
An infrastructure for creating graphical indicators of the
learner profile by mashing up different sources

Luca Mazzola
USI - Università della Svizzera italiana

ITC - Inst. for Communication Technologies
Via Buffi 13, CH 6900 Lugano, Switzerland

luca.mazzola@usi.ch

Riccardo Mazza
USI - Università della Svizzera italiana

ITC - Inst. for Communication Technologies
Via Buffi 13, CH 6900 Lugano, Switzerland

riccardo.mazza@usi.ch

ABSTRACT
The procedures to collect information about users are well
known in computer science till long time. They range from
getting explicit information from users, required in order to
enable some functionalities, to the gathering of user behav-
iors, collected as log files generated by software applications.
In the field of Technology Enhanced Learning the creation
of a user profile is necessary in order to fulfill some didacti-
cal tasks, such as measuring the degree of participation to
a course, or the performance on quizzes and assignments.
The task of collecting students’ data is normally performed
by Learning Management Systems, which also provide with
a way to explore this data. Our approach extends the infor-
mation that models user profiles in Learning Management
Systems with data coming from other online resources, such
as social network websites. In this paper, we describe our
idea of opening the learners’ profile, eventually for integrat-
ing it with external on-line resources. The ultimate goal of
our work is to create graphical indicators for the profile of
the learners that take into account internal and external user
data, in order to have a more complete and comprehensive
view of user behaviors in Learning Management Systems.

Categories and Subject Descriptors
H.5.m [INFORMATION INTERFACES AND PRE-
SENTATION]: Miscellaneous—Graphical user interfaces

General Terms
Algorithms, Design, Experimentation, Human Factors

Keywords
Open Learner Models, MashUp, Life Long Learning

1. INTRODUCTION
The procedures to collect information about users and

their interaction with the software are well known in com-
puter science till long time [1]. They were originally designed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AVI - Advanced Visual Interfaces International ’10 Rome, IT
Copyright 2010 ACM 978-1-4503-0076-6 ...$10.00.

to support developers in discovering bugs or analyzing user
interactions with the system, in order to improve the quality
of the produced software. They range from getting explicit
information from users, required in order to enable some
functionality, to the gathering of user behaviors, collected
as log files generated by software applications. This ap-
proach has recently become less spread with the diffusion
of the personal computer, due to the difficulties of collect-
ing user data from the personal user. Nowadays, with the
wide spread of broadband, always on, Internet connections,
collecting user data is again considered as an interesting pro-
cess. So, almost all Web servers implement functionalities
to collect user’s navigation footprint [2]. This is particularly
important in relation to the fact that nowadays most Learn-
ing Management Systems are web-based [3]. In the domain
of Technology Enhanced Learning, tracking user behaviors
in form of log data from Web applications, assumes a very
important role to support both learner and teachers, work-
ing as data source for monitoring tools [4].

Figure 1: The suggested architecture. The three
main logical blocks are visible.

A monitoring tool is a component in charge of providing
relevant information for the current activity: an example is
the set of led lamps on a computer case, in charge of giving
an indication of the state of hardware components to the
user (such as the usage of hard-disk, the network activity,
the power state, and so on). Logs are normally used to
create an internal profile (also called model) for the user,
through a process of aggregation of specific events which
allows to recognize a complex human activity or task. These
models are normally stored internally without the possibility
for the user to scrutinize his personal profile. The literature

reports that opening profiles to user inspection (with the
so called “Open Learner Model” approach [5]) could help in
explaining personal states to the learners. Also other critical
aspects could be supported by opening the personal profile,
like helping in identifying problems or lacks of precision in
the profile itself.

2. THE GVIS INFRASTRUCTURE
Providing a way to open the profile to user inspection is

important in the domain of Life Long Learning: the presen-
tation of personal information as indicator of the learning
process is widely accepted as one of the key points to im-
prove participation and increase the satisfaction of partic-
ipants [6]. Although many Learning Management Systems
already provide the possibility to explore user tracking data,
in some cases the visual presentation of information is not
well suited to the human perceptive system. In other cases,
the presentation of data is limited to a subset of it or is
predefined by developers and fixed [7]. We want to provide
an easy way to create an effective graphical presentation of
arbitrary fragments of data. We propose a three-tier archi-
tecture composed by a data extractor, a data aggregator,
and a visualization layer (see Fig. 1). All the levels rely on
an XML configuration file that the administrator can modify
or expand in order to create graphical indicators - in form
of widgets - of one or more interesting characteristics of the
user profile. Our infrastructure is able to potentially con-
nect to any data source, regardless the different connection
types (databases, Web services, connection bus, ...). This
is simply achieved by writing a small piece of adapter code,
in order to make the protocol and data format compatible
with our internal structures. In the following subsections
a description of every module shown in Fig. 1 is presented,
both in term of functionalities provided and in term of XML
configurations. The small pieces presented and explained in
the next sections are used to create the widgets shown in
Fig. 3 and Fig. 4.

2.1 The Extractor
The extractor represents the lowest level of our application

and is in charge of retrieving data from the sources. This
piece of software takes care of making a syntactical and se-
mantic translation of data received from a particular source
to the internal format. Both the pull and the push approach
can be implemented to retrieve and collect data. To achieve
this objective it relies on a small amount of code that de-
scribes the data structure used by a particular source. The
following excerpt of a configuration file is useful to explain
some peculiarities of the module:

[1]<source name="MoodleEvaluationGlobal">

[1.1] <accessinfo>

[1.1.1] <accesstype>DB</accesstype>

[1.1.2] <accesspoint>**IP**</accesspoint>

[1.1.3] <accessmode>mysql</accessmode>

[1.1.4] <accesssource>**DB_name**</accesssource>

[1.1.5] <username>**UserID**</username>

[1.1.6] <password>**PWD**</password>

[1.1.7] <lifetime>30</lifetime>

</accessinfo>

[1.2] <query>

[1.2.1] <sql>

select GI.userid AS name, GG.finalgrade AS value

Figure 2: The output of GVIS module inserted into
a Moodle course.

FROM mdl_grade_items AS GI JOIN mdl_grade_grades AS GG

ON GI.id=GG.itemid WHERE ... AND GI.courseid=?

ORDER BY finalgrade DESC

</sql>

[1.2.2] <parameters>

[1.2.2.1] <param>course.id</param>

</parameters>

[1.2.3] <resulttype>listofrecords</resulttype>

</query>

...

</source>

[2]<source name="MoodleEvaluationSingle">

[2.1] <accessinfo>

...

[2.1.7] <lifetime>0</lifetime>

</accessinfo>

[2.2] <query>

[2.2.1] <sql>

...

</sql>

[2.2.2] <parameters>

[2.2.2.1] <param>course.id</param>

[2.2.2.2] <param>user.id</param>

</parameters>

[2.2.3] <resulttype>numeric</resulttype>

</query>

...

</source>

In section [1.1] all the parameters for the connection with
the data source are included, in [1.1.1] the type of adapter
class is declared, together with [1.1.3], that refines the previ-
ous indication. Section [1.1.7] defines the buffer lifetime for
the extracted information: in the specific case the value of 30
means that the system will bufferize and reuse the data for
all the following requests that will occurr within a timeframe
of 30 secs. This could be useful for data sources having a
slow response time. If this functionality is not needed, a 0
value could be used like in fragment [2.1.7]. In the second
half of the source configuration a specific query is inserted
(like in [1.2.1]), with one or more parameters (see [1.2.2.1]
and [2.2.2.1], [2.2.2.2]). At the end there is a declaration of
the expected output type, whose range could be one of the
following: numeric [2.2.3], record , list or listofrecords
[1.2.3].

2.1.1 The Adapter
As already stated, the Extractor is able to connect to dif-

ferent data sources. This approach allows our solution to be

seamlessly extended with different and heterogeneous data
providers. When a new data provider is added to the in-
frastructure, a new mapping for the provider also has to
be provided. This could be done either of writing a new
adapter class or reusing an existing one. Right now, we have
implemented specific classes for MySQL (called DB, due to
the fact that it could accept almost every source conform-
ing to SQL protocol), a specific WebService interface and a
SPARQL endpoint interface.

2.2 The Aggregator
The aggregator is in charge of filtering raw data collected

by the extractor and to apply some operations to aggre-
gate data. This aggregation is based on the model that the
teacher or instructional designer will provide; it represents
the useful information for learner and is strictly related to
the pedagogical approach provided in the learning experi-
ence. This profile externalization - achieved through infor-
mation representation - could play an inportant role in sup-
porting the learning process. With such an architecture we
expect to offer a customized tool adaptable to the specific
didactic design model. The use of models (based on XML
syntax with an associated NameSpace) provides a formal
way for designing the expected behavior of the aggregator
module.

2.2.1 Didactic models
Didactic models are defined by means of configuration files

that describe how source data is aggregated in order to build
up meaningful and useful indicators. Here we show some
XML fragments of this configuration that primarily describe
which data is expected as an input (like [3.1.1] and [3.1.2]
or [4.1.1]) and which type of information will be produced
as an output (as in [3.3] or in [4.2]). The transformation
process from input to output is also described in the form of
a pipeline of operations: the output of a step could be used
as input on a following one, like for the average operation
in [3.2.2.1], whose parameter compute is set to true (see
[3.2.2.2.1]). Operations (like in [3.2.1.1] and [3.2.2.1]) are
provided by internal classes that could be extended, when
required. The class name - like ExtractCol or average in the
example - defines the operation performed and implements
an abstract model, that defines the properties and methos
expected.

[3]<source name="getMooEvalAvg">

[3.1] <extraction>

[3.1.1] <toextract>MEvalGlobal</toextract>

[3.1.2] <toextract fix="true">1</toextract>

</extraction>

[3.2] <computation>

[3.2.1] <tocompute>

[3.2.1.1] <operation>ExtractCol</operation>

[3.2.1.2] <parameters>

[3.2.1.2.1] <param>0</param>

[3.2.1.2.2] <param>1</param>

</parameters>

[3.2.1.3] <resulttype>list</resulttype>

</tocompute>

[3.2.2] <tocompute>

[3.2.2.1] <operation>average</operation>

[3.2.2.2] <parameters>

[3.2.2.2.1] <param computed="true">0</param>

</parameters>

[3.2.2.3] <resulttype>numeric</resulttype>

</tocompute>

</computation>

[3.3] <resulttype>numeric</resulttype>

</source>

[4]<source name="getMooEvalSingle">

[4.1] <extraction>

[4.1.1] <toextract>MooEvalSingle</toextract>

[4.2] </extraction>

<resulttype>numeric</resulttype>

</source>

2.3 The Visualization module
The Visualization module is the part that produces the

actual visualization. It is divided in two components: the
initial container, called dashboard, and the actual contents,
represented by some graphical widgets that map informa-
tion into the final indicator graphical form. The configura-
tion of the dashboard can be personalized based on some
parameters set at a system level, like in the following XML
fragment, that defines the type ([5.1]) and the data sources
([5.1.1.1] and [5.2.1.1]) to be used by the actual widget:

[5]<widget name="Note">

...

[5.1] <chart type="hbar">

[5.1.1] <chartsource>

[5.1.1.1] <data>getMooEvalSingle</data>

...

</chartsource>

[5.2.1] <chartsource>

[2.2.1.1] <data>getMooEvalAvg</data>

...

</chartsource>

</chart>

</widget>

The generated widget is in the form of a horizontal bar-
chart ([5.1]) and exposes two pieces of information: the eval-
uation for the student ([5.1.1.1]) compared with the class
average ([5.2.1.1]).

2.3.1 The Dashboard and the Widget generator
The dashboard is instantiated once for every client, when

the service is started. It provides two kinds of functionali-
ties: it is a container for all the widgets and it collects all
the user interactions and feedbacks, such as data filtering
or widget visibility change. As a background, it provides a
common place for different widgets, each of which special-
ized in representing a specific aspect: in this way, it acts
as a control panel of the learner situation. The interaction
functionality is important because this is the only level at
which the final user (learner) can express preferences or par-
tially change the behavior of the whole system. The widgets
are dynamically created on the top of the dashboard: every
widget, based on a graphical template that defines its main
aspects, represents an encoding of a single indicator for one
or more characteristics of the learner profile. The widget is
the final output of the application.

3. A FIRST APPLICATION
A first application was developed in the course “Educa-

tional Communication and eLearning” held by prof. Can-

Figure 3: The GVIS module for teacher. Here a
temporal classification of the posts with the relative
evaluation is presented.

toni at Politecnico di Milano in Italy (see Fig.2). The GVIS
application has been integrated with the Learning Manage-
ment System Moodle. In this case, we have not mixed to-
gether different data sources, but our visualization infras-
tructure helped to mix together different data, and graph-
ically represent contextual information about the course and
the learners. Fig. 3 shows a mix of accesses to course/resources
done by students and forum posts, that are the activities
considered important by the Instructional designer who de-
veloped the online part of the course. The interesting part
resides in the graphical comparisons between the learner’s
specific information and the average value achieved by the
class, that can work as a contextual reference for the progress
of the user. This specific widget is in charge of representing
the number of logins and the contributes posted in a forum.
Some functionalities for the teacher have been implemented
in order to support the tutoring, as in Fig. 3, a collage of
two of the widget we provide.

Specifically, in the pie chart, group of posts posted during
the same temporal interval, based on different deadlines, is
depicted using different colors. In the bar chart, the relations
between the evaluation and the identified classes (indicated
by means of the same color) are presented.

3.1 The "grade" widget
In the online course there are different activities that have

be performed by the learners during specific temporal in-
tervals and these have to be graded by tutor during the
semester. For this reason we developed a specific widget for
presenting the individual state, as the average grade reached
by a student till now. This information, specific for every
learner, is compared with the overall average grade of the
class. This is particularly important because the student
can check his average grade at any time, not only at the end
of the course. This can be considered as an awareness tool
[8]. In Fig. 4 two screenshots for different learners in dis-
tinct classes are presented, in which they can realize if they
are aligned with their colleagues.

4. CONCLUSIONS
Our tool allows to aggregate information coming from

different sources and to create graphical representations of
these data in order to support their interpretation by means
of the visual human system. In the context of Life Long
Learning the presentation of this contextual information to
the learners and to the teacher or tutors becomes important
in order to support better awareness of the learning situation

Figure 4: The graph of grades for two different stu-
dents, from two distinct classes.

and to promote participation. The encoding and graphical
presentation [9] [10] of this information is also relevant to
make them useful for the learning process.

4.1 Acknowledgments
We want to thanks prof. Lorenzo Cantoni for letting us

use the course example and the student Luca Marchesi for
having provided us with so valuable ideas and for the help
in implementing the infrastructure. A big thanks to our col-
league Davide Eynard for all the suggestions and feedbacks.
First author thanks people involved in RedInk PhD School.

5. REFERENCES
[1] Jeff, T., 2005. Software quality engineering: testing,

quality assurance, and quantifiable Improvements.
John Wiley

[2] Hoppe, U., Ogata, H., and Soller, A., 2007. The Role
of Technology in Cscl: Studies in Technology
Enhanced Collaborative Learning. Springer

[3] Mazza, R., Botturi, L., Tardini, S., 2006. FOSLET
2006. Proceeding of Workshop on Free and Open
Source Learning Environments and Tool. Como, Italy

[4] Mazzola, L., Mazza, R., 2009. Supporting learners in
Adaptive Learning Environments through the
enhancement of the Student Model. In Proceeding of
Human Computer Interaction International 2009. San
Diego, CA

[5] Bull, S. ,Kay, J., 2007. Student Models that Invite the
Learner In: The SMILI:() Open Learner Modelling
Framework. Int. J. Artif. Intell. Ed. 17, 2. pp. 89-120

[6] Shneiderman, B., Plaisant, C., 2004.Designing the
User Interface: Strategies for Effective Human
Computer Interaction. 4th ed. Addison Wesley

[7] Dimitrova, V., 2003. STyLE-OLM: Interactive Open
Learner Modelling. Int. J. Artif. Intell. Ed. 13, 1

[8] Romero, M., Tricot, A., and Mariné, C., 2009. Effects
of a context awareness tool on students’ cognition of
their team-mates learning time in a distance learning
project activity. Proceedings of the 9th international
conference on CSCL - Volume 1 - Rhodes, Greece

[9] Shahrour, G., Bull, S., 2008. Does ’Notice’ Prompt
Noticing? Raising Awareness in Language Learning
with an Open Learner Model. AH2008 - Springer.

[10] Spence, R., 2007. Information Visualization: design for
interaction, 2nd ed. Pearson Education/Prentice Hall.

