
On the Complexity of Enumeration and Scheduling
for Extensible Embedded Processors

Paolo Bonzini and Laura Pozzi
Faculty of Informatics

University of Lugano (USI)
Switzerland

Email: paolo.bonzini@lu.unisi.ch, laura.pozzi@unisi.ch

University of Lugano
Faculty of Informatics

Technical Report 2008/07
December 2008

Abstract
Compiling for extensible processors includes searching the application’s data-flow graphs for code sequences that can

be added (as custom instructions) to the core instruction set, as well as finding optimal ways to use these sequences at run-
time. Depending on the targeted architecture, different algorithms may be adopted, but toolchains for different architectures
often share two common building blocks. The first is a subgraph enumeration algorithm that lists subgraphs that satisfy
particular constraints; this paper proves that a well-known branch-and-bound algorithm, previously thought to have worst-
case exponential complexity, actually achieves optimal complexity (polynomial in the size of the graph). The second building
block is a scheduling algorithm that computes an optimal order for feeding inputs to application-specific functional units, as
well as for retrieving outputs; we prove the NP-completeness of this problem by reducing a flowshop scheduling problem to
it.

1

1. Introduction
Customizable processors have recently emerged thanks

to their ability to balance the inexpensiveness and the flex-
ibility of general purpose processors, with the speed and
power advantages of custom circuits (ASICs). In such pro-
cessors, a standard machine language can be augmented
with custom instructions (also known as instruction set ex-
tensions, or ISEs) that execute on application-specific func-
tional units.

Among the tools that automate the design process for
a customizable processor, the compiler has a chief impor-
tance, because its role has two complementary facets. First,
the compiler performs a deep analysis of the program, and
can therefore infer the optimal set of extensions that will
benefit most; second, the behavior of the compiler itself—in
particular the machine description—is affected by the pres-
ence of instruction set extensions. These two aspects, when
combined, signify that a compiler for customizable proces-
sors can both generate a machine description, or parts of it,
and compile onto it.

In the past years several algorithms have emerged for
customizable processor compilation. However, very few of
these have been analyzed theoretically to ascertain the time
complexity of the problem or the optimality (also in terms
of time complexity) of the algorithms.

In this paper we focus on two problems. The first is
subgraph enumeration, which is used to generate a set of
candidate instruction set extensions. This paper continues
previous work on analysis of this problem, in which Chen
et al. [6] established a polynomial upper bound for the out-
put size, while Bonzini et al. [5] provided an algorithm that
provably achieved that bound. In this paper we will prove
that a well-known branch-and-bound algorithm from [9]
also has the same complexity—and, unlike the one in [5], it
is simple to understand and does not require complex prun-
ing techniques in order to achieve practical run-times.

The second is I/O scheduling, which is used to gener-
ate an optimal ordering of the inputs and the outputs, con-
strained by the number of data that can be fed to (and read
from) the external functional units. Literature includes two
solutions to this problem—an optimal one with exponential
complexity [10], and an approximate one with polynomial
complexity [11] which the authors experimentally observed
to produce optimal results for several benchmarks. In this
paper, we actually prove theNP -completeness of this prob-
lem, based on reducing a particular 2-machine flowshop
scheduling problem to the I/O scheduling problem.

These results give a better understanding the problem
space, and provide a stronger basis for future work in this
field. For example, a polynomial time bound for subgraph
enumeration is useful when studying the impact on instruc-
tion set extensions of compiler transformations, particularly
those that can possibly increase basic block size [3, 4].

The rest of the paper is organized as follows. Section 2
surveys previous work on this topic from the customizable
processors community. Sections 3 and 4 present our re-
sults on the two problems, respectively subgraph enumer-
ation and I/O scheduling. Section 5 concludes the paper
and presents possible extensions of this work.

2. Related work
Identifying custom instructions is usually seen as a time-

consuming job, under the rationale that the number of pos-
sible patterns can grow exponentially with the number of in-
structions in the basic blocks considered by the algorithm.
This is true in general; however, as a consequence of the
lack of theoretical analysis of the problem, most literature
wrongly considered this to be the case even if microarchi-
tectural constraints such as the number of register file ports
are taken into account.

In fact, the algorithm we analyze in this paper was first
proposed by Atasu et al. [2] and enumerates all valid pat-
terns by constructing a search tree whose depth is equal to
the size of the graph, and where each node has two children,
corresponding to including or excluding a node from the
graph. While this trivially implies a complexity of O (2n),
the algorithm avoids exhaustive search by checking whether
adding more nodes to the subgraph could “repair” the con-
straint violations: if this is not the case, one can discard
entire branches of the search tree.

The algorithm was further refined in [9] by introducing
a new pruning criterion. As we will show, this addition is
fundamental to achieve a new bound on the complexity,
that is polynomial in n, the size of the graph. However,
both [2] and [9] only overviewed how to implement the
branch-and-bound criteria in an efficient manner. In this
paper we present a possible implementation in detail, which
is actually necessary in our complexity proof.

Despite the authors of [9] observe that in practice the
run-time grew relatively slowly with n, they present the
algorithm as having a worst-case exponential complexity.
Because of this, other algorithms were developed that re-
stricted the set of graphs that can be enumerated; for ex-
ample, Yu and Mitra proposed an alternative algorithm that
enumerates only connected patterns [12], but also present
its complexity as worst-case exponential. Zhang et al., in-
stead, use the FlowMap algorithm (used in FPGA technol-
ogy mapping) to find single-output patterns in a graph [7].
Multiple-output patterns can then be derived from the result
of these simpler enumerations [13].

Two works present algorithms that are alternative to the
one of [9] but solve the same problem. The first, by Chen et
al., does not rely on postorder sorting of the nodes, and in-
stead uses constraint violations to guide the search towards
nodes that “help” repairing those violations [6]. This paper
also is the first to prove a bound for the number of valid sub-

2

A

B C

Y

sink

X

Z

Figure 1. A data-flow graph and a convex cut
within it. Shaded nodes are forbidden. The
nodes within the dashed area form a convex
cut with inputs A, B, C, and a single output X.

graphs (i.e. for the algorithm’s output), that is polynomial in
the size of the graphs. However, the authors did not perform
a substantial complexity analysis of their algorithm, whose
complexity is once more declared worst-case exponential.

The only known polynomial algorithm for this problem
so far is found in [5]. Relying on the relationship between
multiple-vertex dominators [8] and single-output convex
cuts, the paper presents an algorithm whose expected com-
plexity is indeed polynomial in the size of the graph (for
a fixed maximum number of inputs and outputs in the enu-
merated subgraphs). However, the algorithm is complicated
to implement, and the paper only overviews the techniques
that are required for it to compete in speed with Pozzi et
al.’s. It is hence useful to prove that a simpler algorithm
in [9] actually has the same complexity.

All the algorithms we presented so far consider four con-
straints: the number of inputs and outputs of the enumerated
subgraph, the convexity of the cut, and the absence from the
cut of vertices included in a set of forbidden nodes. If only
the last two constraints are kept, the resulting problem be-
comes equivalent to clique enumeration [11].

In this paper we only consider the complexity of enu-
meration under I/O constraints, because clique enumeration
is a well known EXPTIME problem1. However, research
on removing the I/O constraints led to the study of another
combinatorial problem, that is I/O scheduling. This was in-
troduced in [10] as a way to minimize the latency of the
ISE and, secondarily, the number of registers in the circuit;
a variant that only minimizes the latency was formulated
in [11], where the authors also report good results using
a heuristic solver. This second, weaker formulation is the
second problem we analyze in this Section 4 of this paper,
concluding that it is an NP -complete generalization of 2-
machine flowshop scheduling.

1If only the best candidate is needed instead the problem is NP -
complete, and indeed Atasu et al. propose in [1] an ILP formulation of
the problem.

3. Subgraph enumeration
In this section, we consider the subgraph enumeration

problem. In Section 3.1 we introduce a few definitions and
formalize the problem (using a simpler formulation than the
one used in [9]). In Section 3.2 we detail the algorithm
outline presented by Pozzi et al., in order to be able to prove
a new time complexity bound in Section 3.3.

3.1. Definitions

As depicted in figre 1, a data flow of each basic block is
represented by a graph G(V,E). The definition of cut, and
in particular of convex cut, are as follows.

Definition 1 (Cut): A cut S is a subgraph of a direct
acyclic graph G. We call inputs of S the set I (S) of pre-
decessor vertices of those edges which enter the cut S from
the rest of the graph G, that is I (S) =

⋃
v∈S pred(v) \S.

Similarly, we call outputs of S the set O (S) of vertices
which are part of S, but have at least one successor v /∈ S.

Definition 2 (Convex cut): A cut S is convex if there is no
path from a vertex u ∈ S to another vertex v ∈ S which
contains a vertex w /∈ S.

The shaded area in Figure 1 is an example of a convex
cut. Node2 X is an output and nodes A, B, C are inputs.

In order to define the problem, we define three subsets
of V that are of interest. First of all, Iext (external inputs)
are input variables of the basic block, and are a subset of the
source vertices. Dually, Oext (external outputs) is the set of
values that are computed in the basic block and are live at
the end of the basic block.

Nodes that cannot be included in a cut are called forbid-
den and form a set F . They may still be chosen as inputs to
a cut. Some forbidden nodes will be marked as such by the
user, and represent operations that are not allowed in a spe-
cial instruction—for example, loads and stores if the custom
functional unit cannot have any memory port. In addition to
these nodes, nodes in Iext are implicitly forbidden, because
their values are calculated outside the basic block.
F includes a dummy vsink vertex which is forbidden and

also a successor of all external outputs. This node is in-
troduced in order to simplify the formulation: since every
external output that is part of a cut S will always have a
successor outside the cut (namely vsink), it will also be in-
cluded in O (S).

In Figure 1, shaded circles represent forbidden nodes: of
these, the three nodes on the top line are external inputs,
while the sink is the successor of the three external outputs
X , Y , Z. The nodes within the dashed area form a convex
cut with three inputs and one output.

2The terms vertex and node will be used interchangeably.

3

a) b) c)

0 1

32

5 6

87

sink

4

0 1

32

5 6

87

sink

4

0 1

32

5 6

87

sink

4

Figure 2. Eliminating invalid cuts. Supposing
Nin = 2, Nout = 2, and that the search has
reached node 2 (in reverse topological order,
i.e. starting from node 8), these three cuts are
all rejected: a) has three outputs (5-7-8), b)
has three permanent inputs (4-5-6), c) is not
convex. Entire branches of the search tree
can be skipped: the cuts are invalid indepen-
dent of whether or not node 2 is part of the
cut.

The target architecture may pose additional constraints
on the cuts that can be accepted. We consider constraints
on the maximum number of read and write ports in the reg-
ister file which a custom instruction can use. These are in-
dicated respectively by Nin and Nout. For example, the cut
of Figure 1 will not be part of the solution if Nin < 3.

Thus, the posed problem can be formalized as follows:

Problem 1 (Subgraph enumeration) Given a direct
acyclic graph G, a set of forbidden nodes F , and a
maximum number of inputs Nin and of outputs Nout,
enumerate all the convex cuts S ⊆ G under the constraints
that |I (S)| ≤ Nin, |O (S)| ≤ Nout, and S ∩ F = ∅.

3.2. Algorithm

The algorithm we analyze is the one outlined in [9]. The
basic idea of the algorithm is to order nodes topologically
and process them backwards; this allows several optimiza-
tions because the following invariants hold3:

1. Adding to a convex cut S a node u that (in the chosen
topological order) comes before every node v ∈ S,
will not remove any output from S.

2. Adding to a convex cut S a node u that (in the chosen
topological order) comes before every node v ∈ S,
will not remove from I (S) the inputs coming after u
in the topological order.

3. Adding to a non-convex cut a node u that (in the
chosen topological order) comes before every node
v ∈ S, will not restore the convexity of the cut.

3Proofs are included in [2] (invariants 1 and 3) and [9].

0

0 0 0 0 0 0 0 0

0 0 0 0

1

0 01 1

1 1 1 1

1 1 1 1 1 1 1 1

node 8

node 7

node 6

node 5

0010

0100

1000

10100110

1100

0000

invalid cuts unrecoverable cutsvalid cuts

Figure 3. Pruning the search tree. For Nin =
2, Nout = 2, the first four levels of the search
tree have to be visited completely. On the
fourth level, however, five “unrecoverable”
cuts are found, and the entire branch below
those cuts can be discarded.

Of these invariants, the third is only needed to prove the
correctness of the algorithm; the first two instead are also
central to proving its complexity.

From each of these invariants we can derive a condi-
tion that, if broken, allows to discard the entire search
tree under S (see Figure 3). These conditions, represented
in Figure 2, are respectively that |O(S)| > Nout, that
| {ui ∈ I(S) : i ≥ index} | > Nin, and that S is not con-
vex.

The pseudocode in Figure 4 is an implementation of the
algorithm. Function SEARCH tries adding to S all the nodes
{ui ∈ V : i < index}, and expects as a precondition that
S does not include any of them. It also assumes that the
last node in the topological order is forbidden. This is true
because the last node in the order will have no successors
and, after the artificial sink node vsink is added, it will be
the only node without a successor.

Unlike the pseudocode in Pozzi et al.’s paper, Figure 4
also includes the details of an O (1) implementation of
search tree pruning. Function SEARCH maintains a count
of outputs and permanent inputs, i.e. nodes that are inputs
for all the cuts in the nodes that will be explored recursively;
these are those inputs ui ∈ I (S) such that i ≥ index. These
two counts are updated on every recursive call. If the num-
ber of outputs or permanent inputs exceeds, respectively,
Nout or Nin, exploration of an entire branch of the search
tree can be avoided.

3.3. Complexity proof
Based on this implementation, we will now prove that,

in addition to the exponential O (2n) upper bound for
time, this algorithm also admits an alternative bound of
O
(
nNin+Noutτ(n)

)
, where τ(n) is the complexity of pro-

cessing a leaf of the search tree and of the convexity test
(whichever is more expensive). Our proof is constructive;
we transform the pseudocode so that the different upper
bound is clearly visible.

4

The first step is to move to the caller the update of
npermin and nout according to how many successors of
uindex are in the cut. The modified pseudocode of Figure 5
shows that three cases are possible:

• if the node has zero successors in the cut, adding it to
the cut will create an output;

• if the node has at least one successor in the cut, and
at least one successor not in the cut, adding it to the
cut will create an output, and excluding it will turn it
into a permanent input;

• if the node’s successors are all part of the cut, adding
it to the cut will not create an output, but excluding it
will still create a permanent input.

In order to query how many successors of any node are
part of S, a side table is updated every time nodes are added
and removed from the cut. When node u is added or re-
moved, the count changes for all its predecessor, giving a
cost of O (din), where din is the maximum in-degree of G,
for each recursive call. This cost is smaller than τ(n), be-
cause the convexity test can also be done in O (din) time,
and thus can be ignored.

We then proceed to transform one of the two recursive
calls into iteration. In Figure 6, each recursive call then
increments one of npermin or nout. Since npermin < Nin

and nout < Nout, there can be no more than Nin + Nout

recursive calls active at any time, each of which will execute
the while loop at most n times. This proves the complexity
result given at the beginning of this section.

[9] actually includes a more general condition for declar-
ing an input permanent. In addition to all inputs coming
after uindex in the topological order, all forbidden inputs
(including external inputs Iext) are permanent. Since they
cannot be included in the cut, adding nodes to S will not
remove forbidden inputs from I (S). This allows the algo-
rithm to achieve even better complexity in practice.

Adding this more efficient condition to our implementa-
tion is easy. For the pseudocode in Figure 5, for example,
it suffices to add the following line at the very beginning of
the function:

npermin = npermin + |(I (S) \ I (S \ {uindex})) ∩ F |

4. I/O scheduling

The algorithm from Section 3 can be used to enumerate
subgraphs whose number of inputs and outputs is smaller
than the number of register file ports. Unfortunately, ports
are an expensive asset of the processor.

SEARCH(S, index, npermin, nout)
� u0 to u|G|−1 represent nodes of G, ordered topologically
� u|G| is the artificial sink node
� The search is started with SEARCH(∅, |G|, 0, 0).
if uindex 6∈ S then

if ∃v ∈ succ(uindex) : v ∈ S then
npermin = npermin + 1

if npermin > Nin then return
else

if uindex ∈ F then return
if ¬∀v ∈ succ(uindex) : v ∈ S then

nout = nout + 1
if nout > Nout then return
if S is not convex then return
if |I (S)| ≤ Nin then S is a valid cut

if index > 0 then
SEARCH(S ∪ {uindex−1} , index− 1, npermin, nout)
SEARCH(S, index− 1, npermin, nout)

Figure 4. Subgraph enumeration algorithm
from [9].

SEARCH-2(S, index, npermin, nout)
if npermin > Nin ∨ nout > Nout then return
if uindex ∈ S then

if uindex ∈ F then return
if S is not convex then return
if |I (S)| ≤ Nin then S is a valid cut

if index > 0 then
if ¬∃v ∈ succ(uindex−1) : v ∈ S then

� No successors are in the cut
SEARCH-2(S ∪ {uindex−1} , index− 1, npermin, nout + 1)
SEARCH-2(S, index− 1, npermin, nout)

elseif ¬∀v ∈ succ(uindex−1) : v ∈ S then
� Some (but not all) successors are in the cut
SEARCH-2(S ∪ {uindex−1} , index− 1, npermin, nout + 1)
SEARCH-2(S, index− 1, npermin + 1, nout)

else
� All successors are in the cut
SEARCH-2(S ∪ {uindex−1} , index− 1, npermin, nout)
SEARCH-2(S, index− 1, npermin + 1, nout)

Figure 5. Moving checks to the caller.

SEARCH-3(S, index, npermin, nout)
start = index
while index ≥ 0 ∧ npermin ≤ Nin ∧ nout ≤ Nout ∧

∧ S ∩ F = ∅ ∧ S is convex do
if uindex ∈ S ∧ |I (S)| ≤ Nin then S is a valid cut

index = index− 1
if index > 0 then

if ¬∃v ∈ succ(uindex) : v ∈ S then
SEARCH-3(S ∪ {uindex} , index, npermin, nout + 1)

elseif ¬∀v ∈ succ(uindex) : v ∈ S then
SEARCH-3(S ∪ {uindex} , index, npermin, nout + 1)
npermin = npermin + 1

else
SEARCH-3(S, index, npermin + 1, nout)
S = S ∪ {uindex}

S = S\ {ui : i < start}

Figure 6. Eliminating one recursive call.

5

A B C

D

E F

.4 .6 .3

.5

.3 .3

A B

C

B C

A

F

D

E

F

D

E

a) c)

i

ij

 1 2 -
a = 1 2 1
 - 1 1

 0
c = 1
 2

j

r = 0 0 1

 2 3 -
 1 2 2
 - 3 4

 0 0 1
1
0
2

 3 3 -
 2 2 1
 - 3 3

 1 0 0
1
0
2sink

Reads Writes Reads Writes

b)

Figure 7. The I/O scheduling problem: a) a
data-flow graph whose I/O constraints ex-
ceeds the bandwidth of the register file; 2) its
integral critical path delay matrix A, and the
row/column vectors corresponding to a reg-
ister file with 2 read ports and 1 write port;
b) a permutation of R and C giving a non-
optimal solution; the permutation of R gives
the order of inputs, while the permutation of
C gives outputs in reverse order; c) a permu-
tation of R and C corresponding to an optimal
solution.

Section 2 however mentioned another strategy for ISE
discovery, which is able to bypass the bandwidth limitations
of the register file. In particular, the enumeration algorithm
can look for candidates exceeding the processor’s I/O con-
straint, and map them on the available ports by distributing
register file accesses over more than one cycle. The new
problem that arises is then to find a valid serialization for
I/O between the processor and the custom functional unit,
according to a given constraint on the number of register file
accesses per cycle. Figure 7ac shows a dataflow graph with
3 inputs and 3 outputs, as well as two possible schedules for
a register file with 2 read ports and 1 write port.

In Section 4.1 we will introduce I/O scheduling formally
and analyze the complexity of existing solutions to this
problem. We then prove the NP -completeness of the prob-
lem in Section 4.2.

4.1. Problem formalization

I/O scheduling was presented first in [10] and solved
there using brute force. The solver enumerated exhaus-
tively all possible schedules of the inputs, looking for the
one which exhibited the smallest latency. This allows to
minimize not only the latency of the ISE (i.e. the makespan
of the schedule), but also the number of registers used.

On the other hand, the complexity of this approach is
prohibitive. If Nin in the number of inputs in the ISE, and

Nread is the number of register file read ports, the number
of cases to be enumerated is(

Nin

Nread

)(
Nin −Nread

Nread

)
. . .

(
Nread

Nread

)
=

Nin!
Nread!Nin/Nread

(1)

= O

(
Nin!

Nread
Nin

)
= O

((
Nin

Nread

)Nin
)

Evaluating each of these cases is relatively cheap (linear
in the number of nodes in the ISE), but exhaustive search
clearly does not scale; for Nin = 14 and Nread = 2, the
possible schedules are already half a billion, and 81 billion
for Nin = 16.

In fact, this is the reason why Verma et al. propose a
heuristic algorithm of polynomial complexity for this prob-
lem [11]. They formulate I/O scheduling as a matrix prob-
lem. The delays between the inputs and outputs of the cir-
cuit are embodied by a matrix A of integral critical path
delays between inputs and outputs, and the number of reg-
isters is defined by two vectors R and C4:

ri =
⌊

i

Nread

⌋
cj =

⌊
j +Nwrite − 1

Nwrite

⌋
(2)

Figure 7ab shows a dataflow graph for an ISE together with
the corresponding matrix formulation of I/O scheduling. As
in the picture, elements ofA will be set to−∞ in case there
is no path between an input and an output.

The problem is then the following:

Problem 2 (I/O scheduling) Given a maximum number of
inputs and outputs that can be scheduled in any cycle (re-
spectively Nread and Nwrite), let R and C be defined as in
equation (2). Then, given anNin×Nout matrixA, find per-
mutations π and σ respectively of {0, 1, . . . , Nin − 1} and
{0, 1, . . . , Nout − 1}, such that the following expression is
minimized:

λ = max
i,j

(rπi
+ aij + cσj

) (3)

The outcome λ of the minimization is the latency of the
resulting ISE; inputs will be scheduled at cycle rπi

and out-
puts at cycle λ−cσj

. Figure 7c shows two schedules for the
input data of Figure 7b, both numerically and graphically.

Verma reports that their polynomial solution to this prob-
lem always found the optimal latency for the cases in which
brute-force search would terminate; however, they did not
have a proof of optimality. In fact, in the remainder of this
section we will prove the NP -completeness of problem 2.

4We assume 0-based indices in the rest of the paper.

6

4.2. NP-completeness proof
First of all, we prove that I/O scheduling is in NP . We

then introduce the decision version of the problem:

Problem 3 (Decision version of I/O scheduling) Given a
maximum number of inputs and outputs that can be sched-
uled in any cycle (respectively Nread and Nwrite), let R and
C be defined as in equation (2). Then, given an Nin×Nout

matrix A, and a latency λ, find whether or not there ex-
ist permutations π and σ respectively of {0, 1, . . . , Nin−1}
and {0, 1, . . . , Nout−1}, such that the following expression
is true:

max
i,j

(rπi + aij + cσj) < λ (4)

The two permutations π and σ are a certificate for prob-
lem 3. Furthermore, their size is O (Nin +Nout), while the
size of the problem input is O (NinNout). Therefore, the
problem admits a polynomial certificate and is in NP .

In order to prove the other direction, we reduce a partic-
ular flowshop scheduling problem to I/O scheduling. The
scheduling problem we use is 2-machine flowshop with de-
lays and unit job lengths (denoted shortly as F2UD), and
has been proved to be strongly NP -complete by Yu [14].

Problem 4 (F2UD) Given two machines M1 and M2, n
jobs j (j = 0, 1, . . . , n − 1) whose execution takes 1 unit
of time on M1 and 1 unit of time on M2, and a delay vector
lj , we define:

• t1j as the time at which the first half of job j is sched-
uled. For any two jobs j and k, t1j 6= t1k.

• t2j as the time at which the second half of job j is
scheduled. For any two jobs j and k, t2j 6= t2k. Fur-
thermore, for any job j, t2j ≥ t1j + lj + 1.

• Tj = t2j + 1 as the completion time of job j.

The problem is then to find a schedule for the jobs that
minimizes the makespan

T = max
j
Tj (5)

We reduce F2UD to I/O scheduling with Nread =
Nwrite = 1. Thus, we prove strong NP -completeness of
I/O scheduling even for Nread = Nwrite = 1. In this case,
equation (3) simplifies to the following:

λ = max
i,j

(πi + aij + σj) (6)

because ri = i and cj = j. Furthermore, we set Nin =
Nout = j, ajj = lj + 1, and aij = −∞ everywhere except
on the main diagonal. This further reduces equation (6) to

λ = max
i

(πi + li + 1 + σi) (7)

Given π and σ that correspond to an optimal solution
(i.e., to a minimal value of λ), we can derive the scheduling
times at M1 and M2 from π and σ respectively, by setting
i.e. t1j = πj and t2j = λ − σj . This is a valid solution for
2-machine flowshop scheduling, because

t2j = λ− σj
= max

i
(πi + li + 1 + σi)− σj (8)

≥ πj + lj + 1 + σj − σj
= πj + lj + 1 = t1j + lj + 1

This solution has makespan T = λ + 1, and is also
an optimal solution. Suppose there existed a solution of
problem 4 with a makespan T ′ < T . We can assume
without loss of generality that the t′2j vector in the solution
is a permutation of {T ′ − n, . . . , T ′ − 2, T ′ − 1}—if this
was not the case, it would be possible to shift the execution
of the second half of one or more jobs in order to satisfy
this condition. Likewise, we can assume that the t′1j vector
in the solution is a permutation of {0, 1, . . . , n− 1}, by
anticipating the execution of some jobs on M1 if this was
not the case.

Then, by setting π′j = t′1j , and σ′j = T ′ − 1 − t′2j , we
have a solution of I/O scheduling with latency:

λ′ = max
j

(π′j + lj + 1 + σ′j)

= max
j

(t′1j + lj + T ′ − t′2j) (9)

= T ′ + max
j

(t′1j + lj − t′2j)

≤ T ′ − 1 < T − 1 = λ

This implies λ′ < λ, which contradicts the optimality of
the I/O schedule given by π and σ.

5. Conclusion
In this paper, we analyzed the complexity of algorithms

for compiling to customizable processors. In particular, we
proved that a well-known algorithm for subgraph enumera-
tion achieves time complexity that is polynomial in the size
of the input graph (the lower bound for this problem); we
also proved strong NP -completeness for the I/O schedul-
ing problem, whose solution is important in order to use
large instruction set extensions effectively.

In order to prove the latter result, we presented a flow-
shop formulation of I/O scheduling. Future work may in-
clude extending this formulation to more than two ma-
chines; this arises naturally when the application-specific
functional unit includes other limited resources than com-
munication bandwidth. Other possible research includes
evaluating the quality of approximating algorithms for I/O
scheduling, and devising branch-and-bound strategies to
solve it exactly.

7

References
[1] K. Atasu, R. G. Dimond, O. Mencer, W. Luk, C. C. Özturan, and G. Dündar.

Optimizing instruction-set extensible processors under data bandwidth con-
straints. In Proceedings of the Design, Automation and Test in Europe Con-
ference and Exhibition, pages 588–593, Nice, France, Feb. 2007.

[2] K. Atasu, L. Pozzi, and P. Ienne. Automatic application-specific instruction-
set extensions under microarchitectural constraints. In Proceedings of the 40th
Design Automation Conference, pages 256–61, Anaheim, Calif., June 2003.

[3] R. Bennett, A. Murray, B. Franke, and N. Topham. Combining source-to-
source transformations and processor instruction set extensions for the auto-
mated design-space exploration of embedded systems. pages 83–92. ACM
Press New York, NY, USA, 2007.

[4] P. Bonzini and L. Pozzi. Code transformation strategies for extensible embed-
ded processors. In Proceedings of the International Conference on Compil-
ers, Architectures, and Synthesis for Embedded Systems, pages 242–52, Seoul,
South Korea, Oct. 2006.

[5] P. Bonzini and L. Pozzi. Polynomial-time subgraph enumeration for automated
instruction set extension. In Proceedings of the Design, Automation and Test in
Europe Conference and Exhibition, pages 1331–36, Nice, France, Apr. 2007.

[6] X. Chen, D. L. Maskell, and Y. Sun. Fast identification of custom instructions
for extensible processors. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 26(2):359–68, Feb. 2007.

[7] J. Cong, Y. Fan, G. Han, and Z. Zhang. Application-specific instruction gen-
eration for configurable processor architectures. In Proceedings of the 2004
ACM/SIGDA 12th International Symposium on Field Programmable Gate Ar-
rays, pages 183–89, Monterey, Calif., Feb. 2004.

[8] R. Gupta. Generalized dominators and post-dominators. In Proceedings of
the 19th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Language, pages 246–257, New York, NY, USA, Nov. 1992. ACM Press.

[9] L. Pozzi, K. Atasu, and P. Ienne. Exact and approximate algorithms for
the extension of embedded processor instruction sets. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, CAD-25(7):1209–
29, July 2006.

[10] L. Pozzi and P. Ienne. Exploiting pipelining to relax register-file port constraints
of instruction-set extensions. In Proceedings of the International Conference
on Compilers, Architectures, and Synthesis for Embedded Systems, pages 2–10,
San Francisco, Calif., Sept. 2005.

[11] A. K. Verma, P. Brisk, and P. Ienne. Rethinking custom ISE identification: A
new processor-agnostic method. In Proceedings of the International Confer-
ence on Compilers, Architectures, and Synthesis for Embedded Systems, pages
125–134, Salzburg, Austria, Oct. 2007.

[12] P. Yu and T. Mitra. Scalable custom instructions identification for instruction
set extensible processors. In Proceedings of the International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems, pages 69–78,
Washington, D.C., Sept. 2004.

[13] P. Yu and T. Mitra. Disjoint pattern enumeration for custom instructions
identification. In Proceedings of the 17th International Conference on Field-
Programmable Logic and Applications, pages 273–78, Amsterdam, Nether-
lands, Aug. 2007.

[14] W. Yu, H. Hoogeveen, and J. Lenstra. Minimizing Makespan in a Two-Machine
Flow Shop with Delays and Unit-Time Operations is NP-Hard. Journal of
Scheduling, 7(5):333–348, Oct. 2004.

8

