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 INTRODUCTION 

Over the decades, economic location theory and modern economic geography 
have highlighted the relevance of space-time factors in (socio-)economic 
development. Spatial matters may be regarded as being of critical importance 
when investigating socio-economic (and other) phenomena (see, for example, 
Bockstael 1996; Weinhold 2002), including their implications for 
policymaking (Lacombe 2004). To account for the presence of spatial 
structures that influence (positively or negatively) observable economic 
entities, such as unemployment or trade, calls for a rigorous and systematic 
assessment of their impact and extent. Spatial autocorrelation (SAC) 
represents the correlation, computed among the values of a single 
georeferenced variable, that is attributable to the geographic proximity of the 
objects to which the values are attached. Introduction of the SAC concept is a 
departure from the classical assumption of independence of observations 
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constituting a single variable. SAC also complements the concept of temporal 
autocorrelation, which has been extensively studied and dealt with in time-
series econometrics. SAC measures are used to quantify the nature and 
degree of the spatial correlation contained in data for a given variable, or to 
test the assumption of independence or randomness. From a statistical 
analysis viewpoint, spatial correlation patterns may become problematic, 
since they make standard statistics, such as correlation coefficients or 
ordinary least squares (OLS) estimates, potentially inappropriate. 

This chapter aims to provide an assessment of how important spatial 
effects are in explaining unemployment levels in Germany, and, particularly, 
to show that these (or, more precisely, a subset of these) patterns are 
consistent over time. The definition of stable and recognizable spatial 
patterns enables one to observe systematic differences in regional 
unemployment. Such findings may have clear implications for policy 
evaluation and strategic planning. This chapter presents statistical analyses 
carried out by means of a semi-parametric ‘spatial filtering’ technique, 
described in Griffith (2003), which is based on the decomposition of spatial 
weights matrices. In our analysis, these matrices are defined for 439 German 
districts (i.e., Kreise), according to both topological and distance-based 
criteria—such as shared boundaries or centroid distance—and economic 
flows. In this regard, journey-to-work flows are used as a proxy for economic 
linkages. 

Earlier work on pattern identification in German labour markets was 
carried out by, amongst others, Kosfeld and Dreger (2006), who investigated 
Verdoon and Okun’s laws for German regional labour markets in the period 
1992–2000. Their approach, however, involves computing spatial filters for 
each year within the framework of a spatial seemingly unrelated regression 
(SUR) model. Our approach differs from theirs in that, in addition to limiting 
ourselves to autoregression, we focus on the search for a set of spatial filters 
that are significant and consistent over time, and, therefore, can be employed 
for the entire time period considered (that is, 1996–2002). Also, we employ 
data at a more refined level of disaggregation (439 districts versus 180 
regions), which enables a more detailed analysis of the underlying spatial 
patterns.  
 



SPATIAL FILTERING TECHNIQUES 

 
Recent years have witnessed an increasing popularity for the use of spatial-
econometric tools in regional research employing georeferenced data (see, 
e.g., Anselin 1988; Griffith 1988; Anselin et al. 2004; Anselin 2007). Among 
standard spatial econometric methods, spatial autoregression techniques have 
become powerful methods, in particular through the use of spatial weight 
matrices that mirror the intensity of spatial linkages (dependences) between 
spatially-referenced data. The insight has matured that—due to efficiency and 
normality problems—OLS may not be carried out with spatially dependent 
data. Furthermore, maximum likelihood (ML) estimators of spatial regression 
models are based on restrictive assumptions. These recognitions have led to 
the search for appropriate statistical estimation techniques. An alternative 
approach to spatial autoregression is the use of spatial filtering techniques, 
described inter alia in Griffith (1981), Haining (1991), Getis and Griffith 
(2002), and Tiefelsdorf and Griffith (2007). The advantage of these filtering 
procedures is that the variables studied (which, initially, are spatially 
correlated) can be decomposed into spatial and non-spatial components, 
which then can be used in an OLS or ML modelling framework. Filtering out 
spatially autocorrelated patterns also enables one to reduce the stochastic 
noise in the residuals of conventional statistical methods such as OLS. This 
conversion procedure requires the computation of ‘spatial filters.’ The 
approach developed by Griffith (1996, 2004) is adopted in our study. This 
approach is preferred in our case study to the one by Getis (1990, 1995), 
which requires variables with a natural origin. This limitation would not 
allow us to apply the same method to the analysis of other labour market 
variables, such as employment growth rates. 
 The spatial filtering technique introduced by Griffith is based on the 
computational formula of Moran’s I (MI) statistic1. This methodology utilizes 
eigenvector decomposition techniques, which extract orthogonal and 
uncorrelated numerical components from an n x n matrix (see, for details, 
Tiefelsdorf and Boots 1995)2. We extract the eigenvectors of the modified 
spatial weights matrix  
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Where I is an identity matrix of dimension n x n, and 1 is an n x 1 vector 
containing ones. Such eigenvectors maximize the sequential residual MI 
values, so that the numerical values of the first computed eigenvector, E1, 
generate the largest MI value among all n eigenvectors. All subsequently 
extracted eigenvectors again maximize the MI values while being orthogonal 
and uncorrelated with the preceding ones, eventually giving the complete set 
of all possible (mutually) orthogonal and uncorrelated map patterns posited 
by the spatial weights matrix used (Getis and Griffith 2002). 
 When employed as regressors, these eigenvectors may function as proxies 
for missing explanatory variables. A smaller set of m (< n) ‘candidate’ 
eigenvectors can be selected for parsimony reasons, on the basis of their MI 
values. For example, an MI threshold value of 0.25 can be specified for 
selection screening purposes. The final set of eigenvectors describing the data 
at hand can be selected (out of the m candidates) by means of stepwise 
regression. In this regard, the orthogonality of the eigenvectors makes 
selection easier, because no partial correlations exist between the 
eigenvectors. The linear combination of the eigenvectors belonging to the 
final selection can be defined as the ‘spatial filter’ for the variable examined. 
 The eigenvector components may be regarded as independent map 
patterns, and represent the latent SAC of a georeferenced variable, according 
to a given spatial weights matrix. They also can be interpreted as redundant 
information due to spatial interdependencies, in the framework of standard 
regression methods. Also relevant to the use of the eigenvector 
decomposition process is the choice of the matrix to be used, particularly 
regarding: (a) the definition of proximity; (b) the variable chosen (if 
necessary) to indicate proximity; and, (c) the coding scheme employed in the 
calculation of the weights matrix. While points (a) and (b) are discussed 
subsequently in this chapter, the latter point is briefly addressed now. 
 The previously discussed spatial filters are computed on the basis of a 
modified spatial weights matrix. It is straightforward that the choice of the 
matrix to be used is critical in defining the set of spatial filters. Many coding 
techniques for spatial weights matrices can be found in the literature 
(Tiefelsdorf et al. 1999; Getis and Aldstadt 2004). The main feature that 
discriminates between the different schemes is the way in which each scheme 
treats the spatial links between georeferenced objects (like regions). 



Generally speaking, we can define a family of coding schemes based on the 
following expression (Tiefelsdorf and Griffith 2007, with practical details in 
Chun et al. 2005): 
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where B is a binary spatial weights matrix, and Dq is a diagonal matrix that 
contains  components 1(  belonging to vector  and 
representing the degree of ‘linkage’ of spatial object i. Different coding 
schemes are obtained by varying the q parameter. In particular, the following 
schemes can be obtained: 
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q = 0: C-coding (globally standardized); this scheme is commonly used in 
spatial statistics, and tends to emphasize spatial objects with a greater 
linkage degree. The C-coded matrix is symmetrical; 
q = –0.5: S-coding (variance stabilized); this scheme tends to even the 
variation levels of weights assigned to spatial objects; and, 
q = –1: W-coding (row-sum standardized); this scheme is mostly used in 
autoregressive response (AR) and simultaneous spatial autoregressive 
(SAR) model specifications, and, contrary to the C-coding scheme, tends 
to emphasize the weight of objects with small spatial linkages. 

 
Different individual spatial patterns may result from the calculation of the 
eigenvectors of the different coded matrices. For instance, a W-coded matrix 
can be expected to show more ‘extreme’ values along the edges of a study 
area, while, consequently, a C-coded matrix is expected to present stronger 
patterns in the inner study area. Figure 11.1 presents an illustrative example, 
for the case of German unemployment, of the first two eigenvectors 
generated from the adjacency matrix coded in the different coding schemes. 
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E1, q = –1 (W) E1, q = –0.5 (S) E1, q = 0 (C) 

 
 

E2, q = –1 (W) E2, q = –0.5 (S) E2, q = 0 (C) 

   
Figure 11.1 Eigenvector variation for different coding schemes, the case of 
German unemployment 
 
The choice of coding scheme, and therefore of the spatial weights matrix, 
although yielding a different set of eigenvectors from which the spatial filters 
are selected, still produces a linear combination account for SAC in a spatial 
econometric or spatial statistics context; the differentiating feature tends to be 
parsimony. In the empirical application presented in this chapter, both W-
coding and C-coding are employed (see Section 3). Results of a correlation 
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analysis of the spatial weights matrices used also are presented, in order to 
compare the various approaches. 
 Next, the preceding spatial filtering techniques are illustrated empirically 
using German unemployment data. The dataset consists of cross-sectional 
data about the number of employed and unemployed individuals, collected by 
the (German) Federal Employment Services (Bundesanstalt für Arbeit, BA), 
for 439 German districts (Kreise). The time period for which the data are 
available is from 1996 to 2002, while the level of aggregation of the dataset 
is NUTS-3. The unemployment rates employed in our analysis are computed 
as a ratio between the number of unemployed individuals and the active 
workers population. 
 A further spatial relationship matrix, viz. German commuting flows, is 
employed in our analysis. The data comprise, for each couple (i, j) of NUTS-
3 origins and destinations, the number of employees that live in district i and 
work in district j. Therefore, we can treat these flows as home-to-work trips. 
The data used in this chapter refer to the year 2002, and are employed in the 
computation of an ‘economic flows’ spatial weights matrix (see Section 3). 
Commuting data for one year only are employed in our case study, because 
varying commuting data would generate different spatial weights matrices, 
and, consequently, different sets of eigenvectors (although techniques exist to 
handle a set of such matrices; e.g., Rogerson and Plane, 1984). Furthermore, 
one can assume some spatio-temporal persistence with respect to the local 
commuting patterns. The daily commuting flows between two districts are 
transformed to satisfy the statistical symmetry requirement of spatial link 
matrices. This transformation represents the daily to-work and back-to-home 
flows. 

COMPUTATION AND CHOICE OF SPATIAL FILTERS FOR 
GERMAN UNEMPLOYMENT DATA 

Spatial Weights Matrices: The Different Approaches Used 

As previously mentioned, the spatial filtering methods employed in this case 
study are based on the decomposition of a spatial weights matrix. Therefore, 
in addition to matrix computation methods, carefully considering the concept 
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of proximity employed, and its consequences, is important. In our case study, 
we present a set of different definitions of the spatial weights matrix: 
 
- economic flows: based on patterns of symmetrized commuting flows; 
- shared boundaries: based on geographical contiguity, which by definition 

is symmetric; and, 
- distance: based on symmetric distances separating district centroids. 
 
The three definitions highlighted here enable one to observe the influence of 
different operational definitions of proximity on the final results. First, 
commuting flows are employed as a proxy of the economic intertwining 
among districts. Second, shared boundaries utilize the topology of 
administrative boundaries in defining proximity. Third, distance-based 
matrices calculated using district centroids define proximity in terms of 
geographical distance decay relationships. 
 A total of five spatial weights matrices are employed. The matrices are 
computed as follows: 
 
a) A journey-to-work flows matrix is computed according to the q = –1 

scaling scheme (W-coding); this matrix is based upon the location-to-
location commuting data described above. 

b) Two matrices based upon shared boundaries, constructed by defining 
contiguity according to the so-called ‘rook’ rule, and then computed 
according to the C- and W-coding schemes; results from the application 
of a ‘queen’ contiguity rule are not considered here, since the two 
specifications of adjacency differ only by 25 neighbour links. 

c) Two distance-based matrices derived from a spatial interaction 
model(SIM)3; the variables used for the estimation of the model are 
district employment data (discussed above), and the distance between the 
centroids of each district: 

− First, the distance decay exponent of –2.7 is taken from the estimated 
SIM, and then converted to the W-coding scheme ; 

− Second, this distance decay exponent is increased to –6.3 in order to 
obtain the same number of candidate eigenvectors as are obtained with 
the shared boundaries W-coding scheme. 



The following unconstrained gravity model is the SIM used to describe flows 
and estimate distance decay parameters: 
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where: Fij is the quantity of flows between areal units i and j; Wi is the 
number of workers residing in origin areal unit i; Jj is the number of jobs 
located in destination areal unit j;  are parameters; and εij  is a 
random error associated with flows between origin i and destination j. The 
distance decay parameter, 

 γand β α, κ,

γ̂,  estimated with the log-linear form of Eq. 
(11.2)—but with a multiplicative rather than an additive error structure—was 
used to define the W-coding scheme, resulting in the matrix components 
being defined as: 
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Next,  was incrementally increased until the resulting (WT + W)/2 matrix 
yielded the same number of candidate eigenvectors as are obtained with (WT 
+ W)/2 constructed as the row-standardized version of the topological-based 
binary 0/1 adjacency matrix C. Of note is that the eigenvectors for all W-
coding schemes are extracted from (WT + W)/2 in order to convert the matrix 
from an asymmetric to a symmetric one. 

γ̂

Computation and Selection of the Spatial Filters over Time 

The first step in the construction of a spatial filter to be applied to the variable 
of study is the computation of the eigenvectors of a spatial weights matrix, 
followed by the choice of a set of candidate eigenvectors from which 
selection is made. Eigenvectors are selected for inclusion on the basis of their 
MI values and their correlations with the georeferenced data about regional 
unemployment. A minimum MI/max(MI) value of 0.25 has been used in our 
case study to identify the candidate set to be evaluated for inclusion. The 
results of this process, carried out for the matrices presented in the preceding 
section, are presented in Table 11.1. 
 



Table 11.1 Candidate eigenvectors selected and maximum MI values 
 

Spatial weights matrix No. of candidate 
eigenvectors Max(MI) 

Journey-to-work flows matrix 78 2.92 
Rook matrix (S-coding) 130 1.07 
Rook matrix (C-coding) 98 1.24 
Distance-based matrix (β = –2.7) 36 0.97 
Distance-based matrix (β = –6.3) 97 1.02 

 

Once the sets of ‘candidate’ eigenvectors have been selected, the 
statistical significance of each, as an explanatory variable for German 
regional unemployment, has to be established. This process was carried out 
by means of a stepwise logistic regression analysis. The stopping condition 
employed is a 10% level of significance for both inclusion and retention. In 
addition to the stepwise regression analysis, a further manual backward 
elimination of regressors was carried out through the sequential estimation of 
a logistic regression model, in order to reduce over-correction for SAC. 
Marginal eigenvectors were excluded as long as their χ2 values remained non-
significant at the 5% level. 
 The same process was repeated for all years of available data—from 1996 
to 2002—and for each spatial weights matrix. Consequently, seven sets of 
‘significant’ eigenvectors (one set for each year) have been selected for each 
of the employed spatial relationship matrices. These are the ‘spatial filters’ 
uncovered for each year and matrix. 
 Next, for each matrix we pinpointed a subset of eigenvectors that is 
common to the years 1996 to 2002. Results of the preceding analyses are 
summarized in Table 11.2, while details about the eigenvectors selected in 
each context and year are shown in the Appendix (Table A). In Table A, in 
all cases, the sum-of-squared prediction error (SSPE) divided by the mean 
squared error (MSE) is roughly 1 (that is, SSPE MSE 1);≈  in other 
words, a jack-knife type of cross-validation assessment of the selected 
eigenvectors yields prediction error that is almost identical to the OLS error 
minimization results, validating the constructed spatial filters. 
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Table 11.2 Amount of variance explained by the selected eigenvectors, and 
the number of common eigenvectors, 1996–2002 
 
 

No. of Common  
Eigenvectors 

A d j u s t e d  p s e u d o - R 2 Spatial 
Weights 
Matrix  1996 1997 1998 1998 2000 2001 2002 

Journey-to-
Work Flows 
Matrix 

1
4 

0.300
4 

0.29
11 

0.330
5 

0.314
2 

0.337
9 

0.345
3 

0.328
5 

Rook Matrix 
(S-coding) 

1
7 

0.647
7 

0.68
21 

0.729
3 

0.745
3 

0.794
5 

0.802
2 

0.790
9 

Rook Matrix 
(C-coding) 

1
5 

0.592
9 

0.64
25 

0.684
6 

0.706
8 

0.748
3 

0.768
3 

0.754
9 

Distance-based 
Matrix 
(β = –2.7) 

6 0.621
5 

0.59
68 

0.651
9 

0.693
0 

0.729
6 

0.744
8 

0.738
2 

Distance-based 
Matrix 
(β = –6.3) 

1
1 

0.623
3 

0.60
67 

0.650
1 

0.681
8 

0.724
7 

0.744
2 

0.733
1 

 
The results summarized in Table 11.2 show that we found sets of 

eigenvectors (whose linear combinations produce spatial filters) that are 
significant, as explanatory variables of regional unemployment, over the 
entire time period considered. Of note here is that all contexts (i.e., economic 
flows, shared boundaries, and distance) enable us to define sets of common 
spatial filters. 

In terms of statistical relevance, the amount of variance explained by the 
spatial filtering regressors is fairly consistent over the years (reasonably, 
unemployment patterns do not change much from year to year), and at 
comparable levels, for all of the geographic contexts (that is, shared 
boundaries and distance). The adjusted pseudo-R2 values found for these 
analyses are around 0.60–0.80, with the S-coded rook weights matrix 
approach being the most significant. The results obtained for the commuting 



flows matrix approach are not as encouraging. The amount of variance 
explained by the model, in this case, is only in the 0.29–0.35 range. 
 A plot of the real and estimated unemployment values is shown in Figure 
11.2. The plots refer to the rook adjacency matrix S-coding scheme, and to 
the years 1996 and 2002, and show a fairly good fit, though a tendency 
toward underestimation can be observed, particularly for the year 2002, 
which exhibits more ‘extreme’ unemployment percentages. 
 
a)

 12



b)

 
Figure 11.2 Predicted and observed unemployment values: rook adjacency 
matrix (S-coding scheme), years 1996 (a) and 2002 (b): black crosses denote 
model-predicted values, and red crosses denote cross-validation-predicted 
values. 
 

As mentioned in the section of Spatial Filtering Techniques, the 
constructed spatial filters can be interpreted not only as potential explanatory 
variables substituting for missing ones, but also as map patterns. A graphical 
visualization of the spatial filters uncovered by our analysis provides an 
example of the map features embedded in the eigenvectors’ values. Figure 
11.3 shows the four eigenvectors with the largest MI values computed for the 
rook adjacency matrix S-coding scheme, and that are common to all the years 
examined. 
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(a)   (b)  

(c)   (d)  
 
Figure 11.3 Eigenvectors computed for the rook matrix (S-coding): a) E2; b) 
E3; c) E5; and d) E6 (see Appendix, Table A) 

 
As noted previously, the first two eigenvectors for adjacency matrices 

usually show East-West and North-South patterns. Spatial filter (a) (E2) in 
Figure 11.3 seems, in fact, to be characterized by a North-South pattern. 
When we observe the subsequent spatial filter components (b, c and d), the 
geographic patterns mapped relate to characteristics of smaller geographical 
scale, showing patterns that can be categorized first as ‘regional’, and then as 
‘local’. Although they may contain some common map patterns (for example, 
North-South and East-West patterns), spatial filters computed with different 
spatial weights matrices will vary to some degree. Meanwhile, an assessment 
of the statistical significance of the spatial filters (shown in Table 11.2) 
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enables us to assess the utility of the different proximity approaches 
employed. 

Synthesis: Results for Different Proximity Approaches 

The preceding section reveals that all of the definitions employed in this 
chapter in order to operationalize proximity have been found to generate sets 
of eigenvectors (whose linear combinations are spatial filters) that are 
significantly correlated with the dependent variable, regional unemployment, 
and for all the years examined. Consequently, our focus is on similarities and 
differences in the statistical performance of the different definitions used. 

In order to understand the descriptive performance associated with 
different spatial weights matrices, we need to compare the matrices 
themselves. Therefore, a correlation analysis of the matrices employed in our 
chapter has been carried out. Results of this analysis appear in Table 11.3 (for 
details about the computation of correlation between matrices, see Oden 
1984, and Tiefelsdorf 2000). 
 
Table 11.3 Correlations of Spatial Weights Matrices 
 

 
Journey-to-
Work Flows 
Matrix 

Rook 
Matrix 
(S-coding) 

Rook 
Matrix 
(C-coding) 

Distance- 
based 
Matrix 
(β = –2.7) 

Distance- 
based 
Matrix 
(β = –6.3) 

Journey-to-
Work Flows 
Matrix 

1.0000 0.5641 0.5102 0.4919 0.5949 

Rook Matrix 
(S-coding) 0.5641 1.0000 0.9152 0.6892 0.7923 
Rook Matrix 
(C-coding) 0.5102 0.9152 1.0000 0.6533 0.6879 
Distance- 
based matrix 
(β = –6.3) 

0.5949 0.7923 0.6879 0.8775 1.0000 

 
Several features of Table 11.3 are noteworthy. The most conspicuous 

result pertains to the low correlations between the journey-to-work flows 
matrix and the remaining matrices (that is, shared boundaries and distance-
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based). The correlation values found are plausible and, to a certain degree, to 
be expected. The flows matrix differs from the other matrices in that it is not 
based on closeness, but is a proxy for economic links between the districts. 
These links are, in fact, not fully limited by geographic contiguity, embracing 
hierarchical components of the geographic landscape, as well. With regard to 
the remaining matrices, they all seem to have fairly high correlations, which 
would be consistent with the similarities seen in the statistical performance of 
their computed eigenvectors (see Table 11.2). 
Finally, we also note that: 
 

- matrices based on more similar definitions tend to be more strongly 
correlated with each other than with those based on less similar 
definitions; 

- the correlation between the two rook adjacency-based matrices is higher 
than the one between the two distance-based matrices, in spite of the 
different coding schemes employed; and, 

- both distance-based matrices, which have been constructed with the W-
coding scheme, seem to be more strongly correlated with the S-coded 
than with the C-coded rook matrix. 

 
These findings call for a more in-depth analysis of the issues related to the 

choice of a coding scheme, particularly in view of the type of data patterns 
that a spatial analyst wants to emphasize. The discussion of such problems 
goes beyond the scope of this chapter; an interesting treatment can be found 
in Tiefelsdorf et al. (1999).  

CONCLUSIONS 

Our study aimed to map out German regional unemployment patterns by 
means of spatial filtering techniques, so as to uncover spatial structures 
underlying the georeferenced unemployment data. Several definitions of 
proximity have been employed, in order to operationalize spatial linkages 
according to geographic and non-geographic criteria. Each of these 
definitions has yielded a set of time-stable spatial filters, though at different 
levels of statistical significance. 
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Initial sets of eigenvectors have been selected on the basis of the SAC they 
accounted for (that is, by decreasing MI values), only later to be reduced in 
size by means of stepwise regressions followed by manual backward 
elimination. The final subsets of eigenvectors used to construct spatial filters 
render fairly satisfactory statistical descriptions. In the shared boundaries- 
and distance-based approaches, the spatial filters explain 60 to 80 per cent of 
the total variance displayed by unemployment when utilized as the sole 
regressors in a logistic regression model. But the ‘economic flows’ approach, 
based on a journey-to-work flows matrix, fails to produce the same 
encouraging results. This finding might be due to the artificial nature of the 
data used (logical connections between districts), and to the lack of a more 
proper measure of regional economic linkages. 
 A correlation analysis of the spatial weights matrices employed in our 
analysis (see Synthesis: Results for Different Proximity Approaches) shows 
that matrices computed on the basis of the same proximity measure tend to be 
highly correlated, regardless of the coding scheme applied in their 
standardization. Also, the journey-to-work matrix seems to be much less 
correlated with the topological-based matrices. This result is consistent with 
the varying statistical performance of the spatial filters computed. 
 Future research will start from this preliminary estimation in order to 
carry out more detailed experiments about the dynamics of unemployment 
patterns. However, the joint employment of spatial filters and other 
explanatory variables involves further attention to spatial filtering, since 
eigenvectors that are significant both to the explained and (an) explanatory 
variable(s) imply filtering also of the latter. This research challenge may be 
addressed in the framework of new dynamic modelling experiments. 
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APPENDICES DETAILED EIGENVECTOR SELECTIONS, BY YEAR 

Table A. Common and year-specific eigenvectors selected, years 1996–2002 

Global Regional Local Global Regional Local

1996 20 E10 E35, E52, 
E62, E63, 
E69

26.6747 0.3004 1.0438

1997 18 E31, E62, 
E63, E78

31.3204 0.2911 1.0407

1998 22 E10 E31, E62, 
E63, E68, 
E70, E71, 
E78

31.0519 0.3305 1.055

1999 20 E10 E31, E62, 
E63, E71, 
E78

32.1972 0.3142 1.0442

2000 21 E10 E31, E62, 
E63, E69, 
E71, E78

35.2523 0.3379 1.0487

2001 21 E10 E31, E62, 
E63, E69, 
E70, E78

37.9095 0.3453 1.0507

2002 19 E10 E31, E68, 
E71, E78

37.9052 0.3285 1.0411

Eigenvectors extracted from the journey-to-work flows matrix (78 candidate eigenvectors)
E1 E4, E5, E7 E13, E18,

E19, E25,
E38, E44,
E48, E50,
E54, E77

Year No. of 
eigenvecs

Year-specific eigenvectors Common eigenvectors Scale Adj.
pseudo
R 2

SSSPE
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1996 23 E1 E24, E25, E60 E113, E124 20.8775 0.64766 1.0226

1997 24 E17, E25, E28, 
E70, E82, E97

E113 23.3176 0.68207 1.0395

1998 20 E14, E25, E28, 
E36, E60, E70, E82

E113, E129 22.0736 0.72933 1.0476

1999 26 E14, E23, E36, 
E38, E70, E82

E113, 
E115, E129

22.0632 0.74533 1.0438

2000 31 E14, E25, E28, 
E33, E36, E38, 
E40, E50, E70, 
E82, E85

E113, 
E115, E129

22.0026 0.79449 1.0702

2001 28 E14, E18, E23, 
E32, E36, E38, 
E40, E82

E110, 
E115, E129

23.8654 0.80218 1.0489

2002 25 E14, E23, E36, 
E38, E40, E82

E115, E129 24.8114 0.79092 1.0387

E2, E3, E5,
E6, E7, E8,
E9, E10,
E11

E15, E16, E22,
E39, E41, E52,
E71

E130
Eigenvectors extracted from the rook matrix (S-coding) (130 candidate eigenvectors)
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1996 24 E9, E16, E21, E25, 
E41, E52, E53,  E64

E89 21.9823 0.5929 1.0232

1997 23 E1 E15, E19, E21, 
E34, E38, E64

E93 24.3798 0.6425 1.0412

1998 27 E13, E15, E16, 
E19, E21, E34, 
E38, E42, E52, E66

E68, E93 23.5231 0.6846 1.0438

1999 27 E9, E13, E15, E16, 
E19, E21, E34, 
E38, E42, E52, E66

E93 23.2457 0.7068 1.0364

2000 30 E9, E13, E15, E16, 
E19, E21, E25, 
E34, E38, E42, 
E51, E52, E66

E93, E97 23.8338 0.7483 1.0507

2001 30 E9, E12, E13, E15, 
E16, E19, E34, 
E42, E52, E56, 
E65, E66

E68, E93, 
E97

25.1826 0.7683 1.0489

2002 29 E1 E9, E12, E13, E15, 
E16, E19, E20, 
E25, E38, E42, 
E52, E65, E66

26.0816 0.7549 1.0459

Eigenvectors extracted from the rook matrix (C-coding) (98 candidate eigenvectors)
E2, E3, E4,
E5

E6, E7, E8,
E11, E18, E24,
E28, E30, E39,
E60

E74
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1996 18 E7, E11, E12, E14 E26, E29, 
E30, E32, 
E34

21.5904 0.6215 1.0018

1997 13 E7, E12, E14, E17 E31, E32 25.6508 0.5968 1.0063
1998 14 E11, E12, E17, E21 E26, E31, 

E32
24.8788 0.6519 1.0079

1999 14 E11, E14, E17, E21 E26, E30, 
E31

24.406 0.693 1.004

2000 15 E11, E14, E17, E21 E26, E30, 
E31, E32

25.5416 0.7296 1.0092

2001 14 E11, E17, E20, E21 E26, E30, 
E31

26.6811 0.7448 1.0087

2002 13 E11, E17, E20, E21 E26, E30 26.871 0.7382 1.0101

Eigenvectors extracted from the distance-based matrix (β = –2.7) (36 candidate eigenvectors)
E1, E2, E3 E5, E6, E16,

E23
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1996 24 E13, E17, E26, 

E27, E29, E31, 
E34, E35, E39, E52

E90, E96 20.7515 0.6233 1.046

1997 20 E7 E13, E17, E20, 
E23, E34, E35

E79, E96 24.6605 0.6067 1.0334

1998 21 E13, E17, E20, 
E23, E24, E26, 
E31, E34

E79, E96 24.2862 0.6501 1.0424

1999 19 E13, E20, E23, 
E26, E39, E63

E79, E96 24.0949 0.6818 1.0248

2000 24 E13, E17, E20, 
E23, E24, E26, 
E29, E39, E40, E63

E71, E79, 
E96

24.6917 0.7247 1.0371

2001 23 E13, E17, E20, 
E23, E24, E25, 
E26, E39, E40, E63

E79, E96 26.0291 0.7442 1.0392

2002 21 E17, E20, E23, 
E25, E26, E27, 
E39, E40, E63

E79 26.9843 0.7331 1.1589

Eigenvectors extracted from the distance-based matrix (β = –6.3) (97 candidate eigenvectors)
E1, E2, E3,
E5, E6, E8

E15, E32, E55,
E64

E91

 
 
 
 

 



 

23 

NOTES 

1. Moran’s I coefficient is defined as: ,
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Where: n is the number of cases; xi is the value of variable X at location i; and wi,j is the cell 
(i, j) of the geographic weights matrix W. Positive values [I > –1/(n – 1)] imply that 
geographical proximity tends to produce similar values of the variable examined. 

2. Griffith’s spatial filtering techniques may be compared to principal components analysis 
(CPA), since both methodologies generate orthogonal and uncorrelated new ‘variables’ that 
can be employed in regression analyses. However, the components derived in PCA have an 
economic interpretation because eigenvectors are used to construct linear combinations of 
attribute variables, whereas spatial filters are linear combinations of the eigenvectors 
themselves, and as such should be regarded mostly as patterns of independent spatial 
dimensions. 

3. For details about the estimation of SIMs, see, among others, Sen and Smith (1995), and 
Haynes and Fotheringham (1984). 

REFERENCES 

Anselin L. (1988) Spatial Econometrics: Methods and Models. Kluwer Academic 
Publishers: Dordrecht Boston 

Anselin L. (2007) Spatial Econometrics in RSUE: Retrospect and Prospect. Regional 
Science and Urban Economics 37 (4), 450-6 

Anselin L., R.J.G.M. Florax and S.J. Rey (eds) (2004) Advances in Spatial 
Econometrics. Springer: Berlin Heidelberg New York 

Bockstael N.E. (1996) Economics and Ecological Modeling: The Importance of a 
Spatial Perspective. American Journal of Agricultural Economics 78 (5), 1168-80 

Chun Y., R. Bivand and M. Tiefelsdorf (2005) Using Open Source Data Analysis 
Environments for Prototyping Modelling Implementations for Spatial Data: 
Weights in R. Paper presented at the Geo-Computational Meeting, Ann Arbor, MI, 
August 1-3 

Getis A. (1990) Screening for Spatial Dependence in Regression Analysis. Papers of 
the Regional Science Association 69, 69-81 

Getis A. (1995) Spatial Filtering in a Regression Framework: Examples Using Data 
on Urban Crime, Regional Inequality, and Government Expenditures. In L. 
Anselin and R.J.G.M. Florax (eds), New Directions in Spatial Econometrics. 
Springer: Heidelberg, pp. 172-85 

Getis A. and D.A. Griffith (2002) Comparative Spatial Filtering in Regression 
Analysis. Geographical Analysis 34 (2), 130-40 



 

24 

Getis A. and J. Aldstadt (2004) Constructing the Spatial Weights Matrix Using a 
Local Statistic. Geographical Analysis 36 (2), 90-104 

Griffith D.A. (1981) Towards a Theory of Spatial Statistics: A Rejoinder. 
Geographical Analysis 13, 91-3 

Griffith D.A. (1988) Advanced Spatial Statistics. Kluwer Academic Publishers: 
Dordrecht 

Griffith D.A. (1996) Spatial Autocorrelation and Eigenfunctions of the Geographic 
Weights Matrix Accompanying Geo-Referenced Data. The Canadian Geographer 
40, 351-67 

Griffith D.A. (2003) Spatial Autocorrelation and Spatial Filtering: Gaining 
Understanding through Theory and Scientific Visualization. Springer: Berlin New 
York 

Griffith D.A. (2004) A Spatial Filtering Specification for the Autologistic Model. 
Environment and Planning A 36 (10), 1791-811 

Haining R. (1991) Bivariate Correlation and Spatial Data. Geographical Analysis 23, 
210-27 

Haynes K.E. and A.S. Fotheringham (1984) Gravity and Spatial Interaction Models. 
Sage Publications: Beverly Hills 

Kosfeld R. and C. Dreger (2006) Thresholds for Employment and Unemployment. A 
Spatial Analysis of German Regional Labour Markets 1999-2000. Papers in 
Regional Science 85 (4), 523-42 

Lacombe D.J. (2004) Does Econometric Methodology Matter? An Analysis of Public 
Policy Using Spatial Econometric Techniques. Geographical Analysis 36 (2), 105-
18 

Oden N.L. (1984) Assessing the Significance of a Spatial Correlogram. Geographical 
Analysis 16, 1-16 

Sen A. and T.E. Smith (1995) Gravity Models of Spatial Interaction Behavior. 
Springer: Heidelberg and New York 

Tiefelsdorf M. (2000) Modelling Spatial Processes - The Identification of Spatial 
Relationships in Regression Residuals by Means of Moran's I. Springer-Verlag: 
Berlin 

Tiefelsdorf M. and B. Boots (1995) The Exact Distribution of Moran's I. Environment 
and Planning A 27, 985-99 

Tiefelsdorf M. and D.A. Griffith (2007) Semiparametric Filtering of Spatial 
Autocorrelation: The Eigenvector Approach. Environment and Planning A 39 (5), 
1193-221 

Tiefelsdorf M., D.A. Griffith and B.N. Boots (1999) A Variance Stabilizing Coding 
Scheme for Spatial Link Matrices. Environment and Planning A 31, 165-80 

Weinhold D. (2002) The Importance of Trade and Geography in the Pattern of Spatial 
Dependence of Growth Rates. Review of Development Economics 6 (3), 369-82 



 

25 

ACKNOWLEDGMENTS 

The authors wish to thank Uwe Blien (IAB, Nuremberg, Germany) for 
providing the labour market dataset, as well as Günter Haag (STASA, 
Stuttgart, Germany) for the commuting flows dataset. The authors are 
grateful to participants of the 52nd Annual North American Meetings of the 
Regional Science Association International (Las Vegas, NV) and the 
International Workshop on Spatial Econometrics and Statistics (Rome), and 
to an anonymous referee, for useful comments on earlier versions of the 
chapter. 
 


