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Abstract

Integration of renewable generation, which is
often intermittent and decentralized, substantially
increases the stochasticity and complexity of power
grid operations. Future power systems planning will
require significant computational capability to evaluate
balance between demand and supply under varying
conditions, both temporally and spatially. The standard
approach for generation unit commitment is to use
mixed-integer linear programming to find the optimal
generation schedule considering ramping and generator
constraints. In the future grid this poses computational
scalability challenges because generation and demand
are not known with certainty due to stochasticity in
weather and complexity of the grid. To address this
challenge, we present a data-driven unit commitment
approach that can efficiently include stochastic weather
impacts and contingency considerations to improve
unit commitment.  QOur approach uses graph-based
data analytics techniques on solutions to the security
constrained (and possibly stochastic) economic dispatch
problem to identify potential improvements to a given
unit commitment. Recent breakthroughs in fully-parallel
stochastic economic dispatch software allow this
approach to be scalably deployed.  Simulations on
synthetic South Carolina and Texas grids show this
method can improve grid reliability with security
constraints over a set of contingencies, while also
meaningfully lowering total generation cost.
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1. Introduction

Transformational decarbonization of the electricity
generation fleet is needed to achieve emissions
reductions targets [25]. This will require a
transformation from centralized dispatchable generation
towards distributed renewable generation. Inherent
variability in generation coupled with impacts of
stochastic weather scenarios requires a new class of
scalable engineering tools to maintain the reliability
requirements of the grid while maximizing utilization of
installed renewable generation. In particular, developing
grid planning and management approaches that include
stochastic factors and contingencies into generation
dispatch decisions, is a key requirement for successful
renewables integration [24]. These factors are normally
considered downstream of the unit commitment (UC)
computations in the economic dispatch process for
computational reasons [14f]. The standard procedure of
conducting economic dispatch computations over a set
of contingencies and weather scenarios generates data
that is imbued with information about contingencies and
weather. We propose a method to efficiently “recycle”
this data to refine UC, thus including contingencies and
weather information into the UC. This data-driven UC
refinement is a minimal intervention approach, simply
adding an extra step in standard workflows to update
UC after economic dispatch.

Our novel data-driven unit commitment approach is
enabled by ExaGO [2], a recent development in security
constrained alternating current optimal power flow
(SC ACOPF) software that introduces massively parallel
computation of contingency and scenario analysis,
greatly lowering the time-to-solution of such analysis.
This means we can generate massive amounts of data
in the economic dispatch step at low-cost that can be
used to refine UC in an iterative manner. This integrated
UC and economic dispatch approach leverages today’s
vastly expanded computational capabilities in a scalable



way, showing strong potential to improve both the
security and cost of power grids.

UC is a challenging computational problem [30].
Its general formulation — a constrained non-linear
mixed-integer optimization problem — is an NP-hard
problem that is difficult to solve efficiently even when
using parallel computations [13]. Typically, model
approximations are made to make the UC problem
easier to solve. Most commonly, the model is linearized
so that mixed-integer linear programming can be used,
which can be implemented more efficiently [18]. The
weaknesses of this approach are: 1) it is difficult to
integrate consideration of contingencies or stochastic
scenarios into these solutions [4, 3, [12]; 2) the linear
approximations of the UC model do not capture voltage
or reactive power constraints, leading to solutions
that are only approximations of the fully constrained
problem [22]]; and 3) the combinatorial nature of the
problem formulation limits the scalability and solution
accuracy achievable in a reasonable time-frame for large
grids [6]]. This standard UC approach could thus be
improved by injecting information on contingencies and
non-linear security constraints in a way that is scalable
so that it can be applied to large grids.

Contingency analysis including all security
constraints is typically done after UC through a
series of alternating current power flow (ACPF) forward
simulations [13]. Methods to include contingencies
and stochastic information into UC have been studied
and proposed, with [3| |4, |14]] providing summaries
of this research. This is a fundamentally challenging
problem since it is large-scale, non-linear, non-convex,
and combinatorial, while solutions are expected in
short time-frames. Stochastic non-linear mixed-integer
programming, that would provide a native way to
solve such problems, is still an open research problem
requiring more investigation.

On the other hand, there has been significant
progress in the development of computational methods
for security constrained and stochastic economic
dispatch [21, [26L |16, [17]. Robust, parallelizable
methods for stochastic SC ACOPF have been developed
and successfully tested on different grid models [1}
20, 28]. These methods are stable with well
understood complexity and convergence properties;
allowing for scheduling analyses that run within strict
time constraints. Furthermore, these analyses can model
and strictly enforce all security constraints without
making approximations. Finally, these methods run
efficiently on inexpensive hardware, process a large
number of contingencies in a relatively short time, and
generate large amounts of high-quality data.

Successful development of methods for security

constrained  economic  dispatch  creates  new
opportunities to exploit the big data contained in
the economic dispatch solutions to improve UC. In this
paper, we propose an integrated security constrained
unit commitment and economic dispatch approach
that examines data generated in SC ACOPF analysis
to suggest refinements to UC. Simulations show that
these refinements have potential to not only increase
grid security across large sets of contingencies, but
also reduce total generation cost. We call this approach
data-driven unit commitment (DDUC). To keep the
presentation streamlined, we consider only day-ahead
reliability UC in a deregulated region.

The main contribution of this paper is the
introduction of a scalable grid planning technique
that exploits the data generated by economic dispatch
analysis with contingencies to improve UC. The
approach is formalized in an algorithm and presented
alongside a statistically rigorous set of simulations that
give a promising proof-of-concept. The advantages of
this approach are:

1. Incorporates contingency analysis and stochastic
weather scenarios into computation of UC.

2. Does not use mixed-integer programming for
the refinements, instead relying on data analysis
techniques that are more scalable for large
complex grids.

3. Exploits the data generated by economic dispatch
computations that must be done in any case.

4. Additional computations imposed by DDUC
utilize  graph-based algorithms of linear
complexity, meaning they are extremely fast
and efficient.

The organization of the remainder of paper is as
follows: Section [2] briefly presents the novel ExaGO
grid optimization software that has enabled the DDUC
approach. Section [3| formalizes the DDUC algorithm.
Section [] shows the results of numerical experiments
to evaluate the algorithm. Section [5] discusses potential
uses cases, significance, and impact of the DDUC
approach. Section [6]presents conclusions and directions
for further research.

2. Exascale Grid Optimization (ExaGQO)
Toolkit

The Exascale Grid Optimization Toolkit (ExaGO)
[[1, [2] is a package for solving large-scale AC optimal
power flow problems with stochastic (wind generation,
load), security (generation and network contingencies),
and scheduling (generator ramping) constraints. It



implements scalable algorithms that allow it to run on
hardware ranging form a laptop to a supercomputer.
ExaGO is portable and can be deployed on traditional
CPU and/or heterogeneous GPU-based architectures. It
has interfaces to state-of-the-art optimization libraries
HiOp [19]] and Ipopt [27].

In this work, we use ExaGO’s scopflow
application to solve SC ACOPF application formulated
as

min » _ f(a) (1)

ceC
s.t. g(ze) =0, (2)
h(z.) <0, (3)
7 <z, <zt “4)
—“Acx <ze—x9g < Aczx, c#0 ®)

where, C represents the set of contingencies, including
the base-case denoted by subscript 0. scopflow
aims to minimize the objective ) . f(x.), while
adhering to the equality g(x..), inequality h(z.), and the
lower/upper bound (z~,z ™) constraints. For notational
ease we include the base-case in set C, ie., C = C U
co. Each subproblem c has the detailed formulation
of an AC optimal power flow problem. Equation (3]
represents the coupling between the base-case and each
of the contingency states ¢;. Equation (3)) is the most
typical form of coupling that limits the deviation of the
contingency variables . from the base x( to within §.z.
An example of this constraint could be the allowed real
power output deviation for the generators constrained by
their ramp limit.

For the purpose of demonstrating and testing our
DDUC approach, we relax the coupling constraints
(3) between the base and contingency subproblems.
This results in decoupling of AC optimal power flow
subproblems for each contingency. Each AC optimal
power subproblem is solved in parallel. In essence, this
is similar to a parallel AC contingency analysis with
the difference that instead of solving power flow for
each contingency, we solve an AC optimal power flow.
ExaGOQO’s scopflow application has an in-built solver
called EMPAR (short for “embarrassingly parallel”) that
can be used for such decoupled contingency analysis.

We also model load shedding for each AC optimal
power subproblem where each load ¢ can shed an up
to v; % of its load at a given cost C;. This load
loss formulation allows setting priority or importance to
loads (by setting higher costs C;) and making provision
for load that should not be curtailed (1 —;), for example
in the case of critical loads.

3. Data-Driven Unit Commitment
Algorithm

3.1. Algorithm Objectives

Given an initial UC, the DDUC algorithm proposes
updated UCs after observing the optimal results of
the economic dispatch problem as solved by ExaGO.
The algorithm has two objectives: 1) efficiently find
a UC that reduces or eliminates the necessity for load
shedding over a set of contingencies cases; and 2)
exploit the solutions of economic dispatch over time,
to evolve the UC to reduce the overall cost of the
day-ahead UC. A UC that simultaneously realizes both
of these goals would be an unambiguous improvement
to grid operation. The DDUC algorithm achieves this by
adding “important” generators to the UC and removing
“unimportant” ones over a series of iterations.

The identification of “unimportant” generators is
done using a data-driven approach that examines the
solutions of the SC ACOPF problem finding those
generators that have low capacity factors, that is
generators whose available capacity is left mostly idle.
The hypothesis of this heuristic is that if a generator
provided either low-cost or critical power to the grid,
it should have a high capacity factor in the optimal
(lowest-cost) SC ACOPF solution. The identification of
“important” generators is more nuanced. The basic idea
is to find contingency cases that require load shedding
to maintain security constraints, then find currently
deactivated generators that are ‘“close” to the load
that was preferentially shed by the fully-constrained
SC ACOPF optimization algorithm for that contingency
case. The hypothesis of this heuristic is that those
generators that are proximate to the areas of the grid that
require load shedding will be most able to provide the
missing power. Details on how proximity is measured
and how proximate generators are algorithmically
identified follow in Section[3.2]

The DDUC algorithm works in two phases: a
load shed recourse phase where “important” generators
are identified and added to the UC, and a pruning
phase where “unimportant” generators are identified and
removed from the UC. Algorithm [I] defines how these
phases are combined to produce the new UC.

3.2. Load Shed Recourse Phase

In the load shed recourse phase, the alternating
current optimal power flow (ACOPF) solutions for the
base-case and each contingency are analyzed to find
situations in which load shedding is required to keep
from violating security constraints. In each of the load
shedding contingency cases, the network is analyzed to



Algorithm 1: Data-Driven Unit Commitment

Algorithm 2: Load Shed Recourse

Data:
e G : power grid model,
e U{ : unit commitment for that grid,
* C: set of contingencies for that grid,
¢ n : number of iterations

Result: 2/’ : new unit commitment
1 Function DDUC (G, U, C, n) 2

2 U’ < recourse (G,U,C)

3 for n do

4 U« prune (G,U',C)

5 U’ < recourse (G,U', C)
6 end

7 return U’

find generators that are currently inactive that would
be good candidates to add to the unit commitment. A
good candidate is a generator that: 1) is close, in the
graphical sense, to the bus that shed the most load; and
2) has available transmission capacity on the shortest
path connecting it with that bus.

Such generators are found using a breadth first
search (BFS) from the bus that sheds the most load.
The search terminates when the number of inactive
generators found reaches k, a tuning parameter that
effectively controls the relative importance of the
graphical proximity and available capacity measures.
A low k will emphasize graphical closeness, while a
high k& will emphasize available capacity. For each
generator in this set, the available capacity on the
shortest transmission path between that generator and
the bus with load shedding is then measured. The
generator with the greatest ability to provide generation
to the bus, based on both generator capacity and
transmission path capacity is then added to the set of
generators to activate. This process repeats for the bus
with the next highest amount of load shedding until the
generation capacity activated multiplied by parameter «
is greater than the total amount of load shedding in the
scenario. Once this process has been repeated for each
contingency that had load shedding, the union of all sets
of generators identified for each case is added to the UC.
Full details of this load shed recourse phase are outlined
in Algorithm 2]

3.3. Pruning Phase

The sole purpose of the pruning phase is to further
optimize UC. The ACOPF solution for the base-case
and each of the contingency cases is analyzed to find
the generators with the lowest capacity factors in the
network, across all cases, and then remove some of those

Data:
« {G,U,C},
* «: activation parameter,
* k : number of generators to return from BFS
Result: I/’ : new unit commitment
Function recourse (G, U, C, o, k) :
if C D {co} then
‘ U =recourse (G, U, C={co}, o, k)
end
Run ExaGO scopflowon G,U,C
S < set of cases with load shedding
U «u
for s € S do
Us U
B < buses in s with load shedding
7 < total load shed in s
r+0
while r < am and B # @ do
b < pop highest load shed in B
breadthFirstSearch (b, k)
N <« k nearest deactivated gens to b
for g € N do
p < path capacity from g to b
p’ < generating capacity of g
p.(] A min(ﬂ? p/)
end
g < argmax(p)
Us —Us;Ug
7 < 1 + max(p)
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end

U U Ul
27 end

28 return U’
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generators from the UC. The prune algorithm proceeds
by taking a sum of the capacity factor for each generator
in the UC over all of the cases / scenarios and then
removing the z generators with the lowest total capacity
factor across all scenarios (Algorithm 3).

Tuning the parameter z, which defines how many
generators to prune at each pass of the DDUC algorithm,
is critical to the effectiveness of the algorithm at
reducing the cost of the UC. Too low a z, and
inefficient generators will remain in the UC. Too high
a z, and “important” generators may be mistakenly
pruned. Methods for exploring the space of z values and
algorithms for reaching optimal z values is something
we would like to explore in further research. For this
paper we used a percentage of active generators in the
range of 2-8% that decreases with every iteration.



Algorithm 3: Prune Generators

Data:
« {G,U,C},

* z: number of generators to prune

Result: I/’ : new unit commitment

1 Function prune (G, U, C, z) :
Run ExaGO scopflowon G,U,C
S <« set of all cases
fg—0,Vgel
for s € S do

for g € U do

| fg < fq+ capacity factor of g in s

end
end
u «—u
for z do

g < pop argmin(f)

U +uU\yg
14 end
15 return /'

= I . NN )

-
W N = o

Table 1: Properties of tested grids.

S.C. grid Texas grid

Buses 500 2,000
Generators 90 544
Branches 597 3,206
Installed gen. (MW) 12,189 96,292
Total load (MW) 7,751 67,109
Contingencies considered 590 500

4. Numerical Experiments

4.1. Setup

Numerical experiments to test the effectiveness of
the algorithm were conducted on two test grids from
the ACTIVSg series [8| 29, |9] — the synthetic South
Carolina (S.C.) and Texas grids. At 500 and 2000
buses respectively, these grids are sufficiently complex
to provide challenging problems, while being small
enough to provide SC ACOPF solutions with ExaGO
in seconds rather than minutes. For each grid, a single
scenario with static load conditions was analyzed, with
variability on the supply and transmission side from the
contingencies considered. Basic properties of these test
grids are shown in Table[I]

The experiments were conducted on a cluster
with a 64-core AMD 3rd Gen EPYC CPU on each
node. The experiments were run using the ExaGO

scopflow EMPAR formulation using Ipopt [27] as
the optimization engine and Pardiso [5} |11} |10]] as the
solver for linear systems. The scopflow EMPAR
solver provides massively parallel ACOPF solutions of
all contingencies in a fully de-coupled formulation. As
such, one compute core is required for each contingency
plus one for the base-case to achieve maximal parallel
throughput. For the S.C. grid 590 contingencies were
considered in all experiments, representing the full set
of n — 1 contingencies for generators and one branch
outage per bus. For the Texas grid a random sample of
500 n — 1 contingencies were considered including a
mix of both branch and generator contingencies. The
S.C. and Texas grids thus required 591 and 501 CPU
cores, respectively, to solve fully parallel.

These are relatively small examples in terms of
the number of contingencies and scenarios, however,
this method is also applicable to extreme-scale
analyses.  ExaGO has been successfully run on
Frontier, the world’s most powerful and first exascale
supercomputer [23|], to perform analysis on the
10,000-bus synthetic Western Interconnection model,
using 9,999 contingencies and 10 stochastic scenarios,
resulting in nearly 100,000 sub-problems. This problem
was run on 9,000 compute nodes with 72,000 MPI
ranks and successfully completed in 16 minutes. To
integrate such runs with the DDUC algorithm would
require further research and development, but the linear
algorithmic complexity of the data analysis methods
make integration with extreme-scale problems feasible.

A statistical approach was used to evaluate the
performance of the DDUC algorithm given many
distinct starting UCs. Specifically, performance was
evaluated for 100 stochastically generated starting UCs
for each grid. The starting UCs were made by randomly
deactivating x percent of the generators in the grid,
then adding back generators until the base-case scenario
was feasible without load-shedding; 2 = {40% for S.C.,
30% for Texas}. This statistical approach provides
assurance that the positive results are representative of
the performance of the algorithm on a broad range of
starting UCs and not a circumstance of a specific case.
The DDUC algorithm was evaluated using 5 iterations
(5 cycles of load shed recourse and pruning), as it was
empirically most effective in the first 5 iterations.

4.2. Performance Evaluation Criteria

We evaluate the DDUC algorithm for its
performance on two metrics: 1) reduction of the
amount of load shedding from contingencies, and 2)
improvement of the overall cost of running the grid
with the suggested UC. The reduction of load shedding
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Figure 1: DDUC algorithm performance on South Carolina grid. Figure|la|- recourse algorithm reduction in number
of load shed cases across all contingencies; error bars show middle quartiles. Figure[ID]- recourse algorithm reduction
of load shed (MW) for a random sample of 7 runs. Figure - value of the cost function ($) of the base-case
and the sum of all cost function values across all contingency cases. Figure [1d| - cost reduction ($) achieved on
an iteration-over-iteration basis for each of 5 iterations. Box plot notches represent median, box represents middle

quartiles, whiskers represent Sth to 95th percentiles.

given a set of contingencies is the more important of
these two metrics, since loss of power for consumers is
a highly undesirable event. Any approach to find a UC
to reduce load shedding under contingencies, however,
should be evaluated not only for its benefits of reducing
load shedding, but also for its impact on the cost of
operating the grid. A UC that reduces load shedding in
the contingencies may be undesirable if it significantly
increases costs. The following results show that the
DDUC algorithm tends to find UCs that reduce both
load shedding and cost, giving us a win-win. However,
the cost savings results are intrinsically sensitive to the
particular cost model employed. Our model includes a
cost attached to load shedding, so there is a benefit in
the cost metric for preventing load shedding.

4.3. South Carolina Grid Results

Upon testing the DDUC algorithm, we are pleased
to see impressive performance on both metrics. Figure[T]
visualizes the results for testing on the S.C. grid. The
top panel shows performance against the objective of

eliminating load shedding, while the lower panel shows
performance at lowering overall cost.

Figure[TaJshows the consistent ability of the recourse
algorithm to find UCs that eliminate the necessity
of load shedding from contingency scenarios. This
figure shows that arbitrary starting UCs typically must
shed load in 20-30 different contingency cases. After
the recourse algorithm is run on this starting UC,
however, the number of contingency cases requiring
load shedding drops considerably to the range of 2-3.
Subsequent iterations of the DDUC algorithm do not
dramatically increase load shedding, and it is interesting
to note that for this case, the recourse algorithm has
difficulty eliminating the necessity for load shedding
from all contingency scenarios, typically having 1
contingency that still requires it. This suggests that the
resilience of S.C. grid (as described in the model) could
be improved with suitable upgrades.

Figure [Tb] shows a slightly different view of the
effectiveness of the recourse algorithm. On the y-axis,
the sum of load shedding across all contingency cases
(3" iases) for a particular UC is indicated by red
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Figure 2: Histogram - cost function reduction from initial UC to UC assigned after 5 iterations of DDUC algorithm
for n=100 runs, each seeded with different stochastic starting UC.

diamonds before the recourse algorithm and green dots
after the recourse algorithm. Only 7 randomly selected
starting UCs are shown so that the plot is not too
crowded. This figure shows that while there may be
significant load shedding required to maintain security
constraints across the set of contingency scenarios
before the recourse algorithm, after the algorithm,
the amount of load shedding required across all
contingencies is most often 0 or nearly 0.

Figure shows performance of the DDUC
algorithm at reducing the overall cost of the network.
The different colors of boxes represent the cost function
value for the base-case, and the sum of the cost functions
of all contingency cases including the base-case. An
impressive improvement in cost is shown, with the
median cost of a starting UC at $131.3k compared to
the median cost of $85.3k after 5 iterations of the UC
algorithm; an impressive improvement of 26.2%.

Figure shows The cost reduction on an
iteration-over-iteration basis of the given UCs. What
this means is that the metric measures the improvement
for each individual UC over the five iterations of the
algorithm, yielding a positive value if the cost decreased
during the iteration and a negative value if the cost
increased during the iteration. These measures are then
aggregated in the box plot. We see that for each of the
five iterations, the algorithm resulted in a cost reduction
to the system in the vast majority of instances. Notably,
in both the first and second iteration, at least 95% of the
time the algorithm resulted in reductions for both the
base-case cost and the sum of contingency cases cost.

Figure [2a] shows a histogram of the reduction in the
value of the cost function for 100 runs of the DDUC
algorithm. This shows us the distribution of the cost
reduction to be expected from an arbitrary starting UC
to a corrected UC for the S.C. grid. Considering
the base-case cost, over the 100 run sample: the
minimum cost reduction observed was $313, the mean
cost reduction observed was $30,986, and the maximum
cost reduction observed was $56,432. Importantly, in

none of the 100 runs was a cost increase observed.
4.4. Texas Grid Results

Repeating the same tests on the Texas grid, we see
similarly positive results. Figures [2b] and [3] visualize
these results on the Texas grid test case.

In Figure we see that considering the base-case
cost, over the 100 run sample: the minimum cost
reduction observed was $32,341, the mean cost
reduction observed was $59,587, and the maximum
cost reduction observed was $102,508. While theses
reductions are lower in relative terms than they were for
the S.C. grid, they are significant in absolute terms. The
distribution is also more impressive on the Texas grid
in that even the minimum observed cost reductions are
significantly positive. Again, in none of the 100 runs,
was a cost increase observed.

Figure[3ashows the impressive results of the DDUC
algorithm for eliminating load shed also persist on
the Texas grid case. This figure shows that arbitrary
starting UCs typically must shed load in 15-50 different
contingency cases. After the recourse algorithm is
run on this starting UC, however, the number of cases
requiring load shedding drops considerably to the range
of 0-2. Subsequent iterations of the DDUC algorithm
perform similarly well, eventually eliminating load
shedding altogether seeing no load shedding cases for
iterations 4 and 5 in the middle quartiles of data. This
is a better result than on the S.C. grid, and is perhaps
attributable to the greater size and diversity of the Texas
grid making it less vulnerable to a particular outage.

In Figure 3b] we see that during the first iteration
of the DDUC algorithm there is one run where
total load shedding over all cases increases after the
recourse algorithm. This is not persistent however,
as the recourse algorithm consistently eliminates load
shedding on subsequent iterations. The high level of
load shedding after the pruning phase in contrast to
the S.C. grid is attributable to the fact that the larger
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Figure 3: DDUC algorithm performance on Texas grid. See Figure|l|for detailed description of plots.

Texas grid undergoes more aggressive pruning since the
parameter of how many generators to eliminate is set as
a percentage of the active generators, and was set higher
in the Texas grid.

Figure shows an impressive improvement in
cost, with the median cost of a starting UC at $1.31m
compared to the median cost of $1.25m after 5 iterations
of the UC algorithm; an improvement of 4.7%.

In Figure 3d] again we see that for each of the five
iterations, the algorithm resulted in a cost reduction to
the system in the majority of instances. Notably, in both
the first and second iteration, at least 95% of the time
the algorithm resulted in reductions for both the base
case cost and the sum of contingency scenario costs.
Interestingly, in the Texas grid, the DDUC algorithm
does a better job of reducing cost in the second iteration
than the first one.

5. Discussion

The data-driven approach to finding UCs that are
both secure and low-cost has some fundamental merits
that make it worthwhile exploring in more depth.
Perhaps the most important of these is that the input
data for the approach is coming from a stochastic
SC ACOPF process that considers both contingencies
and weather scenarios. Using this data as a feed-stock

for UC refinement therefore provides the possibility
to find UCs that are best with respect to not only
some base-case scenario, but also to an aggregation of
possible contingencies and weather conditions. The
ability to include contingencies and stochastic factors
into the UC optimization process is going to be critical
to increasing the penetration of renewables without
sacrificing grid reliability. In addition, inducting
knowledge of contingencies and weather into the
UC optimization process could give grid planners
confidence to tighten the safety margins used in UC
decisions. This would allow for more cost-effective
grid operation in the same way that superior calculation
techniques in civil engineering allowed for building
designs using fewer materials.

Another important benefit of this DDUC approach
is that the incremental computations to find the
UC refinements are extremely efficient and low-cost.
The underlying algorithms are linear complexity with
respect to both the grid topology, and the number of
contingencies and scenario cases considered. In contrast
to the standard mixed-integer programming approach to
UC, this means that the method is highly scalable as
network complexity increases.

A potential deployment of the DDUC approach
could be: an initial seed UC is found using the
traditional mixed-integer approach. Economic dispatch



with respect to contingencies and weather scenarios
is then run using this seed UC. The data from the
economic dispatch is then recycled into the DDUC
algorithm to refine the seed UC with the knowledge of
contingencies and weather scenarios that is contained
in the economic dispatch solution, and this refinement
process is repeated as new information on the state of
the grid and the weather becomes available.

Another interesting possible application of the
DDUC approach is for black-start operations where it is
known a priori which units to start and due to the weak
grid conditions, the chances of load shedding due to
improper unit commitment is significant. In such a case,
the DDUC approach could provide feasible and optimal
grid operational solutions with no or least amount of
load shed.

The primary goal of the DDUC algorithm is to
reduce load shedding across a range of contingencies
by finding UCs that are less vulnerable to the ensemble
of contingencies. This is a critical consideration since
more than 13 million people in the United States
were affected by power outages each year from 2008
to 2015, and the annual number of outages grew
from 2,169 to 3,571 in this same time period [15].
Another interesting area of research to explore would
be “demand-response” which amounts to voluntary load
shedding. Demand-response programs are common
and rapidly growing in the US, and usually involve
some incentive that is provided by the grid operator
to induce large consumers to lower their consumption
when conditions are tight [7]. The DDUC approach
would allow for demand-response to be explicitly
modeled using the cost of the incentive as the cost
for load reduction variables in ExaGO. This is an
exciting possibility that could allow operators to
better understand the relationship between UCs and
demand-response requirements.

While the results of the numerical experiments
presented herein are preliminary, they give reason to
justify optimism in the possibilities of the DDUC
approach as it is refined through further research. These
experiments have shown a validation of the heuristics,
showing their ability to identify both the “important”
and “unimportant” generators in the grid. =~ While
benefits in terms of total generation cost will likely
diminish with more optimal seed UCs generated from
a mixed-integer programming approach, the DDUC
method should be recognized for its ability to efficiently
include contingency and weather information into the
UC. While the experiments were only run with
contingencies in this work, the inclusion of stochastic
weather scenarios would be a simple extension since this
functionality is already fully supported by ExaGO.

6. Conclusion

To achieve decarbonization goals [25]], we need to
develop tools to efficiently manage highly dynamic
and stochastic power grids. Stochasticity of weather
and operations and their impact on the grid can be
modeled effectively in the economic dispatch process
using standard models and proven approaches. New
computational tools such as ExaGO allow us to vastly
scale-up stochasticity modeling efforts by leveraging
parallel computing and modern computational
resources to give high-resolution information in
short time-frames. The outcome is a tool set and data
to support the decision-making process on resilience
investments, improving operational efficiency and grid
reliability.  These economic dispatch computations
with contingencies and stochastic scenarios generate
huge amounts of high-quality data that can be analyzed
and effectively “recycled” to imbue contingency and
stochastic information into unit commitment through
heuristic refinements.  This process is a minimal
intervention approach that is intrinsically scalable given
the linear complexity of the graph-based algorithms
used to analyze the economic dispatch output data. The
preliminary results presented in this work show that
this data-driven unit commitment approach has merit.
It performed effectively on non-trivial grids of 500 and
2000 buses, consistently providing unit commitments
that strictly enforced all security constraints (including
nonlinear) and minimized or fully eliminated the need
for load shedding across contingencies with power
imbalance.

With further research, this data-driven unit
commitment refinement approach could be tested
across a wide array of grids, with larger contingency
sets, with stochastic weather scenarios, and with
different seed unit commitments. With further
development and a robust implementation, this could
prove to be a computationally efficient and practical
method to include contingency and stochastic weather
information into the unit commitment optimization
process; providing more reliable and efficient grids with
high penetrations of renewable energy.
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