
Università
della
Svizzera
italiana

USI Technical Report Series in Informatics

Decision Procedures for Flat Array Properties
Francesco Alberti1, Silvio Ghilardi2, Natasha Sharygina1

1 Faculty of Informatics, University of Lugano, Switzerland
2 Università degli Studi, Milan, Italy

Abstract

We present new decidability results for quantified fragments of theories of arrays. Our
decision procedures are fully declarative, parametric in the theories of indexes and el-
ements and orthogonal with respect to known results. We also discuss applications to
the analysis of programs handling arrays.

Report Info
Published
October 2013

Revised
January 2014

Number
USI-INF-TR-2013-04

Institution
Faculty of Informatics
University of Lugano
Lugano, Switzerland

Online Access
www.inf.usi.ch/techreports

1 Introduction

Decision procedures constitute, nowadays, one of the fundamental components of tools and algorithms de-
veloped for the formal analysis of systems. Results about the decidability of fragments of (first-order) theories
representing the semantics of real system operations deeply influenced, in the last decade, many research
areas, from verification to synthesis. In particular, the demand for procedures dealing with quantified frag-
ments of such theories fast increased. Quantified formulas arise from several static analysis and verification
tasks, like modeling properties of the heap, asserting frame axioms, checking user-defined assertions in the
code and reasoning about parameterized systems.

In this paper we are interested in studying the decidability of quantified fragments of theories of arrays.
Quantification is required over the indexes of the arrays in order to express significant properties like “the ar-
ray has been initialized to 0” or “there exist two different positions of the array containing an element c ”, for
example. From a logical point of view, array variables are interpreted as functions. However, adding free func-
tion symbols to a theory T (with the goal of modeling array variables) may yield to undecidable extensions
of widely used theories like Presburger arithmetic [16]. It is, therefore, mandatory to identify fragments of
the quantified theory of arrays which are on one side still decidable and on the other side sufficiently expres-
sive. In this paper, we show that by combining restrictions on quantifier prefixes with ‘flatness’ limitations on
dereferencing (only positions named by variables are allowed in dereferencing), one can restore decidabil-
ity. We call the fragments so obtained Flat Array Properties; such fragments are orthogonal to the fragments
already proven decidable in the literature [7, 14, 15] (we shall defer the technical comparison with these con-
tributions to Section 5). Here we explain the modularity character of our results and their applications to
concrete decision problems for array programs annotated with assertions or postconditions.

We examine Flat Array Properties in two different settings. In one case, we consider Flat Array Properties
over the theory of arrays generated by adding free function symbols to a given theory T modeling both in-

1

http://www.inf.usi.ch/techreports/

dexes and elements of the arrays. In the other one, we take into account Flat Array Properties over a theory
of arrays built by connecting two theories TI and TE describing the structure of indexes and elements. Our
decidability results are fully declarative and parametric in the theories T, TI , TE . For both settings, we provide
sufficient conditions on T and TI , TE for achieving the decidability of Flat Array Properties. Such hypotheses
are widely met by theories of interest in practice, like Presburger arithmetic. We also provide suitable decision
procedures for Flat Array Properties of both settings. Such procedures reduce the decidability of Flat Array
Properties to the decidability of T -formulæ in one case and TI - and TE -formulæ in the other case.

We further show, as an application of our decidability results, that the safety of an interesting class of
programs handling arrays or strings of unknown length is decidable. We call this class of programs simple0

A -
programs: this class covers non-recursive programs implementing for instance searching, copying, compar-
ing, initializing, replacing and testing functions. The method we use for showing these safety results is similar
to a classical method adopted in the model-checking literature for programs manipulating integer variables
(see for instance [6, 8, 11]): we first assume flatness conditions on the control flow graph of the program and
then we assume that transitions labeling cycles are “acceleratable”. However, since we are dealing with array
manipulating programs, acceleration requires specific results that we borrow from [2]. The key point is that
the shape of most accelerated transitions from [2]matches the definition of our Flat Array Properties (in fact,
Flat Array Properties were designed precisely in order to encompass such accelerated transitions for arrays).

From the practical point of view, we tested the effectiveness of state of the art SMT-solvers in checking the
satisfiability of some Flat Array Properties arising from the verification of simple0

A -programs. Results show
that such tools fail or timeout on some Flat Array Properties. The implementation of our decision procedures,
once instantiated with the theories of interests for practical applications, will likely lead, therefore, to further
improvements in the areas of practical solutions for the rigorous analysis of software and hardware systems.

Plan of the paper The paper starts by recalling in Section 2 required background notions. Section 3 is
dedicated to the definition of Flat Array Properties. Section 3.1 introduces a decision procedure for Flat Array
Properties in the case of a mono-sorted theory ARR1(T) generated by adding free function symbols to a theory
T . Section 3.2 discusses a decision procedure for Flat Array Properties in the case of the multi-sorted array
theory ARR2(TI , TE) built over two theories TI and TE for the indexes and elements (we supply also full lower
and upper complexity bounds for the case in which TI and TE are both Presburger arithmetic). In Section 4 we
recall and adapt required notions from [2], define the class of flat0-programs and establish the requirements
for achieving the decidability of reachability analysis on some flat0-programs. Such requirements are instan-
tiated in Section 4.1 in the case of simple0

A -programs, array programs with flat control-flow graph admitting
definable accelerations for every loop. In Section 4.2 we position the fragment of Flat Array Properties with
respect to the actual practical capabilities of state-of-the-art SMT-solvers. Section 5 compares our results
with the state of the art, in particular with the approaches of [7, 14].

2 Background

We use lower-case latin letters x , i , c , d , e , . . . for variables; for tuples of variables we use bold face letters like
x, i, c, d, e The n-th component of a tuple c is indicated with cn and | − | may indicate tuples length (so
that we have c= c1, . . . , c |c|). Occasionally, we may use free variables and free constants interchangeably. For
terms, we use letters t , u , . . . , with the same conventions as above; t, u are used for tuples of terms (however,
tuples of variables are assumed to be distinct, whereas the same is not assumed for tuples of terms - this
is useful for substitutions notation, see below). When we use u = v, we assume that two tuples have equal
length, say n (i.e. n := |u|= |v|) and that u= v abbreviates the formula

∧n
i=1 u i = vi .

With E (x)we denote that the syntactic expression (term, formula, tuple of terms or of formulæ) E contains
at most the free variables taken from the tuple x. We use lower-case Greek letters φ,ϕ,ψ, . . . for quantifier-
free formulæ and α,β , . . . for arbitrary formulæ. The notation φ(t) identifies a quantifier-free formula φ
obtained fromφ(x) by substituting the tuple of variables x with the tuple of terms t.

A prenex formula is a formula of the form Q1x1 . . .Qn xnϕ(x1, . . . ,xn), where Qi ∈ {∃,∀} and x1, . . . ,xn are
pairwise different variables. Q1x1 · · ·Qn xn is the prefix of the formula. Let R be a regular expression over the
alphabet {∃,∀}. The R-class of formulæ comprises all and only those prenex formulæ whose prefix generates
a string Q1 · · ·Qn matched by R .

According to the SMT-LIB standard [21], a theory T is a pair (Σ,C), where Σ is a signature and C is a
class of Σ-structures; the structures in C are called the models of T . Given a Σ-structure M , we denote
by SM , f M , PM , . . . the interpretation in M of the sort S, the function symbol f , the predicate symbol P ,

2

etc. A Σ-formula α is T -satisfiable if there exists a Σ-structure M in C such that α is true in M under a
suitable assignment to the free variables of α (in symbols, M |= α); it is T -valid (in symbols, T |= α) if its
negation is T -unsatisfiable. Two formulæ α1 and α2 are T -equivalent if α1 ↔ α2 is T -valid; α1 T -entails
α2 (in symbols, α1 |=T α2) iff α1 → α2 is T -valid. The satisfiability modulo the theory T (SM T (T)) problem
amounts to establishing the T -satisfiability of quantifier-free Σ-formulæ. All theories T we consider in this
paper have decidable SM T (T)-problem (we recall that this property is preserved when adding free function
symbols, see [12, 25]).

A theory T = (Σ,C) admits quantifier elimination iff for any arbitrary Σ-formula α(x) it is always possi-
ble to compute a quantifier-free formula ϕ(x) such that T |= ∀x.(α(x)↔ ϕ(x)). Thus, in view of the above
assumption on decidability of SM T (T)-problem, a theory having quantifier elimination is decidable (i.e. T -
satisfiability of every formula is decidable). Our favorite example of a theory with quantifier elimination is
Presburger Arithmetic, hereafter denoted with P; this is the theory in the signature {0, 1,+,−,=,<} augmented
with infinitely many unary predicates Dk (for each integer k greater than 1). Semantically, the intended
class of models for P contains just the structure whose support is the set of the natural numbers, where
{0, 1,+,−,=,<} have the natural interpretation and Dk is interpreted as the sets of natural numbers divisible
by k (these extra predicates are needed to get quantifier elimination [20]).

3 Monic-flat array property fragments

Although P represents the fragment of arithmetic mostly used in formal approaches for the static analysis
of systems, we underline that there are many other fragments that have quantifier elimination and can be
quite useful; these fragments can be both weaker (like Integer Difference Logic [19]) and stronger (like the
exponentiation extension of Semënov theorem [23]) than P. Thus, the modular approach proposed in this
Section to model arrays is not motivated just by generalization purposes, but can have practical impact.

There exist two ways of introducing arrays in a declarative setting, the mono-sorted and the multi-sorted
ways. The former is more expressive because (roughly speaking) it allows to consider indexes also as ele-
ments1, but might be computationally more difficult to handle. We discuss decidability results for both cases,
starting from the mono-sorted case.

3.1 The mono-sorted case

Let T = (Σ,C) be a theory; the theory ARR1(T) of arrays over T is obtained from T by adding to it infinitely
many (fresh) free unary function symbols. This means that the signature of ARR1(T) is obtained from Σ by
adding to it unary function symbols (we use the letters a , a 1, a 2, . . . for them) and that a structure M is a
model of ARR1(T) iff (once the interpretations of the extra function symbols are disregarded) it is a structure
belonging to the original classC .

For array theories it is useful to introduce the following notation. We use a for a tuple a = a 1, . . . , a |a|
of distinct ‘array constants’ (i.e. free function symbols); if t = t1, . . . , t |t| is a tuple of terms, the notation a(t)
represents the tuple (of length |a| · |t|) of terms a 1(t1), . . . , a 1(t |t|), . . . , a |a|(t1), . . . , a |a|(t |t|).

ARR1(T)may be highly undecidable, even when T itself is decidable (see [16]), thus it is mandatory to limit
the shape of the formulæ we want to try to decide. A prenex formula or a term in the signature of ARR1(T) are
said to be flat iff for every term of the kind a (t) occurring in them (here a is any array constant), the sub-term
t is always a variable. Notice that every formula is logically equivalent to a flat one; however the flattening
transformations are based on rewriting as

φ(a (t), ...) ∃x (x = t ∧φ(a (x), ...) or φ(a (t), ...) ∀x (x = t →φ(a (x), ...)

and consequently they may alter the quantifiers prefix of a formula. Thus it must be kept in mind (when
understanding the results below), that flattening transformation cannot be operated on any occurrence of a
term without exiting from the class that is claimed to be decidable. When we indicate a flat quantifier-free
formula with the notation ψ(x, a(x)), we mean that such a formula is obtained from a Σ-formula of the kind
ψ(x, z) (i.e. from a quantifier-free Σ-formula where at most the free variables x, z can occur) by replacing z by
a(x).

Theorem 3.1. If the T -satisfiability of ∃∗∀∃∗ sentences is decidable, then the ARR1(T)-satisfiability of ∃∗∀-flat
sentences is decidable.

1This is useful in the analysis of programs, when pointers to the memory (modeled as an array) are stored into array variables.

3

Proof. We present an algorithm, SATMONO, for deciding the satisfiability of the ∃∗∀-flat fragment of ARR1(T)
(we let T be (Σ,C)). Subsequently, we show that SATMONO is sound and complete. From the complexity
viewpoint, notice that SATMONO produces a quadratic instance of a ∃∗∀∃∗-satisfiability problem.

3.1.1 The decision procedure SATMONO.

STEP I. Let
F := ∃c∀i .ψ(i , a(i), c, a(c))

be a ∃∗∀-flat ARR1(T)-sentence, whereψ is a quantifier-free Σ-formula. Suppose that s is the length of
a and t is the length of c (that is, a= a 1, . . . , a s and c= c1, . . . , c t). Let e= 〈e l ,m 〉 (1≤ l ≤ s , 1≤m ≤ t) be
a tuple of length s · t of fresh variables and consider the ARR1(T)-formula:

F1 := ∃c∃e∀i .ψ(i , a(i), c, e)∧
∧

1≤l≤t

∧

1≤m≤s

a m (c l) = e l ,m

STEP II. From F1 build the formula

F2 := ∃c∃e∀i .



ψ(i , a(i), c, e)∧
∧

1≤l≤t

(i = c l →
∧

1≤m≤s

a m (i) = e l ,m)





STEP III. Let d be a fresh tuple of variables of length s ; check the T -satisfiability of

F3 := ∃c∃e∀i ∃d.



ψ(i , d, c, e)∧
∧

1≤l≤t

(i = c l →
∧

1≤m≤s

d m = e l ,m)





3.1.2 Correctness and completeness of SATMONO.

SATMONO transforms an ARR1(T)-formula F into an equisatisfiable T -formula F3 belonging to the ∃∗∀∃∗ frag-
ment. More precisely, it holds that F, F1 and F2 are equivalent formulæ, because

∧

1≤l≤t

∀i .(i = c l →
∧

1≤m≤s

a m (i) = e l ,m) ≡
∧

1≤l≤t

∧

1≤m≤s

a m (c l) = e l ,m

From F2 to F3 and back, satisfiability is preserved because F2 is the Skolemization of F3, where the existentially
quantified variables d= d 1, . . . , d s are substituted with the free unary function symbols a= a 1, . . . a s . a

Since Presburger Arithmetic is decidable (via quantifier elimination), we get in particular that

Corollary 3.1. The ARR1(P)-satisfiability of ∃∗∀-flat sentences is decidable.

As another example matching the hypothesis of Theorem 3.1 (i.e. as an example of a T such that T -
satisfiability of ∃∗∀∃∗-sentences is decidable) consider pure first order logic with equality in a signature with
predicate symbols of any arity but with only unary function symbols [5].

3.2 The multi-sorted case

We are now considering a theory of arrays parametric in the theories specifying constraints over indexes and
elements of the arrays. Formally, we need two ingredient theories, TI = (ΣI ,CI) and TE = (ΣE ,CE). We can
freely assume thatΣI andΣE are disjoint (otherwise we can rename some symbols); for simplicity, we let both
signatures be mono-sorted (but extending our results to many-sorted TE is quite straightforward): let us call
INDEX the unique sort of TI and ELEM the unique sort of TE .

The theory ARR2(TI , TE) of arrays over TI and TE is obtained from the union of ΣI ∪ ΣE by adding to it
infinitely many (fresh) free unary function symbols (these new function symbols will have domain sort INDEX
and codomain sort ELEM). The models of ARR2(TI , TE) are the structures whose reducts to the symbols of sorts
INDEX and ELEM are models of TI and TE , respectively.

Consider now an atomic formula P(t1, . . . , tn) in the language of ARR2(TI , TE) (in the typical situation, P
is the equality predicate). Since the predicate symbols of ARR2(TI , TE) are from ΣI ∪ΣE and ΣI ∩ΣE = ;, P
belongs either to ΣI or to ΣE ; in the latter case, all terms t i have sort ELEM and in the former case all terms t i

4

are ΣI -terms. We say that P(t1, . . . , tn) is an INDEX-atom in the former case and that it is an ELEM-atom in the
latter case.

When dealing with ARR2(TI , TE), we shall limit ourselves to quantified variables of sort INDEX: this limi-
tation is justified by the benchmarks arising in applications (see Section 4).2 A sentence in the language of
ARR2(TI , TE) is said to be monic iff it is in prenex form and every INDEX atom occurring in it contains at most
one variable falling within the scope of a universal quantifier.

Example 3.1. Consider the following sentences:

(I) ∀i . a (i) = i ; (I I) ∀i 1∀i 2. (i 1 ≤ i 2→ a (i 1)≤ a (i 2));

(I I I) ∃i 1∃i 2. (i 1 ≤ i 2 ∧a (i 1) 6≤ a (i 2)); (I V) ∀i 1∀i 2. a (i 1) = a (i 2);

(V) ∀i . (D2(i)→ a (i) = 0); (V I) ∃i ∀j . (a 1(j)< a 2(3i)).

The flat formula (I) is not well-typed, hence it is not allowed in ARR2(P,P); however, it is allowed in ARR1(P). Formula (II)
expresses the fact that the array a is sorted: it is flat but not monic (because of the atom i 1 ≤ i 2). On the contrary, its
negation (III) is flat and monic (because i 1, i 2 are now existentially quantified). Formula (IV) expresses that the array a
is constant; it is flat and monic (notice that the universally quantified variables i 1, i 2 both occur in a (i 1) = a (i 2) but the
latter is an ELEM atom). Formula (V) expresses that a is initialized so to have all even positions equal to 0: it is monic and
flat. Formula (VI) is monic but not flat because of the term a 2(3i) occurring in it; however, in 3i no universally quantified
variable occurs, so it is possible to produce by flattening the following sentence

∃i ∃i ′∀j (i ′ = 3i ∧a 1(j)< a 2(i ′))

which is logically equivalent to (VI), it is flat and still lies in the ∃∗∀-class. Finally, as a more complicated example, notice
that the following sentence

∃k ∀i . (D2(k)∧a (k) = ‘\0‘∧ (D2(i)∧ i < k → a (i) = ‘b‘)∧ (¬D2(i)∧ i < k → a (i) = ‘c‘))

is monic and flat: it says that a represents a string of the kind (bc)∗.

Theorem 3.2. If TI -satisfiability of ∃∗∀-sentences is decidable, then ARR2(TI , TE)-satisfiability of ∃∗∀∗-monic-
flat sentences is decidable.

Proof. As we did for SATMONO, we give a decision procedure, SATMULTI, for the ∃∗∀∗-monic-flat fragment
of ARR2(TI , TE); for space reasons, we give here just some informal justifications, the reader is referred to
Appendix A for proofs. First (STEP I), the procedure guesses the sets (called ‘types’) of relevant INDEX atoms
satisfied in a model to be built. Subsequently (STEP II) it introduces a representative variable for each type
together with the constraint that guessed types are exhaustive. Finally (STEP III, IV and V) the procedure
applies combination techniques for purification. a

3.2.1 The decision procedure SATMULTI.

The algorithm is non-deterministic: the input formula is satisfiable iff we can guess suitable data T ,B so
that the formulæ FI , FE below are satisfiable.

STEP I. Let F be a ∃∗∀∗-monic-flat formula; let it be

F := ∃c∀i.ψ(i, a(i), c, a(c)),

(where as usual ψ is a TI ∪ TE -quantifier-free formula). Suppose a = a 1, . . . , a s , i = i 1, . . . , i n and c =
c1, . . . , c t . Consider the set (notice that all atoms in K are ΣI -atoms and have just one free variable
because F is monic)

K = {A(x , c) | A(i k , c) is an INDEX atom of F }1≤k≤n ∪{x = c l }1≤l≤t

Let us call type a set of literals M such that: (i) each literal of M is an atom in K or its negation; (ii) for
all A(x , c)∈ K , either A(x , c)∈M or ¬A(x , c)∈M . Guess a set T = {M 1, . . . , Mq } of types.

2Topmost existentially quantified variables of sort ELEM can be modeled by enriching TE with free constants.

5

STEP II. Let b=b1, . . . ,bq be a tuple of new variables of sort INDEX and let

F1 := ∃b∃c



























∀x .







q
∨

j=1

∧

L∈M j

L(x , c)






∧

q
∧

j=1

∧

L∈M j

L(b j , c) ∧

∧

σ:i→b

ψ(iσ, a(iσ), c, a(c))



























where iσ is the tuple of termsσ(i 1), . . . ,σ(i n).

STEP III. Let e= 〈e l ,m 〉 (1≤ l ≤ s , 1≤m ≤ t +q) be a tuple of length s · (t +q) of free constants of sort ELEM.
Consider the formula

F2 := ∃b∃c



































∀x .







q
∨

j=1

∧

L∈M j

L(x , c)






∧

q
∧

j=1

∧

L∈M j

L(b j , c) ∧

ψ̄(b, c, e) ∧
∧

d m ,d n∈b∗c

s
∧

l=1

(d m = d n → e l ,m = e l ,n)



































where b ∗ c := d 1, . . . , d q+t is the concatenation of the tuples b and c and ψ̄(b, c, e) is obtained from

∧

σ:i→b

ψ(iσ, a(iσ), c, a(c))

by substituting each term in the tuple a(b)∗a(c)with the constant occupying the corresponding position
in the tuple e.

STEP IV. LetB a full Boolean satisfying assignment for the atoms of the formula

F3 := ψ̄(b, c, e) ∧
∧

d m ,d n∈b∗c

s
∧

l=1

(d m = d n → e l ,m = e l ,n)

and let ψ̄I (b, c),ψ̄E (e) be the (conjunction of the) sets of literals of sort INDEX and ELEM, respectively,
induced byB .

STEP V. Check the TI -satisfiability of

FI := ∃b∃c.






∀x .







q
∨

j=1

∧

L∈M j

L(x , c)






∧

q
∧

j=1

∧

L∈M j

L(b j , c)∧ ψ̄I (b, c)







and the TE -satisfiability of
FE := ψ̄E (e)

Notice that FI is an ∃∗∀-sentence; FE is ground and the TE -satisfiability of FE (considering the e as variables
instead of as free constants) is decidable because we assumed that all the theories we consider (hence our TE

too) have quantifier-free fragments decidable for satisfiability.
Theorem 3.2 applies to ARR2(P,P) because P admits quantifier elimination. For this theory, we can deter-

mine complexity upper and lower bounds:

Theorem 3.3. ARR2(P,P)-satisfiability of ∃∗∀∗-monic-flat sentences is NEXPTIME-complete.

Proof. We use exponentially bounded domino systems for reduction [5, 18], see Appendix A for details. a

6

procedure initEven (a [N] , v) :

l 1 for (i = 0; i <N ; i = i +2) a [i] = v ;

l 2 for (i = 0; i <N ; i = i +2) assert(a [i] = v);

(a)

linit

l1

l2

l3 lerror

τ1

τ2

τ3

τ4

τ5 τE

(b)

Figure 1: The initEven procedure (a) and its control-flow graph (b).

4 A decidability result for the reachability analysis of flat array programs

Based on the decidability results described in the previous section, we can now achieve important decid-
ability results in the context of reachability analysis for programs handling arrays of unbounded length. As a
reference theory, we shall use ARR1(P+) or ARR2(P+,P+), where P+ is P enriched with free constant symbols
and with definable predicate and function symbols. We do not enter into more details concerning what a
definable symbol is (see, e.g., [24]), we just underline that definable symbols are nothing but useful macros
that can be used to formalize case-defined functions and SMT-LIB commands like if-then-else. The addition
of definable symbols does not compromise quantifier elimination, hence decidability of P+. Below, we let T
be ARR1(P+) or ARR2(P+,P+).

Henceforth v will denote, in the following, the variables of the programs we will analyze. Formally, v= a, c
where, according to our conventions, a is a tuple of array variables (modeled as free unary function symbols
of T in our framework) and c a tuple of scalar variables; the latter can be modeled as variables in the logical
sense - in ARR2(P+,P+)we can model them either as variables of sort INDEX or as free constants of sort ELEM.

A state-formula is a formula α(v) of T representing a (possibly infinite) set of configurations of the pro-
gram under analysis. A transition formula is a formula of T of the kind τ(v, v′) where v′ is obtained from
copying the variables in v and adding a prime to each of them. For the purpose of this work, programs will be
represented by their control-flow automaton.

Definition 4.1 (Programs). Given a set of variables v, a program is a triple P = (L,Λ, E), where (i) L =
{l 1, . . . , l n } is a set of program locations among which we distinguish an initial location l init and an error lo-
cation lerror; (ii) Λ is a finite set of transition formulæ {τ1(v, v′), . . . ,τr (v, v′)} and (iii) E ⊆ L ×Λ× L is a set of
actions.

We indicate by s r c ,L , t r g the three projection functions on E ; that is, for e = (l i ,τj , l k) ∈ E , we have
s r c (e) = l i (this is called the ‘source’ location of e),L (e) = τj (this is called the ‘label’ of e) and t r g (e) = l k

(this is called the ‘target’ location of e).

Example 4.1. Consider the procedure initEven in Figure 1. For this procedure, a = a , c = i , v . N is a constant of the
background theory. Λ is the set of formulæ (we omit identical updates):

τ1 := i ′ = 0

τ2 := i <N ∧a ′ =λj .if (j = i) then v else a (j)∧ i ′ = i +2

τ3 := i ≥N ∧ i ′ = 0

τ4 := i <N ∧a (i) = v ∧ i ′ = i +2

τ5 := i ≥N

τE := i <N ∧a (i) 6= v

The procedure initEven can be formalized as the control-flow graph depicted in Figure 1(b), where L = {l init, l 1, l 2, l 3, lerror}.

Definition 4.2 (Program paths). A program path (in short, path) of P = (L,Λ, E) is a sequence ρ ∈ E n , i.e.,
ρ = e1, e2, . . . , en , such that for every e i , e i+1, t r g (e i) = s r c (e i+1). We denote with |ρ| the length of the path.

An error path is a path ρ with s r c (e1) = l init and t r g (e |ρ|) = lerror. A path ρ is a feasible path if
∧|ρ|

j=1L (e j)(j) is

T -satisfiable, whereL (e j)(j) represents τi j (v(j−1), v(j)), withL (e j) =τi j .

The (unbounded) reachability problem for a programP is to detect ifP admits a feasible error path. Prov-
ing the safety ofP , therefore, means solving the reachability problem forP . This problem, given well known

7

limiting results, is not decidable for an arbitrary programP . The consequence is that, in general, reachabil-
ity analysis is sound, but not complete, and its incompleteness manifests itself in (possible) divergence of the
verification algorithm (see, e.g., [1]).

To gain decidability, we must first impose restrictions on the shape of the transition formulæ, for instance
we can constrain the analysis to formulæ falling within decidable classes like those we analyzed in the previ-
ous section. This is not sufficient however, due to the presence of loops in the control flow. Hence we assume
flatness conditions on such control flow and “accelerability” of the transitions labeling self-loops. This is
similar to what is done in [6, 8, 11] for integer variable programs, but since we handle array variables we need
specific restrictions for acceleration. Our result for the decidability of the safety of annotated array programs
builds upon the results presented in Section 3 and the acceleration procedure presented in [2].

We first give the definition of flat0-program, i.e., programs with only self-loops for which each location
belongs to at most one loop. Subsequently we will identify sufficient conditions for achieving the full decid-
ability of the reachability problem for flat0-programs.

Definition 4.3 (flat0-program). A program P is a flat0-program if for every path ρ = e1, . . . , en of P it holds
that for every j < k (j , k ∈{1, . . . , n}), if s r c (e j) = t r g (ek) then e j = e j+1 = · · ·= ek .

We now turn our attention to transition formulæ. Acceleration is a well-known formalism in the area of
model-checking. It has been integrated in several frameworks and constitutes a fundamental technology for
the scalability and efficiency of modern model checkers (e.g., [4]). Given a loop, represented as a transition
relation τ, the accelerated transition τ+ allows to compute in one shot the precise set of states reachable
after n unwindings of that loop, for any n . This prevents divergence of the reachability analysis along τ,
caused by its unwinding. What prevents the applicability of acceleration in the domain we are targeting is
that accelerations are not always definable. By definition, the acceleration of a transition τ(v, v′) is the union
of the n-th compositions of τwith itself, i.e. it is τ+ :=

∨

n>0τ
n , where

τ1(v, v′) :=τ(v, v′), τn+1(v, v′) := ∃v′′.(τ(v, v′′)∧τn (v′′, v′)) .

τ+ can be practically exploited only if there exists a formulaϕ(v, v′) equivalent, modulo the considered back-
ground theory, to

∨

n>0τ
n . Based on this observation on definability of accelerations, we are now ready to

state a general result about the decidability of the reachability problem for programs with arrays. The theo-
rem we give is, as we did for results in Section 3, modular and general. We will show an instance of this result
in the following section. Notationally, let us extend the projection function L by denoting L +(e) :=L (e)+
if s r c (e) = t r g (e) and L +(e) := L (e) otherwise, where L (e)+ denotes the acceleration of the transition
labeling the edge e .

Theorem 4.1. LetF be a class of formulæ decidable for T -satisfiability. The unbounded reachability problem
for a flat0-programP is decidable if (i)F is closed under conjunctions and (ii) for each e ∈ E one can compute
α(v, v′)∈F such that T |=L +(e)↔α(v, v′),

Proof. Let ρ = e1, . . . , en be an error path of P ; when testing its feasibility, according to Definition 4.3, we
can limit ourselves to the case in which e1, . . . , en are all distinct, provided we replace the labelsL (ek)(k) with
L +(ek)(k) in the formula

∧n
j=1L (e j)(j) from Definition 4.2.3 Thus P is unsafe iff, for some path e1, . . . , en

whose edges are all distinct, the formula

L +(e1)(1) ∧ · · · ∧L +(en)(n) (1)

is T -satisfiable. Since the involved paths are finitely many and T -satisfiability of formulæ like (1) is decid-
able, the safety ofP can be decided. a

4.1 A class of array programs with decidable reachability problem

We now produce a class of programs with arrays – we call it simple0
A -programs– for which requirements of

Theorem 4.1 are met. The class of simple0
A -programs contains non recursive programs implementing search-

ing, copying, comparing, initializing, replacing and testing procedures. As an example, the initEven program
reported in Figure 1 is a simple0

A -program. Formally, a simple0
A -program P = (L,Λ, E) is a flat0-program

3Notice that by these replacements we can represent in one shot infinitely many paths, namely those executing self-loops any given
number of times.

8

such that (i) every τ ∈ Λ is a formula belonging to one of the decidable classes covered by Corollary 3.1 or
Theorem 3.3; (ii) if e ∈ E is a self-loop, thenL (e) is a simplek -assignment.

Simplek -assignments are transitions (defined below) for which the acceleration is first-order definable
and is a Flat Array Property. For a natural number k , we denote by k̄ the term 1+ · · ·+1 (k -times) and by k̄ · t
the term t + · · ·+ t (k -times).

Definition 4.4 (simplek -assignment). Let k ≥ 0; a simplek -assignment is a transition τ(v, v′) of the kind

φL(c, a[d]) ∧ d ′ = d + k̄ ∧ d′ = d ∧ a′ =λj .if (j = d) then t(c, a(d)) else a(j)

where (i) c= d , d and (ii) the formulaφL(c, a[d]) and the terms t(c, a[d]) are flat.

The following Lemma (which is an instance of a more general result from [2]) gives the template for the
accelerated counterpart of a simplek -assignment.

Lemma 4.1. Let τ(v, v′) be a simplek -assignment. Then τ+(v, v′) is T -equivalent to the formula

∃y > 0

∀z .
��

d ≤ z < d + k̄ · y ∧Dk̄ (z −d)
�

→ φL(z , d, a(d))
�

∧

a′ =λj .U(j , y , v) ∧ d ′ = d + k̄ · y ∧ d′ = d

!

where the definable functions Uh (j , y , v), 1≤ h ≤ s of the tuple U are

if (d ≤ j < d + k̄ · y ∧Dk̄ (j −d)) then th (j , d, a(j)) else a h (j) .

Example 4.2. Consider transition τ2 from the formalization of our running example of Figure 1. The accel-
eration τ+2 of such formula is (we omit identical updates)

∃y > 0.

∀z .(i ≤ z < i +2y ∧D2(z − i)→ z <N)∧ i ′ = i +2y ∧
a ′ =λj .

�

if
�

i ≤ j < 2y + i ∧D2(j − i)
�

then v else a [j]
�

!

We can now formally show that the reachability problem for simple0
A -programs is decidable, by instanti-

ating Theorem 4.1 with the results obtained so far.

Theorem 4.2. The unbounded reachability problem for simple0
A -programs is decidable.

Proof. By prenex transformations, distributions of universal quantifiers over conjunctions, etc., it is easy to
see that the decidable classes covered by Corollary 3.1 or Theorem 3.3 are closed under conjunctions. Since
the acceleration of a simplek -assignment fits inside these classes (just eliminate definitions viaλ-abstractions
by using universal quantifiers), Theorem 4.1 applies. a

4.2 Experimental observations

We evaluated the capabilities of available SMT-Solvers on checking the satisfiability of Flat Array Properties
(for more information, see Appendix B) and for that we selected some simple0

A -programs, both safe and un-
safe. Following the procedure identified in the proof of Theorem 4.1 we generated 200 SMT-LIB2-compliant
files with Flat Array Properties4. The simple0

A -programs we selected perform some simple manipulations on
arrays of unknown length, like searching for a given element, initializing the array, swapping the arrays, copy-
ing one array into another, etc. We tested CVC4 [3] (version 1.2) and Z3 [9] (version 4.3.1) on the generated
SMT-LIB2 files. Experimentation has been performed on a machine equipped with a 2.66 GHz CPU and 4GB
of RAM running Mac OSX 10.8.5. From our evaluation, both tools timeout on some proof-obligations5. These
results suggest that the fragment of Flat Array Properties definitely identifies fragments of theories which are
decidable, but their satisfiability is still not entirely covered by modern and highly engineered tools.

4Such files have been generated automatically with our prototype tool which we make available at
www.inf.usi.ch/phd/alberti/prj/booster.

5See the discussion in Appendix B for more information on the experiments.

9

http://www.inf.usi.ch/phd/alberti/prj/booster

5 Conclusions and related work

In this paper we identified a class of Flat Array Properties, a quantified fragment of theories of arrays, admit-
ting decision procedures. Our results are parameterized in the theories used to model indexes and elements
of the array; in this sense, there is some similarity with [17], although (contrary to [17]) we consider purely
syntactically specified classes of formulæ. We provided a complexity analysis of our decision procedures. We
also showed that the decidability of Flat Array Properties, combined with acceleration results, allows to depict
a sound and complete procedure for checking the safety of a class of programs with arrays.

The modular nature of our solution makes our contributions orthogonal with respect to the state of
the art: we can enrich P with various definable or even not definable symbols [23] and get from our The-
orems 3.1,3.2 decidable classes which are far from the scope of existing results. Still, it is interesting to notice
that also the special cases of the decidable classes covered by Corollary 3.1 and Theorem 3.3 are orthogonal
to the results from the literature. To this aim, we make a closer comparison with [7, 14]. The two fragments
considered in [7,14] are characterized by rather restrictive syntactic constraints. In [14] it is considered a sub-
class of the ∃∗∀-fragment of ARR1(T) called SIL, Single Index Logic. In this class, formulæ are built according
to a grammar allowing (i) as atoms only difference logic constraints and some equations modulo a fixed inte-
ger and (ii) as universally quantified subformulæ only formulæ of the kind ∀i.φ(i)→ψ(i, a(i+ k̄)) (here k is a
tuple of integers) whereφ,ψ are conjunctions of atoms (in particular, no disjunction is allowed inψ). On the
other side, SIL includes some non-flat formulæ, due to the presence of constant increment terms i+ k̄ in the
consequents of the above universally quantified implications. Similar restrictions are in [15]. The Array Prop-
erty Fragment described in [7] is basically a subclass of the ∃∗∀∗-fragment of ARR2(P,P); however universally
quantified subformulæ are constrained to be of the kind ∀i.φ(i)→ψ(a(i)), where in addition the INDEX part
φ(i)must be a conjunction of atoms of the kind i ≤ j , i ≤ t , t ≤ i (with i , j ∈ i and where t does not contain
occurrences of the universally quantified variables i). These formulæ are flat but not monic because of the
atoms i ≤ j .

From a computational point of view, a complexity bound for SATMONO has been shown in the proof of
Theorem 3.1, while the complexity of the decision procedure proposed in [14] is unknown. On the other side,
both SATMULTI and the decision procedure described in [7] run in NEXPTIME (the decision procedure in [7] is
in NP only if the number of universally quantified index variables is bounded by a constant N). Our decision
procedures for quantified formulæ are also partially different, in spirit, from those presented so far in the
SMT community. While the vast majority of SMT-Solvers address the problem of checking the satisfiability
of quantified formulæ via instantiation (see, e.g., [7, 10, 13, 22]), our procedures – in particular SATMULTI –
are still based on instantiation, but the instantiation refers to a set of terms enlarged with the free constants
witnessing the guessed set of realized types.

From the point of view of the applications, providing a full decidability result for the unbounded reacha-
bility analysis of a class of array programs is what differentiates our work with other contributions like [1, 2].

References

[1] F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. Lazy abstraction with interpolants for arrays. In
LPAR, pages 46–61, 2012.

[2] F. Alberti, S. Ghilardi, and N. Sharygina. Definability of accelerated relations in a theory of arrays and its applications.
In FroCoS, pages 23–39, 2013.

[3] C. Barrett, C.L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds, and C. Tinelli. CVC4. In CAV,
pages 171–177, 2011.

[4] G. Behrmann, J. Bengtsson, A. David, K.G. Larsen, P. Pettersson, and W. Yi. UPPAAL implementation secrets. In
FTRTFT, pages 3–22, 2002.

[5] E. Börger, E. Grädel, and Y. Gurevich. The classical decision problem. Perspectives in Mathematical Logic. Springer-
Verlag, Berlin, 1997.

[6] M. Bozga, R. Iosif, and Y. Lakhnech. Flat parametric counter automata. Fundamenta Informaticae, (91):275–303,
2009.

[7] A.R. Bradley, Z. Manna, and H.B. Sipma. What’s decidable about arrays? In VMCAI, pages 427–442, 2006.

[8] H. Comon and Y. Jurski. Multiple counters automata, safety analysis and presburger arithmetic. In CAV, volume
1427 of LNCS, pages 268–279. Springer, 1998.

[9] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, pages 337–340, 2008.

10

[10] D.L. Detlefs, G. Nelson, and J.B. Saxe. Simplify: a theorem prover for program checking. Technical Report HPL-2003-
148, HP Labs, 2003.

[11] A. Finkel and J. Leroux. How to compose Presburger-accelerations: Applications to broadcast protocols. In FSTTCS,
pages 145–156, 2002.

[12] H. Ganzinger. Shostak light. In Automated deduction—CADE-18, volume 2392 of Lecture Notes in Comput. Sci.,
pages 332–346. Springer, Berlin, 2002.

[13] Y. Ge and L. de Moura. Complete instantiation for quantified formulas in satisfiabiliby modulo theories. In CAV,
pages 306–320, 2009.

[14] P. Habermehl, R. Iosif, and T. Vojnar. A logic of singly indexed arrays. In LPAR, pages 558–573, 2008.

[15] P. Habermehl, R. Iosif, and T. Vojnar. What else is decidable about integer arrays? In FOSSACS, 2008.

[16] J.Y. Halpern. Presburger arithmetic with unary predicates is Π1
1 complete. J. Symbolic Logic, 56(2):637–642, 1991.

[17] C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans. On local reasoning in verification. In TACAS, pages 265–281.
Springer, 2008.

[18] H.B. Lewis. Complexity of solvable cases of the decision problem for the predicate calculus. In 19th Ann. Symp. on
Found. of Comp. Sci., pages 35–47. IEEE, 1978.

[19] R. Nieuwenhuis and A. Oliveras. DPLL(T) with Exhaustive Theory Propagation and Its Application to Difference
Logic. In CAV’05, pages 321–334, 2005.

[20] D.C. Oppen. A superexponential upper bound on the complexity of Presburger arithmetic. J. Comput. System Sci.,
16(3):323–332, 1978.

[21] S. Ranise and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2006.

[22] A. Reynolds, C. Tinelli, A. Goel, S. Krstic, M. Deters, and C. Barrett. Quantifier instantiation techniques for finite
model finding in SMT. In CADE, pages 377–391, 2013.

[23] A.L. Semënov. Logical theories of one-place functions on the set of natural numbers. Izvestiya: Mathematics, 22:587–
618, 1984.

[24] J.R. Shoenfield. Mathematical logic. Association for Symbolic Logic, Urbana, IL, 2001. Reprint of the 1973 second
printing.

[25] C. Tinelli and C.G. Zarba. Combining nonstably infinite theories. J. Automat. Reason., 34(3):209–238, 2005.

11

http://www.smt-lib.org

A Proofs

In this Appendix we report detailed proofs of the results which were omitted in the main body of the paper
due to page limitation.

A.1 Correctness and completeness of SATMULTI (proof of Theorem 3.2).

The proof of Theorem 3.26 is split into two lemmas, showing correctness and completeness of the algorithm
SATMULTI.

Before stating the two Lemmas and proving them, we introduce useful notation. We use letters b̃ , c̃ , . . .
for elements from the support of a model; notation b̃, c̃, . . . is used for tuples (possibly with repetitions) of
such elements. For a formula ϕ(c) containing the free variables c := c1, . . . , cn and for a tuple of elements
c̃ := c̃1, . . . , c̃n from the support of a model M , the notation M |= ϕ(c̃) means that: (i) we expanded the
language with free constants naming c̃1, . . . , c̃n (the constant naming c̃ i is called c̃ i again for simplicity); (ii)
the constant naming c̃ i is interpreted as c̃ i ; (iii) in this expansion of M , we have that ϕ(c̃) turns out to be
true (here, according to our general conventions, ϕ(c̃) is obtained from ϕ(c) by replacing the variables c with
the names of the c̃). The above formalism of language expansion is adopted in standard mathematical logic
textbooks [24] and is a default machinery in all model-theoretic literature.7

Below, we assume that F is the ∃∗∀∗-monic-flat formula

F := ∃c∀i.ψ(i, a(i), c, a(c));

the formulæ F1, F2, F3, FI , FE are as described in the decision procedure SATMULTI of subsection 3.2.

Lemma A.1 (Completeness of SATMULTI). If F is ARR2(TI , TE)-satisfiable, then it is possible to choose the set T
and the Boolean assignmentB so that FI is TI -satisfiable and FE is TE -satisfiable.

Proof. LetM be a model of F . We haveM |=∀i.ψ(i, a(i), c̃, a(c̃)) for suitable c̃ from INDEXM .
A type M is realized inM iff there is some b̃ ∈ INDEXM such thatM |=

∧

L∈M L(b̃ , c̃) (we say in this case
that b̃ realizes M).8 We take T to be the set of types realized in M ; if T = {M 1, . . . , Mq }, we pick a tuple
b̃= b̃1, . . . , b̃q from INDEXM realizing them. By assigning precisely this tuple to the variables b of F1, we get

M |= ∀x .







q
∨

j=1

∧

L∈M j

L(x , c̃)






∧

q
∧

j=1

∧

L∈M j

L(b̃ j , c̃) ∧

∧

σ:i→b̃

ψ(iσ, a(iσ), c̃, a(c̃))

(this formula is F1 without the outermost existential quantifiers and with c, b replaced by - the names of - c̃, b̃).

6The reader might have noticed that (by considering the special case of formulæ in which ELEM atoms do not occur), Theorem 3.2
has the following corollary concerning only TI : “if TI -satisfiability of the ∃∗∀-sentences is decidable, then TI -satisfiability of ∃∗∀∗-monic-
flat sentences is decidable”. There is nothing wrong in this, because by help of (expensive indeed!) Boolean manipulations one can check
directly that ∃∗∀∗-monic-flat TI -sentences are equivalent to disjunctions of ∃∗∀ TI -sentences. In other words, the notion of being monic
becomes interesting only in presence of ELEM atoms.

7People preferring a formulation of Tarski semantics in terms of assignments may interpretM |= ϕ(c̃) as meaning that ϕ(c) is true
inM under the assignment mapping the c to the c̃.

8Notice that this type realization notion is relative to the choice of the elements c̃ assigned to the c.

12

If we furthermore let the tuple ẽ be the tuple of the elements denoted by the terms a[c̃] ∗a[b̃], we get

M |= ∀x .







q
∨

j=1

∧

L∈M j

L(x , c̃)






∧

q
∧

j=1

∧

L∈M j

L(b̃ j , c̃) ∧

ψ̄(b̃, c̃, ẽ) ∧
∧

d̃ m ,d̃ n∈b̃∗c̃

s
∧

l=1

(d̃ m = d̃ n → ẽ l ,m = ẽ l ,n)

as well. Now we can get our B just by collecting the truth-values of the relevant INDEX and ELEM atoms
involved in the above formula; by construction, it is clear that FI and FE become both true. a

Lemma A.2 (Soundness of SATMULTI). If there exist T := {M 1, . . . , Mq } and B such that FI is TI -satisfiable
and FE is TE -satisfiable, then F is ARR2(TI , TE)-satisfiable.

Proof. Suppose we are given a set of types T = {M 1, . . . , Mq } and a Boolean assignment B such that there
exists two modelsMI ,ME of TI , TE , respectively, such thatMI |= FI andME |= FE . From the fact that FI is
true inMI , it follows that there are elements c̃, b̃ from INDEXMI such that

MI |=∀x .







q
∨

j=1

∧

L∈M j

L(x , c̃)






∧

q
∧

j=1

∧

L∈M j

L(b̃ j , c̃)∧ ψ̃I (b̃, c̃) . (2)

In particular,

MI |=
∧

L∈M j

L(b̃ j , c̃)

holds for every M j ∈T . Thus, each M j ∈T is associated with an element b̃ j ∈ INDEXMI that realizes it, while

MI |=∀x .







q
∨

j=1

∧

L∈M j

L(x , c̃)






(3)

implies that every z̃ ∈ INDEXMI realizes some M j ∈T (see the proof of the previous Lemma for the definition
of type realization). We introduce the following notation: given two elements z̃ 1, z̃ 2 ∈ INDEXMI , z̃ 1 ≈ z̃ 2 holds
iff z̃ 1 and z̃ 2 realize the same type. Thus, for every z̃ ∈ INDEXMI there is a (unique because types are mutually
inconsistent) b̃ j ∈ b̃ such that z̃ ≈ b̃ j . We call this b j the representative of z̃ .

Now, sinceME |= FE , there are elements ẽ ∈ ELEMME such that (once they are used to interpret the con-
stants e) we have

ME |= ψ̄E (ẽ) . (4)

To get a modelM for ARR2(TI , TE) we need only to interpret the function symbols a= a 1, . . . , a s as functions
from INDEXMI into ELEMME . Before doing that, let us observe that, because of our choice ofB , we have that
ψ̄I (b, c)∧ψ̄E (e)→ F3 is a tautology; recalling the definition of F3 from STEP IV of the procedure SATMULTI, this
means that (independently on how we define the interpretation of the symbols a not occurring in F3) we shall
have

M |= ψ̄(b̃, c̃, ẽ) ∧
∧

d̃ m ,d̃ n∈b̃∗c̃

s
∧

l=1

(d̃ m = d̃ n → ẽ l ,m = ẽ l ,n) . (5)

For every l = 1, . . . , s and for every d̃ m ∈ b̃ ∗ c̃ we put

aMl (d̃ m) := ẽ l ,m . (6)

By (5), this definition gives a partial function. To make it total, for any other z̃ (i.e. z̃ 6∈ b̃∗ c̃) pick the represen-
tative b̃ j of z̃ , and define

aMl (z̃) := aMl (b̃ j) . (7)

13

We claim that we have, for every z̃ 1, z̃ 2 ∈ INDEXMI

z̃ 1 ≈ z̃ 2 ⇒ aMl (z̃ 1) = aMl (z̃ 2) . (8)

To prove the claim, it is sufficient to show that, if b̃ j is the representative of z̃ , then aMl (z̃) = aMl (b̃ j). This is
obvious if z̃ 6∈ b̃ ∗ c̃ and if z̃ ∈ b̃ ∗ c̃, we only have to check the case in which z̃ is some c̃ l ∈ c̃. However, since
x = c l is among the atoms contributing to the definition of a type (see STEP I of the procedure SATMULTI), it
follows that the representative b̃ j of c̃ l satisfies the formula x = c̃ l (because the latter is trivially satisfied by
c̃ l) and hence we have that b̃ j = c̃ l . By (5) and (6), it follows that aMl (c̃ j) = aMl (b̃ j). This ends the proof of the
claim.

It remains to prove thatM is a model of F , i.e. that we have

M |=∀i.ψ(i, a(i), c̃, a(c̃)) . (9)

First notice that, by (6),(5) and by the definition of ψ̄(b, c, e) (see STEP IV of the procedureSATMULTI), we have9

M |=
∧

σ:i→b̃

ψ(iσ, a(iσ), c̃, a(c̃)) . (10)

Let τ be the map that associates with every z̃ its representative b̃ j ∈ b̃; it is sufficient to show that for every
z̃= z̃ 1, . . . , z̃ n from INDEXM ,10 we have, for every atom A(i, a(i), c, a(c)) occurring inψ(i, a(i), c, a(c))

M |= A(z̃, a(z̃), c̃, a(c̃))↔ A(z̃τ, a(z̃τ), c̃, a(c̃)) (11)

(then (9) follows from (10) and (11) by induction on the number of Boolean connectives, taking for every
assignment i 7→ z̃ the conjunct σ corresponding to i 7→ z̃ 7→ z̃τ). In turn, (11) is a special case of the following
more general fact: if z̃ and z̃′ have length n and we have z̃ i ≈ z̃ ′i (for every i = 1, . . . , n), then

M |= A(z̃, a(z̃), c̃, a(c̃))↔ A(z̃′, a(z̃′), c̃, a(c̃)) (12)

for every atom A occurring inψ. However, (12) holds for ELEM atoms thanks to (8) and for INDEX atoms due
to the fact that z̃ i , z̃ ′i realize the same type and the input formula F := ∃c∀i.ψ(i, a(i), c, a(c)) is monic. a

A.2 Complexity analysis of SATMULTI (proof of Theorem 3.3).

The proof of Theorem 3.3 can also be split into the two lemmas below, giving lower and upper bounds.

Lemma A.3 (Lower Bound). ARR2(P,P)-satisfiability of ∃∗∀∗-monic-flat sentences is NEXPTIME-hard.

Proof. First, we introduce the bounded version of the domino problem used in the reduction. A domino
system is a triple D = (D, H , V), where D is a finite set of domino types and H , V ⊆ D ×D are the horizontal
and vertical matching conditions. Let D be a domino system and I = d 0, . . . , d n−1 ∈ D∗ an initial condition,
i.e. a sequence of domino types of length n > 0. A mapping τ : {0, . . . , 2n+1 − 1} × {0, . . . , 2n+1 − 1} → D is a
2n+1-bounded solution ofD respecting the initial condition I iff, for all x , y < 2n+1, the following holds:

• if τ(x , y) = d and τ(x ⊕2n+1 1, y) = d ′, then (d , d ′)∈H ;

• if τ(x , y) = d and τ(x , y ⊕2n+1 1) = d ′, then (d , d ′)∈V ;

• τ(i , 0) = d i for i < n ;

where ⊕2n+1 denotes addition modulo 2n+1.
It is well-known [5, 18] that there is a domino system D = (D, H , V) such that the following problem is

NEXPTIME-hard: given an initial condition I = d 0, . . . , d n−1 ∈ D∗, does D have a 2n+1-bounded solution re-
specting I or not?

We show that this problem can be reduced in polynomial time to satisfiability of ∃∗∀∗-flat and simple
sentences in ARR2(P,P).

9Since types are pairwise inconsistent, the elements b̃ are in bijective correspondence to the variables b, hence we can freely suppose
that the mapsσ indexing the big conjunct of (10) have codomain b̃.

10Recall that n is the length of the tuple i. Here z̃ ranges over all possible tuples of elements that can be assigned to the tuple of
variables i.

14

Let us associate (in an injective way) with every element d ∈ D a numeral (we call this numeral again d
for simplicity);11 we shall use just one array variable, to be called a .

Let p0, . . . , pn ,q0, . . . ,qn be distinct pairwise coprime numbers (we underline that they can be computed in
time polynomial in n and that polynomially many bits are needed to represent them and, as a consequence,
also the divisibility predicates Dp0 , . . . , Dpn , Dq0 , . . . , Dqn).12

We say a natural number i represents the point of coordinates (x , y) ∈ [0, 2n+1− 1]× [0, 2n+1− 1] iff for all
k = 0, . . . , n , we have that

(i) Dpk (i) holds iff the k -th bit of the binary representation of x is 0;

(ii) Dqk (i) holds iff the k -th bit of the binary representation of y is 0.

Of course, the same (x , y) can be represented in many ways, but at least one representative number exists by
the Chinese Reminder Theorem.

We now introduce the following abbreviations:

• HE (e , e ′) stands for
∨

(d ,d ′)∈H (e = d ∧ e ′ = d ′);

• VE (e , e ′) stands for
∨

(d ,d ′)∈V (e = d ∧ e ′ = d ′);

• HI (i , i ′) stands for the conjunction of
∧n

k=0(Dqk (i)↔Dqk (i ′))with

(
n
∧

k=0

(¬Dpk (i)∧Dpk (i
′)))∨

n
∨

k=0

(
∧

l>k

(Dp l (i)↔Dp l (i
′)) ∧

∧Dpk (i)∧¬Dpk (i
′)∧

∧

l<k

(¬Dp l (i)∧Dp l (i
′)))

• VI (i , i ′) stands for the conjunction of
∧n

k=0(Dpk (i)↔Dpk (i ′))with

(
n
∧

k=0

(¬Dqk (i)∧Dqk (i
′)))∨

n
∨

k=0

(
∧

l>k

(Dql (i)↔Dql (i
′)) ∧

∧Dqk (i)∧¬Dqk (i
′)∧

∧

l<k

(¬Dql (i)∧Dql (i
′)))

Thus, HI (i , i ′) holds iff i represents (x , y), i ′ represents (x ′, y ′) and we have y = y ′ and x ′ = x ⊕2n+1 1. Similarly,
VI (i , i ′) holds iff i represents (x , y), i ′ represents (x ′, y ′) and we have x = x ′ and y ′ = y ⊕2n+1 1.

We introduce abbreviations P0,0(i), . . . , Pn−1,0(i) to express the fact that i respectively represents the point
of coordinates (0, 0), . . . , (n −1, 0) by using the formulae

P0,0(i) :=
n
∧

k=0

Dqk (i) ∧
n
∧

k=0

Dpk (i)

P1,0(i) :=
n
∧

k=0

Dqk (i) ∧¬Dp0 (i)∧
n
∧

k=1

Dpk (i)

P2,0(i) :=
n
∧

k=0

Dqk (i) ∧Dp0 (i)∧¬Dp1 (i)∧
n
∧

k=2

Dpk (i)

· · ·

11A numeral is a ground term of the kind 1+ · · ·+ 1, i.e. a ground term canonically representing a number. The argument we use
works also for weaker theories like ARR2(P, E q), where E q is the pure identity theory in a language containing infinitely many constants
constrained to be distinct.

12One can use the elementary Euclid’s argument to show this (much better bounds are known from number theory estimates for the
n-th prime number function, see a textbook like E. Bach and J. Shallit, Algorithmic number theory, Vol. 1, Foundations of Computing
Series, MIT Press, 1996). In fact, define h(2) := 2 and h(n + 1) := 1+

∏

m<n h(m); it is clear that if k1 < k2, then h(k1) and h(k2) are
coprime, because the reminder of the division of h(k2) by every factor of h(k1) is 1. Also, we easily get h(n) ≤ n ! (so h(n) ≤ 2n ·log2n) by
induction: indeed, h(2)≤ 2! and h(n +1)≤ 1+

∏

m≤n h(m)≤ 1+n ·n !≤ (n +1)!.

15

The existence of a tiling is then expressed by the satisfiability of the formula below (the first conjunct takes
care of the initialization, whereas the last two about tile matchings):

n−1
∧

k=0

∀i (Pk ,0(i)→ a [i] = d k) ∧

∧ ∀i 1∀i 2 (HI (i 1, i 2)→HE (a [i 1], a [i 2])) ∧
∧ ∀i 1∀i 2 (VI (i 1, i 2)→VE (a [i 1], a [i 2])) .

Notice that the above (polynomially long) formula is in the ∀∗-monic-flat fragment, as it can be seen by in-
specting the definitions of the macros we used for for Pk ,0(i), VI (i 1, i 2), HI (i 1, i 2). a

Lemma A.4 (Uppper Bound). ARR2(P,P)-satisfiability of ∃∗∀∗-monic-flat sentences is in NEXPTIME.

Proof. To show the matching upper bound, it is sufficient to inspect our decision algorithmSATMULTI. Clearly,
STEP I introduces an exponential guess; the formulæ F1, F2, F3, FI , FE are all exponentially long (notice that
there are exponentially many σ in F1 andB can be seen as a set of exponentially many literals). It is well-
known that P-satisfiability of quantifier-free formulæ is in NP (see the historical references in [20] for the
origins of this result), so that satisfiability of FE also takes non deterministic exponential time. We only have
to discuss P-satisfiability of FI in more detail. Now, FI is not quantifier-free and in order to check its satisfia-
bility we need to run quantifier-elimination procedure to the subformula

¬∃x ¬







q
∨

j=1

∧

L∈M j

L(x , c)






(13)

The point is that this formula is exponentially long and so we must carefully analyze the cost of the elim-
ination of a single existential quantifier in Presburger arithmetic. We need the following lemma from [20]
(Theorem 1, p.327):

Lemma A.5. Suppose that Cooper’s quantifier elimination algorithm, applied to a formula ∃x φ (with quantifier-
freeφ) yields the quantifier-free formulaφ′. Let c0 (resp. c1) be the number of distinct positive integers appear-
ing as indexes of divisibility predicates or as variable coefficients within φ (resp. φ′); let s0 (resp. s1) be the
largest absolute values of integer constants (including coefficients) occurring inφ (resp. φ′); let a 0 (resp. a 1) be
the number of atoms ofφ (resp. φ′). Then the following relationship hold:

c1 ≤ c 4
0 , s1 ≤ s 4c0

0 , a 1 ≤ a 4
0s 2c0

0 .

Now notice that (13) is exponentially long, but integer constants, integer coefficients and indexes of di-
visibility predicates are the same as in the input formula. Thus, if N bounds the length of the input formula,
we get a 2O(N 2)-bound for the above parameters c1, s1, a 1 for the formula φ′ resulting from the eliminatioon
of the universal quantifier from (13). Now (quoting from [20], p.329), “the space required to store [a formula]
Fk is bounded by the product of the number of atoms a k in Fk , the maximum number m +1 of constants per
atom, the maximum amount of space sk required to store each constant, and some constant q (included for
the various arithmetic and logical operators, etc.).” This means that ourφ′ is exponentially long and, as a con-
sequence, our satisfiability testing for FI works in NEXPTIME, as it applies an NP algorithm to an exponential
instance. a

B Experiments with CVC4 and Z3

In order to test the capabilities of the available state-of-the-art SMT-Solvers on checking the satisfiability of
Flat Array Properties, we generated, with the help of a Python prototype implementing the algorithm under-
lying the proof of Theorem 4.1, 200 SMT-LIB files with Flat Array Properties13. These files have been generated
by feeding our prototype with some simple0

A -programs, that is, programs performing simple operations on
arrays, like copying one array into another one, initializing an array, finding an element in an array, etc. Ta-
ble 1 reports the results of our experiments, performed on a computer equipped with a 2.66 GHz CPU and
4GB of RAM running Mac OSX 10.8.4. As stated at the beginning of Section 4, ARR1(P+) or ARR2(P+,P+) are
the reference theories for this experimental part.

13More information available at www.inf.usi.ch/phd/alberti/prj/booster.

16

http://www.inf.usi.ch/phd/alberti/prj/booster

BENCHMARK STATUS CVC4 Z3

init safe 2/4 4/4
init non constant safe 2/4 4/4
init partial safe 2/4 4/4
init partial buggy unsafe 0/4 4/4
init even safe 2/4 4/4
init even buggy unsafe 2/4 3/4
copy safe 2/4 4/4
copy partial safe 2/4 4/4
copy odd safe 4/4 4/4
copy odd buggy safe 4/4 4/4
check swap safe 28/32 32/32
check swap buggy unsafe 28/32 32/32
double swap safe 60/64 64/64
strcpy safe 2/4 4/4
strlen safe 2/2 2/2
strlen buggy unsafe 1/2 2/2
find safe 4/4 4/4
find first nonnull safe 4/4 4/4
merge interleave safe 0/8 8/8
merge interleave buggy unsafe 0/8 6/8

Table 1: Success rate for CVC4 (version 1.2) and Z3 (version 4.3.1) on the verification of Flat Array Properties. In this table
we do not distinguish timeouts from unknownmessages or other failures of the tools.

Both tools fail on last program, merge interleave buggy. We discuss this program and one of the problem-
atic Flat Array Properties arising from its verification in the following section.

B.1 The “merge interleave buggy” example

Consider the procedure mergeInterleave in Figure 2. For this procedure, a = a ,b , r , c = i , k . N is a constant
of the background theory. T is the set of formulæ (we omit identical updates):

τ1 := p c = l init ∧ i ′ = 0∧p c ′ = l 1

τ2 := p c = l 1 ∧ i <N ∧p c ′ = l 1 ∧ r ′ =λj .if (j = i) then a (j) else r (j)∧ i ′ = i +2

τ3 := p c = l 1 ∧ i ≥N ∧p c ′ = l 2 ∧ i ′ = 1

τ4 := p c = l 2 ∧ i <N ∧p c ′ = l 2 ∧ r ′ =λj .if (j = i) then b (j) else r (j)∧ i ′ = i +2

τ5 := p c = l 2 ∧ i ≥N ∧p c ′ = l 3

τE1 := p c = l 3 ∧k ≥ 0∧k <N ∧k ≡2 0∧ r [k] 6=b [k]∧p c ′ = lerror

τE2 := p c = l 3 ∧k ≥ 0∧k <N ∧k ≡2 1∧ r [k] 6= a [k]∧p c ′ = lerror

The procedure mergeInterleave can be formalized as the control-flow graph depicted in Figure 1(b), where
L = {l init, l 1, l 2, l 3, lerror}.

B.1.1 Acceleration

Transitions τ2 and τ4 are simplek -assignments. Their accelerations are (omitting identical updates):

τ+2 := ∃y .









y > 0∧p c = l 1 ∧p c ′ = l 1 ∧ i ′ = i +2y ∧
∀j .((i ≤ j < i +2y ∧D2(j − i))→ j <N) ∧
r ′ =λj .if (i ≤ j < 2y + i ∧D2(j − i)) then a (j) else r (j)









and

τ+4 := ∃y .









y > 0∧p c = l 2 ∧p c ′ = l 2 ∧ i ′ = i +2y ∧
∀j .((i ≤ j < i +2y ∧D2(j − i))→ j <N) ∧
r ′ =λj .if (i ≤ j < 2y + i ∧D2(j − i)) then b (j) else r (j)









17

procedure mergeInterleave (a [N] , b [N] , r [N] , k) :

l 1 for (i = 0; i <N ; i = i +2) r [i] = a [i];

l 2 for (i = 1; i <N ; i = i +2) r [i] =b [i];

l 3 if(0≤ k ∧k <N ∧k ≡2 0) assert(r [k] =b [k]);

if(0≤ k ∧k <N ∧k ≡2 1) assert(r [k] = a [k]);

(a)

linit

l1

l2

l3

lerror

τ1

τ2

τ3

τ4

τ5

τE2
τE1

(b)

Figure 2: The mergeInterleave procedure (a) and its control-flow graph (b).

B.1.2 Error trace

The procedure mergeInterleave is not safe: a possible execution run showing the unsafety is τ1 ∧τ+2 ∧τ3 ∧
τ+4 ∧τ5 ∧τE1 , because r is initialized in the even positions with elements from a , not from b . The error trace
is the formula:

p c0 = l init ∧p c1 = l 1 ∧ i 1 = 0∧∀j .r1(j) = r0(j) ∧

∃y1.









y1 > 0∧p c1 = l 1 ∧p c2 = l 1 ∧ i 2 = i 1+2y1 ∧
∀j .((i 1 ≤ j < i 1+2y1 ∧D2(j − i 1))→ j <N) ∧
∀j .(r2(j) = if (i 1 ≤ j < 2y1+ i 1 ∧D2(j − i 1)) then a (j) else r1(j))









∧

p c2 = l 1 ∧ i 2 ≥N ∧p c3 = l 2 ∧ i 3 = 1∧∀j .(r3(j) = r2(j)) ∧

∃y3.









y > 0∧p c3 = l 2 ∧p c4 = l 2 ∧ i 4 = i 3+2y3 ∧
∀j .((i 3 ≤ j < i 3+2y3 ∧D2(j − i 3))→ j <N) ∧
r4 =λj .if (i 3 ≤ j < 2y3+ i 3 ∧D2(j − i 3)) then b (j) else r3(j)









∧

p c4 = l 2 ∧ i 4 ≥N ∧p c5 = l 3 ∧ i 5 = i 4 ∧∀j .(r5(j) = r4(j)) ∧
p c5 = l 3 ∧0≤ k ∧k <N ∧D2(k)∧ r5(k) 6=b (k)∧p c6 = lerror ∧ i 6 = i 5 ∧∀j .(r6(j) = r5(j))

18

	Introduction
	Background
	Monic-flat array property fragments
	The mono-sorted case
	The decision procedure SATMONO.
	Correctness and completeness of SATMONO.

	The multi-sorted case
	The decision procedure SATMULTI.

	A decidability result for the reachability analysis of flat array programs
	A class of array programs with decidable reachability problem
	Experimental observations

	Conclusions and related work
	Proofs
	Correctness and completeness of SATMULTI (proof of Theorem 3.2).
	Complexity analysis of SATMULTI (proof of Theorem 3.3).

	Experiments with cvc4 and Z3
	The ``merge interleave buggy'' example
	Acceleration
	Error trace

