news is that the reproduction of linear functions comes for free, as long as the appropriate
parameterization is considered, and that the latter is stationary in the sense that it has constant relative shifts 7,
at all levels ¢ € N. Moreover, since linear reproduction is clearly necessary for polynomial reproduction of any
higher degree, this motivates the following convention.

Definition 3.2. For any subdivision scheme S, we denote by T = a’(1)/ m the corresponding parametric shift and
attach the data f* fori € Z,{ €N to the parameter values
(0, 1 : b_ -1 T
=t +— with =t ——. (13)
i 0 m(? 0 0 mé
Note that Definition 3.2 leaves us with one degree of freedom, namely the value of ¢, and that the reproduc-
tion of linear functions does not depend on this choice. One common option is to set ;) = 0, so that the initial
data f? is attached to the integers ¢ = i. Another option is to attach the data ffn . to the integers in the limit.
Since (13) implies

¢
T 1 T 1
l (-1 0 0
=t — = =0y — =0 -— 1,
oo mt 0 jzlmf 0 m—l( m‘)
so that
limel, =0~ " 4i (14)
oo M O m-1 ’

this second option requires to set tg =1/(m-1).

Remark 3.3. In view of (14), the “correct” parameterization applies a shift of T/(m — 1) to the left in the limit.
So, with respect to the standard parameterization t' =i/m', a scheme with polynomial reproduction of degree d
yields g ¢(x) = p(x +1/(m — 1)) as limit function for initial data f° = p(i), i € Z and any p € n4. Note that this
does not change the leading coefficient.



4 Polynomial reproduction

Now that we have settled the issue of the correct parameterization, we are ready to attack the main goal of this
paper and derive conditions on the symbol a(z) of a subdivision scheme S, that guarantee the reproduction
of polynomials up to some degree d > 1. But before we can state the main theorem, we need to establish two
preliminary results. The first is an immediate consequence of Lemma 2.1.

Corollary 4.1. The k-th derivative of a subdivision symbol a(z) satisfies
a®¥iy=0, j=1,...m-1,

ifand only if
D ki-)ai-mi=a®@)/m,  iez,

JEZ
where qy.; are the polynomials from (9).

Proof. We firstremark that by generalizing the indices of the subsymbols in (8) to all integers we get the following
cyclic behaviour. For any i € Z let I €{0,..., m — 1} such that i = (mod m). Then,

ai(z)zzamj+izmj+l ZZaijijH =a(z),

JEZ JEZ

and taking the k-th derivative of

— i+mj __ i—-m
ai(z)—g AiymjZ ’—E Ai—mjz' ™™

JEZ JEZ
gives
qu,i(—j)aifij”’"”k =a{(z)=a"(2). (15)
JEZL
The statement now follows from Lemma 2.1 by using z =1 in (15). O

We then use this result to derive a set of necessary and sufficient conditions for a subdivision scheme to map
monomial data of degree k < d atlevel /, ff =ik, i € Z to the refined and shifted monomial data at level £ + 1,

i—t\k . . o
firt= (%) , | €Z in one subdivision step.

Lemma4.2. Letd €N andt €R. Then a subdivision symbol a(z) satisfies

k-1
aP’W=m[Jrz-0 ana a®(Z)=0, j=1,..,m-1, for k=0,...,d
1=0
ifand only if
i—7\*k
ijai_mjz( ) , i€z, for k=0,...,d. (16)
4 m
JEZ
Proof. Note that by Corollary 4.1 the first set of conditions is equivalent to
k-1
Y aei-paimi=[ -0, iez for k=0,...,d. a7
jez 1=0

The proof is then by induction over d. The case d =0 is trivial because both conditions reduce to
:E:llifn”'==1, ieZ.
JEZ

So let us assume (16) and (17) to be equivalent for k =0,...,d — 1 and prove that the equivalence then also holds
for k = d. We start by observing that the polynomial g, ;(—x) is of degree d and so there certainly exist some
coefficients 7y, ..., 74 to express it in monomial form,

d
qd,i(—x)=2rnx”.
n=0



Now we use the induction hypothesis to manipulate the left hand side of condition (17) and get for any i € Z

l_[(T_l) qul( —jla;- mj = Z(Zrn] )ai—mj

JEZ JEZ

=7d Zjdai—mj +2Yannai—mj

JjEzZ n=0 JEZ

_szj a;_ mf+ZYn(Z_T)

JEZ

. . d
. T—1 i—7
=7’d21dai—mj+qd,i( . )—Td( - )

JEZ
_’rdZ] Ai—mj ')’d( ) +l_[(T n).

JEZL

Since 74 # 0, this is equivalent to
. d
. i—7
I (B
JEZ m
which concludes the proof. O

The main result of this paper now shows that the particular mapping property for monomial data in
Lemma 4.2 is equivalent to polynomial reproduction of degree d.

Theorem 4.3. A convergent subdivision scheme S, reproduces polynomials of degree d with respect to the para-
meterization in (13) if and only if

k—
a®W=m]Jec-0 ana aV)=0, j=1,..,m-1

fork=0,...,d.

Proof. The proof is again by induction over d, with the case d = 0 being trivial. So let us assume that the sta-
tement holds for k =0,...,d — 1 and prove it for k = d. Following the same thought that we used in the proof
of Theorem 3.1, it is sufficient to show that for any polynomial p € 74, p(x) = x4 + g(x) with g € w4, the
implication
d ; .
ff=ptH=u)"+qt), icz =  fF=pi™), iez

holds. But this is easily verified by using the induction hypothesis, condition (16) from Lemma 4.2, and remem-
bering from (13) that ;™ =t + (i — 7)/m'*!, because

f£7+1 Zal m]f Za’ mj (tf+—) +Za, m]q(t)

JEZ JEZ JEZ

_ - (d ed-n ()"
-5 [0 ()
d o . n

Z( )(té)d (%) (Zj"ai—mj)‘Fq(tfH)

n=0 JEL

4 "li—-T\" '
> (oo™ () (57) ot

=0
= (") g = p(e ).

Ai—mj +Q(tf+l)

O

It is clear that the degree of polynomial reproduction can never be greater than the degree of polynomial
generation, but Dyn et al. [9, Corollary 4.9] made an interesting observation in the case that it is strictly smaller,
and the proof carries over to subdivision schemes of any arity without changes.



Corollary 4.4. If the degree | of polynomial reproduction of a convergent subdivision scheme S, is less than the
degree n of polynomial generation and S, is applied to the initial data f? = p(t(f), i € Z, sampled from a polyno-
mial p € mq with | < d < n, then the limit function gy is also a polynomial of degree d and has the same | +1

leading coefficients as p, thatis, ¢ —p € Tq_;1-1.

Suppose now that we want to determine the degree of polynomial reproduction for some given scheme.

Then the following proposition provides a slightly simpler way to check the necessary conditions (7).
Proposition 4.5. Letd €N and v €R. Then a subdivision symbol a(z) satisfies
k=1
a®W=m[J=-0, k=o0,...d
1=0
ifand only if b(z) = a(z™)z~™" satisfies
b()=m  and bW1)=0, k=1,...,d,

2)"c(z)+ m for some c(z).

which in turn is equivalent to require that b(z) = (1 —
Proof. We first show by induction that the identity a(z")z~*% = b(z) implies for any k €N,

k
m*a®)(zm)zmk=7) = Z Ch,) bV(z)z)
j=0

for some coefficients ¢y ; € R with

k-1
ck’ozmkl_[(r—l) and Crk=1.
1=0

(18)

19)

(20a)

(20b)

The case k = 0 is trivial, so let us assume that (20) holds for some k € N. Differentiating both sides and multi-

plying by z then yields

k
mk [ ma®t(zm)z 619 4 m(k = 1)a® (™M) 4] =3 ey [UH(2)24 + jpD(2)1 |,
j=0

and further, by using the induction hypothesis,

k k k
m gk D(zmyz M=) = iy (ke — T)Z cr, bV (z)z! +Z ci, b ™(z)z/ ! +Zj cx, bV (z)z!
j=0 j=0 Jj=0
k
=m(t— k)cklob(z)—f-z cx,j(m(T— k)+j)bYV(z)z

j=1

k
+Z ck,j-1bY(2)z! + cp  b* TV

j=1
k k
=m ] J(r = Db(2)+ D i, bV (2)2! +b*HDZ4+
1=0 j=1
k+1
:ZCkH,j bY)(z)z!
j=0

with coefficients cg419 = m*+! H;C:O(T —1), Ckyrk1 =1, and cpyy,j = jo1 e j(m(r—k)+j)for j=1,...

which completes the inductive step.
Now, if (18) holds for some d €N, then it follows from the definition of b that

b(l)=a(l)=m



and we further conclude from (20) by induction over k that

k—1 k—1 k—1
b)) =m*a®(1) = i pV1)=m ] J(r =)= m* ] J(z - Db(1)=0
=0 1=0

j=0

for any k > 0. On the other hand, if (19) is true for some d €N, then (20) yields

k-1 k-1
mtaW=ceop=m* [Je-1) = a®)=m]]-D
1=0 =0

forany k <d. O

We conclude this section by noting that Theorem 4.3 includes the results of [9] for polynomial reproduction
of binary schemes as special cases for m = 2. First observe that the primal and dual parameterization that were
considered in [9] correspond to our general parameterization in (13) with 7 =0 and 7 = —1/2, respectively and
10 = 7. Itis then clear that condition (PR1) in Theorem 4.6 of [9] for polynomial reproduction with respect to the
primal parameterization can be restated as

al)=2 and a®Q)=0, k=1,...,d,

and is therefore equivalent to the conditions on the behaviour of a(z) and its derivatives at z = 1 in Theorem 4.3.
Moreover, the equivalence of the latter conditions to condition (PR2) in Theorem 4.7 of [9] for polynomial repro-
duction with respect to the dual parameterization follows from Proposition 4.5.

5 Applications

A first important application of Theorem 4.3 is the analysis of “shifted” schemes. Often, when defining a subdi-
vision scheme, the mask coefficients a; are simply given as a sequence of numbers without further specifying
the index range. For example, the binary scheme that generates cubic B-splines is usually given by the mask
{1,4,6,4,1}/8, but it is not clear whether this refers to {a_,,a_,,ao,a1,a,}, {ao,a:,a,, as, a4}, or any other se-
quence {a;,...,a;4+4}. The clue is that the choice of the index range has no effect on the limit curve as far as
convergence, smoothness, polynomial generation, and support of the basic limit function are concerned, be-
cause it merely leads to a shift in the indices of the refined data and does not affect the data itself. The same
basically holds for polynomial reproduction, too, but the specific value of the correct parametric shift * depends
on the choice of the index range.

Corollary 5.1. IfS, is a subdivision scheme that reproduces polynomials up to degree d, then so does the shifted
scheme Sz with symbol 4(z)= a(z)z" foranyn €Z.

Proof. Let v, = a’(1)/m be the parametric shift of the subdivision scheme S,. Then the parametric shift for the
scheme S; is
ta=d'()/m=(@)+al)n)/m=1,+n

and the statement follows from Proposition 4.5, because
b(z)=a(z")z"""" =a(z™)z""z "t = a(z™)z " = b(z).
O

Going back to the previous example, this means that the correct parameterization (13) for the binary cubic B-
spline scheme with mask {a_,,a_1,ag, a1,a,} =1{1,4,6,4,1}/8 is the standard parameterization with T = 0, while
a parametric shift of T =2 is appropriate for the equivalent scheme with mask {ay, a;, a», as, a,} ={1,4,6,4,1}/8.

We continue by discussing other consequences of Theorem 4.3 to several kinds of univariate subdivision
schemes (interpolatory, symmetric, and m-ary B-spline schemes) and use it to define a new family of general
m-ary pseudo-splines.



5.1 Interpolatory schemes

An important class of subdivision schemes are those that refine the sequence f while keeping the original data
in the sense that ffntl = f!, i € Z, £ € N. For obvious reasons such a scheme is called interpolatory and if it is
convergent then the limit function is a cardinal interpolant to f, that is

gr)=fi i€Z.
Interpolatory schemes are characterized by the fact that the coefficients of the subdivision mask satisfy
amizai,OJ iEZv (21)

which by (8) is equivalent to its 0-th subsymbol being a((z) = 1. However, it is less known that this condition can
also be stated in terms of the symbol a(z).

Proposition 5.2. An m-ary subdivision scheme S, is interpolatory if and only if its symbol a(z) satisfies
m—1
D alz)=m,  zeC\{0},

where g{n are the m-th roots of unity as defined in Section 1.1.
Proof. Let a(z) be the symbol of an interpolatory subdivision scheme. By (10) and (21) it has the form

m—1

a(z)zH—Z a;(z),

=1

so that 1
a(é’];nz):1+2(§’;n)laz(z), j=0,....m—1.

=1

Summing up with respect to j we get

m—1 m—1m-1 m-1 m-1
Daha=m+ Yy > (@) a@=m+ Y az) )y (&) =m,
j=0 j=0 I=1 1=1 Jj=0

because Z;.":Bl (dn)l =0for/=1,...,m—1. Viceversa, assuming Z;":Bl a(g'],'n z) = m and following the same line
of reasoning as before, we end up with the relation a((z) =1, and so S, is interpolatory. O

It is well-known that polynomial generation and polynomial reproduction are equivalent for interpolatory
schemes and our results above confirm this, as long as the standard parameterization ¢/ = i/m! is used.

Corollary 5.3. LetS, be an interpolatory subdivision scheme that generates polynomials up to degreed. Then S,
also reproduces polynomials up to degree d with respect to the parameterization (13) with T =0.

Proof. AsS, is an interpolatory scheme, its 0-th subsymbolis a¢(z) = 1 and so a(k)(l) =0fork>1. ByLemma2.1
we then conclude a®¥)(1) = 0 for k = 1,...,d. In particular, this implies that the correct parametric shift is
7 =a’(1)/m =0, and it follows by Theorem 4.3 that the scheme reproduces polynomials up to degree d. O

Remark 5.4. In view of the discussion above about shifted schemes, it is possible to generalize the standard defi-
nition of interpolatory schemes slightly to all schemes with a,(z)=z" for somen €Z. In terms of coefficients this
translates to the condition a ., = 0,9, and the original data is then kept in the sense f = f, i€Z, leN.
Clearly, the correct parametric shift for such a schemeis T = n.

1+n

5.2 Symmetric schemes

Especially in a geometric context, subdivision schemes are sometimes classified into “primal” and “dual”
schemes, where primal schemes are those that leave or modify the old points and create m — 1 new points
at each old edge, while dual schemes create m new points at the old edges and “discard” the old points. For
example, the binary cubic B-spline scheme is primal, while Chaikin’s scheme [2] for quadratic B-splines is dual.
Mathematically, this corresponds to using different parameterizations.

10
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Figure 1: Primal and dual parameterization for binary and ternary schemes.

Definition 5.5. The primal (or standard) parametrization of a subdivision scheme is based on the parameter
values

i
ti[:_e' i€Z, KGN,
m

while the dual parametrization attaches the data f* to the parameter values

o i=1/2m 1)

7 i€eZ, (€N.
m

Figure 1 illustrates both concepts for binary and ternary schemes. Note that this definition is consistent
with the one given in [9, Section 2] for the special case m = 2 and that these two parameterizations are special
cases of our general parameterization in (13) for 7 =0 or = —1/2 and tJ = 7. The reason why no other para-
meterizations have been considered so far in the literature is simple: they are the only ones that provide linear
reproduction if the subdivision scheme is symmetric. For the special case m = 2, this has already been shown
in [9, Section 5], but the proof extends nicely to general arity.

Definition 5.6. A subdivision scheme S, is called odd symmetric if
a;,=a-;, i€Z,

and even symmetric if
a_1=a—;, i €Z.

In terms of Laurent polynomials, these conditions translate to a(z) = a(z ') and a(z)z = a(z~!), respectively.

Corollary 5.7. IfS, is an odd (even) symmetric subdivision scheme that generates linear polynomials, then the
primal (dual) parameterization is the only one that yields reproduction of linear polynomials.

Proof. 1f S, is odd symmetric, then a(z) = a(z~!) and by taking the first derivative of both sides,
a'(z)=—z72a'(z™h),

we conclude a’(1) = 0. Therefore, the unique parametric shift that gives at least linear reproduction is 7 =

a’(1)/m = 0. In case of even symmetry, the same strategy applied to a(z)z = a(z~!) leads to a’(1) = —a(1)/2 =

—m/2 and hence T =a’(1)/m=-1/2. O

Remark 5.8. The statement of Corollary 5.7 can be simplified by shifting the (odd or even) symmetric scheme S,
such that its shifted mask a is supported on [0, N], that is, Go #0 and d; =0 fori <0 and i > N. Then the only
parameterization that guarantees linear reproduction is the one with v = N /2.

5.3 Smoothing factors and B-splines

It is well-known that the smoothness of an m-ary subdivision scheme S, increases by one if the symbol is mul-
tiplied by the m-ary smoothing factor

l+z+...+2m1  1-z™
m T mQ-2z)

Om(z)=

and it is clear that this also increases the degree of polynomial generation by one. However, this kind of smoo-
thing inevitably reduces the degree of polynomial reproduction down to one.

11



Proposition 5.9. Let S, be a subdivision scheme that reproduces polynomials up to degree d. Then the smoothed
scheme Sy, with symbol b(z) = o ,(z)a(z) satisfies

b()=m  and DY )=0, j=1,...m—-1, k=0,..,d+1,
and hence generates polynomials of degree d + 1, but it has only linear reproduction.

Proof. The statement about polynomial generation follows trivially from the fact that b(1) = a(1) and by consi-
dering (6). Then, as the first derivative of b(z) is

14+z+2z%+--+2zm! 1+2z+3z24--4+(m—1)z"2
V(e)= a2)+ =D o)
m

m

the correct parametric shift for S which guarantees linear reproduction is

p(1)  a()+22a(1) m—1
Tp= = =Ta .
m m 2

Next, computing the second derivative of b(z) we have

1 2 m—1 1 2 3 2 -1 m—2
b (z)= +tz+z°+-+z a"(2)+2 +2z+3z°+--+(m—1)z ()
m m
2+4+6z+12z%+---+(m—1)(m —2)z™m2
+ a(z),
m
so that

-1 -2 -1 -2
b”(l)za”(l)+(m—1)a’(1)+%a(1)=mﬂ:a(ﬂ:a—1)+m(m—1)’ra+%.

Some straightforward simplifications then yield

)

b//(l)—mfh(fh—1):b”(1)—m (Ta+mT_l) (Ta+ m—3) _ m(m?—1)

2 12

which clearly is not equal to zero for any m > 2. And so, by Theorem 4.3, S, does not reproduce polynomials of
degree d > 1. O

As the symbol of the m-ary subdivision scheme that generates B-splines of degree n is
By(2)=mom(2)""", (22)

Proposition 5.9 confirms the well-known fact that these schemes reproduce only linear polynomials and thus
have approximation order 2. In consistency with Remark 5.8, the corresponding parametric shift is 7 =
B (1)/m=(n+1)(m—1)/2.

5.4 Pseudo-splines

Theorem 4.3 also allows us to generalize the family of binary pseudo-splines both to general arity and to arbitrary
parameterizations. Primal pseudo-splines with odd symmetry were first presented by Dong and Shen [5], while
even symmetric dual pseudo-splines were later discovered by Dyn et al. [9].

For any 7 € R and n,[ € N the m-ary pseudo-spline is defined to be the scheme with minimal support that
generates polynomials of degree n and whose symbol satisfies the necessary conditions

k—1
a®W=m[ -0  k=o0,..,L (23)

i=0

for reproduction of polynomials up to degree [. Its actual degree of polynomial reproduction is min(#, /) and its
symbol can be written as
a(z)= Bu(2)b(z),

where Bj(z) is the symbol of the m-ary degree n B-spline scheme in (22) and b(z) is the polynomial of lowest
possible degree such that a(z) satisfies (23).

12



Using the Leibniz rule, we see that this set of conditions is equivalent to

k

k—1
> (k) OB D=m] Jr-D)=c,  k=0,...,1,
l i=0

i=0

which can be rewritten as the linear system
Ad=c, (24)

where d = (b(1),b’(1),...,b1)(1)) T ¢=(co c1,...,c1)T, and A is the lower triangular (I + 1) x (I + 1) matrix with
coefficients

k .
api= (i)Bff—’)(l), k=o0,...,1, i=0,..., k.

Note that the lower diagonal elements of A have the recursive structure

k k(k—1) k
Ak,i = T Ak-1,i-1= — 7 5 Ak-=2,i—2=""=| . |Ak-i,0,
i i(i—1) i

a fact that will be very useful in the sequel. In particular, a r = ago forall k =0,...,1.
Letting (do, dy,...,d;)T = A l¢, itis clear that dy = b®¥)(1) for k =0,..., I if and only if

l
b(z)= - ;C:l)k di+(z—1)'""r(2)
k=0 ’

for some polynomial r(z) and that b(z) has the lowest possible degree if r(z) = 0. Hence, the symbol of the
general pseudo-spline is

! _1)k
a0)=B.> = ay,
k=0 ’

which is a polynomial of degree (n+1)(m —1)+1 in general and occasionally one less. For example, in the special
case [ =1 the linear system (24) is simply

(BZ?n '?1) (Z?) B (n';)

and for 7 = B/ (1)/m the solution vector of this system is (1, 0), so that the pseudo-splines reduce to the m-ary
B-splines.
We continue with an important result concerning the structure of the matrix A~! for general / €N.

Lemma 5.10. Let A = (ax,i)o<k,i<i be a lower triangular (I + 1) x (I + 1) matrix with agp # 0, any values ay.,
1<k <1 inthe first column, and

k
ak,iz(l.)ak—i,o; 1<i<k=<l, (25)

for the remaining elements. Then A=' = (dx.,i)o<k,i<i IS also a lower triangular matrix with elements

N 1 N 1 Sk N
doo=—"), Ago=—— . |ak—jodjo, 1<k<l (26)
ao,0 aop,0 <=\ J
j=0
in the first column and
k
ay,i= ( .)dk—i,o, 1<i<k<lI 27)
i

otherwise.

Proof. The formulas for the elements dy,; of A~! can be verified by using the fact that the product of the k-th
row of A and the i-th column of A~! must satisfy

1 k
Zak,jdj,,-=Zak,jdj,i=5k,i, 0<k,i<l.
j=0 j=i

13



This is clearly true if i > k, because the sum is empty, and if i = k it reduces to ay i i = do,0do,0 = 1. Finally, if
i < k then by (25) and (27) we have

k—

k k—i i+
Zak,jdj,i=zak,i+jdi+jz Z ar-i-jo| .~ |djo
= = i+j i

O\ & (k- o (&S k-
= ( ) Z( . )ak—i—j,oﬁj,o= ( ) ( Z ( . )ak—i—j,oﬁj,o+ao,oﬁk—i,o ,
i) =\ i — j

J

which reduces to zero by considering recursion (26) for @x—; . O

Note that the matrices that appear in the construction of the pseudo-splines are exactly of this kind, with
elements
arpo=BM(1), 0<k<I

in the first column.

5.4.1 Binary pseudo-splines

For binary pseudo-splines (m = 2) the formulas above can be simplified considerably by using a remarkable
binomial identity that we could not find in the literature.

k .
ton =3 (1) (’;) (”“n“_’) -1

Proof. For k =0 and n €N as well as for k € N and n =0, the identity is easily verified, and the rest follows by
induction through the recursion

Lemma5.11. Foranyk,ne€N,

Qk,n = Qk-1,n + Ak,n—1 — Ak—1,n—-1,

(e )0
X Ry (e
+(]_1)((n—1)+(k:11) (1—1))

which we get by using

G-

O
We can now derive a simple closed form for the elements of the inverse of A in (24).
Corollary 5.12. In the particular case of binary pseudo-splines (m = 2) we have
n+1)\ k!
akp=2 —, 0<k=<l,
k0 ( k ) 2k
and the elements in the first column of the inverse matrix are
- (=D* (n+k\ k!
dro= —, 0<k<lI. 28
k,0 > by <k< (28)

Proof. The first statement can be easily seen by considering

ok n = . n—k n n—k
Sop+2) =g(n—l)(l+z) =(k)k!(1+z)

and remembering that B,(z) = (14 z)"*!/2". The second statement follows by induction over k. For k = 0 we
clearly have

dopo=

N | =
Q
o
=]



so let us assume that (28) is true for some k > 0. Then using the recursion in (26) we get

k
~ 1 k+1 _
dk+1,o=——2( . )ak+1—j,0aj,o
2 J
k+1 n+1l \(k+1—j) (n+j\ j!
. . T(_l)] a7
J k+1—j) 2kti=) n )2
_ I (k1) (nt1 GAD! e (k=) (k=)
2\k—jJ\j+1) 2 n 2k=j

(-1 k+1(k+1)' n+1\(n+k—j
- () ()
(—1)k+t n+k+1 (k+1)!
= 2 ( n ) 2k+1 7

1
2

. .
Il = |l
S <)

where we used Lemma 5.11 to conclude the last identity,

() O ()

j=0

k+1
1 n+k—-(G—-1)
-2 (D))
g n+(k+1)—j n+k+1
=2 () () ()

k+1
:1_1+(”+ .
n

Overall, it turns out that the general binary pseudo-spline has the symbol

n+1 ! _ k
a(z)=(1+zzn) Z(lzz) di

k=0

(14 z)n+! -z \*& k)
() B (e

k=0 i=0

(142)" & (l—z)k k (k) (7)

= — ak-i02| . |3
2 ; 2 ; i i

(i Go(1-2)\o s (nrk—i (T
) e ()

which is a polynomial of degree n + [ 41 in general and n + [ in some special cases.

Remark 5.13. One of these special cases occurs for odd | and T =(n+1)/2, when the general binary pseudo-splines
reduce to the primal pseudo-splines if n is odd and to the dual pseudo-splines if n is even.

5.4.2 Pseudo-splines of arity m >2

For general m > 2 we were not able to find a simple closed form for the elements dy ; of A~1, but at least the
coefficients ay o of A can be found by the help of the multinomial theorem and then the éd; can be computed
using Lemma 5.10.

Theorem 5.14 (Multinomial Theorem). Forz e R, @ e N""! withz =(z1,...,z2m_1) anda=(a,...,Am_1),

(214224 4z = S ”'n ->

Ialn'll Ialn'll

n|m1

wherela|=a;+---+am-1.
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Letting {(a) := Z:’;l ia; and applying the multinomial theorem for z; = z¢, we have
ok mo1vi _ OF ity j' (@)
- .. L A, I la) — A Ua)—k
3z"(z+ +2) T 0zk Z.alz _Z,a!( k )k!z ’
|lal=j lal=j
and since

ok " ok . n ok .
(I+z+--+2"1 =ﬁ(l+(z+-~-+zm71) =Z(n) (z+-+2zm,

EP =\J oz*

it follows that ;
ok _1an n j! (Ua) @)k
ﬁ(1+z+---+zm ) :Z(j)l E( k )k!z a)=K,

j=0 al=j
Hence, the elements in the first column of A are

ok (I4z+-+zm )"kt En+1 il (ta)
o () zale)

aro= =
ozt m m' s =

5.5 Non-symmetric binary 3-point schemes

As an example of the discussion above, let us consider the simplest case beyond B-splines, namely binary
pseudo-splines that reproduce quadratic polynomials (m = n = =2). According to (29), their symbol is

1 3
=t bzt bag?)

a(z)
with
bo=(7—-2)(7—4), b1=2—bo—b,, b,=(t—1)(t —3).

In general, these schemes have approximation order 3 and their basic limit functions are supported on
[—7,5—7]. Figure 2 shows some plots for several values of T that we consider in the following.

Clearly, a(z) is symmetric if and only if T = 5/2, yielding the mask {-3,5,30,30,5,—3}/32. This scheme is
known as the dual 3-point scheme and its limit functions are C!-continuous [16]. However, our general approach
allows us to give up symmetry and trade it in for other desirable properties.

For example, letting 7 = 1 or 7 = 3 reduces the support of the basic limit function by one and gives the
interpolatory schemes with masks

{3r8r6)0)_1}/8 and {_1,0,6,8,3}/8,
which are non-symmetric but symmetric to each other. Another interpretation of these two schemes is that
the new data ff;ﬂl is computed by sampling the unique quadratic polynomial that interpolates ff, ff 41 and
either f{_, or ff,, at the midpoint between f! and f, . From this point of view it is also clear that the scheme
reproduces quadratic polynomials by construction.

Another interesting aspect is that T can be chosen so that the limit functions are C?. Following Rioul [25],
the Holder regularity of the limit function is 3 —log,(u), where u is the joint spectral radius of the matrices

(b1 O _ (b2 bo
B() = (bz bo) and B, = (0 bl .
For3—v2<1<2++2itis easy to see that the spectral radii of By and B, as well as their maximum norms are

P(Bo)=p(B1)=|Bolloc = | Billoc = b1.

Since they bound u from below and above, as shown in [20], we conclude that the Holder regularity for this range
of 7 is

3—log,(b1)
and that the limit functions are C2-continuous for
V3 5 1
VO ole_2|<vaot
2 2 2
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T=(5—+5)/2

T=3/2 O
T=3-+2 O
T=5/2

Figure 2: Basic limit functions of binary pseudo-splines and their support for different parametric shifts.

Within this range, the maximal smoothness (~ 2.1294) is obtained for 7 =3 — V2and Tt =242, giving the C?
schemes with masks

{1,242v2,2+4vV2,4,5—-4v2,2-2v2}/8 and {2—-2v2,5—4vV2,4,2+4v2,2+2V2,1}/8,

which again are non-symmetric but symmetric to each other. In addition, we find that the interpolatory schemes
above have Holder regularity ~ 1.415.

Yet another special case occurs for 7 = (5= v/5)/2, which are the unique values that give an additional factor
of 1+ z, hence these particular schemes generate even cubic polynomials. Their symbols are

_(1+2)
- 16
and of course they can also be derived by considering the binary pseudo-splines with » = 3 and / = 2 and

finding that the leading coefficient is zero for these values of 7. The joint spectral radius analysis becomes trivial
for these schemes and reveals that the Holder regularity of the limit functions is

a(z)

(1FV5)+(1£V5)z),

4—log, (max(|1— 5|, |1+ V5|)) ~2.3058.

Finally, we would like to remark that a more refined joint spectral radius analysis shows that also the non-
symmetric dual schemes for 7 =3/2 and 7 = 7/2 with masks

{5,21,30, 14, —3,—3}/32 and {—3,-3,14,30,21,5}/32

have C2 limit functions.
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