
Università
della 
Svizzera
italiana

USI Technical Report Series in Informatics

Abstraction and Acceleration in SMT-based Model-Checking for
Array Programs
Francesco Alberti1, Silvio Ghilardi2, Natasha Sharygina1

1 Faculty of Informatics, University of Lugano, Switzerland
2 Università degli Studi di Milano, Milan, Italy

Abstract

Abstraction (in its various forms) is a powerful established technique in model-
checking; still, when unbounded data-structures are concerned, it cannot always cope
with divergence phenomena in a satisfactory way. Acceleration is an approach which
is widely used to avoid divergence, but it has been applied mostly to integer programs.
This paper addresses the problem of accelerating transition relations for unbounded
arrays with the ultimate goal of avoiding divergence during reachability analysis of ab-
stract programs. For this, we first design a format to compute accelerations in this
domain; then we show how to adapt the so-called ‘monotonic abstraction’ technique
to efficiently handle complex formulas with nested quantifiers generated by the accel-
eration preprocessing. Notably, our technique can be easily plugged-in into abstrac-
tion/refinement loops, and strongly contributes to avoid divergence: experiments con-
ducted with the MCMT model checker attest the effectiveness of our approach on pro-
grams with unbounded arrays, where acceleration and abstraction/refinement tech-
nologies fail if applied alone.

Report Info
Published
October 2012

Revised
June 2013

Number
USI-INF-TR-2012-1

Institution
Faculty of Informatics
University of Lugano
Lugano, Switzerland

Online Access
www.inf.usi.ch/techreports

1 Introduction

Transitive closure is a logical construct that is far beyond first order logic: either infinite disjunctions or higher
order quantifiers or, at least, fixpoints operators are required to express it. Indeed, due to the compactness
of first order logic, transitive closure (even modulo the axioms of a first order theory) is first-order definable
only in trivial cases. These general results do not hold if we define a theory as a class of structures C over
a given signature1. Such definition is different from the “classical” one where a theory is identified as a set
of axioms. By taking a theory as a class of structures the property of compactness breaks, and it might well
happen that transitive closure becomes first-order definable (the first order definition being valid just inside
the classC - which is often reduced to a single structure).

In this paper we consider the extension of Presburger arithmetic with free unary function symbols. Inside
Presburger arithmetic, various classes of relations are known to have definable acceleration2 (see related work
section below). In our combined setting, the presence of free function symbols introduces a novel feature
that, for instance, limits decidability to controlled extensions of the quantifier-free fragment [15, 22]. In this
paper we show that in such theory some classes of relations admit a definable acceleration.

The theoretical problem of studying the definability of accelerated relations has an important application
in program verification. The theory we focus on is widely adopted to represent programs handling arrays,
where free functions model arrays of integers. In this application domain, the accelerated counterpart of

1Such definition is widely adopted in the SMT literature [7].
2‘acceleration’ is the name usually adopted in the formal methods literature to indicate transitive closure.

1

http://www.inf.usi.ch/techreports/


relations encoding systems evolution (e.g., loops in programs) allows to compute ‘in one shot’ the reachable
set of states after an arbitrary but finite number of execution steps. This has the great advantage of keeping
under control sources of (possible) divergence arising in the reachability analysis.

The contributions of the paper are many-fold. First, we show that inside the combined theory of Pres-
burger arithmetic augmented with free function symbols, the acceleration of some classes of relations – cor-
responding, in our application domain, to relations involving arrays and counters – can be expressed in first
order language. This result comes at a price of allowing nested quantifiers. Such nested quantification can
be problematic in practical applications. To address this complication, as a second contribution of the pa-
per, we show how to take care of the quantifiers added by the accelerating procedure: the idea is to import
in this setting the so-called monotonic abstraction technique [1, 2]. Such technique has been reinterpreted
and analyzed in a declarative context in [5]: from a logical point of view, it amounts to a restricted form of
instantiation for universal quantifiers. Third, we show that the ability to compute accelerated relations is
greatly beneficial in program verification. In particular, one of the biggest problems in verifying safety prop-
erties of array programs is designing procedures for the synthesis of relevant quantified predicates. In typical
sequential programs (like those illustrated in Figure1), the guarded assignments used to model the program
instructions are ground and, as a consequence, the formulae representing backward reachable states are
ground too. However, the invariants required to certify the safety of such programs contain quantifiers. Our
acceleration procedure is able to supply the required quantified predicates. Our experimentation attests that
abstraction/refinement-based strategies widely used in verification benefit from accelerated transitions. In
programs with nested loops, as the allDiff procedure of Figure1 for example, the ability to accelerate the
inner loop simplifies the structure of the problem, allowing abstraction to converge during verification of the
entire program. For such programs, abstraction/refinement or acceleration approaches taken in isolation are
not sufficient, reachability analysis converges only if they are combined together.
Related Work. To the best of our knowledge, the only work addressing the problem of accelerating relations
involving arrays is [12]. Such approach seems to be unable to handle properties of common interest with
more than one quantified variable (e.g., “sortedness”) and is limited to programs without nested loops. Our
technique is not affected by such limitations and can successfully handle examples outside the scope of [12].

Inside Presburger arithmetic, various classes of relations are known to have definable acceleration: these
include relations that can be formalized as difference bounds constraints [14, 19], octagons [11] and finite
monoid affine transformations [20] (paper [13] presents a general approach covering all these domains). Ac-
celeration for relations over Presburger arithmetic has been also plugged into abstraction/refinement loop
for verifying integer programs [16, 26].

We recall that acceleration has also been applied proficiently in the analysis of real time systems (e.g., [8,
25]), to compactly represent the iterated execution of cyclic actions (e.g., polling-based systems) and address
fragmentation problems.

Our work can be proficiently combined with SMT-based techniques for the verification of programs, as
it helps helps avoiding the reachability analysis divergence when it comes to abstraction of programs with
arrays of unknown length. Since the technique mostly operates at pre-processing level (we add to the sys-
tem accelerated transitions by collapsing branches of loops handling arrays), we believe that our technique is
compatible with most approaches proposed in array-based software model checking. We summarize some of
these approaches below, without pretending of being exhaustive.

The vast majority of software model-checkers implement abstraction-refinement algorithms (e.g., [6, 18,
24]). Lazy Abstraction with Interpolants [30] is one of the most effective frameworks for unbounded reach-
ability analysis of programs. It relies on the availability of interpolation procedures (nowadays efficiently
embedded in SMT-Solvers [17]) to generate new predicates as (quantifier-free) interpolants for refining in-
feasible counterexamples.

For programs with arrays of unknown length the classical interpolation-based lazy abstraction works only
if there is a support to handle quantified predicates [3] (the approach of [3] is the basis of our experiments be-
low). Effectiveness and performances of abstraction/refinement approaches strongly depend on their ability
in generating the “right” predicates to stop divergence of verification procedures. In case of programs with
arrays, this quest can rely on ghost variables [21] retrieved from the post-conditions, on the backward prop-
agation of post-conditions along spurious counterexamples [33] or can be constraint-based [9, 34]. Recently,
constraint-based techniques have been significantly extended to the generation of loop invariants outside the
array property fragment [29]. This solution exploits recent advantages in SMT-Solving, namely those devoted
to finding solutions of constraints over non-linear integer arithmetic [10]. Other ways to generate predicates
are by means of saturation-based theorem provers [28, 31] or interpolation procedures [3, 27].

2



function allDiff ( int a[N] ) :
1 r= true;

2 for (i= 1; i< N∧r;i++)
3 for (j= i-1;j≥ 0∧r;j--)

4 if (a[i] = a[j]) r= false;

5 assert
�

r→
�

∀x , y (0≤ x < y < N)
→ (a[x ] 6= a[y ])

��

(a)

function Reverse ( int I[N+1]; int O[N+1]; int c ) :
1 c= 0;

2 while (c 6=N +1) {O[c] = I[N −c];c++;}

3 assert
�

∀x ≥ 0, y ≥ 0

(x + y = N→ I[x ] = O[y ] )

�

(b)

Figure 1: Motivating examples.

All the aforementioned techniques suffer from a certain degree of randomness due to the fact that de-
tecting the “right” predicate is an undecidable problem. For example, predicate abstraction approaches
(i.e., [3, 4, 33]) fail verifying the procedures in Figure1, which are commonly considered to be challenging
for verifiers because they cause divergence3. Acceleration, on the other side, provides a precise and system-
atic way for addressing the verification of programs. Its combination, as a preprocessing procedure, with
standard abstraction-refinement techniques allows to successfully solve challenging problems like the ones
in Figure1.

The paper is structured as follows: Section 2 recalls the background notions about Presburger arithmetic
and extensions. In order to identify the classes of relations whose acceleration we want to study, we are
guided by software model checking applications. To this end, we provide in Section 3 classification of the
guarded assignments we are interested in. Section 4 demonstrates the practical application of the theoretical
results. In particular, it presents a backward reachability procedure and shows how to plug acceleration with
monotonic abstraction in it. The details of the theoretical results are presented later. The main definability
result for accelerations is in Section 6, while Section 5 introduces the abstract notion of an iterator. Section 7
discusses our experiments and Section 8 concludes the paper.

2 Preliminaries

We work in Presburger arithmetic enriched with free function symbols and with definable function symbols
(see below); when we speak about validity or satisfiability of a formula, we mean satisfiability and validity in
all structures having the standard structure of natural numbers as reduct. Thus, satisfiability and validity are
decidable if we limit to quantifier-free formulæ (by adapting Nelson-Oppen combination results [32,35]), but
may become undecidable otherwise (because of the presence of free function symbols).

We use x , y , z , . . . or i , j , k , . . . for variables; t , u , . . . for terms, c , d , . . . for free constants, a ,b , . . . for free
function symbols, φ,ψ, . . . for quantifier-free formulæ. Bold letters are used for tuples and | − | indicates
tuples length; hence for instance u indicates a tuple of terms like u 1, . . . , u m , where m = |u| (these tuples
may contain repetitions). For variables, we use underline letters x , y , . . . , i , j , . . . to indicates tuples without
repetitions. Vector notation can also be used for equalities: if u = u 1, . . . , u n and v = v1, . . . , vn , we may use
u= v to mean the formula

∧n
i=1 u i = vi .

If we write t (x1, . . . ,xn ), u(x1, . . . ,xn ),φ(x1, . . . ,xn ) (or t (x ), u(x ),φ(x ), . . . , in case x = x1, . . . ,xn ), we mean
that the term t , the tuple of terms u, the quantifier-free formula φ contain variables only from the tuple
x1, . . . ,xn . Similarly, we may use t (a, c,x ),φ(a, c,x ), . . . to mean both that the term t or the quantifier-free
formula φ have free variables included in x and that the free function, free constants symbols occurring
in them are among a, c. Notations like t (u/x ),φ(u/x ), . . . or t (u 1/x1, . . . , u n/xn ),φ(u 1/x1, . . . , u n/xn ), . . . - or
occasionally just t (u),φ(u), . . . if confusion does not arise - are used for simultaneous substitutions within
terms and formulæ. For a given natural number n , we use the standard abbreviations n̄ and n ∗ y to denote
the numeral of n (i.e. the term s n (0), where s is the successor function) and the sum of n addends all equal
to y , respectively. If confusion does not arise, we may write just n for n̄ .

By a definable function symbol, we mean the following. Take a quantifier-free formula φ(j , y ) such that
∀j ∃!yφ(j , y ) is valid (∃!y stands for ‘there is a unique y such that ...’). Then a definable function symbol

3The procedure Reverse outputs to the array O the reverse of the array I; the procedure allDiff checks whether the entries
of the array a are all different. Many thanks to Madhusudan Parthasarath and his group for pointing us to challenging problems with
arrays of unknown length, including the allDiff example.

3



F (defined by φ) is a fresh function symbol, matching the length of j as arity, which is constrained to be
interpreted in such a way that the formula ∀y .F (j ) = y ↔φ(j , y ) is true. The addition of definable function
symbols does not affect decidability of quantifier-free formulæ and can be used for various purposes, for
instance in order to express directly case-defined functions, array updates, etc. For instance, if a is a unary
free function symbol, the term w r (a , i ,x ) (expressing the update of the array a at position i by over-writing
x ) is a definable function; formally, we have j := i ,x , j andφ(j , y ) is given by (j = i ∧y = x )∨ (j 6= i ∧y = a (j )).
This formulaφ(j , y ) (and similar ones) can be abbreviated like

y = (if j = i then x else a (j ))

to improve readability. Another useful definable function is integer division by a fixed natural number n : to
show that integer division by n is definable, recall that in Presburger arithmetic we have that ∀x ∃!y

∨n−1
r=0 (x =

n ∗ y + r ) is valid.

3 Programs representation

As a first step towards our main definability result, we provide a classification of the relations we are interested
in. Such relations are guarded assignments required to model programs handling arrays of unknown length.

In our framework a programP is represented by a tuple (v, l I , l E , T ); the tuple v := a, c, p c models system
variables; formally, we have that

- the tuple a= a 1, . . . , a s contains free unary function symbols, i.e., the arrays manipulated by the program;

- the tuple c= c1, . . . , c t contains free constants, i.e., the integer data manipulated by the program;

- the additional free constant p c (called program counter) is constrained to range over a finite set L = {l 1, ..., l n }
of program locations over which we distinguish the initial and error locations denoted by l I and l E , re-
spectively.

T is a set of finitely many formulæ {τ1(v, v′), . . . ,τr (v, v′)} called transition formulæ representing the program’s
body (here v′ are renamed copies of the v representing the next-state variables). P = (v, l I , l E , T ) is safe iff
there is no satisfiable formula like

(p c 0 = l I )∧τi 1 (v
0, v1)∧ · · · ∧τi N (v

N−1, vN )∧ (p c N = l E )

where v0, . . . , vN are renamed copies of the v and each τi h belongs to T .
Sentences denoting sets of states reachable byP can be:

- ground sentences, i.e., sentences of the kindφ(c, a, p c );

- Σ0
1-sentences, i.e., sentences of the form ∃i .φ(i , a, c, p c );

- Σ0
2-sentences, i.e., sentences of the form ∃i ∀j .φ(i , j , a, c, p c ).

We remark that in our context satisfiability can be fully decided only for ground sentences and Σ0
1-sentences

(by Skolemization, as a consequence of the general combination results [32, 35]), while only subclasses of
Σ0

2-sentences enjoy a decision procedure [15, 22]. Transition formulæ can also be classified in three groups:

- ground assignments, i.e., transitions of the form

p c = l ∧ φL(c, a) ∧ p c ′ = l ′ ∧ a′ =λj . G (c, a, j ) ∧ c′ =H (c, a) (1)

- Σ0
1-assignments, i.e., transitions of the form

∃k

�

p c = l ∧ φL(c, a, k ) ∧ p c ′ = l ′ ∧
a′ =λj . G (c, a, k , j ) ∧ c′ =H (c, a, k )

�

(2)

- Σ0
2-assignments, i.e., transitions of the form

∃k

 

p c = l ∧ φL(c, a, k ) ∧ ∀j ψU (c, a, k , j ) ∧

p c ′ = l ′ ∧ a′ =λj . G (c, a, k , j )∧ c′ =H (c, a, k )

!

(3)

4



where G =G1, . . . ,Gs , H =H1, . . . , Ht are tuples of definable functions (vectors of equations like a′ =λj . G (c, a, k j )
can be replaced by the corresponding first order sentences ∀j .

∧s
h=1 a ′h (j ) =Gh (c, a, k , j )).

The composition τ1 ◦τ2 of two transitions τ1(v, v′) and τ2(v, v′) is expressed by the formula ∃v1(τ1(v, v1)∧
τ2(v1, v′)) (notice that composition may result in an inconsistent formula, e.g., in case of location mismatch).
The preimage Pr e (τ, K ) of the set of states satisfying the formula K (v) along the transition τ(v, v′) is the set of
states satisfying the formula ∃v′(τ(v, v′)∧ K (v′)). The following proposition is immediate by straightforward
syntactic manipulations:

Proposition 3.1. Let τ,τ1,τ2 be transition formulæ and let K (v) be a formula. We have that: (i) if τ1,τ2,τ, K
are ground, then τ1 ◦τ2 is a ground assignment and Pr e (τ, K ) is a ground formula; (ii) if τ1,τ2,τ, K are Σ0

1,
then τ1 ◦τ2 is a Σ0

1-assignment and Pr e (τ, K ) is a Σ0
1-sentence; (iii) if τ1,τ2,τ, K are Σ0

2, then τ1 ◦τ2 is a Σ0
2-

assignment and Pr e (τ, K ) is a Σ0
2-sentence.

4 Backward search and acceleration

This section demonstrates the practical applicability of the theoretical results of the paper in program ver-
ification. In particular, it presents the application of the accelerated transitions during reachability analy-
sis for guarded-assignments representing programs handling arrays. For readability, we first present a basic
reachability procedure. We subsequently analyze the divergence problems and show how acceleration can be
applied to solve them. Acceleration application is not straightforward, though. The presence of accelerated
transitions might generate undesirable Σ0

2-sentences. The solution we propose is to over-approximate such
sentences by adopting a selective instantiation schema, known in literature as monotonic abstraction. An
enhanced reachability procedure integrating acceleration and monotonic abstraction concludes the Section.

The methodology we exploit to check safety of a programP = (v, l I , l E , T ) is backward search: we succes-
sively explore, through symbolic representation, all states leading to the error location l E in one step, then in
two steps, in three steps, etc. until either we find a fixpoint or until we reach l I . To do this properly, it is con-
venient to build a tree: the tree has arcs labeled by transitions and nodes labeled by formulæ over v. Leaves
of the tree might be marked ‘checked’, ‘unchecked’ or ‘covered’. The tree is built according to the following
non-deterministic rules.

BACKWARD SEARCH

INITIALIZATION: a single node tree labeled by p c = l E and is marked ‘unchecked’.

CHECK: pick an unchecked leaf L labeled with K . If K ∧ p c = l I is satisfiable (‘safety test’), exit and return
unsafe. If it is not satisfiable, check whether there is a set S of uncovered nodes such that (i) L 6∈S and (ii)
K is inconsistent with the conjunction of the negations of the formulæ labeling the nodes in S (‘fixpoint
check’). If it is so, mark L as ‘covered’ (by S). Otherwise, mark L as ‘checked’.

EXPANSION: pick a checked leaf L labeled with K . For each transition τi ∈ T , add a new leaf below L labeled
with Pr e (τi , L) and marked as ‘unchecked’. The arc between L and the new leaf is labeled with τi .

SAFETY EXIT: if all leaves are covered, exit and return safe.

The algorithm may not terminate (this is unavoidable by well-known undecidability results). Its correctness
depends on the possibility of discharging safety tests with complete algorithms. By Proposition 3.1, if tran-
sitions are ground- or Σ0

1-assignments, completeness of safety tests arising during the backward reachability
procedure is guaranteed by the fact that satisfiability ofΣ0

1-formulæ is decidable. For fixpoint tests, sound but
incomplete algorithms may compromise termination, but not correctness of the answer; hence for fixpoint
tests, we can adopt incomplete pragmatic algorithms (e.g. if in fixpoint tests we need to test satisfiability
of Σ0

2-sentences, the obvious strategy is to Skolemize existentially quantified variables and to instantiate the
universally quantified ones over sets of terms chosen according to suitable heuristics). To sum up, we have:

Proposition 4.1. The above BACKWARD SEARCH procedure is partially correct for programs whose transitions
are Σ0

1-assignments, i.e., when the procedure terminates it gives a correct information about the safety of the
input program.

Divergence phenomena are usually not due to incomplete algorithms for fixpoint tests (in fact, divergence
persists even in cases where fixpoint tests are precise).

5



Example 4.1. Consider a running example in Figure 1(b): it reverses the content of the array I into O. In our formalism,
it is represented by the following transitions4:

τ1 ≡ pc= 1∧pc′ = 2∧c′ = 0

τ2 ≡ pc= 2∧c 6=N +1∧c′ = c+1∧O ′ =w r (O,c, I (N −c))
τ3 ≡ pc= 2∧c=N +1∧pc′ = 3

τ4 ≡ pc= 3∧∃z 1 ≥ 0, z 2 ≥ 0 (z 1+ z 2 =N ∧ I (z 1) 6=O(z 2) )∧pc′ = 4.

Notice that τ1 − τ3 all are ground assignments; only τ4 (that translates the error condition) is a Σ0
1-assignment. If we

apply our tree generation procedure, we get an infinite branch, whose nodes - after routine simplifications - are labeled
as follows

· · ·
(K i ) pc= 2∧∃z 1, z 2ψ(z 1, z 2)∧c=N − i ∧ z 2 6=N ∧ · · · ∧ z 2 6=N − i

· · ·

whereψ(z 1, z 2) stands for z 1 ≥ 0∧ z 2 ≥ 0∧ z 1+ z 2 =N ∧ I (z 1) 6=O(z 2).

As demonstrated by the above example, a divergence source comes from the fact that we are unable to
represent in one shot the effect of executing finitely many times a given sequence of transitions. Acceleration
can solve this problem.

Definition 4.1. The n-th composition of a transition τ(v, v′) with itself is recursively defined by τ1 := τ and
τn+1 :=τ ◦τn . The acceleration τ+ of τ is

∨

n≥1τ
n .

In general, acceleration requires a logic supporting infinite disjunctions. Notable exceptions are wit-
nessed by Theorem 6.1. For now we focus on examples where accelerations yield Σ0

2-assignments starting
from ground assignments.

Example 4.2. Recall transition τ2 from the running example.

τ2 ≡ pc= 2∧c 6=N +1∧p c ′ = 2∧c′ = c+1∧ I ′ = I ∧O ′ =w r (O,c, I (N −c))

(here we displayed identical updates for completeness). Notice that the variable pc is left unchanged in this transition
(this is essential, otherwise the acceleration gives an inconsistent transition that can never fire). If we accelerate it, we get
the Σ0

2-assignment5

∃n > 0

 

pc= 2 ∧ ∀j (c≤ j < c+n→ j 6=N +1) ∧ c′ = c+n ∧
∧ pc′ = 2 ∧ O ′ =λj (if c≤ j < c+n then I (N−j ) elseO(j ))

!

(4)

In presence of these acceleratedΣ0
2-assignments, BACKWARD SEARCH can produce problematicΣ0

2-sentences
(see Proposition 3.1 above) which cannot be handled precisely by existing solvers. As a solution to this prob-
lem we propose applying to such sentences a suitable abstraction, namely monotonic abstraction.
Definition 4.2. Letψ :≡ ∃i ∀j .φ(i , j , a, c, p c ) be a Σ0

2-sentences and let S be a finite set of terms of the kind

t (i , v). The monotonicS -approximation ofψ is the Σ0
1-sentence

∃i
∧

σ:j→S

φ(i , jσ/j , a, c, p c ) (5)

(here jσ, if j = j1, . . . , jn , is the tuple of termsσ(j1), . . . ,σ(jn )).

By Definition 4.2, universally quantified variables are eliminated through instantiation; the larger the set
S is, the better approximation you get. In practice, the natural choices for S are i or the set of terms of the
kind t (i , v) occurring in ψ (we adopted the former choice in our implementation). As a result of replacing
Σ0

2-sentences by their monotonic approximation, spurious unsafe traces might occur. However, those can be
disregarded if accelerated transitions contribute to their generation. This is because if P is unsafe, then
unsafety can be discovered without appealing to accelerated transitions.

To integrate monotonic abstraction, the above BACKWARD SEARCH procedure is modified as follows. In a
PREPROCESSING step, we add some accelerated transitions of the kind (τ1 ◦ · · · ◦τn )+ to T . These transitions

4For readability, we omit identical updates like I ′ = I , etc. Notice that we have l I = 1 and l E = 4.
5This Σ0

2-assignment can be automatically computed using procedures outlined in the proof of Theorem 6.1.

6



can be found by inspecting cycles in the control flow graph of the program and accelerating them follow-
ing the procedure described in Sections 5, 6. The natural cycles to inspect are those corresponding to loop
branches in the source code. It should be noticed, however, that identifying the good cycles to accelerate
is subject to specific heuristics that deserve separate investigation in case the program has infinitely many
cycles. (choosing cycles from branches of innermost loops is the simplest example of such heuristics and the
one we implemented).

After this extra preprocessing step, the remaining instructions are left unchanged, with the exception of
CHECK that is modified as follows:

CHECK’: pick an unchecked leaf L labeled by a formula K . If K is a Σ0
2-sentence, choose a suitable S and

replace K by its monotonic S -abstraction K ′. If K ′ ∧ p c = l I is inconsistent, mark L as ‘covered’ or
‘checked’ according to the outcome of the fixpoint check, as was done in the original CHECK. If K ′∧p c =
l I is satisfiable, analyze the path from the root to L. If no accelerated transition τ+ is found in it return
unsafe, otherwise remove the sub-tree D from the target of τ+ to the leaves. Each node N covered by a
node in D will be flagged as ‘unchecked’ (to make it eligible in future for the EXPANSION instruction).

The new procedure will be referred as BACKWARD SEARCH’. It is quite straightforward to see that Proposition 4.1
still applies to the modified algorithm. Notice that, although termination cannot be ensured (given well-
known undecidability results), spurious traces containing approximated accelerated transitions cannot be
produced again and again: when the sub-tree D from the target node v of τ+ is removed by CHECK’, the node
v is not a leaf (the arcs labeled by the transitions τ are still there), hence it cannot be expanded anymore
according to the EXPANSION instruction.

Example 4.3. Let again consider our running example and demonstrate how acceleration and monotonic abstraction
work. In the preprocessing step, we add the accelerated transition τ+2 given by (4) to the transitions we already have. After
having computed (K ′)≡ Pr e (τ4, K ), (K ′′)≡ Pr e (τ3, K ′), we compute (K̃ )≡ Pr e (τ+2 , K ′′) and get

∃n > 0∃z 1, z 2









pc= 2 ∧ ∀j (c≤ j < c+n→ j 6=N+1) ∧
∧ c+n =N+1 ∧ z 1 ≥ 0 ∧ z 2 ≥ 0 ∧ z 1+ z 2 =N ∧

∧ I (z 1) 6=λj (if c≤ j < c+n then I (N−j ) elseO(j ))(z 2)









We approximate using the set of termsS = {z 1, z 2, n}. After simplifications we get

∃z 1, z 2 (pc= 2 ∧ c≤N ∧ z 1 ≥ 0 ∧ z 2 ≥ 0 ∧ z 1+ z 2 =N ∧ O(z 2) 6= I (z 1) ∧ c> z 2)

Generating this formula is enough to stop divergence.

Notice that in the computations of the above example we eventually succeeded in eliminating the extra
quantifier ∃n introduced by the accelerated transition. This is not always possible: sometimes in fact, to get
the good invariant one needs more quantified variables than those occurring in the annotated program and
accelerated transitions might be the way of getting such additional quantified variables. As an example of
this phenomenon, consider the init+test program included in our benchmark suite of Section 7 below.

5 Iterators

This Section introduces iterators and selectors, two main ingredients used to supply a useful format to com-
pute accelerated transitions. Iterators are meant to formalize the notion of a counter scanning the indexes
of an array: the most simple iterators are increments and decrements, but one may also build more complex
ones for different scans, like in binary search. We give their formal definition and then we supply some exam-
ples. We need to handle tuples of terms because we want to consider the case in which we deal with different
arrays with possibly different scanning variables. Given a m -tuple of terms

u(x ) := u 1(x1, . . . ,xm ), . . . , u m (x1, . . . ,xm ) (6)

containing the m variables x = x1, . . . ,xm , we indicate with un the term expressing the n-times composition
of (the function denoted by) u with itself. Formally, we have u0(x ) := x and

un+1(x ) := u 1(un (x )), . . . , u m (un (x )) .

7



Definition 5.1. A tuple of terms u like (6) is said to be an iterator iff there exists an m -tuple of m + 1-ary
terms u∗(x , y ) := u ∗1(x1, . . . ,xm , y ), . . . , u ∗m (x1, . . . ,xm , y ) such that for any natural number n it happens that
the formula

un (x ) =u∗(x , n̄ ) (7)

is valid.6 Given an iterator u as above, we say that an m -ary term κ(x1, . . . ,xm ) is a selector for u iff there is an
m +1-ary term ι(x1, . . . ,xm , y ) yielding the validity of the formula

z = κ(u∗(x , y ))→ y = ι(x , z ) . (8)

The meaning of condition (8) is that, once the input x and the selected output z are known, it is possible to
identify uniquely (through ι) the number of iterations y that are needed to get z by applying κ to u∗(x , y ). The
term κ is a selector function that selects (and possibly modifies) one of the u; in most applications (though
not always) κ is a projection, represented as a variable x i (for 1 ≤ i ≤ m ), so that κ(u∗(x , y )) is just the i -th
component u ∗i (x , y ) of the tuple of terms u∗(x , y ). In these cases, the formula (8) reads as

z = u ∗i (x , y )→ y = ι(x , z ) . (9)

Example 5.1. The canonical example is when we have m = 1 and u := u 1(x1) := x1+1; this is an iterator with u ∗1(x1, y ) :=
x1+ y ; as a selector, we can take κ(x1) := x1 and ι(x1, z ) := z −x1.

Example 5.2. The previous example can be modified, by choosing u to be x1+ n̄ , for some integer n 6= 0: then we have

u ∗(x1, y ) := x1 + n ∗ y , κ(x1) := x1, and ι(x1, z ) = (z − x1)//n (here // is integer division, recall that integer division by a

given n is definable in Presburger arithmetic).

Example 5.3. If we move to more expressive arithmetic theories, like Primitive Recursive Arithmetic (where we have

a symbol for every primitive recursive function), we can get much more examples. As an example with m > 1, we can

take u := x1 + x2,x2 and get u ∗1(x1,x2, y ) = x1 + y ∗ x2, u ∗2(x1,x2, y ) = x2. Here a selector is for instance κ1(x1,x2) := 7̄+ x1,

ι(x1,x2, z ) := (z −x1− 7̄)//x2.

6 Accelerating local ground assignments

Let’s turn to our programP = (v, l I , l E , T ); we look for conditions on transitions from T allowing to accelerate
them via a Σ0

2-assignment. Given an iterator u(x ), a selector assignment for a := a 1, . . . , a s (relative to u) is
a tuple of selectors κ := κ1, . . . ,κs for u. Intuitively, the components of the tuple are meant to indicate the
scanners of the arrays a and as such might not be distinct (although, of course, just one selector is assigned
to each array). A formulaψ (resp. a term t ) is said to be purely arithmetical over a finite set of terms V iff it is
obtained from a formula (resp. a term) not containing the extra free function symbols a, c by replacing some
free variables in it by terms from V . Let v= v1, . . . , vs and w=w1, . . . , ws be s -tuples of terms; below w r (a, v, w)
and a(v) indicate the tuples w r (a 1, v1, w1), . . . , w r (a s , vs , ws ) and a 1(v1), . . . , a s (vs ), respectively (recall from
Section 3 that s = |a|).

Definition 6.1. A local ground assignment is a ground assignment of the form

p c = l ∧ φL(c, a) ∧ p c ′ = l ∧ a′ =w r (a,κ(c̃), t(c, a)) ∧ c̃′ =u(c̃) ∧d′ = d (10)

where (i) c = c̃, d; (ii) u = u 1, . . . , u |c̃| is an iterator; (iii) the terms κ are a selector assignment for a relative
to u; (iv) the formula φL(c, a) and the terms t(c, a) are purely arithmetical over the set of terms {c, a(κ(c̃))} ∪
{a i (d j )}1≤i≤s ,1≤j≤|d|; (v) the guardφL contains the conjuncts κi (c̃) 6= d j , for 1≤ i ≤ s and 1≤ j ≤ |d|.

Thus in a local ground assignment, there are various restrictions: (a) the numerical variables are split into
‘idle’ variables d and variables c̃ subject to update via an iterator u; (b) the program counter is not modified;
(c) the guard does not depend on the values of the a i at cells different from κi (c̃), d; (d) the update of the a
are simultaneous writing operations modifying only the entries κ(c̃). Thus, the assignment is local and the
relevant modifications it makes are determined by the selectors locations. The ‘idle’ variables d are useful to
accelerate branches of nested loops; the inequalities mentioned in (v) are automatically generated by making
case distinctions in assignment guards (see Appendix B for an example on how all this works in practice).

6Recall that n̄ is the numeral of n , i.e. it is s n (0).

8



Example 6.1. For our running example, we show that transition τ2 (the one we want to accelerate) is a local ground

assignment. We have d= ; and c̃= c and a= I ,O. The counter c is incremented by 1 at each application of τ2. Thus, our

iterator is u := x1 + 1 and the selector assignment assigns κ1 := N − x1 to I and κ2 := x1 to O. In this way, I is modified

(identically) at N − c via I ′ = w r (I , N − c, I (N − c)) and O is modified at c via O ′ = w r (O,c, I (N − c)). The guard τ2 is

c 6=N +1. Since the formula c 6=N +1 and the term I (N −c) are purely arithmetical over {c, I (N −c),O(c)}, we conclude

that τ2 is local.

Theorem 6.1. If τ is a local ground assignment, then τ+ is a Σ0
2-assignment.

Proof. (Sketch, see Appendix A for full details). Let us fix the local ground assignment (10); let a[d] indi-
cate the s ∗ |d|-tuple of terms {a i (d j )}1≤i≤s ,1≤j≤|d|; since φL and t := t1, . . . , ts are purely arithmetical over
{c̃, d, a(κ(c̃)), a[d]}, we have that they can be written as φ̃L(c̃, d, a(κ(c̃)), a[d]), t̃(c̃, d, a(κ(c̃)), a[d]), respectively,
where φ̃L , t̃ do not contain occurrences of the free function and constant symbols a, c. The transition τ+ can
be expressed as a Σ0

2-assignment by

∃y > 0

�

∀z (0≤z< y→φ̃L(u∗(c̃, z ), d, a(κ(u∗(c, z ))), a[d])∧d′ = d∧
∧ p c = l ∧ p c ′ = l ∧ c̃′ =u∗(c̃, y ) ∧ a′ =λj . F (c, a, y , j )

�

where the tuple F = F1, . . . , Fs of definable functions is given by

Fh (c, a, y , j ) = λj . if 0≤ ιh (c̃, j )< y ∧ j = κh (u∗(c, ιh (c̃, j ))) then
t̃h (u∗(c̃, ιh (c̃, j )), d, a(κ(u∗(c̃, ιh (c̃, j )))), a[d]) else a h [j ]

for h = 1, . . . , s (here ι1, . . . , ιs are the terms corresponding to κ1, . . . ,κs according to the definition of a selector
for the iterator u).

We point out that the effective use of Theorem 6.1 relies on the implementation of a repository of iterators
and selectors and of algorithms recognizing them. The larger the repository is, the more possibilities the
model checker has to exploit the full power of acceleration.

In most applications it is sufficient to consider accelerated transitions of the canonical form of Exam-
ple 5.1. Let’s examine in details this special case; here c is a single counter c that is incremented by one
(otherwise said, the iterator is x1+1) and the selector assignment is trivial, namely it is just x1. We call these
local ground assignments simple. Thus, a simple local ground assignment has the form

p c = l ∧ φL(c, a) ∧ p c ′ = l ∧c′ = c+1 ∧ a′ =w r (a,c, t(c, a)) (11)

where the first occurrence of c in w r (a,c, t(c, a)) stands in fact for an s -tuple of terms all identical to c, and
where φL , t are purely arithmetical over the terms c, a 1[c], . . . , a s [c]. The accelerated transition computed in
the proof of Theorem 6.1 for (11) can be rewritten as follows:

∃k

�

k > 0 ∧ p c = l ∧ ∀j (c≤ j < c+k →φL(j , a)) ∧ p c ′ = l ∧
∧ c′ = c+k ∧ a′ =λj . (if c≤ j < c+k then t(j , a) else a[j ])

�

(12)

A slight extension of the notion of a simple assignment leads to simple+-assignments: these are local ground
assignments useful to accelerated branches of nested loops and are introduced in Appendix B below.

7 Experimental evaluation

We implemented the algorithm described in Section 4 - 6 as a preprocessing module inside the MCMT model
checker [23]. To perform a feasibility study, we intentionally focused our implementation on simple and sim-
ple+ local ground assignments. For a thorough and unbiased evaluation we compared/combined the new
technique with an abstraction algorithm suited for array programs [3] implemented in the same tool. This
section describes benchmarks and discusses experimental results. A clear outcome from our experiments is
that abstraction/refinement and acceleration techniques can be gainfully combined.
Benchmarks. We evaluated the new algorithm on 55 programs with arrays, each annotated with an assertion.
We considered only quantifier-free or ∀-assertions. Our set of benchmarks comprises programs used to eval-
uate the Lazy Abstraction with Interpolation for Arrays framework [4] and other focused benchmarks where

9



0.01

0.1

1

10

0.01 0.1 1 10

A
c
c
e
l
e
r
a
t
io
n

Backward Search

(a)

0.01

0.1

1

10

0.01 0.1 1 10

A
c
c
e
l
e
r
a
t
io
n

Abstraction

(b)

0.01

0.1

1

10

0.01 0.1 1 10

A
c
c
e
l
.
+

A
b
st

r
.

Acceleration

(c)

0.01

0.1

1

10

0.01 0.1 1 10

A
c
c
e
l
.
+

A
b
st

r
.

Abstraction

(d)

Figure 2: Comparison of time for different options of BACKWARD SEARCH. Stars and circles represent buggy and correct
programs respectively.

abstraction diverges. These are problems involving array manipulations as copying, comparing, searching,
sorting, initializing, testing, etc. About one third of the programs contain bugs.7

Evaluation. Experiments have been run on a machine equipped with a i7@2.66 GHz CPU and 4GB of RAM
running OS X. Time limit for each experiment has been set to 60 seconds. We run MCMT with four different
configurations:

• BACKWARD SEARCH - MCMT executes the procedure described at the beginning of Section 4.

• ABSTRACTION - MCMT integrates the backward reachability algorithm with the abstraction/refinement
loop [3].

• ACCELERATION - The transition system is pre-processed in order to compute accelerated transitions
(when it is possible) and then the BACKWARD SEARCH’ procedure is executed.

• ACCEL. + ABSTR. - This configuration enables both the preprocessing step in charge of computing
accelerated transitions and the abstraction/refinement engine on the top of the BACKWARD SEARCH’
procedure.

The complete statistics can be found in Appendix C. In summary, the comparative analysis of timings pre-
sented in Figure2 confirms that acceleration indeed helps to avoid divergence for problematic programs
where abstraction fails. The first comparison (Figure2(a)) highlights the benefits of using acceleration: BACK-
WARD SEARCH diverges on all 39 safe instances. Acceleration stops divergence in 23 cases, and moreover the

7The set of benchmarks can be downloaded from http://www.inf.usi.ch/phd/alberti/prj/acc; the tool set MCMT

is available at http://users.mat.unimi.it/users/ghilardi/mcmt/.

10

http://www.inf.usi.ch/phd/alberti/prj/acc
http://users.mat.unimi.it/users/ghilardi/mcmt/


overhead introduced by the preprocessing step does not affect unsafe instances. Figure2(b) shows that ac-
celeration and abstraction are two complementary techniques, since MCMT times out in both cases but for
two different sets of programs. Figure2(c) and Figure2(d) attest that acceleration and abstraction/refinement
techniques mutually benefit from each other: with both techniques MCMT solves all the 55 benchmarks.

8 Conclusion and Future Work

We identified a class of transition relations involving array updates that can be accelerated, showed how it
is possible to compute the accelerated transition and described a solution for dealing with universal quan-
tifiers arising from the acceleration process. Our paper lays theoretical foundations for this interesting re-
search topic and confirms by our prototype experiments on challenging benchmarks its advantages over
stand-alone verification approaches since it’s able to solve problems on which other techniques fail to con-
verge.

As future directions, a challenging task is to enlarge the definability result of Theorem 6.1 so as to cover
classes of transitions modeling more and more loop branches arising from concrete programs. In addition,
one may want to consider more sophisticated strategies for instantiation in order to support acceleration.
Considering increasing larger S or handling Σ0

2-sentences when they belong to decidable fragments [15, 22]
may lead to further improvements.

References

[1] P.A. Abdulla, G. Delzanno, N.B. Henda, and A. Rezine. Regular model checking without transducers. In TACAS,
volume 4424 of LNCS, pages 721–736, 2007.

[2] P.A. Abdulla, G. Delzanno, and A. Rezine. Parameterized verification of infinite-state processes with global condi-
tions. In CAV, LNCS, pages 145–157, 2007.

[3] F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. Lazy Abstraction with Interpolants for Arrays. In
LPAR, pages 46–61, 2012.

[4] F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. SAFARI: SMT-Based Abstraction for Arrays with
Interpolants. In CAV, 2012.

[5] F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and G.P. Rossi. Universal Guards, Relativization of Quantifiers, and Failure
Models in Model Checking Modulo Theories. JSAT, pages 29–61, 2012.

[6] Thomas Ball and Sriram K. Rajamani. The slam toolkit. In CAV, pages 260–264, 2001.

[7] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version 2.0. www.SMT-LIB.org, 2010.

[8] G. Behrmann, J. Bengtsson, A. David, K.G. Larsen, P. Pettersson, and W. Yi. Uppaal implementation secrets. In
FTRTFT, pages 3–22, 2002.

[9] Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and Andrey Rybalchenko. Path invariants. In PLDI, pages
300–309, 2007.

[10] Cristina Borralleras, Salvador Lucas, Albert Oliveras, Enric Rodríguez-Carbonell, and Albert Rubio. Sat modulo linear
arithmetic for solving polynomial constraints. J. Autom. Reasoning, 48(1):107–131, 2012.

[11] M. Bozga, C. Girlea, and R. Iosif. Iterating octagons. In TACAS, LNCS, pages 337–351, 2009.

[12] M. Bozga, P. Habermehl, R. Iosif, F. Konecný, and T. Vojnar. Automatic verification of integer array programs. In CAV,
pages 157–172, 2009.

[13] M. Bozga, R. Iosif, and F. Konecny. Fast acceleration of ultimately periodic relations. In CAV, LNCS, 2010.

[14] M. Bozga, R. Iosif, and Y. Lakhnech. Flat parametric counter automata. Fundamenta Informaticae, (91):275–303,
2009.

[15] A.R. Bradley, Z. Manna, and H.B. Sipma. What’s decidable about arrays? In VMCAI, pages 427–442, 2006.

[16] Nicolas Caniart, Emmanuel Fleury, Jérôme Leroux, and Marc Zeitoun. Accelerating interpolation-based model-
checking. In TACAS, pages 428–442, 2008.

[17] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Efficient generation of craig interpolants in satisfiabil-
ity modulo theories. ACM Trans. Comput. Log., 12(1):7, 2010.

[18] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided Abstraction Refinement. In CAV,
pages 154–169, 2000.

[19] H. Comon and Y. Jurski. Multiple counters automata, safety analysis and presburger arithmetic. In CAV, volume
1427 of LNCS, pages 268–279. Springer, 1998.

11

http://www.smt-lib.org


[20] A. Finkel and J. Leroux. How to compose presburger-accelerations: Applications to broadcast protocols. In FST TCS
âĂŹ02, pages 145–156. Springer, 2002.

[21] C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In POPL, pages 191–202, 2002.

[22] Y. Ge and L. de Moura. Complete instantiation for quantified formulas in satisfiabiliby modulo theories. In CAV,
pages 306–320, 2009.

[23] S. Ghilardi and S. Ranise. MCMT: A Model Checker Modulo Theories. In IJCAR, pages 22–29, 2010.

[24] S. Graf and H. Saïdi. Construction of Abstract State Graphs with PVS. In CAV, pages 72–83, 1997.

[25] M. Hendriks and K.G. Larsen. Exact acceleration of real-time model checking. Electr. Notes Theor. Comput. Sci.,
65(6):120–139, 2002.

[26] H. Hojjat, R. Josif, F. Konecny, V. Kuncak, and P. Rümmer. On accelerating interpolants. In ATVA, 2012.

[27] R. Jhala and K.L. McMillan. Array Abstractions from Proofs. In CAV, 2007.

[28] L. Kovács and A. Voronkov. Interpolation and Symbol Elimination. In CADE, 2009.

[29] Daniel Larraz, Enric Rodríguez-Carbonell, and Albert Rubio. Smt-based array invariant generation. In VMCAI, pages
169–188, 2013.

[30] K.L. McMillan. Lazy Abstraction with Interpolants. In CAV, 2006.

[31] K.L. McMillan. Quantified Invariant Generation Using an Interpolating Saturation Prover. In TACAS, 2008.

[32] G. Nelson and D.C. Oppen. Simplification by cooperating decision procedures. ACM Transaction on Programming
Languages and Systems, 1(2):245–257, 1979.

[33] M. N. Seghir, A. Podelski, and T. Wies. Abstraction Refinement for Quantified Array Assertions. In SAS, pages 3–18,
2009.

[34] S. Srivastava and S. Gulwani. Program Verification using Templates over Predicate Abstraction. In PLDI, 2009.

[35] C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson-Oppen combination procedure. In Proc. of
FroCoS 1996, pages 103–119. Kluwer, 1996.

12



A Proof of Theorem 6.1

In this technical Appendix, we supply the proof of Theorem 6.1.

Proof. As a preliminary observation, we notice that the bi-implications of the kind

(
∨

n≥0

ψ(x , n̄ ))↔∃y (y ≥ 0∧ψ(x , y )) . (13)

are valid because we interpret our formulæ in the standard structure of natural numbers (enriched with extra
free symbols).

As a second preliminary observation, we notice that (8) can be equivalently re-writtem in the form of a
bi-implication as:

z = κ(u∗(x , y )) ↔ [ y = ι(x , z ) ∧ z = κ(u∗(x , ι(x , z ))) ] (14)

(to see why (14) is equivalent to (8) it is sufficient to apply the logical laws of pure identity).
Let us fix a local ground assignment of the form (10); let a[d] indicate the s∗|d|-tuple of terms {a i (d j )}1≤i≤s ,1≤j≤|d|;

sinceφL and t are purely arithmetical over {c̃, d, a(κ(c̃)), a[d]}, we have that they can be written as φ̃L(c̃, d, a(κ(c̃)), a[d]),
t̃(c̃, d, a(κ(c̃)), a[d]), respectively, where φ̃L , t̃ do not contain occurrences of the free function and constant sym-
bols a, c.

Claim. As a first step, we show by induction on n that τn can be expressed as follows (we omit here and
below the conjuncts p c = l ∧p c ′ = l ∧d′ = d that do not play any role)

∧

0≤k<n

φ̃L(u∗(c̃, k̄ ), d, a(κ(u∗(c̃, k̄ ))), a[d]) ∧ c̃′ =u∗(c̃, n̄ ) ∧ a′ =λj . F (c, a, n̄ , j ) (15)

where the tuple F = F1, . . . , Fs of definable functions is given by8

Fh (c, a, y , j ) = λj . if 0≤ ιh (c̃, j )< y ∧ j = κh (u∗(c, ιh (c̃, j ))) then
t̃h (u∗(c̃, ιh (c̃, j )), d, a(κ(u∗(c̃, ιh (c̃, j )))), a[d]) else a h [j ]

(16)

for h = 1, . . . , s (here ι1, . . . , ιs are the terms corresponding to κ1, . . . ,κs according to the definition of a selector
for the iterator u).

Proof of the Claim. For n = 1, notice that φ̃L(u∗(c̃, 0), d, a(κ(u∗(c̃, 0))), a[d]) is equivalent to φ̃L(c̃, d, a(κ(c̃)), a[d]),
that c̃′ = u∗(c̃, 1̄) is equivalent to c̃′ = u(c̃) and that λj . F (c̃, d, a, 1̄, j ) =w r (a,κ(c̃), t(c̃, d, a(κ(c̃)), a[d])) holds (the
latter because for every h, ιh (c̃, j ) = 0∧ j = κh (u∗(c, ιh (c̃, j )) is equivalent to j = κh (u∗(c̃, 0)) = κh (c̃) by (14)).

For the induction step, we suppose the Claim holds for n and show it for n + 1. As a preliminary remark,
notice that from (10), we get not only d′ = d, but also a′[d′] = a[d], because of (v) of Definition 6.1. As a
consequence, after n iterations of τ, the values d, a[d] are left unchanged; thus, for notation simplicity, we
will not display anymore below the dependence of φL , t̃ on d, a[d]. We need to show that τ ◦ τn matches
the required shape (15)-(16) with n + 1 instead of n . After unraveling the definitions, this splits into three
sub-claims, concerning the update of the c, the guard and the update of the a, respectively:

(i) the equality u(u∗(c̃, n̄ )) =u∗(c̃, n +1) is valid;

(ii)
∧

0≤k<n

φ̃L(u∗(c̃, k̄ ), a(κ(u∗(c̃, k̄ )))) ∧ φ̃L(u∗(c̃, n ),λj . F (c, a, n̄ , j )(κ(u∗(c̃, n ))))

is equivalent to
∧

0≤k<n+1

φ̃L(u∗(c, k̄ ), a(κ(u∗(c, k̄ )))) ;

(iii) w r (λj . F (c, a, n̄ , j ),κ(u∗(c̃, n )), t̃(u∗(c̃, n ),λj . F (c, a, n̄ , j )(κ(u∗(c̃, n̄ )))) is the same function asλj . F (c, a, n +1, j ).

8The following is an informal explanation of the formula (16) expressing iterated updates. The point is to recognize whether a given
cell j has been over-written or not within the first y iterations. The number ιh (c̃, j ) gives the candidate number of iterations needed to
get j and the further condition j = κh (u∗(c, ιh (c̃, j ))) checks whether this number is correct or not. Take for instance Example 5.2 with
n = 2. Then if we have a single counter initialized to say 4, our iterations give values 4+ 2, 4+ 2+ 2, . . . for the updated counter. If we
want to know whether j can be reached within less than 5 iterations, we just compute ι(4, j )which is the quotient of the integer division
of j − 4 by 2. The we need to check that ι(4, j ) is among 0, . . . , 4 = 5− 1 and also that j can be really reached from c̃ = 4 by adding 2 to it
ι(4, j )-times (the latter won’t be true if j is odd).

13



Indeed statement (i) is trivial, because u(u∗(c̃, n̄ )) =u(un (c̃)) =un+1(c̃) =u∗(c̃, n +1) holds by (7).
To show (ii), it is sufficient to check that

a(κ(u∗(c̃, n ))) = λj . F (c, a, n̄ , j )(κ(u∗(c̃, n ))) (17)

is true. In turn, this follows from (16) and the validity of the following implications (varying h = 1, . . . , s )

ιh (c̃, j ) 6= n̄ → j 6= κh (u∗(c̃, n )) (18)

(in fact, a h and Fh can possibly differ only for the j satisfying 0 ≤ ιh (c̃, j ) < n̄ , i.e. in particular for the j
such that ιh (c̃, j ) 6= n). To see why (18) is valid, notice that in view of (8), what (18) says is that we cannot
have simultaneously both ιh (c̃, j ) = n and ιh (c̃, j ) = m̄ , for some m 6= n : indeed it is so by the definition of a
function.

It remains to prove (iii); in view of (17) just shown, we need to check that

w r (λj . F (c, a, n̄ , j ),κ(u∗(c̃, n )), t̃(u∗(c̃, n ), a(κ(u∗(c̃, n )))))

is the same as λj . F (c, a, n +1, j ). For every h = 1, . . . , s , this is split into three cases, corresponding to the
validity check for the three implications:

i h (c̃, j )< n̄→w r (λj . Fh (c, a, n̄ , j ),κh (u∗(c̃, n )), t̃h )(j ) = Fh (c, a, n +1, j )

i h (c̃, j ) = n→w r (λj . Fh (c, a, n̄ , j ),κh (u∗(c̃, n )), t̃h )(j ) = Fh (c, a, n +1, j )

i h (c̃, j )> n→w r (λj . Fh (c, a, n̄ , j ),κh (u∗(c̃, n )), t̃h )(j ) = Fh (c, a, n +1, j )

where we wrote simply t̃h instead of t̃h (u∗(c̃, n ), a(κ(u∗(c̃, n )))). However, keeping in mind (18) and (14), the
three implications can be rewritten as follows (the second one is split into two subcases)

i h (c̃, j )< n̄→ Fh (c, a, n̄ , j ) = Fh (c, a, n +1, j )

i h (c̃, j ) = n ∧ j = κh (u∗(c, ιh (c̃, j )))→ t̃h = Fh (c, a, n +1, j )

i h (c̃, j ) = n ∧ j 6= κh (u∗(c, ιh (c̃, j )))→ Fh (c, a, n̄ , j ) = Fh (c, a, n +1, j )

i h (c̃, j )> n→ Fh (c, a, n̄ , j ) = Fh (c, a, n +1, j )

The above four implications all hold by the definitions (16) of the Fh .
Proof of Theorem 6.1 (continued). As a consequence of the Claim, since the formula

∧

0≤k<n

φ̃L(u∗(c̃, k̄ ), d, a(κ(u∗(c̃, k̄ ))), a[d])

is equivalent to ∀z (0≤ z < n̄→ φ̃L(u∗(c̃, z ), d, a(κ(u∗(c, z ))), a[d]), we can use (13) to express τ+ as

∃y > 0

�

∀z (0≤z< y→φ̃L(u∗(c̃, z ), d, a(κ(u∗(c, z ))), a[d])∧d′ = d∧
∧ p c = l ∧ p c ′ = l ∧ c̃′ =u∗(c̃, y ) ∧ a′ =λj . F (c, a, y , j )

�

(19)

The latter shows that τ+ is a Σ0
2-assignment, as desired.

B A worked out example

Simple assignements might not be sufficient for nested loops where an array is scanned by a couple of coun-
ters, one of which is kept fixed (think for instance of inner loops of sorting algorithms). To cope with these
more complicated cases, we introduce a larger class of assignments (these assignments are still local, hence
covered by Theorem 6.1). We call simple+ the ground assignments of the form

p c = l ∧ φL(c, d, a) ∧ p c ′ = l ∧c′ = c±1 ∧ d′ = d ∧ a′ =w r (a,c, t(c, d, a)) (20)

where (i) d= d 1, . . . , d l is a tuple of integer constants, (ii) the first occurrence of c in w r (a,c, t(c, d, a)) stands
for a tuple of terms all identical to c, (iii) the guard φL contains the conjuncts c 6= d i (1 ≤ i ≤ l ), and (iv)

14



φL , t are purely arithmetical over c, d, a 1[c], . . . a s [c], a 1[d 1], . . . , a s [d l ]. Basically, simple+ local ground as-
signments differ from plain simple ones just because there are some ‘idle’ indices d; in addition, the counter
c can also be decremented.

The accelerated transition for (20) computed by Theorem 6.1 can be re-written as follows (we write j ∈
[c,c±k ] for c≤ j ≤ c+k or c−k ≤ j ≤ c, deÃĺpending on whether we have increment or decrement in (20)):

∃k

�

k > 0 ∧ p c = l ∧ ∀j (j ∈ [c,c±k ]→φL(j , d, a)) ∧ p c ′ = l ∧ d′ = d ∧
∧ c′ = c±k ∧ a′ =λj . (if j ∈ [c,c±k ] then t(j , d, a) else a[j ])

�

(21)

To show how acceleration and abstraction/refinement techniques can mutually benefit from each other,
consider the procedure allDiff, represented by the all diff 2 entry in Table1. This function tests whether
all entries of the array a are pairwise different:

function allDiff ( int a[N] ) :
1 r= true;

2 for (i= 1; i< N∧r;i++)
3 for (j= i-1;j≥ 0∧r;j--)

4 if (a[i] = a[j]) r= false;

5 assert
�

r→
�

∀x , y (0≤ x < y < N)→ (a[x ] 6= a[y ])
��

This function is represented by the transition system specified below (in the specification, we omit identical
updates to improve readability).

I (v) =
�

r = 0∧i= 1∧j= 0∧p c = l 1
�

U (v) = p c = l 4 ∧∃x , y .
�

0≤ x < y < a.Length∧a [x ] = a [y ]
�

τ1 =

�

p c = l 1 ∧i≤ a.Length∧ r = 0 ∧
p c ′ = l 2 ∧j′ = i−1

�

τ2 =

�

p c = l 1 ∧i> a.Length ∧
p c ′ = l 4

�

τ3 =

�

p c = l 1 ∧ r = 1 ∧
p c ′ = l 4

�

τ4 =

�

p c = l 3 ∧
p c ′ = l 1 ∧i′ = i+1

�

τ5 =

�

p c = l 2 ∧ r = 0∧j≥ 0∧a [i] = a [j] ∧
p c ′ = l 2 ∧j′ = j−1∧ r = 1

�

τ6 =

�

p c = l 2 ∧ r = 0∧j≥ 0∧a [i] 6= a [j] ∧
p c ′ = l 2 ∧j′ = j−1

�

τ7 =

�

p c = l 2 ∧ j < 0 ∧
p c ′ = l 3

�

τ8 =

�

p c = l 2 ∧ r = 1 ∧
p c ′ = l 3

�

For this problem, the transition we want to accelerate is τ6. Accelerating transition τ6 is not sufficient to
avoid divergence caused by the outer loop, though. On the other side, accelerating the inner loop simplifies
the problem, which can be successfully verified by the model checker by exploiting abstraction/refinement
techniques in 1.36 seconds (see Table1 for more details).

The acceleration of transition τ6 requires simple+-assignements (implemented in the current release of
MCMT). We follow MCMT implementation quite closely to explain what happens.

As a first observation, MCMT specification language requires that whenever two counters i and j both
occur in array applications a [i], a [j] (like in τ6 above), the guard of the transition must contain either the
literal i = j or the literal i 6= j. Thus such transitions must be duplicated; in our case, the copy of τ6 with

15



i = j can be ignored because it has an inconsistent guard. The copy with i6=j in the guard satisfies the
conditions for being a simple+-assignment. Thus, its acceleration, according to (21), can be written as

∃k

�

k > 0 ∧ ∀j (j ∈ [j,j±k ]→ i 6= j ∧ r = 0∧ j ≥ 0∧a [i] 6= a [j ]) ∧
∧ p c = 2 ∧p c ′ = 2 ∧ i′ = i ∧ r ′ = r ∧ j′ = j±k ∧ a′ = a

�

In the current release, MCMT is able to compute by itself the above accelerated transition and thus to certify
safety of allDiff procedure.

C Experimental evaluation

Complete statistics for the experiments performed with MCMT are reported in Table1. Benchmarks have been
taken from different sources:

• The benchmarks “filter test”, “max in array test”, “filter”, “max in array 1”, “max in array 2”, “max in array
3” have been taken and/or adapted from programs on http://proval.lri.fr/.

• The “heap as array” program has been suggested by K. Rustan M. Leino and it is reported in Figure3.

• all the programs p N have been taken from “I. Dillig, T. Dillig, and A. Aiken. Fluid updates: Beyond
strong vs. weak updates. In ESOP, pages 246-266, 2010.”.

• The “bubble sort” example comes from the “Eureka” project http://www.ai-lab.it/eureka
and has been used as a benchmark in the paper “A. Armando, M. Benerecetti, and J. Mantovani. Ab-
straction refinement of linear programs with arrays. In TACAS, pages 373-388, 2007.”

• “all diff 1” and “all diff 2” have been suggested by Madhusudan Parthasarath and his group. They repre-
sent two different encoding of an algorithm that initializes an array to different values and then check
if the array has been correctly initialized.

• “compare”, “copy”, “find 1”, “find 2”, “init”, “init test”, “partition” have been taken/adapted from “Krystof
Hoder, Laura Kovács, Andrei Voronkov: Interpolation and Symbol Elimination in Vampire. In IJCAR,
pages 188-195, 2010”.

• The “linear search” program is used as a running example on the book “Aaron R. Bradley, Zohar Manna:
The calculus of computation - decision procedures with applications to verification. Springer 2007, pp.
I-XV, 1-366”.

• “selection sort” example has been used in “M. N. Seghir, A. Podelski, and T. Wies. Abstraction Refine-
ment for Quantified Array Assertions. In SAS, pages 3-18, 2009.”

• “strcmp”, “strcpy” and “strlen” have been adapted from the standard string C library.

The benchmarks named with “ * test ” refer to benchmarks with quantified assertions substituted by a for
loop. For those programs, the postcondition does not have quantifiers: in these benchmarks it is even harder
to come up with a quantified safe inductive invariant to prove that the program is correct. Thus, it is a re-
markable fact that our tool can automatically synthetize such invariants.

16

http://proval.lri.fr/
http://www.ai-lab.it/eureka


PROGRAM STATUS NO OPTIONS ABSTRACTION ACCELERATION ACCEL. + ABSTR.

filter test safe × 0.08 × 0.08
heap as array safe × 0.12 × 0.12
init test safe × 11.72 × 0.16
max in array test safe × 0.18 × 0.18
p01 safe × × 0.09 9.08
p02 safe × × 0.09 9.52
p03 safe × 0.11 0.09 0.14
p08 safe × 0.12 0.12 0.11
p09 safe × 0.12 0.99 0.11
p14 safe × 6.39 0.35 7.78
p17 safe × 0.02 0.19 0.19
p04 unsafe 0.02 0.03 0.03 0.02
p10 unsafe 0.07 0.04 0.06 0.03
p11 unsafe 0.02 0.03 0.04 0.04
p15 unsafe 1.4 1.74 0.3 2.97
p16 unsafe 4.27 3.70 0.45 8.89
p18 unsafe 0.01 0.02 0.01 0.01
p19 unsafe 0.02 0.02 0.01 0.01
p20 unsafe 0.02 0.02 0.03 0.02
p22 unsafe 0.02 0.03 0.02 0.17
all diff 1 safe × × 0.08 0.13
all diff 2 safe × × × 1.36
bubble sort safe × 1.23 × 1.23
compare safe × 0.04 × 0.04
copy safe × 0.03 0.03 0.03
filter safe × 0.11 × 0.11
find 1 safe × 0.06 × 0.06
find 2 safe × 0.07 0.06 0.17
init safe × 0.08 0.03 0.1
linear search safe × 0.04 0.05 0.02
max in array 1 safe × 0.1 × 0.1
max in array 2 safe × 0.11 × 0.13
max in array 3 safe × 0.06 × 0.01
minusN safe × × 0.77 1.4
partition safe × 0.05 × 0.03
selection sort safe × 7.87 × 45.07
strcat 1 safe × × × 3.5
strcat 2 safe × × × 3.62
strcmp safe × 0.04 0.06 0.02
strcpy safe × 0.03 0.02 0.01
strlen safe × × 0.1 0.06
p01 safe × 0.08 0.02 0.1
p02 safe × 0.08 0.05 0.1
p03 safe × 0.03 0.02 0.03
p08 safe × 0.03 0.05 0.03
p09 safe × 0.03 0.04 0.03
p18 safe × × 0.07 0.33
p20 safe × 0.04 0.05 0.02
p04 unsafe 0.07 0.02 0.01 0.01
p11 unsafe 0.01 0.02 0.02 0.01
p14 unsafe 0.31 1.79 0.28 2.5
p15 unsafe 0.09 1.77 0.12 1.4
p16 unsafe 0.11 2.97 1.23 6.57
p17 unsafe 0.02 0.03 0.01 0.02
p19 unsafe 0.02 0.02 0.01 0.01

Table 1: Experimental results for different options. Time limit has been set to 60 seconds, and × denotes a timeout.
Programs in the first part of the table are annotated with quantifier-free assertions, those in the second part have ∀-
assertions. Notably, when abstraction and acceleration is combined MCMT is able to verify all the 55 programs.

17



var Heap: [int] int;
const unique F: int; const unique G: int;
const F_final: int; const G_final: int;
procedure HeapP ( )
modifies Heap;
requires F_final> 0∧G_final> 0;
ensures Heap[F] = F_final∧Heap[G] = G_final;
{
Heap[F] := 0; Heap[G] := G_final;
while (Heap[F]< F_final)
invariant Heap[F]≤ F_final;
{
Heap[F] := Heap[F]+1;
}
}

Figure 3: The “heap as array” program.

18


	Introduction
	Preliminaries
	Programs representation
	Backward search and acceleration
	Iterators
	Accelerating local ground assignments
	Experimental evaluation
	Conclusion and Future Work
	Proof of Theorem 6.1
	A worked out example
	Experimental evaluation

