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Abstract

Households make an investment analysis when buying new electrical appli-
ances. Therefore, expectations about future electricity consumption may have
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behavior. In this paper we propose a model for residential electricity demand
that allows for forward-looking behavior. We estimate lead consumption models
using two stages least squares fixed effects on a panel of 48 US states between
1995 and 2011. We find that expectations about future consumption have an
impact on current consumption decisions. This novel approach may improve our
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1 Introduction

In the US, residential electricity consumption accounts for about a third of total elec-

tricity consumption. Understanding the dynamics of household energy consumption

is of great importance in formulating policies to improve the efficient use of energy

services. Households use energy services (e.g. lighting, TV entertainment, cooling of

food, hot water) by combining electrical appliances and electricity. Therefore, house-

holds face simultaneous consumption and investment decisions: how much energy to

consume and what stock of electrical appliances to hold. Their reaction to a chang-

ing environment, such as an increase in the price of electricity, may then lead to an

adjustment in the stock of electrical appliances or a change in their use. For instance,

they may decide to switch to a more energy efficient lighting system, or they may

adjust their consumption habits by switching off the light more often when leaving a

room. In this paper, we propose a model for residential electricity demand that allows

for forward-looking behavior, and estimate this model using two stage least squares

fixed effects on a panel of US states.

When making current consumption and investment decisions, households look at

the constant maximization of utility over time (Becker and Murphy, 1988) and take

expectations about future electricity consumption into account. A household’s energy

consumption reflects the efficiency of its capital stock. Investments in more efficient

appliances will allow to produce (today and in the future) the same energy services

with a lower amount of energy. Therefore, a household that optimizes utility over

time will adjust today’s consumption to lower levels.

In addition, because of habits or the constraint related to changing the stock of

electrical appliances, current consumption decisions are affected by past consumption.

Households may not be able to change their electricity consumption or to adjust their

stock of electrical appliances fast enough to instantaneously react to changes in the

price of electricity. This slow adjustment process may also reflect bounded rationality

or status quo bias, i.e. consumers make use of available information but their decision-

making is bounded by habits, inertia, or a general aversion to change (Samuelson and

Zeckhauser, 1988; Kahneman et al., 1991).

The recent literature on residential electricity demand neglects forward-looking

household behavior (e.g., Alberini and Filippini, 2011; Blázquez et al., 2013; Cebula,

2012). Generally, residential electricity demand is estimated using static models,

where no interdependence of consumption decisions over time is assumed, or using

dynamic partial adjustment models that account only for the impact of past consump-
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tion. Two recent studies that consider forward-looking behavior in energy consump-

tion are Scott (2012, 2015), but the analyses focus on gasoline rather than electricity

and the econometric approaches rely on lead price models, where current consumption

is affected by future prices, rather than lead consumption models, where current and

future consumption are interdependent.

This analysis builds on the literature on rational habits (e.g., Becker et al., 1994)

to extend and generalize the existing dynamic partial adjustment approach to electric-

ity demand by considering expectations about future consumption. To this aim, we

estimate and compare three main models: a static model, a myopic model and a lead

consumption model. Our novel approach based on the lead consumption model seems

to provide more precise estimates of the dynamics of residential electricity consump-

tion. Not only do we capture the effects of behavioural habits and constraints of the

current stock of appliances but also of the behavioural adjustment to the future. We

show that expectations about changes in future consumption significantly influence

current consumption, which suggests evidence of forward-looking household behavior.

Clearly, forward-looking behavior does not imply that households have perfect fore-

sight or are completely rational. Expectations about the future may be flawed and

agents may be bounded in taking into account information about the future. Rather

than rely on a perfect optimization process, it seems reasonable to assume that agents

use simple decision rules that include some expectations about the future.

Our findings suggest that households adjust today’s consumption in response to

changes in the future, such as the implementation of new energy and environmental

policies. This has potentially important impacts for policy analysis and evaluation.

For instance, if the policy maker announces the introduction of a future environmental

tax, households may modify their electricity consumption before the tax is introduced.

Note that policy evaluation methods such as difference-in-difference may underesti-

mate the full impact of a policy since the anticipation effect on electricity consumption

is generally neglected. The policy maker should then consider this effect when design-

ing and implementing energy policy measures. Even when the implementation period

of a policy is relatively long due to political and administrative constraints, the policy

may have immediate effects.

The remainder of the essay is organized as follows. Section 2 gives an overview of

the existing literature on residential electricity consumption. In section 3 we derive a

forward-looking model of residential electricity consumption. Section 4 presents the

empirical approach and describes the data, and section 5 discusses the econometric

estimation. The results are summarized and discussed in section 6, while section 7
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concludes the essay.

2 Residential electricity demand in the literature

Residential electricity demand has been studied extensively in the economic literature.

Since the early works of Houthakker (1951), Fisher and Kaysen (1962) and Mount

et al. (1973), the focus of most studies has been the relationship between price and

consumption, using rather similar sets of control variables (electricity prices, prices

of substitutes, income, weather and climate conditions). First empirical studies on

energy demand were based on aggregate data sets (state or city level), whereas studies

published in the eighties and afterwards made use of aggregate as well as disaggregate

data sets. In this review of the literature, we are mainly interested in studies based

on aggregate data sets.1

More recent studies largely vary in the estimated short- and long-run price elastic-

ities. These differences are likely due to different time periods, data sets (time series

vs. panel data) and econometric approaches. Okajima and Okajima (2013) and Espey

and Espey (2004) give an overview of estimated short- and long-run price and income

elasticities. Short- and long-run price elasticities of selected studies of residential elec-

tricity demand from different geographic regions are summarized in Table 1. Price

elasticities vary between -0.05 and -0.4 in the short-run, and between -0.19 and -1.89

in the long-run.

Regarding the econometric approach, most studies employ either static models

or dynamic partial adjustment models. Static residential electricity demand models

are usually estimated using ordinary least squares (OLS) and fixed effects (FE) or

random effects (RE) models. Eskeland and Mideksa (2009) estimate a static model

for residential electricity demand in 31 European countries. The main interest of

the authors lies on the impact of temperature changes on electricity consumption.

Also, Azevedo et al. (2011) estimate residential electricity demand using static models

applied to two panels: 1990-2003 for 15 EU countries, and 1990-2004 for US states.

The authors find short-run price elasticities of -0.2 for the EU-15, and -0.21 to -

0.25 for the US. More recently, Cebula (2012) estimates residential electricity demand

using US state-level data between 2002 and 2005. The emphasis of this study is

on the key influencing factors of residential electricity consumption and the impact

of state energy efficiency policies. Through a two-stage least squares approach, the

author estimates that residential electricity consumption decreases with the adoption
1A comprehensive survey of early studies on electricity demand with a focus on the residential

sector is provided by Taylor (1975) and Bohi and Zimmerman (1984).
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of energy efficiency programmes. Furthermore, electricity consumption decreases with

price, and increases with annual cooling degree days and per capita real disposable

income.

Dynamic partial adjustment models are generally more realistic than static mod-

els and allow for the calculation of short- and long-run prices and income elastic-

ities. Early studies by Houthakker et al. (1974) and Houthakker (1980) estimate

price elasticities at the national and regional level allowing for a partial adjustment

in consumption. More recently, Bernstein and Griffin (2006) and Paul et al. (2009)

employ dynamic models for energy demand, although they do not address the po-

tential dynamic panel bias that arises by including the lag of consumption. Both

studies estimate residential electricity demand in the US. The former study uses data

between 1977 and 2004, and finds short- and long-run price elasticities of -0.24 and

-0.32 respectively. The latter study covers the years 1990 to 2004, and estimates short-

and long-run price elasticities of -0.13 and -0.40 respectively. The authors claim that

attempts to instrument the lag of consumption using past prices and demand did not

succeed, and resulted in unstable estimates. Therefore, only least squares dummy

variable (LSDV) estimates are reported. Garcia-Cerrutti (2000) estimates residential

energy demand in California for the years 1983 to 1997 using dynamic random vari-

ables models. The author finds a price elasticity for electricity between -0.132 and

-0.172 in the short-run, and between -0.18 and -0.19 in the long-run.

Some recent studies account for dynamic panel bias and use more advanced dy-

namic panel data models (e.g., panel cointegration, autoregressive distributed-lag

(ARDL), generalized method of moments (GMM) estimators) or corrected FE models

(e.g., Kiviet (1995) estimator). Dergiades and Tsoulfidis (2008) investigate residen-

tial electricity demand in the US between 1965 and 2006 using the ARDL approach

to panel cointegration. They estimate a short-run price elasticity of -0.39, and a

long-run elasticity of -1.07. Bernstein and Madlener (2011) analyze residential elec-

tricity demand for 18 OECD countries over the time period 1981-2008 using panel

cointegration and Granger causality testing. They find a short-run price elasticity of

-0.1, and a long-run elasticity of -0.39. Lower values (-0.07 and -0.19) are obtained

by Blázquez et al. (2013), who apply a FE estimator and the Blundell-Bond system

GMM estimator to a Spanish panel. Alberini and Filippini (2011) estimate dynamic

models of residential electricity in the US and obtain slightly larger elasticities: be-

tween -0.08 and -0.15 for the short-run, and between -0.44 and -0.73 for the long-run.

The Kiviet corrected FE estimator and the system Blundell-Bond GMM estimator

are used to account for possible correlation between the lag of consumption and the
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error term. To tackle possible endogeneity of electricity price due to measurement

error, the authors also consider an instrumental variable approach.2 Finally, Kamer-

schen and Porter (2004) use both a partial adjustment approach and a simultaneous

equation approach. Simultaneous equation models provide negative price elasticities,

whereas partial adjustment models provide positive price elasticities in some cases.

The authors conclude that partial adjustment models are more appropriate in the case

of energy demand estimation.

To our knowledge, none of the studies in the above literature on residential elec-

tricity demand considers expectations about future prices or consumption. There are

some recent studies related to gasoline price and demand: Scott (2012, 2015) include

expectations about future gasoline prices do estimate gasoline demand. Anderson

et al. (2013) analyze expectations about future gasoline prices and find that con-

sumers typically have reasonable estimates about future gasoline prices by expecting

that prices do not change from year to year. Scott (2012) estimates rational habit

models for gasoline demand in the US and other countries including expectations

about gas prices. One recent study in the context of residential electricity demand,

Houde (2014), includes expectations about future prices in a model of residential elec-

tricity demand in order to assess the success of the Energy Star programme in the US.

The author assumes that consumers form time-unvarying expectations about electric-

ity prices using the current local average price. The model differs from our model

in that we include the lead of consumption suggested by the theoretical model used

in this paper. In our empirical analysis of residential electricity demand in the US,

we estimate rational habit models that include both past and lead consumption as

explanatory variables in accordance with the theoretical approach proposed by Becker

et al. (1994).

3 Theoretical model of residential electricity demand

In this section, we build on Becker et al. (1994) to develop a rational habit model

of residential electricity consumption that extends the dynamic partial adjustment

model. Households are assumed to maximize utility from energy services based on

electricity (e.g. lighting, hot water, cooling, and entertainment) and other consump-

tion goods. Energy services can be produced by combining two inputs: electricity and

electrical appliances.
2Another possibility to account for potential endogeneity of price is to employ simultaneous equa-

tion models. However, Baltagi et al. (2002) and Baltagi (2007) find that generalized least squares
(GLS), FE, and OLS estimation techniques outperform the simultaneous equation approach in most
cases.
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Household utility at time t is then given by:

Ut = u(St, ct), (1)

where St are energy services and ct represents all other consumption goods. Energy

services are generated by the following household production function:

St = s(et, At;xt, vt), (2)

where et is electricity, At is the capital stock of electrical appliances, xt is a vector

of other (environmental) variables affecting the production of energy services, such as

weather and energy substitutes, and vt is a random component that captures uncer-

tainty in the production of energy services.

Using Eqs. (1) and (2) we can write the lifetime utility function of the household

as:
∞∑
t=1

δt−1Ut =
∞∑
t=1

δt−1u(s(et, At;xt, vt), ct), (3)

where δ = (1 + r)−1 is the constant rate of time preference and r is the interest rate.

We hypothesize that the stock of electrical appliances can be adjusted over time

and depends on the stock of electrical appliances in the previous period as well as the

new investment in electrical appliances, It(et−1), which depends on past electricity

use. Therefore, the current stock of electrical appliances develops according to the

following relationship:

At = (1− ρ)At−1 + It(et−1), (4)

where ρ is the depreciation rate of the stock, i.e. the rate at which electrical appli-

ances lose their ability to provide satisfactory energy services in the absence of energy

investments. Because this stock adjustment condition relates the stock of appliances

to the consumption of electricity, we can see the stock of electrical appliances as a

stock of behavioural habit. Agents are habituated to a certain use of energy and

appliances, which generates a stock of behavioural habit to electricity consumption.

This preference can be interpreted as a status quo bias (Samuelson and Zeckhauser,

1988; Kahneman et al., 1991) that affects the depreciation rate in Eq. (4).

Using Eqs. (3) and (4) we can write the household lifetime utility maximization

problem. To simplify the analysis we assume that the stock of habit fully depreciates

after one period, i.e. ρ = 1, and It(et−1) = et−1 . Consequently, we get:

∞∑
t=1

δt−1u(s(et, et−1;xt, vt), ct) (5)

7



s.t. e0 = E0 and
∞∑
t=1

δt−1(ct + Ptet) =W 0, (6)

where E0 is the initial condition defining the level of electricity consumption in period

0, W 0 is the present value of wealth, and Pt is electricity price at period t.

The first-order conditions to solve the problem above imply that the marginal

utility of current electricity consumption plus the discounted marginal effect on the

next period’s utility of current consumption is equal to the marginal utility of wealth

multiplied by the current electricity price. Furthermore, the marginal utility of wealth

equals the marginal utility of the composite good in each period. Using a quadratic

utility function, the solution of the first-order conditions leads to the following first-

difference equation:

et = θet−1 + δθet+1 + θ1Pt + θ2xt + δθ3xt+1 + vt. (7)

In this equation current electricity consumption is a function of past and expected

future consumption, price, and all other variables, some of which are unobserved. The

coefficient θ depends on the parameters of the quadratic utility function.3 Expecta-

tions about environmental conditions, such weather or price of energy substitutes,

should be captured by the coefficient of xt+1. Note that our model does not assume

that households have perfect foresight. Since expectations may be flawed, agents could

be boundedly rational in their consumption decisions.

In the following empirical analysis we will investigate habits in residential elec-

tricity consumption using US state-level data. Therefore, household size in the above

equation (7) can actually be interpreted as state’s average household size.

4 Empirical model and data

To empirically investigate the dynamics of residential electricity consumption, we

modify the first-difference equation (7) to obtain:4

eit = β0 + β1eit−1 + β2eit+1 + β3Pit + β4PGit + β5Yit + β6HDDit +

+β7CDDit + β8HSit + β9liberal + β10TDt + vit, (8)

where eit is residential electricity consumption per capita in the ith state (i = 1, ..., 50)

at time t, eit−1 is the lag of electricity consumption per capita, eit+1 is the lead of
3For further details see Baltagi and Griffin (2001). A comprehensive discussion on the interpre-

tation and derivation of Eq. (7) can be found in Becker et al. (1994).
4See also Baltagi and Griffin (2002) for a similar approach, though applied to alcohol consumption.
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electricity consumption per capita5, Pit is the price of electricity, PGit is the price

of electricity substitutes (gas), Yit is income per capita, HDDit and CDDit denote,

respectively, heating degree days and cooling degree days, HSit is the housing stock,

and liberal is a dummy variable indicating if the state’s electricity market has been

liberalized or not. Finally, TDt are time-dummy variables. Note that Eq. (8) does not

include expectations about environmental conditions xt+1. In a preliminary analysis

we found that these covariates are collinear with the same covariates at time t and

with the lag and lead of consumption. Therefore, we decided to drop them from

Eq. (8) and not to use them as possible instruments. However, in our econometric

approach time-invariant xt+1 as well as other unobserved time-invariant variables

are captured by fixed-effects estimators (see section 5). The residual time-variant

unobserved heterogeneity is included in the disturbance term vit.

The coefficient β1 captures the impact of past consumption on current consump-

tion. Consequently, a positive and significant coefficient is consistent with the hy-

pothesis that electricity consumption is a habit. Moreover, the rational habit model

defined by Eq. (8) allows us to capture the behaviour of forward-looking agents.

How agents adjust their current consumption in response to expectations on fu-

ture consumption sheds light on rational behaviour. The coefficient β2 measures the

impact of future consumption on current consumption. A positive coefficient would

be consistent with the hypothesis of forward-looking behaviour and would support

rejecting the hypothesis of myopic behaviour, which is implicit in partial adjustment

models of electricity demand. From Eq. (8) we can also obtain the rate of time prefer-

ence (δ) as the ratio between the estimated coefficient of eit+1 (β2) and the estimated

coefficient of eit−1 (β1).

Short- and long-run price elasticities can be obtained from Eq. (8). We can expect

that electricity demand in the short run is less responsive to price changes than in the

long run, as the stock of electrical appliances or behavioural habits concerning electric-

ity consumption cannot be changed immediately. Some habits, such as switching off

the lights when leaving a room, can be changed quickly in response to rising electricity

prices. Other habits can be more persistent, for instance TV viewing time per day.

Moreover, the replacement of most electrical appliances for more efficient ones repre-

sents a considerable financial investment for the majority of households. Therefore, we

cannot expect immediate replacement in response to changing prices, and short-run

electricity consumption may depart from long-run optimal consumption. The demand
5Although the realized values of future electricity consumption is an approximation of households’

expectations, we believe that this proxy is an acceptable indicator, assuming that deviations from
the expected values are random.
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does not adjust immediately to the long-run equilibrium, but gradually converges to

the optimum level even when consumers are rational or boundedly rational and have

expectations about future electricity demand.

Static and myopic models of electricity consumption can be derived from our

rational habit model, shown in Eq. (8). In the first case, the lag and the lead variable

are omitted whereas in the second case only the lead variable is excluded. In the

static case, there is no delay in the adjustment process since there is no link between

consumption in different periods. Static models assume that there are no costs of

adjustment nor expectations that affect current decisions. The traditional dynamic

partial adjustment model is more realistic as it allows for the sluggish adjustment

process between optimal (long-run) consumption levels and short-run consumption.

This model can be obtained from Eq. (8) assuming that agents do not take information

about the future into account. Therefore, households appear to be myopic. Myopic

households maximize current period utility instead of the lifetime utility function

(3) under the assumption that current electricity consumption is affected by past

consumption as hypothesized by Eq. (4). Finally, our full empirical model may

disclose evidence of rational habits in residential electricity consumption if households

take into account expectations about the future when making current consumption

decisions.

An alternative to the lead consumption model (8) is to define a lead price model,

which assumes that future prices represent the relevant information for rational con-

sumers. This empirical approach builds on the theoretical model developed by Brown-

ing (1991), who defines a demand system for many goods starting from intertemporal

nonseparability in preferences. Inspired by this work, Scott (2012, 2015) estimates

lead-price rational habit models for gasoline demand based on a single equation and

using a log-log functional form. Since the theoretical framework fails to derive closed-

form analytical solutions, the author uses simulation to discuss the model implications.

Consequently, the parameters of the suggested empirical model cannot be interpreted

straightforwardly using the theoretical model. In the following empirical analysis we

will focus on lead consumption models, which derive directly from our theoretical

framework.6

6Results from the estimation of a lead price model are reported in the Appendix (Table 11) and
also shortly discussed in the Results section.
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4.1 Data

To test the hypothesis of rational behaviour in the consumption of residential elec-

tricity, we use a data set covering 51 US states (including the District of Columbia)

from 1995 to 2011. For the analysis, three states (Alaska, Hawaii, and Rhode Island)

are excluded because of incomplete observations. Descriptive statistics for electricity

consumption and prices, and other important covariates for the remaining 48 states

are presented in Table 2.

Data on residential electricity consumption (e), electricity price (P ) and gas price

(PG), as well as the state of electricity market liberalization are provided by the

US Energy Information Administration (EIA). The average electricity and gas prices

are obtained by dividing utilities revenues by sales in the residential sector (EIA

calculation). Information on income (Y ), number of inhabitants in the state (POP )

and the number of housing units necessary to calculate average household size (HS =

POP/housing units), are from the Bureau of Economic Analysis of the US Census

Bureau. Heating degree days (HDD) and cooling degree days (CDD) are obtained

from the National Climatic Data Center at the National Oceanic and Atmospheric

Administration (NOAA).7

The box-and-whiskers graph (Figure 1) shows the variation in residential electric-

ity consumption across states over time. Residential electricity consumption slighly

increases over time. We observe that the variation within states (between variation)

largely overcome the variation over time (within variation).8 The increasing trend in

residential electricity consumption is associated to a decrease in price in the first half

of the period. Conversely, during the second half of the period residential electricity

price increased.

As we will discuss in more detail later, instrumental variables for the lead and the

lag of consumption as well as for the prices are needed to estimate our model (8). For

a preliminary investigation of potential instruments, Table 3 shows cross-correlations

between residential electricity consumption (et), price of residential electricity and

gas (Pt and PGt), lead electricity price (Pt+1) and spatial lag of electricity price

(P−i,t), and price of gas and coal for the energy production sector (PGp
t and PCp

t ).
7Degree day is an index that reflects demand for energy to heat or cool houses. The index is

obtained from daily temperature observations at major weather stations in the US. Heating (cooling)
degree days are summations of negative (positive) differences between the mean daily temperature
and the 65◦F base during a year.

8In the box and whiskers plot the horizontal line inside the shaded box represents the mean
consumption of residential electricity across states in each year. The width of the shaded box includes
consumption in the second quartile, i.e. 50% of the states in a given year. Finally, the length of the
two whiskers illustrates the third quartile of observations, i.e. 75% of the states.
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Also, Figure 2 provides a graphical illustration of some price figures. The spatial

lag of electricity price is calculated as the average price of bordering states for each

state included in the data set. Some of these figures are clearly of interest as external

instruments for the lead of consumption and electricity prices in our lead consumption

models.

5 Econometric approach

For the estimation of the electricity demand equation (8), we have a balanced panel

data set for 48 US states observed over the period 1995 to 2011. Therefore, the data

set is characterized by a relatively long time dimension (T= 17) and a relatively small

number of units (N=48). In the choice of the estimator for the dynamic model we

should consider three potential econometric problems. First, due to the relatively low

number of explanatory variables, a possible unobserved heterogeneity bias could be

present. Second, in the consumer’s choice problem in section 3 the lifetime stream

of consumption is chosen simultaneously. Therefore, we have two choice variables as

explanatory variables, which implies that the lagged and lead electricity consumption

could be endogenous and create the so called “dynamic panel bias” (Nickell, 1981;

Roodman, 2009). This bias arises because the lagged and lead dependent variable

are positively correlated with the unobserved fixed effects. Since the individual fixed

effects are part of the error terms in all periods, et−1 and et+1 will be correlated

with the current error term. Third, as discussed in Alberini and Filippini (2011),

the electricity price variable could suffer from a measurement error problem. This

measurement error could be due to the fact that electricity price has been calculated

by the US Energy Information Administration by dividing the total revenue from sales

in the residential sector by total kWh sold to residential customers.

Generally, to account for unobserved time invariant heterogeneity bias using panel

data, we can specify models with either fixed effects (FE) or random effects (RE).

Further, to solve the endogeneity problem of some of the explanatory variables we can

use a two-stage least squares (2SLS) estimator or estimators based on a the general

method of moments (GMM).9 Arellano and Bond (1991), as well as Blundell and

Bond (1998), propose two different estimators based on GMM. For instance, Blundell

and Bond (1998) propose a system GMM estimator (GMM-BB), which uses lagged
9Auld and Grootendorst (2004) showed that 2SLS estimators for the rational habit model using

time series data may be biased when prices are endogenous and first and second lags of prices are used
as instruments for the lag and lead of the dependent variable. They showed that first-differencing
time series data decreases the bias. We are using FE in a panel data set which accounts for the time
invariant endogeneity. To address the remaining time varying endogeneity, we use a larger battery
of instruments including the spatial first and second lag and lead of the price.
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first differences as instruments for equations in level as well as the lag variable in

first-difference equations. However, as discussed by Baltagi et al. (2002), one possible

problem of these two GMM estimators is that their properties hold for N large and

small T, so the estimation results can be biased in panel data with a small number of

cross-sectional units, as in our case.10 Therefore, our preferred approach to estimate

the rational habits model is based on the fixed effects two-stage least squares estimator

(FE2SLS). For comparison purposes, we also report the results of the FE and the

GMM (in Appendix).11 Note that Baltagi and Griffin (2002) and Filippini and Masiero

(2011) have successfully applied the FE2SLS estimator in dynamic demand models

that include both lead and lagged values of consumption as explanatory variables. In

this approach, lagged and lead values of prices, income and other covariates are used

as instruments for past and future consumption. One of the advantage of the FE2SLS

estimator is that it can be also used with a relatively small N.

The battery of instruments used in our estimations is quite generous. The in-

struments used in the FE2SLS model are the one- and two-period lags and future

values of the spatial lag of electricity price, as well as the input prices of coal and

gas for the electricity sector at state level. To be a valid instrument, the variable

has to be correlated with the regressors and uncorrelated with the error term. We

are instrumenting three regressors: the lag of electricity consumption, the lead of

electricity consumption, and the price of electricity. The price of electricity is largely

determined by the generation costs of electricity. In the US, the main inputs for elec-

tricity generation are coal and natural gas. In 2014, coal and natural gas accounted

for 39% and 27% of total US electricity generation, respectively. The input prices for

coal and gas are the main determining factors for generation costs and are determined

on five regional coal and gas markets. The price differences across states should be

largely due to transport and transmission costs. Therefore, the gas and coal prices at

the state level should not be influenced by the level of residential electricity demand.

The other major generation source, nuclear energy, accounts for around 19% of total

electricity generation. However, production costs for nuclear electricity do not change

considerably over time and, therefore, are not suitable as instruments.

Furthermore, we take the first and the second lag and lead of the spatial lag

of electricity price as instruments. The spatial lag of electricity price represents an

obvious instrument since the average of prices generated in neighbouring states is
10For a general presentation and discussion of the estimators for dynamic panel models, see Baltagi

et al. (2002).
11In a preliminary analysis we also explored the possibility to use the corrected version of the fixed

effects estimator proposed by Kiviet (1995). However, this estimator is not suitable in the presence
of several endogenous variables.
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likely to be exogenous to electricity consumption within the state. The majority of US

states regulated electricity markets during our study period; seven states suspended

any deregulation activity (see Figure 3). For these states, prices are exogenous from

neighbouring prices and should not be affected by economic shocks in neighbouring

states. Only 15 states deregulated their electricity markets by 2010. Since some of

these states are bordering with one or more regulated states, the spatial lag of prices

is plausibly exogenous. There is a small group of deregulated states that border with

deregulated states. In theory, a demand shock in one of these states affects prices

in neighbouring states. However, the impact is probably negligible since electricity

prices largely reflect transmission and distribution costs (35%) which are not affected

by economic shocks. Therefore, to instrument both lag and lead of consumption, we

use the first lag and lead of the spatial lag of electricity price (direct effect) as well as

the second lag and lead of the spatial lag of electricity price (indirect effect through

past and future consumption). Finally, for our GMM estimation we use the lagged

values of electricity consumption and price and their first differences, the input prices

of coal and gas for the electricity sector, the spatial lag of electricity price and heating

degree days as well as their one- and two-period lags.

6 Estimation Results

We estimate three main models: a static model, a myopic model, and the preferred

lead consumption model. Results from the static and the myopic model are provided

to establish a ground for comparison with the lead consumption model. Results from

the static model are provided in Table 4. This model does not include lag or lead

of consumption but only variables from period t. The static model shows that the

price of electricity is negative and significant as expected. Results from the myopic

model are reported in Table 5. Here, we only include the lag of consumption but

not the lead, as the model is only backward-looking. We estimate the myopic model

using fixed effects, FE2SLS instrumenting for the lag of consumption (Model 2) and

instrumenting for both the lag of consumption and the current price (Model 3), and

GMM. Results from the myopic model show that the price of electricity is negative

and significant whereas the lag of consumption is positive and significant.

We estimate Eq. (8) using the fixed effects estimator, two FE2SLS specifications

and the system GMM estimator. As previously mentioned, GMM estimators may not

be suitable since we have a relatively small number of cross-sectional observations (N

small), which may lead to biased results. This potential bias arises because of pos-

sible serial correlation of the idiosyncratic error term in system GMM specifications.
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Therefore, due to the potential problems of the GMM estimator and although our

results are quite robust across different specifications, the FE2SLS estimator is our

preferred estimation method. To control for potential endogeneity of electricity price,

we also estimate the FE2SLS model by instrumenting the price as well as the lag and

lead of consumption. The estimation results of the full dynamic models of residential

electricity demand are summarized in Table 6.12 For comparison purposes, we also

provide the results of the GMM in the Appendix (Tables 5 and 10).

The estimated coefficients of the lag and lead of consumption have the expected

positive sign and are highly significant in all estimation approaches. The values of the

coefficients are fairly robust across all estimation methods, and vary between 0.409

and 0.472 for the lag and between 0.306 and 0.346 for the lead. When comparing these

results with the ones from the myopic model, we can see that the lag of consumption in

the myopic model is considerably larger (0.575 to 0.689) than in the lead consumption

model. In the lead consumption model, the impact of the lag is smaller as part of it

is captured by the lead.

The results of the lead consumption model indicate that households are taking

into account both past consumption and expectations about future consumption in

their current consumption decisions. This suggests that households are not myopic

and seems to disagree with the specification of the traditional dynamic partial ad-

justment model. Although current electricity consumption is partially driven by past

consumption, there is evidence that expectations about future consumption play a

role in household‘s consumption decision.

The coefficient of electricity price is negative and significant in all estimations.

Income has a positive effect on current electricity consumption. The coefficient of the

price of gas exhibits a negative sign in the FE and the FE2SLS estimations, although it

is never significant. This might indicate that gas is not a good substitute for electricity.

The main energy service produced with gas or electricity - room heating - is a long-

run decision and, therefore, may not be affected by variations in current prices. The

coefficients of heating and cooling degree days are highly significant and have a positive

effect in all the estimations. This indicates that the use of electricity increases if there

is more need to heat or cool the house. The coefficient of the electricity market

liberalization dummy variable is positive and significant in the myopic model but not

significant in the lead consumption model. Finally, the coefficient of the size of the

household is negative and significant.

To test the validity of the FE2SLS estimation, we report several test statistics.
12First-stage regressions are also provided in the Appendix (see Tables 8 and 9).
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The underidentification test shows that the model is identified (we reject the null

hypothesis of underidentification with a p-value of 0.0000). To exclude the possibility

of weak identification, we report the Kleibergen-Papp rK Wald F statistic for weak

identification, and the 5% critical value. We furthermore provide the Hansen J statistic

as overidentification test for the instruments used. A rejection of the null hypothesis

of joint validity would cast doubt on the validity of the instruments. The Hansen J

statistic is consistent in the presence of heteroskedasticity. For both FE2SLS models

we cannot reject the null hypothesis of joint validity with a p-value above 0.1. Clearly,

there is still between 11% and 13% chance that we see similar results if the instruments

are all exogenous or if they are all similarly endogenous.

From Eq. (8) we can obtain short- and long-run price elasticities (εt and ε∞)

of electricity demand. These are evaluated at the means of the data (e and P ) and

can be calculated using the formulas derived by Becker et al. (1994). The effect on

current consumption of a permanent reduction in electricity price, i.e. the short-run

elasticity, is given by εt = (det/dPt)(P/e) with det/dPt = 2β3/[1−2β2+(1−4β1β2)
0.5].

The long-run effect of a permanent reduction in electricity price on consumption is

measured by ε∞ = (de∞/dP )(P/e) with de∞/dP = β3/(1 − β1 − β2). Similarly, we

can calculate short- and long-run income elasticities using the above formulas and

substituting β3 for β5 and P/e for Y/e. When consumers are not forward-looking, as

in the traditional partial adjustment model, we can use these formulas assuming that

β2 is zero.

Table 7 reports the short- and long-run price elasticities calculated for all the

estimation strategies including a 95% confidence interval13. Price elasticities for the

myopic model range between 0.086 and 0.112 in the short run and between 0.226

and 0.298 in the long run. Short-run price elasticities in rational habit models range

from 0.118 to 0.179, whereas long-run price elasticities range from 0.214 to 0.306.

The calculated elasticities are fairly robust across all models and are in line with

elasticities found in the literature. Overall, we can argue that residential electricity

demand is relatively inelastic in the short-run. This is probably due to the cost of

adjusting immediately the stock of electrical appliances in response to a change in

the price or to behavioural habits in the use of electricity. Conversely, residential

electricity demand is more elastic to price changes in the long run. Agents have more

opportunities to adapt their behavioural habits and replace their electrical equipment.

Comparing the myopic with the lead consumption model, suggests that there is

no substantial difference in elasticities between the two models. This is apparently
13The confidence interval has been obtained using the Delta method in STATA.
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surprising since the coefficients, specifically of the lag of consumption, differ between

the two models. A possible reason is that we are using aggregated data. A more

disaggregated, household-level dataset with higher variation in the variables may lead

to different results. Note, however, that from an energy policy perspective the lack

of significant differences in the estimated price elasticities does not undermine the

relevant implications of our results. Indeed, the evidence of forward-looking behaviour

may have policy implications. For instance, the time span between a policy approval

and its implementation may take several years. This could influence the beliefs on

the effectiveness of the policy measure in the near future. However, the fact that

households react to the announcement before the policy is implemented may reduce

this delay.

As a robustness check, we also estimate a lead price model, i.e. a model where we

include the price in t + 1 to approximate expectations about future prices. We find

that the coefficient of the lead of price is negative and significant, which is in line with

the results from the lead consumption models (a negative impact of the lead of price

equals a positive impact of the lead of consumption). Results are reported in Table

11 in the appendix.

7 Conclusions

The understanding of factors affecting residential electricity demand is of relevance to

design effective energy saving policies. So far, residential electricity demand has been

investigated by means of dynamic partial adjustment models. These models reflect

difficulties to adjust electricity consumption over time, which may be due to bounded

rationality, status quo bias or technical constraint. Our empirical analysis suggests

that the traditional dynamic partial adjustment model might not be sufficient to ex-

plain households’ behaviour in energy consumption. The myopic model assumes that

agents do not take into account expectations about future consumption or prices when

making current consumption decisions. Our empirical analysis suggests that agents

need time to adjust their consumption level in response to a shock and are forward-

looking when choosing electricity services to maximize intertemporal utility. However,

forward-looking behavior does not assume perfect foresight. Households’ response to

information about the future may be slow, biased or bounded because of mistakes

in the optimization problem or the use of simple decisions rules (see Gigerenzer and

Selten (2002) for a detailed classification of bounded rational behaviors).

Our analysis suggests that households adjust their consumption levels today in

reaction to expected policy changes in the future. This has implications for pol-
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icy implementation and evaluation. If the policy maker announces the introduction

of a future policy, households may react to the announcement before the policy is

implemented, i.e. households already modify today’s electricity consumption. Conse-

quently, the policy design and the timing of a policy implementation should consider

this anticipation effect. For instance, the policy may have immediate effects even

when the implementation period is relatively long due to political and administrative

constraints. Furthermore, from a research point of view, empirical methods such as

difference-in-difference to evaluate the effect of energy policies, tend to neglect the

anticipation effect and, therefore, underestimate their effects. In fact, the impact of a

policy is generally evaluated starting at the time of policy implementation, and not at

the time of its announcement. For instance, the introduction of a CO2 tax will have

a decreasing effect on energy consumption in the future but the tax already deploys

part of this effect at the time of the announcement. Even though the overall effects

of the tax on energy consumption do not differ significantly between the myopic and

the rational habit model, the timing of these effects may differ, which could influence

the policy adoption decision.

Finally, some energy policies may not affect households’ behaviour through the

electricity price but rather directly through future consumption. For instance, the pol-

icy maker could announce the introduction of smart metering devices or benchmarking

programs where household’s energy consumption is measured against neighbours’ en-

ergy consumption. The announcement of such measures could make households more

aware of their levels of energy consumption and induce them to adjust their consump-

tion behaviour immediately.
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Tables and Figures

Table 1: Short- and long-run price elasticies of residential electricity demand from
panel data models.

Study Time period Country Price elasticities
Short-run Long-run

Fisher and Kaysen (1962) 1937-1938 US -0.16 to -0.24
Houthakker and Taylor (1970) 1946-1957 US -0.13 -1.89
Mount et al. (1973) 1960-1071 US -0.14 -1.20
Maddala et al. (1997) 1970-1990 US -0.16 to -0.21 -0.24 to -1.03
Garcia-Cerrutti (2000) 1983-1997 California -0.13 to -0.17 -0.18 to -0.19
Bernstein and Griffin (2006) 1977-2004 US -0.24 -0.32
Narayan et al. (2007) 1978-2003 G7 -0.11 -1.45 to -1.56
Dergiades and Tsoulfidis (2008) 1956-2006 US -0.39 -1.07
Paul et al. (2009) 1990-2004 US -0.13 -0.40
Eskeland and Mideksa (2010) 1994-2005 Europe -0.2
Nakajima and Hamori (2010) 1975-2005 US -0.14 to -0.33
Azevedo et al. (2011) 1990-2004 US -0.21 to -0.25

1990-2003 EU-15 -0.20 to -0.21
Bernstein and Madlener (2011) 1981-2008 OECD -0.05 to -0.06 -0.39
Alberini and Filippini (2011) 1995-2007 US -0.08 to -0.15 -0.44 to -0.73
Blázquez et al. (2013) 2000-2008 Spain -0.07 -0.19
Okajima and Okajima (2013) 1990-2007 Japan -0.4 -0.49

Table 2: Summary statistics of main variables for the whole panel (1995-2011).

Label Variable description Mean Std. Dev. Min. Max.
e Electricity consumption per capita (in kWh) 4612.931 1229.059 2147.104 7425.204
P Electicity price (per kWh) 0.049 0.013 0.03 0.095
PG Gas price (per thousand BTU) 0.005 0.001 0.003 0.01
Y Income per capita (in US $) 15227.339 2641.341 10239.206 29294.364
HDD Heating degree days 5137.783 2012.525 555 10745
CDD Cooling degree days 1142.414 803.909 128 3870
HS Household size (POP/housing units) 2.323 0.167 1.836 2.994
POP Population/1000 5976.993 6407.277 485.16 37683.934

Table 3: Cross-correlation between price and consumption and between different price
figures.

Variables et Pt Pt+1 PGt P−it PGp
t PCp

t

et 1.000
Pt -0.635 1.000
Pt+1 -0.619 0.981 1.000
PGt 0.156 0.302 0.350 1.000
P−it -0.514 0.716 0.695 0.005 1.000
PGp

t 0.153 -0.042 0.038 0.569 -0.304 1.000
PCp

t 0.001 0.517 0.533 0.493 0.240 0.084 1.000
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Table 4: Static model of residential electricity demand

(1)
FE

Pt -18508.5∗∗∗

(-5.36)
PGt 16500.0

(0.46)
Yt 0.0605∗

(2.38)
HSt -1246.7∗

(-2.49)
HDDt 0.159∗∗∗

(5.62)
CDDt 0.628∗∗∗

(13.64)
Liberal 147.7∗∗

(2.72)
Constant 5986.4∗∗∗

(4.93)
N 814
R2 0.801
Y earFE YES
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 5: Myopic (partial adjustment) models of residential electricity demand.

FE FE2SLS
Instrumented variables: et−1 et−1, Pt

Model: (1) (2) (3)
et−1 0.575∗∗∗ 0.689∗∗∗ 0.617∗∗∗

(13.91) (6.08) (6.73)
Pt -10470.1∗∗∗ -8688.8∗∗∗ -8093.8∗

(-5.69) (-5.03) (-2.56)
PGt -11169.3 -12272.2 -11933.6

(-0.76) (-1.16) (-1.11)
Yt 0.0376∗∗ 0.0455∗∗∗ 0.0494∗∗∗

(2.92) (4.52) (4.82)
HSt -565.3∗∗ -604.7∗∗∗ -665.1∗∗∗

(-2.84) (-3.46) (-3.95)
HDDt 0.188∗∗∗ 0.189∗∗∗ 0.193∗∗∗

(9.29) (10.69) (10.36)
CDDt 0.706∗∗∗ 0.720∗∗∗ 0.714∗∗∗

(15.35) (18.73) (18.73)
Liberal 69.86∗ 38.94 46.41∗

(2.58) (1.75) (2.14)
Constant 1422.8∗∗

(3.34)
N 766 752 752
R2 0.898 0.896 0.899
Y earFE YES YES YES
Underidentification testa 19.252 27.264

[0.0007] [0.0000]
Weak identification testb 7.661 10.903
5% critical valuec 6.46 5.44
Hansen J statisticd 3.456 0.516

[0.1776] [0.4727]
Notes: The instruments used in the FE2SLS regressions are PGp

t

(PCp
t in Model 2), its one-period lag, and the spatial lag of electric-

ity price lagged one period. First-stage regressions on the excluded
instruments yield significant F-tests.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; t statistics in round brackets
p-values in square brackets;
a Kleibergen-Papp rK LM statistic;
b Kleibergen-Papp rk Wald F statistic;
c Stock-Yogo weak ID test critical value (10% maximum LIML size);
d Overidentification test of all instruments.
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Table 6: Lead consumption model of residential electricity demand.

FE FE2SLS
Instrumented variables: et−1, et+1 et−1, et+1, Pt

Model: (1) (2) (3)
et−1 0.472∗∗∗ 0.419∗∗∗ 0.409∗∗∗

(14.31) (4.85) (4.52)
et+1 0.302∗∗∗ 0.346∗∗ 0.327∗∗

(10.37) (2.90) (2.83)
Pt -5906.0∗∗∗ -4708.7∗ -7568.8∗

(-3.87) (-2.37) (-2.42)
PGt -10884.7 664.6 2995.1

(-1.07) (0.06) (0.27)
Yt 0.0144 0.0224 0.0251∗

(1.90) (1.72) (2.00)
HSt -252.8 -363.7∗ -390.2∗

(-1.71) (-2.01) (-2.18)
HDDt 0.181∗∗∗ 0.192∗∗∗ 0.186∗∗∗

(9.74) (10.30) (9.45)
CDDt 0.725∗∗∗ 0.662∗∗∗ 0.655∗∗∗

(14.08) (17.20) (17.16)
Liberal 34.31 33.21 38.42

(1.80) (1.63) (1.91)
Constant 107.5

(0.29)
N 719 611 611
R2 0.918 0.913 0.912
Y earFE YES YES YES
Underidentification testa 34.929 40.348

[0.0000] [0.0000]
Weak identification testb 6.201 6.096
5% critical valuec 4.06 NA
Hansen J statisticd 6.723 7.429

[0.1513] [0.1149]

Notes: The instruments used in the FE2SLS regression in Model (2)
are the one and two-period lags and leads of the spatial lag of electricity
price (P−i,t−1, P−i,t−2, P−i,t+1, P−i,t+2) and current input prices of
coal and gas for the power generation sector (PCp

t , PGp
t ). In Model

(3) we also use the lagged input price of gas for the power generation
sector (PGp

t−1). First stage regressions yield significant F-test.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; t statistics in round brackets;
p-values in square brackets;
a Kleibergen-Papp rK LM statistic;
b Kleibergen-Papp rk Wald F statistic;
c Stock-Yogo weak ID test critical value (10% maximum LIML size);
d Overidentification test of all instruments.
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Table 7: Short- and long-run price elasticities

Myopic model Lead consumption model

Short run
Elasticity Std. err. 95% CI Elasticity Std. err. 95% CI

FE (1) -.1118 .0196 -.1503 -.0733 -.1389 .0355 -.2084 -.0694
IV (2) -.0928 .0184 -.1289 -.0567 -.1180 .0277 -.1722 -.0637

IV price (3) -.0864 .0337 -.1526 -.0203 -.1794 .0722 -.3210 -.0379

Long run

Elasticity Std. err. 95% CI Elasticity Std. err. 95% CI

FE (1) -.2629 .0492 -.3593 -.1664 -.2795 .0771 -.4306 -.1285
IV (2) -.2982 .0705 -.4364 -.1600 -.2143 .0534 -.3190 -.1096

IV price (3) -.2256 .0860 -.3941 -.0571 -.3058 .1362 -.5728 -.0388

Figure 1: Variation in residential electricity consumption per capita across states and
over time.
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Figure 2: Lead and spatial-lag prices for residential electricity over time, and price of
gas and coal for the production sector over time.

Figure 3: State of electricity market deregulation in the US in 2010 (Source: EIA,
2010)

Not deregulated

Deregulated

Suspended
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Appendix

Table 8: First stage regression results of FE2SLS lead consumption model (2).

et−1 et+1

PCP
t 139.8∗ 293.5∗∗∗

(2.33) (4.30)

PGP
t 45.85∗∗ 20.62

(3.12) (1.51)

P−i,t−1 -14210.6∗∗ 5850.3
(-2.62) (1.06)

P−i,t+1 7947.4 -19339.7∗∗∗
(1.59) (-3.96)

P−i,t−2 -9206.0 -7039.1
(-1.68) (-1.35)

P−i,t+1 1300.9 9066.6∗
(0.30) (2.22)

PGt 25422.7 -20254.9
(1.48) (-1.12)

Pt -12690.3∗∗∗ -19120.5∗∗∗
(-7.20) (-11.01)

Yt 0.0324∗ 0.0815∗∗∗
(2.15) (4.84)

HSt -892.7∗ -954.8∗∗
(-2.44) (-2.85)

HDDt -0.00599 -0.0634∗
(-0.18) (-2.13)

CDDt -0.266∗∗∗ -0.226∗∗∗
(-4.62) (-4.17)

Liberal 141.0∗∗∗ 160.0∗∗∗
(4.02) (4.91)

N 611 611
Year FE YES YES
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; t statistics in round brackets.
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Table 9: First stage regression results of FE2SLS lead consumption model (3).

et−1 et−1 Pt

PCP
t 48.18 157.5∗ 0.00607∗∗∗

(0.81) (2.24) (3.51)

PGP
t 35.68∗ 6.886 -0.0000950

(2.25) (0.41) (-0.32)

PGP
t−1 24.97 33.78∗ 0.000201

(1.76) (2.28) (0.78)

P−i,t−1 -19987.5∗∗∗ -2780.2 0.414∗
(-4.08) (-0.47) (1.99)

P−i,t+1 5781.0 -22661.9∗∗∗ 0.203
(1.11) (-4.11) (1.11)

P−i,t−2 -8733.5 -6366.5 -0.0150
(-1.70) (-1.17) (-0.08)

P−i,t+2 32.22 7229.1 0.0582
(0.01) (1.50) (0.27)

PGt 22003.0 -25459.4 0.299
(1.26) (-1.36) (0.77)

Yt 0.0338∗ 0.0829∗∗∗ 0.000000262
(2.01) (4.23) (0.71)

HSt -860.4∗ -897.5∗ -0.00742
(-2.20) (-2.41) (-0.98)

HDDt 0.00592 -0.0456 -0.000000856
(0.17) (-1.37) (-1.02)

CDDt -0.260∗∗∗ -0.218∗∗∗ 6.88e-08
(-4.23) (-3.46) (0.04)

Liberal 132.6∗∗∗ 147.0∗∗∗ 0.000835
(3.36) (3.86) (0.70)

N 611 611 611
Year FE YES YES YES
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; t statistics in round brackets.
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Table 10: Lead consumption model: GMM results.

GMM
et−1 0.429∗∗∗

(8.69)
et+1 0.236∗∗∗

(3.37)
Pt -20102.9∗∗∗

(-3.36)
PGt 96458.4∗∗

(2.80)
Yt -0.0340

(-1.46)
HSt -310.6

(-0.73)
HDDt 0.0143

(0.38)
CDDt 0.237∗∗

(3.14)
Liberal 30.52

(0.47)
Constant 3185.8

(1.95)
N 719
Arellano-Bond test AR(2) 2.62
p-value [0.01]
Hansen test of overid. restrictions 35.45
p-value [0.128]
Notes: The instruments used in the GMM regression are all lagged lev-
els of electricity consumption and price, PGt, Yt, HSt, HDDt, CDDt,
Liberal, and their first differences.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; t statistics in round brackets.
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Table 11: Lead price model.

FE

et−1 0.639∗∗∗

(12.38)
Pt -6255.0∗

(-2.30)
Pt+1 -4203.5∗

(-2.48)
PGt -16902.5

(-1.08)
Yt 0.0298∗∗

(2.71)
HSt -393.9

(-1.99)
HDDt 0.172∗∗∗

(8.42)
CDDt 0.746∗∗∗

(13.85)
Liberal 55.68∗

(2.28)
Constant 1135.2∗

(2.54)
N 719
R2 0.902
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; t statistics
in round brackets.

32


