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Wireless sensor networks are growing in popularity due to the availability of low-power sensing
devices and to their flexibility for a large number of applications ranging from environmental
monitoring to personal health management. Designing and building applications for wireless
sensor networks is complex because of (1) the distributed nature of the environment, (2) the fact
that the available sensors change over time, and (3) the nature of the applications themselves,
which typically require strict quality of service (e.g., data accuracy) that may change over time
as the state of the system being monitored changes. As wireless sensors are typically battery
powered, energy management is a critical task to extend application lifetime. Many low level
protocols address energy management but typically ignore the application needs, providing only
a best effort quality level to the application. In distributed computing, middleware has been a
successful technique for bridging the gap between what the application needs and what the network
provides, but most existing middleware does not reach below the operating system interface and
therefore cannot exploit the energy management techniques available at the network level.

This proposal introduces a new kind of middleware that not only understands the needs of
sensor network applications, but also reaches down into the network, adjusting network charac-
teristics to optimize application lifetime while maintaining the needed quality of service. This
middleware system, Milan (Middleware Linking Applications and Networks), accepts from the
application a specification of its needed quality of service, parameterized by the state of the ap-
plication. To interface to the low-level network protocols, Milan exploits a plug-in architecture
that identifies feasible sets of sensors that meet the network constraints (e.g., bandwidth), and the
energy consumption for different configurations (e.g., master/slave relationships in Bluetooth, or
routing in IEEE 802.11). By combining the application and network information, Milan ensures
that the network is optimally configured to support the application and will dynamically recon-
figure the network in response to changes in the environment (e.g., nodes currently available) as
well as changes in the application’s state (e.g., based on the current state of the system being
monitored).

Early exploration into Milan suggests many opportunities for research. These include: devel-
oping an API that is general enough to support a wide range of sensor network applications yet
simple enough to reduce complexity for the application designer; selecting feasible sets of sensors
that meet application quality of service needs as well as network constraints; sharing the sen-
sor network resources among multiple applications; developing an application design style suited
to the Milan API; and distributing both application computation and Milan decision-making
among the nodes of the network. The PIs possess the depth of knowledge in both sensor networks
and middleware to achieve quality results in this research. Furthermore, the PIs’ association with
the University of Rochester’s Center for Future Health provides them a unique testbed to evaluate
Milan with real sensor network applications for health monitoring.

Broader Impacts: Milan will enable the rapid development of a variety of critical sensor
network applications, such as medical monitoring for early disease detection, environmental mon-
itoring to detect biological or chemical agents, and battlefield surveillance. These applications
will directly impact people’s lives, yet they can only be useful if they accomplish their tasks while
maintaining a reasonable lifetime. These goals can be met by Milan, which will be made freely
available to both industry and academia through Open Source licensing. Furthermore, graduate
and undergraduate students in both the Computer Science and Electrical and Computer Engineer-
ing departments at the University of Rochester will participate in this research, being introduced
to networking, middleware, and system integration issues, and increasing interdepartmental col-
laboration. Women and minority graduate and undergraduate students will be encouraged to
participate.
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Interest in wireless sensor networks has blossomed recently due to technological advances en-
abling small, energy-efficient sensing devices. Applications in this domain include home security,
machine failure diagnosis, chemical detection, medical monitoring, and surveillance. To give a feel
for potential applications, we briefly describe two scenarios.

First, consider a surveillance scenario where multiple sensors (e.g., acoustic, seismic, video) are
distributed in an area and the application must report a detected phenomenon (e.g., an intruder).
To do this, a minimum percentage of the area must be covered by sensed data. In many cases
the sensors have overlapping coverage areas, providing different kinds of information about the
same region. If the application does not require this redundant information, it would be desirable
to conserve the energy of some sensors, for example, using small sets of sensors to meet the
application demands (in this case, minimum coverage area). This requires that the application
interact with lower levels of the sensor network’s protocol stack to manage the sensors over time.
Such management can be as simple as turning sensors on and off, or as complex as selecting the
routes for data to take from the sensor to the collection point in a multi-hop network.

With small, portable sensors, the potential exists for monitoring an individual’s health as they
move around their home or in their daily tasks. Consider a personal health monitor application
running on a PDA that receives and analyzes data from a number of body worn sensors (e.g., ECG,
EMG, blood pressure, blood flow, pulse oxymeter). The monitor reacts to potential health risks
and records health information in a local database. Considering that most sensors used by the
personal health monitor will be battery-operated and use wireless communication, it is clear that
this application can benefit from intelligent sensor management that provides energy-efficiency
as well as a way to manage QoS requirements, which may change over time with changes in the
patient’s state. For example, higher quality might be required for certain health-related variables
during high stress situations (states) such as a medical emergency, and lower quality during low
stress situations such as as sleep.

The goal of this proposal is not to develop these applications, but rather to develop a frame-
work that eases the development process of this style of application paying special attention to
maximizing the lifetime of the network itself. Much of the existing research targeted at increasing
the lifetime of sensor networks make simplifying assumptions, such as best effort service to the
application. Furthermore, most of these approaches alter some aspect of the protocol stack, such
as the MAC or routing layers, to achieve energy efficiency for a particular application. While
advances have been made that increase application lifetime, these approaches are not flexible
enough to accommodate the variety of complex sensor network applications we target. Rather
than create application-specific network protocols, our approach extends application lifetime by
dynamically adjusting the characteristics of a wide variety of protocols such as Bluetooth, IEEE
802.11, and ad hoc routing protocols. Characteristics that can be modified include master/slave
roles in Bluetooth networks, and transmission power and routing in multi-hop networks.

Our approach encapsulates the complexity of parameter modification into a middleware that
accepts the policy of how to manage and control the dynamic network from the application but
hides mechanisms for implementing the policy inside the middleware. Our proposed middleware,
Milan (Middleware Linking Applications and Networks), allows applications to specify their qual-
ity needs and then adjusts the network characteristics to increase application lifetime while still
meeting those quality needs. Our approach is distinctive because (1) we explicitly include the abil-
ity of the application to change states over time and to specify a corresponding change in quality
requirements, and (2) we exploit network characteristics to increase network lifetime. Our ap-
proach simplifies application development by allowing the designer to focus on application quality
requirements, while the middleware determines the best approach to maximize lifetime exploiting
the features of the underlying network protocols.

1 Related Work

Our work intersects two fields of research, namely low level sensor network research and exist-
ing middleware techniques. The resulting combination is middleware for sensor network. In this
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section we present related work on these two fields as well as several other emerging techniques
for middleware being explored specifically for sensor networks. In later sections we will clearly
distinguish our work from the others, showing how our unique application model is amenable to
a variety of applications such as those outlined above and how we can achieve extended applica-
tion lifetime in a unique way by manipulating standard network parameters rather that creating
specialized protocols.

1.1 Sensor Networks

Certain existing protocols for sensor networks make use of low level node collaboration to reduce
the energy cost of data transfer by aggregating data locally rather than sending all raw data to the
application. For example, in the LEACH protocol [14], nodes form local clusters and all data within
a cluster are aggregated by the cluster-head node before being transmitted to the base station.
This limited form of low-level collaboration is also found in the query-based technique of directed
diffusion [18], in which applications specify “interest queries” for the required data attributes,
and the nodes collaborate to set up routes for this information to follow back to the application.
MAC-level protocols, such as PAMAS [32] and S-MAC [33] reduce energy dissipation in the MAC
protocol by turning nodes off as often as possible, often trading off latency in packet delivery for
energy efficiency. As idle power can often be significant, these MAC-level techniques can greatly
extend application lifetime. Other protocols such as [28] aim to determine the minimum transmit
power necessary for a fully connected network, whereas protocols such as [21, 29] determine the
optimal transmit power to minimize overall energy dissipation. Finally, topology control protocols
such as ASCENT [4], Span [5], and STEM [30] turn sensors on and off to maximize network
lifetime while keeping the network fully connected. Each of these protocols can increase system
lifetime, but they do not take into account application desires and cannot easily be generalized or
react to changes in application state.

As this summary shows, most sensor network research has focused on designing new network-
level protocols (e.g., MAC layer, routing layer, topology control, etc.), without considering existing
standards or how applications use the protocols. Our proposal is distinctive because we intend
to work above existing protocols, leveraging the flexibility that exists in both standardized and
non-standardized network protocols. For example, in a Bluetooth network [2], the master can be
dynamically changed, allowing different nodes over time to assume this role and its associated
energy burden. In multi-hop 802.11 networks [6], different routing protocols can affect the energy
consumed at the nodes. Similarly, most of the sensor network specific protocols discussed above
have parameters that can be modified to suit application goals while extending network lifetime.
Milan will be designed to take advantage of the energy-saving techniques of any network protocol
employed. Furthermore, existing approaches tend to address only a single application state, ig-
noring the dynamic changes of real sensor network applications. Milan allows the parameters of
the network to be varied over time to best suit application needs as the application state changes.

1.2 Middleware

Traditionally, middleware sits between the application and the operating system, providing a
high level application interface for coordination among applications, and hiding the underlying
complexity of the environment. Corba [13], for example, hides the location of remote objects,
simplifying the application’s interactions with these remote objects by allowing all operations to
appear local. Jini’s [11] service discovery protocol and leasing mechanism allow client applications
to discover services and manage client-server connections as the set of available services changes.
The Lime middleware [24] provides a shared memory coordination scheme for mobile ad hoc
components through a Linda-like tuple space [12].

Although most middleware systems do not modify the network characteristics, some adapt their
own behavior based on detected network conditions. For example, both Limbo [8] and FarGo [16]
reorder data exchanges or relocate components to respond to changing network conditions such
as bandwidth availability or link reliability. Other middleware systems provide hooks to allow the
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2 OUR PREVIOUS WORK 18

applications to adapt. Applications built on the Odyssey platform [25] can register for notification
of changes in the underlying network data rate. Context-aware systems, such as Rome [17] and
comMotion [23], provide users with a context-aware message service that delivers messages when
the recipient is in a certain location. CybreMinder [9] takes this adaptation one step farther,
enriching the definition of context to include any facet of the environment (nearby people, weather
forecast, etc.). In all of these systems, the current environment is detected, but the network itself
is never altered.

1.3 Middleware for Sensor Networks

Recent efforts have focused on middleware specifically designed for sensor networks, exploring a
variety of abstractions useful to the application programmers while simultaneously focusing on
the restrictions of sensor environments.

EnviroTrack [1], a middleware for environmental tracking applications, supports event-driven
programming by identifying an event at a given location, collecting the data from proximate
sensors, and reporting the readings and event to the user. At a higher level, a sensor network
middleware in development [34] allows applications to express the mapping between application
quality and data quality. This middleware translates these data quality values into thresholds on
sensor readings that specify when sensors should transition from a monitoring state into an active
state (i.e., specifying the parameters that signify events of interest to the application, for which
the application would like to receive data). Additionally, it is assumed that sensors can transition
themselves to a low power consumption state when sensed data follows predefined prediction
models to within certain error bounds.

Another approach to interacting with a sensor network is to access the data according to a
traditional database model. TinyDB [22] provides an SQL-like interface with optimization for
placement of parts of the query (e.g., joins, selects) to minimize power consumption. Cougar [3]
and SINA [31] also provide a distributed database query interface towards a sensor network with an
emphasis on power management either by distributing queries or clustering low-level information
in the network.

Other data-oriented approaches, such as DSWare [20], address the redundancy of data collected
by geographically proximate sensors. By aggregating the data of several sensors and reporting
it as a single value, some amount of sensor failure can be tolerated. QUASAR [19] addresses
quality concerns, allowing applications to express Quality aware Queries (QaQ). For example,
QaQs can express quality requirements as either set-based (e.g., find at least 90% of the sensors
with temperature greater than 50oC) or value-based (e.g., estimate the average temperature within
1oC).

2 Our Previous Work

The work proposed here is a continuation of the ideas presented in the attached paper [15], which
presents the outline a new middleware for sensor networks called Milan, Middleware Linking
Applications and Networks. The paper itself is a collaboration among the PI of this proposal
(a computer scientist) and Wendi Heinzelman, an electrical engineering assistant professor at the
University of Rochester during the time approximately three years ago when the two were co-
located. The initial ideas have been well received by the community, and we hope to continue the
work through the support of this proposal as well as a second proposal to be submitted in the US
(see attached documentation).

The middleware that we propose is significantly different from other approaches because we
focus on lengthening the lifetime of the network by manipulating network parameters while still
meeting the expressed needs of the applications. We often refer to these needs as “Quality of
Service”, however we made the distinction up front that the QoS we address is application specific
rather than standard notions such as processor time, memory, or bandwidth requirements. As
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Figure 1: Milan components (shaded). Milan presents an API through which the application represents
its desires with regard to different sensors that may be available. Milan also presents an abstraction
from the network-level functionality through which it issues commands to determine available sensors and
configure the network.

such, the existing body of work on QoS for middleware is not directly applicable in the domain
we address.

Our work on Milan to date consists of a definition of a preliminary user interface, an architec-
ture definition, and initial simulations to demonstrate the effectiveness of our ideas. In 2003 we
collaborated with a cardiologist (H. Carvahlo, one of the authors of [15] to evaluate our interface
on the health monitor application described previously. The remainder of this section describes
our prior work while the next section describes the directions we intend to take during the period
of this grant.

2.1 Overview

Traditional middleware is normally placed strictly between the application and the operating sys-
tem, however because Milan intends to manipulate network parameters, it must reach down into
the protocol stack (e.g., that of Bluetooth, 802.11, S-MAC, STEM, etc.). Therefore, we have
designed an architecture as shown in Figure 1 that provides an abstraction layer allowing net-
work specific plug-ins to convert Milan commands to protocol-specific commands that are passed
through the usual network protocol stack. This allows Milan to continuously adapt the specific
features of whichever network is being used for communication to best meet the applications’ needs
over time.

The notion of best for the application must be provided to Milan by the application itself. We
propose to do this through the definition of specialized graphs that describe the quality needs and
how various sensors can meet them. These graphs will be described shortly. Figure 2 shows the in-
teraction among Milan, the applications, and the sensors. The figure makes a distinction between
the network plug-ins and the core of Milan, emphasizing the separation of computation that is
specific to the selected network type versus the computation that always occurs. Throughout this
section, we refer to this description, providing details. To make the description of the Milan API
and the network plug-in abstraction more concrete, we use the personal health monitor application
described earlier as a running example. Note, however, that the Milan API is flexible enough to
represent the needs of a large variety of sensor network applications.

Benedetto Lepori
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Figure 2: High level overview of Milan operation. Segment A repeats when the application changes its
state based on data received from the sensors. Segment B repeats when sensors arrive in the network.
Segment C repeats as data arrives from each sensor, and represents the normal operation of Milan
conveying information from the sensors to the application. Note: arrows indicate dependencies among
messages and computations. When no dependency exists, operations can be executed in parallel.

2.2 Specifying Application Performance

The fundamental design of most sensor network applications is to receive data from multiple
sensors. The set of available sensors may change over time as energy reserves deplete or as sensors
move in and out of range. When data is received, it is fed into various application variables
that are used in the application’s computation. This distinction between the raw data that can
be provided by the network (the sensors) and the application’s abstraction of those sensors (the
variables) allows a variety of applications to be expressed in the same framework, and even for the
same application to be supported by different underlying networks.

An additional consideration is the quality of the data required by the application. Fundamen-
tally, the quality depends on which data is received and from which sensors that data is received.
For example, in the personal health monitor, variables such as blood pressure, respiratory rate,
and heart rate may be extracted from measurements obtained from any of several sensors [7]. Each
sensor yields a certain quality for the variable it describes, e.g., a blood pressure sensor directly
measures blood pressure, so it provides a quality of 1.0 in determining this variable. In addition,
the blood pressure sensor can indirectly measure other variables such as heart rate, so it provides
some quality, although less than 1.0, in determining these variables. The quality of the heart rate
measurement would be improved through high-level fusion of the blood pressure measurements
with data from additional sensors such as a blood flow sensor.

To determine how to best serve the application, Milan must know (1) the variables of interest
to the application, (2) the required QoS for each variable, and (3) the level of QoS that data
from each sensor or set of sensors can provide for each variable. Note that all of these may
change based on the application’s current state. As shown in Figure 2, during initialization of the
application, this information is conveyed from the application to Milan via “State-based Variable
Requirements” and “Sensor QoS” graphs. Examples of these graphs are shown in Figures 3 and
4.

Figure 3a, an abstract State-based Variable Requirements Graph, shows the required QoS for
each variable of interest based on the current state of the application. Note that here we represent
application state in a 2-level hierarchy, but this could easily be extended to more levels if required
by the application. For a particular state (a combination of system state (level A) and variable
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when the application is in various states. (a) Abstract example. (b) Example for the personal health
monitor application. This graph illustrates only a subset of the application’s possible states.
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Figure 4: Sensor QoS Graph for specifying which sensors, or sets of sensors, can provide what level of
QoS for each variable. (a) Abstract example. (b) Example for the personal health monitor application.
This graph illustrates only a subset of the variables that should be considered by the application.

state (level B)), the State-based Variable Requirements Graph defines the required QoS for each
relevant variable. Because variables (level C) can be named in multiple variable states (level B),
Milan must extract the maximum QoS for each selected variable to satisfy the requirements for
all variable states. Figure 3b shows the State-based Variable Requirements Graph for the personal
health monitor. This application has two states, a system state that includes the overall level of
stress that the patient is experiencing, as well as multiple states for each variable that can be
monitored. The State-based Variable Requirements Graph specifies to Milan the application’s
minimum acceptable QoS for each variable (e.g., blood pressure, respiratory rate, heart rate, etc.)
based on the current state of the patient. For example, the figure shows that when a patient is in
a medium stress state and the blood pressure is low, the blood oxygen level must be monitored
with a quality level of .7 and the blood pressure must be monitored with a quality level of .8.

For a given application, the QoS for each variable can be satisfied using data from one or more
sensors. The application specifies this information to Milan through the Sensor QoS Graph;
Figure 4a shows an abstraction of this graph. When multiple sensors are combined to provide a
certain quality level to the variable, we refer to this as a single “virtual sensor.” Figure 4b shows
the Sensor QoS Graph for the personal health monitor. This graph illustrates some variables that
are important to monitor when determining a patient’s condition, as well as the sensors that can
provide at least some quality to the measurement of these variables. Each line between a sensor
(or virtual sensor) and a variable is labeled with the quality that the sensor (or virtual sensor)
can provide in the measurement of that variable. For example, using data from a blood pressure
sensor, the heart rate can be determined with a .7 quality level, but combining this with data
from a blood flow sensor increases the quality level to 1.0.
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Table 1: Feasible sets FA for the personal health monitor application for a patient in medium stress with
high heart rate, normal respiratory rate, and low blood pressure.

Set # Sensors

1 Blood flow, Resp. rate

2 Blood flow, ECG (3 leads)

3 Pulse oxymeter, Blood pressure, ECG (1 lead), Resp. rate

4 Pulse oxymeter, Blood pressure, ECG (3 leads)

5 Oxygen measurement, Blood pressure, ECG (1 lead), Resp. rate

6 Oxygen measurement, Blood pressure, ECG (3 leads)

With the information from these graphs as well as the current application state, Milan can
determine which sets of sensors satisfy all the application’s needs. These sets of sensors define
the application feasible set FA, a set of sets, where each element is a set of sensors that provide
QoS greater than or equal to the application-specified minimum acceptable QoS for each variable.
For example, in the personal health monitor, for a patient in medium stress state with high heart
rate, normal respiratory rate, and low blood pressure, the satisfactory application feasible sets are
shown in Table 1. Milan can choose any of these sets and the application will be satisfied. The
choice of which set depends on network-level information.

2.3 Network Properties

As we have seen, the application needs specify several options for what must be provided by
the sensor network, however, not all of these options may be possible in the current network
configuration. As shown in Figure 2, it is the job of the network plug-in to determine which sets
of sensors can be supported by the network, and thus to define the network feasible sets, FN .

If we assume that all nodes are on a single-hop, centralized network, bandwidth constraints
place limitations on the total amount of data that can be transmitted to the application. How-
ever, in more complex environments such as Bluetooth scatternets or 802.11 multi-hop networks,
network topology plays an important role in determining network feasibility and power costs. For
example, in Bluetooth it is necessary to choose a feasible scatternet topology, where nodes se-
lected allow the network to be fully connected. In addition, we must also consider how the power
costs of nodes are affected by their roles in the network (e.g., piconet masters or bridge nodes
in Bluetooth scatternets). The power cost of using a node is a combination of the power to run
the device, the power to transmit its data, the power to forward the data of other nodes in the
set, and the overhead of maintaining its role in the network. These costs can be influenced by
Milan through techniques such as transmission power control, efficient traffic scheduling, and the
setting of different sleep states. In multi-hop networks, routing data from nodes to the application
also becomes an important factor. The plug-in should know all of the network’s protocol-specific
features that can be modified and choose how to set these features to make sets feasible and
energy-efficient. Although we have begun to consider these issues, we have not yet developed a
model to incorporate them into the middleware.

The subsets of nodes that can be supported by the network define a network feasible set FN 1.
We believe the protocol-specific information (e.g., paths the data can take to reach the application,
or piconet membership) can be maintained as annotations to each member of the set. As only
sets in FA provide the required application QoS, we can combine these two constraints to get an
overall feasible set:

F = FA ∩ FN (1)

1While it is possible to calculate all possible network feasible sets, this can be exponentially large with the
number of nodes in the network. Because we are only interested in the sets that are also feasible for the application,
FA can be passed to the plug-in, and a subset of FA chosen as network feasible.

Benedetto Lepori
2.2.3



2 OUR PREVIOUS WORK 23

For the personal health monitor, suppose that the sensors and processors communicate using
an IEEE 802.11b network. As these networks can support overall throughput of nearly 11 Mbps,
the network is able to support the transmission of all data from each of the sensor sets in FA from
Table 1 in real-time. However, if other applications (e.g., video gait monitoring [10]) are running
simultaneously on the network and the system QoS specifications declare that the personal health
monitor application should only be allowed to utilize 100 kbps of the throughput, the network
would not be able to support the transmission of data from the ECG sensor with either 3, 5, or 12
leads. Thus, the set of network feasible sets FN will only partially overlap with FA. This overlap
is the set of feasible sets F and consists of sets 1, 3, and 5 in Table 1. Milan must choose a set
of sensors from one of the sets in F based on the tradeoffs discussed in the next section. If F is
empty, Milan should raise an exception to the application, allowing it to decide the appropriate
action.

2.4 Tradeoffs

Among the elements in F , Milan should choose an element fi that represents the best perfor-
mance/cost tradeoff. How should best be defined? This depends on the application and any
method can be supported inside the Milan framework. In most sensor network applications, we
want to allow the application to last as long as possible using the limited energy of each of the
sensors. Simple approaches to choosing sensor sets may yield the set fi that consumes the least
power or that will run for the maximum lifetime before the first sensor dies. However, if we want
to ensure that the application can run at the required QoS level as long as possible, we should
instead optimize the total lifetime by intelligently choosing how long to use each feasible sensor
set. In some cases, there are multiple ways to schedule sensors so that the same total network
lifetime is achieved. In these cases, we may want to maximize the average quality of the sensor
sets over time. For some applications, the goal may be to maximize some combination of lifetime
and quality.

In Figure 2, we show this tradeoff computation occurring in the core Milan component. After
the computation is complete and the first set of sensors is chosen, the Milan core informs the
plug-in of the selection, and the plug-in configures the network accordingly, using information
about the role each sensor should play (note: this information should be specified to Milan as
annotations to FN by the network plug-in prior to the optimization).

To demonstrate the effectiveness of this idea, we have done preliminary work in maximizing
system lifetime by choosing how long to use each element of F . This problem can be modeled as
a generalized maximum flow problem with some additional constraints, and it can be solved via
linear programming. For a single-hop network, optimal scheduling of the sets in F can improve
network lifetime by about 15% compared with simple scheduling schemes such as choosing the
sensor set that consumes the least total power [26].

When sensor scheduling and data routing are jointly optimized, improvement in network life-
time is even more significant compared with simple sensor scheduling and low power routing
protocols [27]. We ran experiments using the surveillance application described previously, where
the application quality is specified by a certain percentage of the network area being covered by
sensors. Figure 5a shows a plot of application lifetime using our optimal scheduling/routing tech-
nique and using randomly chosen sets with shortest path and shortest cost routing (where cost is a
function of remaining node energy) as the transmission range of the radios is varied and the number
of sensors and feasible sets are kept constant. Figure 5b shows a plot of application lifetime using
our optimal scheduling/routing technique and using randomly chosen sets with shortest path and
shortest cost routing as the number of sensors is varied and the transmission range and feasible
sets are kept constant. As shown in these plots, the benefit of scheduling/routing optimization
varies between a factor of two and a factor of four compared with shortest path and shortest cost
routing.
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Figure 5: Sensor network lifetime for optimized scheduling/routing, shortest path routing and shortest
cost routing as (a) the transmission range is varied and (b) the number of sensors is varied.

3 Plan

The previous section lays the groundwork for the development of a middleware for sensor network.
It describes a basic interface, an architecture, and directions for optimization, however the work
supporting the outline has not been completed. In other words, the API has only been stressed
on the personal health monitor, and although we believe it is widely applicable, this has not been
verified. The components of the architecture including interaction with the application, extracting
information from the network, and extracting sensor information have not been instantiated.
Finally, although our initial experiments show success with a centralized optimization, we envision
system with distributed decision making that makes decisions with less overhead but perhaps not
optimal. In this section we explore some of these ideas.

3.1 Milan API

In the previous section, we discussed our initial API that allows applications to specify their desires
to Milan using performance graphs, an approach based on our investigation into the features of
different types of sensor network applications. This investigation showed that these applications
require sensor data to measure variables, and that their requirements for which variables to measure
and how important these measurements are change over time based on previous data. After
attempting to encapsulate this information in several different formats, we found that the State-
based Variable Requirements Graph, which represents the application needs for each particular
state, meets our goals. Also, the relationship between individual sensors and the variables is
effectively captured by the Sensor QoS Graph. Our experiences with the personal health monitor
demonstrated that an expert in the application field can reasonably understand the concepts of
these two graphs and generate them appropriately for the applications.

We will continue to research sensor network application requirements to see if our initial ap-
proach is, indeed, general enough to capture the QoS requirements of a wide variety of sensor
network applications. Specifically, we will study other applications, such as the surveillance ap-
plication described in the introduction, adapting the model as necessary. At the same time, we
will explore other methods to specify and possibly generalize this information to find the best
approach.

Another possible direction to guide our work is the connection between our graphs and the field
of domain specific modeling. This connection has recently been brought to our attention, and we
are just beginning to learn about the area. We expect the connections with software engineering
researchers at the University of Lugano will ease this investigation.
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3.2 Selecting Feasible Sets

There are many issues to be addressed with regard to the sensor feasible sets. First, we must
determine how to find the sets of sensors that satisfy the application’s QoS requirements (finding
FA) based on information from the performance graphs. We must also determine how to find
the network feasible sets FN for different networks. Once we have found all feasible sensor sets,
we must choose one of these based on some optimization criterion. Each of these tasks presents
interesting research questions.

Finding the sets of components that can provide the application with acceptable QoS is not
an easy problem. For example, consider the environmental monitoring application described pre-
viously. Suppose the application must guarantee that a certain percentage of the environment
is being monitored at any given time. In this case, the number of sensor sets that match this
constraint grows exponentially with the number of available sensors. Rather than finding all
possible feasible sensor sets, Milan may find just a subset of the total. How should a “good,”
representative subset of FA be found? We will begin this investigation considering coverage area
for homogeneous sensors, and later expand our research to include general sensor applications. In
the example described at the end of the previous section, the selection was essentially random.
However, we believe the process of selection can be improved even by straightforward methods.
For example, we should choose sets that have minimal overlap, in order to increase the lifetime
by using different sets of sensors. We will explore algorithms for making this selection, both for
applications such as coverage area as well as more complex operations as found in the personal
health monitor.

On the network side, Milan plug-ins must determine feasible sets of sensors that meet network
constraints. The network constraints will be different for different network protocols. Thus we
need to determine what features of the different protocols Milan can manipulate, and how. For
example, with Bluetooth networks, the Milan plug-in must determine not only which nodes can
send data while keeping the total data rate below network capacity but also how to assign nodes
to piconets, which nodes to assign the role of piconet master, and which nodes to assign the role
of scatternet gateway if there are multiple piconets. In a multi-hop network, the Milan plug-in
must determine such features as how nodes should set their transmit power, which nodes should
send sensor data, and which nodes should remain awake to act as routers for other sensors’ data.
We will perform research to determine which features Milan can affect for different standard and
sensor network specific protocols at every layer of the protocol stack. We will also investigate
mechanisms to optimally set these features, keeping in mind the impact these decisions will have
on node energy and possible interactions between protocols at different levels of the network stack.

An additional challenge is to keep the interface between Milan and the network specific plug-
in uniform. We believe that the information about the changeable network parameters can be
abstracted for multiple networks and passed as annotations from the network feasible sets down
to the network plug-in. Our work to define the annotations will involve careful understanding of
multiple protocols, initially Bluetooth and 802.11, the properties that can be tuned, and ways of
abstracting these properties into general principles to guide the selection of the network feasible
sets.

3.3 Multi-State Applications

Our previous work has consisted of optimizing the network while the application remains in a
single state, so the feasible sets F always remain the same. We have begun to look at how to
model the optimization when the application state changes. This can be done by assuming some
probability distribution that describes the amount of time (predicted) that the application will
spend in a certain state. We are also looking into reducing the optimization computation (which
is quite costly) through local optimizations rather than one global optimization.
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3.4 Distribution

Distribution can be exploited in Milan in two primary ways. First, the application itself can be
partitioned in multiple points in the network. This would allow some of the computation to be
performed closer to the sensors collecting the data, eliminating some of the network communication
of raw data. This requires changes to the Milan model to allow the application to be split into
parts based on the data input and output, essentially creating a computational component that can
be moved throughout the network. This style of component application structure is supported
by standard software architecture development techniques, and is amenable to sensor network
applications. This adds another dimension to the optimization, namely the processor utilization
that also requires energy from the sensors.

This leads to the other dimension of distribution, namely distribution of the optimization inside
the middleware itself. In our experimentation to date, we were able to achieve the maximum
application lifetime because all information about the network was concentrated at the single
location were the computation was performed. The idea is to relax the optimality constraint with
the tradeoff that the decision will be made locally involving less network traffic, and therefore
costing less. This will require two aspects not present in the original model of Milan. First, the
application needs will need to be sent out to the sensors. Second, the sensors themselves must be
aware of the other network components and what decisions they are likely to take. We envision a
multi-phase approach that first spreads information about the application needs and sensors share
information about themselves. Next the local decisions are made, and some information about the
decisions are distributed. During the normal operation, some information can be shared among
the sensors to continue an online optimization.

Our initial work on the distribution will fix a specific network protocol, likely 802.11, and
develop the algorithms necessary to perform the optimization. The algorithms must be general
enough to accept the information from the application graphs and to adapt to multiple types of
sensor networks. We will measure our success by comparing the achieved network lifetime with
the optimal sensor lifetime calculated by the optimization technique described earlier.

4 Time Table

The work described in this proposal will be divided between the PI in Lugano and a professor in
the USA. The work will proceed in parallel with meetings among the members a couple of times
per year, as travel allows. It is worth noting that the work proposed here can proceed even if the
funding in the USA does not come through, although the support of this proposal can

• Year 1: Our research will begin with a deep evaluation of the API, applying it to other
sensor network applications, and extending it when necessary, paying particular attention
to its ability to scale and deal with a variety of sensors. We will research ways to take the
performance graphs specified to Milan and determine a “good” set of application feasible
sets. In the USA, study will begin on the investigation of the parameters that can be tuned
in the network protocols and how they can be abstracted for use in the network feasible set
selection.

• Year 2: Our research will focus on the distribution of the optimization, the techniques for
sharing information among the nodes, and the algorithms for making the online optimization
decisions. Meanwhile in the USA the centralized techniques will be further refined, and a
centralized version of the middleware will be fully instantiated. This will include all of the
details currently overlooked, including the sharing of the sensor states and the distribution of
the optimization information. With the two fully instantiated versions, comparison among
the version and feedback from one to the other is natural.
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5 Impact

Milan will enable the rapid development of complex sensor network applications, which require
extended application lifetime using changing sets of energy-constrained sensors, in a way that is not
possible using today’s middleware and network protocols. All that is required of the application
in such a dynamic environment is to quantify its needed quality of service for possible application
states, and Milan takes care of interfacing with the specific network protocol and making optimal
decisions to maximize application lifetime. This will enable new sensor network applications to
be easily designed and implemented, separating application concerns from network concerns.

The API developed will be applicable to many sensor networks, providing an additional model
for other researchers in sensor network middleware to consider. This will be shared in the com-
munity through publication at workshop and conference papers.

Milan will also have an impact on large scale sensor networks. Such networks typically consist
of a number of sensors randomly spread throughout a region, where the goal is to detect a pathogen
or an intrusion. These applications are becoming increasingly important, and they are most useful
when the system lifetime can be maximized without sacrificing the quality of service. Application
developers often do not have the expertise to exploit all of the potentially energy-saving techniques
available from the network layer. By building this functionality into Milan, the application
developer can focus on the application itself, leaving the optimization to the middleware.

Given previous experience by the PIs with Open Source projects, we anticipate releasing the
results of this work under such a license, making the system available to other researchers. Ad-
ditionally, we will document our experiences with constructing and exploiting wireless sensors so
that others can recreate test environments similar to ours. We hope that through these activities,
we can guide others in the development of distributed sensor network applications, as well as build
relationships with companies and other universities to exploit this work.

The novelty of this project lies in the combination of sensor network technology and middleware.
These two fields have developed independently, and it is difficult for a single individual to have
the depth of knowledge of both fields to complete this research. Therefore, this proposal combines
the effort of two PIs, one with background and experience in the design and development of
sensor network protocols, and the other with the same skills in middleware for mobile computing
applications. Based on our initial interactions, we believe that collaboration will lead to a balanced
system that makes significant breakthroughs in both sensor network applications and middleware.
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