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Abstract—In modern and personalised education, there is
a growing interest in developing learners’ competencies and
accurately assessing them. In a previous work, we proposed
a procedure for deriving a learner model for automatic skill
assessment from a task-specific competence rubric, thus simpli-
fying the implementation of automated assessment tools. The
previous approach, however, suffered two main limitations: (i)
the ordering between competencies defined by the assessment
rubric was only indirectly modelled; (ii) supplementary skills,
not under assessment but necessary for accomplishing the task,
were not included in the model. In this work, we address issue
(i) by introducing dummy observed nodes, strictly enforcing the
skills ordering without changing the network’s structure. In
contrast, for point (ii), we design a network with two layers
of gates, one performing disjunctive operations by noisy-OR
gates and the other conjunctive operations through logical ANDs.
Such changes improve the model outcomes’ coherence and the
modelling tool’s flexibility without compromising the model’s
compact parametrisation, interpretability and simple experts’
elicitation. We used this approach to develop a learner model
for Computational Thinking (CT) skills assessment. The CT-cube
skills assessment framework and the Cross Array Task (CAT) are
used to exemplify it and demonstrate its feasibility.

Index Terms—Learner modelling; Bayesian networks with
noisy gates; Assessment rubrics; Computational thinking skills.

I. INTRODUCTION

INTELLIGENT Tutoring Systems (ITSs) are technological
devices that support learning without the mediation of a

teacher. They interact directly with the user, providing hints
and suggestions that can only be effective if calibrated to
the actual user’s competence level. ITSs collect data on a
learner’s performance while accomplishing a task and use that
data to develop a competence profile based on a predefined
model of the learner’s knowledge and behaviour. This profile
helps determine the most appropriate intervention. The new
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knowledge collected along with the learning activity continu-
ously updates the competence profile, making the interventions
more focused. Therefore, the learner model is one of the
main factors that contribute to the success of an AI-based
educational tool.

A learner model describes mathematically the learner’s
competencies, represented by a set of hidden variables, and
their relations with the observable actions performed while
solving the task. Such competencies combine knowledge,
skills, and attitudes expressed in a specific context. Teach-
ers can evaluate student competencies in realistic scenarios
explicitly designed for this purpose and then compare their
performance with a model of competence specified through
an assessment rubric [1]. A rubric for assessing a student’s
performance consists of a list of competence components to
be evaluated, a qualitative description of possible observable
behaviours corresponding to different levels of such compo-
nents, and a set of criteria for assessing the level of each
component. A rubric, therefore, describes the relationship be-
tween competencies and observable behaviours of the learner
that need to be formally codified.

Several sources of uncertainty and variability may affect
the relationship between the non-observable competencies and
the corresponding observable actions. Therefore, a determin-
istic relationship is not capable of accurately modelling it.
Instead, a more appropriate approach would be to use prob-
abilistic reasoning to translate qualitative assessment rubrics
into a quantitative, standardised, coherent measure of student
proficiency. In the literature, Bayesian Knowledge Tracing
(BKT) [2], Item Response Theory (IRT) [3], and Bayesian
Networks (BNs) [4] are all popular probabilistic approaches
to learner knowledge modelling. BNs are a robust framework
for modelling dependencies between skills and students’ be-
haviours in complex tasks. In addition, the graphical nature
of the models makes them easily understandable by domain
experts. Therefore, experts can easily use them in eliciting
the student model [5]. Desmarais [6] reviewed all the most
successful ITS experiences since Bloom’s keynote paper and
recognised and presented BNs as the most general approach to
modelling learner skills. [7] conducted a systematic review of
53 papers about ITS applications from 2007 to 2017. The re-
view explored the characteristics, applications, and evaluation
methods of ITSs and found that a significant proportion of the
reviewed papers used BN techniques. More recent works using
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BNs to model the learner knowledge in the context of ITSs
include [8], who developed an ITS to help students acquire
problem-solving skills in computer programming, and [9],
who developed an automatic assessment method for students’
engineering design performance using a BN model. Other
recent works, such as [10], [11], support the construction
ITSs based on BNs and further highlight the ever-present
interest in BN techniques for ITSs. Building on these results,
we focused our method on BN-based learner modelling.

Not all BNs are easy to design, and a deep understanding of
BN theory is required. Although BN arcs can be interpreted as
a causal model, their definition by experts is not always trivial
because of the complexity of the causal relationships involved
and the presence of hidden causes. In addition, a significant
effort may be necessary to obtain the network structure and
parameters through expert knowledge or the availability of an
extensive dataset to learn them directly.

Decomposing domain knowledge into individual basic com-
ponent skills is the choice typically adopted to simplify the
model elicitation process. However, as pointed out in [12],
“complex skill mastery requires not only the acquisition of in-
dividual basic component skills but also practice in integrating
such component skills with one another”. Further complica-
tions can also arise even when the structure of the learning
model can be precisely defined. In some cases, eliciting and
learning BN parameters can quickly make the computation of
inferences unmanageable. The number of parameters and the
problem complexity can rapidly increase with the network’s
number of arcs.

These issues can discourage ITS practitioners from using
BN-based learner modelling in their applications when many
skills are involved in the learner’s actions. A solution to reduce
the number of parameters in a BN-based learner model was
proposed in our previous paper [13]. We exploit noisy-OR
gates [14] to reduce the number of parameters to elicit from
exponential in the number of parent skills for each observable
action to linear. Similar advantages also concern the inference.
In [15], we adopted a solution to set up a general approach
for translating assessment rubrics into interpretable BN-based
learner models with a complexity compatible with real-time
assessment.

Learner models based on assessment rubrics are more
accessible to teachers, who are typically more familiar with
them than probabilistic graphical models. Moreover, rubrics
focus on the learners’ complex behaviours in specific con-
texts. Therefore, although we do not explicitly model skill
interactions, they can be captured in the hierarchy of complex
behaviours identified by the rubric. However, in our previous
work [15], this hierarchy of competencies was only indi-
rectly modelled. This produced assessments assigning larger
probabilities to higher-level competence, in contrast with the
assumption that when a competence of a certain level is
possessed, all lower-level competencies are also owned.

In the model presented here, this counter-intuitive behaviour
has been eliminated by imposing the constraints codified by
the rubric through observed auxiliary nodes that do not modify
the network structure and retain the previous model’s relative
simplicity. Moreover, considering that assessment rubrics are

usually limited to the competence components under assess-
ment, hereafter also called target skills, the modelling ap-
proach in [15] may have led to oversimplified learner models,
unable to grasp the actual causes of a failure which is not
always due to the absence of the target skills. It may, for
instance, follow from deficiencies in other skills necessary for
the specific task, hereafter referred to as supplementary skills.

Therefore, this work extends our previous model [15] by
adding the possibility of modelling a set of supplementary
skills necessary, in conjunction with the skills under exam-
ination, to succeed in the assigned tasks. To this goal, it is
essential to extend the nosy-OR approach in [13] to combine
disjunctive and conjunctive relations between skills since. At
the same time, the behaviours in the assessment rubric are
mutually exclusive (OR), and supplementary and target skills
must be expressed jointly (AND).

To illustrate this approach, we focus on the activity proposed
in [16] for the standardised assessment of algorithmic skills
along the entire K-12 school path. We compare four learner
models based on different assumptions and sets of expert-
elicited parameters and apply them to the dataset collected
in [16]. Overall, we obtain a general and compact approach to
implementing a learner model given a set of competencies of
interest and the corresponding assessment rubric. The resulting
model has a simple structure and interpretable parameters,
allowing for fast inferences with a reasonable effort for their
elicitation by experts.

This article is organised as follows:
• Section II-A provides some background about learner

modelling based on Bayesian Networks, and noisy gates.
• Section II-B introduces task-specific assessment rubrics.
• Section II-C illustrates how to model a generic assess-

ment rubric by Bayesian Networks.
• Section III presents the case study and, in particular,

the specific assessment rubric developed for the Cross
Array Task (CAT) from [16] as well as the procedure for
translating it into a learner model.

• Section IV discusses the model outcomes based on the
dataset of 109 pupils collected in [16].

• Section V summarises the work’s findings and contribu-
tion.

II. METHOD

A. BN-based Learner Models

The structure of a Bayesian Network (BN) over a set of
variables is described by a directed acyclic graph G whose
nodes are in one-to-one correspondence with the variables in
the set. We call parents of a variable X , according to G, all
the variables connected directly with X with an arc pointing
to it. Learner models usually include a set of n latent (i.e.,
hidden) variables X := (X1, . . . , Xn), henceforward referred
to as skill nodes, describing the competence profile of the
learner and some m manifest variables Y := (Y1, . . . , Ym),
hereafter called answer nodes, describing the observable ac-
tions implemented by the learner to answer each specific task.
Arcs go from skill nodes to answer nodes modelling how the
presence or absence of a specific competence directly affects
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the learner’s behaviour in a task requiring such competence.
Here, we consider only binary skill nodes, where value one,
or true state, indicates that the pupil possesses the skill, and
binary answers nodes, denoting a correct answer or behaviour
shown in solving the task.

(X1) Scratch (X2) Python

(Y1) Build a
maze game

(Y2) Build a
statistical model

Fig. 1. Example of BN-based learner model.

The relations of a BN-based learner model can be graphi-
cally depicted as in the example of Fig. 1. The answer nodes
describe whether the learner has been able or not to program,
for example, a maze game (Y1) or a statistical model (Y2). The
skill nodes represent the ability to build this program using
a block-based programming language such as Scratch (X1)
or a text-based programming language such as Python (X2).
The second skill can be applied to answer both questions, and
therefore X2 is a parent node for both answer nodes Y1 and
Y2. Instead, the first skill can be used to answer just the first
question, and therefore there is no direct arc from X1 to Y2.

Once the graph G structuring the BN is established, the
definition of the BN over the n+m variables of the network
V := (V1, V2, . . . , Vn+m), including both skills (X) and an-
swers (Y ), consists in a collection of Conditional Probability
Tables (CPTs) giving the probabilities P (Yi = 1|Pa(Yi)) that
Yi takes value one given all possible joint states of its parent
nodes Pa(Yi). Let V take values in ΩV , the independence
relations imposed from G by the Markov condition, i.e., the
fact that each node is assumed to be independent of its
non-descendants non-parents given its parents, induce a joint
probability mass function over the BN variables that factorises
as follows [4]:

P (V = v) =
∏
v∈v

P (v|pa(V )) , (1)

where v = (v1, v2, . . . , vn+m) represents a given joint state of
the variables in V . BN inference consists of the computation
of queries based on Eq. (1). In particular, we are interested in
updating tasks consisting in the computation of the marginal
posterior probability mass function for a single skill node
Xq ∈ X given the observed state yE of the answer nodes
YE ⊆ Y :

P (xq|yE) =

∑
v∈ΩV |(xq,yE)

∏
v∈v P (v|pa(V ))∑

v∈ΩV |yE

∏
v∈v P (v|pa(V ))

, (2)

where ΩV |v′ := {v : vi = v′i ∀ v′i ∈ v′}.
According to the above model, multiple parent skills may

be relevant to the same answer. The paper in [13] discusses
how this can lead to a critical complexity in elicitation and
inference and demonstrates how using noisy gates can avoid
these issues. In this work, we exploit the disjunctive noisy-OR
gates, which shape interchangeable skills and are suitable for
modelling assessment rubrics.

1) Noisy-OR Gates: This section briefly introduces noisy-
OR gates and their use in learner modelling. We refer to
[13] and [15] for a more detailed discussion. A typical
representation of the noisy-OR network structure, introducing
n auxiliary variables (also called inhibitor nodes), is shown in
Fig. 2.

X1 X2 . . . Xn

X′
1,j X′

2,j
. . . X′

n,j

Yj

Fig. 2. A noisy gate explicit formulation (adapted form [13]).

To reduce the number of parameters, the noisy-OR defines
the state of Yj as the logical disjunction (OR) of the auxiliary
parent nodes, removing the need to specify the CPT of the
answer node given the state of its parent nodes. Furthermore,
the noisy-OR structure sets the input variable Xi as the
unique parent of X ′

i,j and constraints X ′
i,j to be zero with

probability one when Xi = 0. The relationship between skill
and answers would be purely logical-deterministic were it not
for the noise introduced by the so-called inhibition parameters
λi,j = P (X ′

i,j = 0|Xi = 1), representing the probability of
not expressing skill i in task j. Auxiliary variables can be
interpreted as inhibitors of the corresponding skills, as they
can be in the false state, e.g., X ′

i,j = 0 (with probability λi,j)
even when the corresponding skill node Xi is in the true state,
indicating that, although possessed by the learner, the skill
could not be expressed in task Yj . By defining the probability
of a failure in expressing a possessed skill in the specific task
j, the inhibition parameter λi,j provides a measure of the task
difficulty. If a pair skill-answer has a large inhibition, the state
of the answer node tells, in general, little about the state of
the skill node, the extreme case of λi,j = 1 corresponding to
a missing arc in the BN graph between skill i and answer j.

The noisy-OR network induces the following CPT between
the n parent skill nodes X = (X1, . . . ,Xn) and the observable
answer node Yj [14]:

P (Yj = 0|X = (x1, . . . ,xn)) =
n∏

i=1

(Ixi=0 + λiIxi=1) , (3)

where IA is the indicator function returning one if A is true and
zero otherwise. The second term λiIxi=1 represents the noise
as it introduces the possibility that a skill Xi that the student
possesses is not expressed in task Yj (this phenomenon is also
called slip elsewhere in this work). The value of λi implying
the biggest uncertainty associated with the task-skill pair (Yj ,
Xi) is 0.5, whereas the value λi = 0 models the certainty that
skill Xi, whenever present, will be expressed in solving task
Yi and, vice versa, λi = 1 model the fact that Xi cannot be
expressed in task Yj .

In [15], a leak node was added to the model to represent
the possibility of a random guess, i.e., a correct answer or a
behaviour given without mastering any required competencies.
The leak is a Boolean variable playing the role of an additional
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skill node, Xleak, which is set in the observed state Xleak = 1
and added to the parents of all answer nodes for which random
guessing is possible. The chances of guessing answer Yj at
random are given by parameter 1− λleak,j .

To apply the above model, the domain expert (e.g., the
teacher) should first list the parentless skill nodes (including,
eventually, the leak) X1, . . . , Xn, the childless answer nodes
Y1, . . . , Ym and connect by an arc the skills to all answer nodes
in which they can be used. Then, the instructor should quantify
for each pair of skill-answer nodes, Xi and Yj , connected by
an arc, the value of the inhibition λi,j . This results in a total
of at most n ·m parameters to be elicited. Finally, the expert
should state each skill’s prior probabilities πi.

2) Comparison with BKT: While the BKT, in its standard
implementation, traces the evolution of a single skill over
time, our approach focuses on fine-grained skills modelling
at the specific moment the assessment is performed. However,
a parallel can be drawn between the two. BKT models student
knowledge at time t as the (binary) latent variable X(t)
of a hidden Markov model [2]. Learning is modelled as
the transition of X(t) from state zero (lack of knowledge)
to state one (knowledge acquired). The model defines four
parameters: (i) the initial probability, i.e., the probability that
the knowledge has been already acquired at the beginning of
the activity; (ii) the learning probability, that is, the probability
of acquiring the probability between t and t + 1; (iii) the
slip probability of making a mistake when the knowledge is
acquired; (iv) the guess probability of doing right in the lack
of knowledge.

In our model, the probability of the slip may vary depending
on the pair skill i and task j and is represented by the inhibition
λij . The guess probability depends on the task and is equal to
1−λleak,j . The initial probability of a skill Xi is defined by its
prior probability πi. Notice, however, that since our approach,
differently from BKT, does not model the learning process,
the concept of initial probability here is meant to describe our
initial knowledge of the learner competence profile rather than
the probability that the skill is initially acquired. For the same
reason, no learning probability is defined in our model.

B. Assessment Rubrics
There are several possible approaches to identifying the

knowledge components to be included in a learner model. In
this article, we follow the one introduced in [15] and start from
a rubric defined for assessing a given competence through a
specific task or family of similar tasks [17], [18].

A task-specific assessment rubric consists of a two-entry
table where each row corresponds to a component of the
given competence, described in the light of the given task. In
contrast, each column corresponds to a competence level in
ascending order of proficiency. For each combination of com-
ponent and level, the rubric provides a qualitative description
of the behaviour expected from a person with the given level in
the given component. Identifying a person’s competence level
consists in matching the learner’s behaviours while solving a
given task with those described in the assessment rubric.

For instance, Table I shows the task-specific assessment
rubric for an example focused on assessing the student’s ability

TABLE I
EXAMPLE OF A TASK-SPECIFIC ASSESSMENT RUBRIC WITH A SINGLE

COMPETENCE COMPONENT, THE ABILITY TO DESIGN ALGORITHM
CONTAINING LOOPS, AND TWO COMPETENCE LEVELS.

X1 X2

Loops
Develop an iterative algorithm
using a block-based program-
ming language

Develop an iterative algorithm
using a text-based program-
ming language

to use iterative instructions in algorithms. This competence
has two levels depending on the tools used by the learner: a
visual programming language (X1) or a textual programming
language (X2). By checking how the learner produced the
algorithm, the teacher can see whether he applied any of
the methods in the rubrics and assign him the corresponding
competence level.

Generally speaking, assessment rubrics define an ordering
between competence levels and sometimes between compe-
tence components, as for the case study about computational
thinking introduced in [15] and discussed in Section III. Here,
a competence level or component is considered higher than
another if the former implies the latter, meaning that a learner
with the higher competence can also perform all the tasks that
require the lower. In practice, the competence level matching
the student’s behaviours for a given component does not
always correspond to the actual learner’s state of knowledge.
It is also possible that the person possesses a higher level but
is underperforming.

In the case of a task composed of similar sub-tasks, i.e.,
tasks sharing the same assessment rubric, it is, therefore,
possible to observe behaviours matching different competence
levels in the various sub-tasks. In the following subsection,
we illustrate how this uncertainty can be considered and how
an overall assessment based on a full battery of tasks can be
produced by modelling the learner competence profile with
the BN-based approach described in Section II-A.

C. Modelling Assessment Rubrics by Bayesian Networks

Considering a task-specific assessment rubric, as defined in
Section II-B, it is possible to derive a learner model, as pre-
sented in Section II-A, hereafter referred to as baseline model.
For each cell (c, r) of an assessment rubric with R rows and
C columns, we introduce a latent binary competence variable
Xrc taking value one for a learner mastering the corresponding
competence level and zero otherwise. Moreover, for each task
t, in a battery of T similar tasks, and each competence variable
Xrc, we define an observable (manifest) binary variable Y t

rc

taking value one if the behaviour described in the assessment
rubric’s cell (r, c) was applied successfully by the learner in
solving task t and zero if he failed using it.

In this work, we improve the baseline model in two ways.
Firstly, we explicitly impose the ordering of competence levels
encoded by the rubric. Secondly, we include in the model
task-specific supplementary skills which can be combined with
each other and with the competencies of the rubric through
arbitrary logic functions.
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1) Ordering of competences: In the baseline model of Sec-
tion II-A, it was indirectly accounted for the partial ordering
between variables by setting as parents of answer node Y t

rc

the skill node Xrc and all skill nodes corresponding to higher
competence levels. The network was quantified through noisy-
OR relations, as described in Section II-A1. This structure
assumes that an observed behaviour can be explained as the
student mastering the corresponding competence level or a
higher one if he is underperforming, thus not exploiting his
full potential, but cannot be achieved through a lower level.

As mentioned above, we interpret the (partial) ordering
between competencies defined by the assessment rubric as
implication constraints, meaning that possessing a particular
skill Xi implies that the learner posses also his inferior
competencies. While exploited to design the network structure,
this hierarchy of competencies is not strictly imposed by the
above baseline model, giving rise to posterior inferences that
are usually inconsistent.

To solve this issue, we enrich the model by adding an
auxiliary variable Dik for each relation Xi =⇒ Xk defined
by the rubric. A constraint node Dik is always in the observed
state one and has Xi and Xk as parent nodes. The desired
implication constraint is then implemented by choosing a CPT
for Dik such that P (Dik = 1|Xi = 1, Xk = 0) = 0. The
addition to the network of each observed node Dik changes
the prior probabilities of Xi and Xk, initially set to πi and
πk. Let

p00 = P (Dik = 1|Xi = 0, Xk = 0)

p01 = P (Dik = 1|Xi = 0, Xk = 1)

p11 = P (Dik = 1|Xi = 1, Xk = 1),

(4)

be the non-null parameters in the CPT of Dik. After updating
with the evidence Dik = 1, one has

P (Xi = 1|Dik = 1) =
p11πjπk

K
,

P (Xk = 1|Dik = 1) =
p11 + p01πjπk

K
,

(5)

with K = p11πjπk + p01(1− πj)πk + p00(1− πj)(1− πk).
In this work, we simply assume p00 = p01 = p11 and adopt

uniform prior probabilities πi = πk = 0.5. Applying them to
Eq.(5) give P (Xk = 1) = 1/3 and P (Xk = 1) = 2/3. This
result follows from the fact that skill Xi can only be possessed
jointly with Xk, whereas Xk can also be owned when Xi = 0.

Under the assumption p00 = p01 = p11 = p∗, the prior
over the superior skill Xi can be interpreted as the conditional
probability of having it given that the learner possesses the
inferior skill Xk since

P (Xi = 1|Xk = 1, Dik = 1) =
πiπjp∗

πiπjp∗ + (1− πi)πjp∗
= πi

(6)

2) Supplementary Skills: While the assessment rubric de-
tails the components of the competence of interest and their
interactions with the specific task and available tools, it does
not necessarily include all the skills required to solve the task
successfully.

For instance, considering the assessment rubric proposed
in Table I, to develop an iterative algorithm with a text-
based programming language successfully, the learner might
also need knowledge about the different types of statements,
e.g., while, repeat, for, do until and so on. Ignoring such
supplementary skills might be misleading in an automatic
assessment system, as failures due to the lack of one of
them would not be recognised as such and, eventually, be
attributed to the absence of the competence components under
assessment. Therefore, if not adequately modelled, the lack
of unmodelled supplementary skills would translate into an
unfairly negative evaluation of the competencies of interest.

To produce fairer assessments, we extend the model by
an additional layer of auxiliary nodes combined with a logic
function to allow for the inclusion of a suitable set of supple-
mentary skills.

Fig. 3 shows an example of the structure of the extended
network. Supplementary skills are described by additional skill
nodes S1, . . . , Sm, which are grouped into sets of interchange-
able skills (in the case of the example we have just one set).
Each of these groups is connected through a noisy-OR to a
node in the layer of auxiliary latent nodes, hereafter referred to
as group nodes G1, . . . , Gl, representing the success or failure
in applying the type of competence described by each group
to the specific task Y . Finally, the group nodes are connected
to the answer node through a logic AND or any other logic
function suitable for the particular task.

G1 G2

…

…

Y

1S mS

‘ ‘ ‘ ‘

1S mS

1X 2X

1D

1X 2X

AND

OR OR

Fig. 3. Example of a BN network modelling a task-specific assessment
rubric with two cells, represented by skills X1 and X2 (on the right), m
supplementary skills grouped in a single set (on the left), and the constraint
X2 =⇒ X1, represented by the auxiliary variable D1 (on the top right).

When supplementary skills can be directly assessed through
observing specific learner behaviours or by purposed ques-
tions, additional answer nodes, children only of the relevant
supplementary skills, can be added to the network.

III. A CASE STUDY ON K-12 COMPUTATIONAL THINKING
SKILLS

In this section, we use the case study about Computational
Thinking (CT) skill assessment already introduced in [15] to
illustrate the proposed approach. However, our methodology
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can be applied analogously to each task for which an assess-
ment rubric can be defined.

CT assessment is an important field of research [19] due
to its relevance in evaluating the effectiveness of CT teaching
and learning activities on an individual or class level and, on
a larger scale, the impact of curricular and educational system
policies on the development of CT skills of a given population.

A. The Cross Array Task

The Cross Array Task (CAT), proposed in [16], is an
unplugged activity designed to assess the development of
algorithmic skills, i.e., the ability to describe a complex
procedure through a set of simpler instructions, in pupils aged
from 3 to 16 years.

The authors of [16] carried out an experimental study from
March to April 2021, collecting data from 109 students (51
girls and 58 boys) in eight classes from three public schools
in Southern Switzerland.

empty 
cross array

Te
ac

he
r

coloured 
cross array

cross array 
to be coloured

screen

Learner

Fig. 4. CAT experimental settings (adapted from [16]).

The data collection setting is illustrated in Fig. 4. In the
activity, each student was provided with 12 coloured cross
arrays, visible in the right part of Fig. 4 and at the top of Fig. 5,
characterised by different levels of complexity and based on
different types of regularities, and requested to give the teacher
instructions, either by voice (symbolic artefact) or with the
help of an empty cross array schema (embodied artefact), to
reproduce the same colouring patterns on a blank cross array.
The pupil and the teacher are initially separated by a screen
that does not allow the student to see what the other is doing.
Upon request by the pupil, this barrier is removed to allow
him/her to see how his commands are implemented (visual
feedback).

B. Modelling the CAT Assessment Rubric

The assessment rubric for this case study, shown in Table II,
is the same as presented in our previous work [15].

The instruction sequences built by the pupils, called algo-
rithms, are ranked into three categories corresponding to the
assessment rubric’s competence components (rows). Each row
represents the ability of the pupil to solve a CAT schema
using, respectively, zero-dimensional (0D) algorithms – where
the dots of the schema are described point by point –, one-
dimensional (1D) algorithms – where structures, such as

rows, diagonal, squares etc. are also used to illustrate the
coloured pattern –, and two-dimensional (2D) algorithms –
where repetitions and loops on dots or structures are also used
to describe the schema.

The degree of autonomy of the pupil and the tools used
to accomplish the task have been hierarchically ordered and
determine the competence levels in the columns of the rubric.
Specifically, from the highest (right) to lowest (left), such
levels correspond to the ability of the pupil to solve a CAT
schema using: voice (V) – the pupil can communicate all
the necessary instructions using only the voice –, voice &
schema (VS) – the pupil, in combination with the voice, uses an
empty cross array schema to illustrate his instructions through
gestures, e.g., by pointing with fingers the dots to be coloured
–, voice, schema & feedback (VSF) – the student also asks to
remove the screen to have visual feedback of how the teacher
is colouring the schema.

As introduced in Section II-C, the columns of an assessment
rubric provide the competence levels in increasing order from
left to right. Sometimes, as in this case study, this is true also
for the rows, where competence components are ordered from
the lower (0D at the top) to the highest (2D at the bottom).
This follows from the assumption that mastering algorithms
of higher complexity imply also mastering simpler ones. The
same is valid for communication tools.

Summing up, we can conclude that a competence level Xrc

is higher than Xr′c′ whenever c > c′ and r ≥ r′, or c = c′

and r > r′. When, instead, c > c′ but r < r′, neither skill can
be said to dominate the other.

From the CAT assessment rubric in Table II we define nine
target skills to be assessed, representing the ability to develop
an algorithm using elementary operations communicated either
by a symbolic language (X13 – 0D V), an embodied language
(X12 – 0D-VS) or supported by visual feedback (X11 – 0D-
VSF); elementary operations and structures communicated
either by a symbolic language (X23 – 1D-V), an embodied
language (X23 – 1D-V) or supported by visual feedback (X21

– 1D-VSF); elementary operations, structures and repetitions
communicated either by a symbolic language (X33 – 2D-V),
an embodied language (X32 – 2D-VS), or supported by visual
feedback (X31 – 2D-VSF).

TABLE II
DEFINITION OF THE CAT ASSESSMENT RUBRIC.

Competence levels
VSF
c = 1

VS
c = 2

V
c = 3

Competence
components

0D (r = 1) X11 X12 X13

1D (r = 2) X21 X22 X23

2D (r = 3) X31 X32 X33

Accordingly, with the method described in Section II-C, a
latent skill node Xrc is included in the BN learner model for
each of the nine target skills of the rubric. The hierarchy of
competencies is then modelled by nine latent binary variables
Drc,r′c′ , as described in Section II-B, encoding the implication
Xrc =⇒ Xr′c′ for each pair of consecutive skills in the
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hierarchy, i.e., such that (r = r′ + 1) ∧ (c = c′) or (r =
r′) ∧ (c = c′ + 1).

Also, the BN network includes an observable answer node
Y t
rc for each skill in the rubric and each task t = 1, . . . , 12 in

the sequence of 12 similar tasks administered during the CAT
experiments. Observing Y t

rc = 1 means that the pupil has
solved the t-th CAT schema using an algorithm of complexity
corresponding to the c-th row of the rubric, and requesting
the help in the r-th column. By way of example, a student
solving the t-th schema using a 0-dimensional algorithm and
with voice, empty schema and feedback (0D-VSF) result in
the observed node Y t

11 = 1.
In principle, all answer nodes should be explicitly observed

through specific interactions with the pupil. However, this was
not possible for the case of the dataset collected by [16] since
the pupils were left free to choose their preferred approach.
Therefore, to make such a dataset compatible with our model,
in [15] we encode the collected answers as follows: a task t
solved at level c∗ by an algorithm with complexity r∗ was
translated into Y t

rc = 1 for all competence levels rc lower
than or equal to r∗c∗, thus assuming that, if requested, the
pupil would have been able to implement solutions requiring
a lower competence level than the one used. Similarly, we set
all answer nodes Y t

rc = 0 for all higher levels, leaving those
not directly comparable unobserved. As an example, Table III
(i) illustrates the case in which the pupil has generated as a
solution for task t a one-dimensional algorithm using only the
empty schema and the voice (1D-VS).

The choice made in our previous work [15] also contributed
to stress the skills ordering. Since the ordering is modelled
by explicit constraints imposed through the auxiliary variables
Drc,r′c′ , such a choice would be unnecessary and detrimental,
as it would artificially multiply the number of observations.
Therefore, in the constrained model, a task t solved at level c∗

by an algorithm with complexity r∗ would be better translated
into the single observation Y t

r∗c∗ = 1. However, in the specific
experimental setting adopted in [16], since pupils were always
allowed to try solving the task with the lowest competence
level (0D-VSF), a failure could only be observed for that
level, with the consequence that only answer nodes Y t

11 can be
directly observed in the false state Y t

11 = 0. To work around
this problem, we set the answer nodes just above the one
observed in the true state, i.e., Y t

r∗(c∗+1) and Y t
(r∗+1)c∗ to the

false state, leaving all other nodes unobserved. As an example,
Table III (ii) shows how the answer encoding changes in the
case of a 1D-VS solution to task t for the constrained model.

Finally, having observed that, depending on the specific
CAT schemes, other skills than those in the assessment rubric
may be necessary, especially for the algorithm complexities
1D and 2D, by analysing the CAT schemes structures and
characteristics, we identify ten supplementary skills, divided
into three groups, to be added to the skill nodes in the network:
(S1) paint dot – group 1; (S2) fill empty dots – group 2; (S3)
paint monochromatic rows or columns – group 2; (S4) paint
monochromatic squares – group 2; (S5) paint monochromatic
diagonals – group 2; (S6) paint monochromatic l-shaped
patterns – group 2; (S7) paint monochromatic zigzags – group
2; (S8) paint polychromatic rows or columns – group 3; (S9)

TABLE III
ANSWER ENCODING, ASSUMING A PUPIL HAS GENERATED A 1D-VS

SOLUTION FOR THE t-TH SCHEMA: Y t
22 = 1. SYMBOL ̸# INDICATES THAT

THE ANSWER NODE IS NOT OBSERVED.

(i) Unconstrained BN-based learner model

Y t
rc

Competence levels
VSF
c = 1

VS
c = 2

V
c = 3

Competence
components

0D (r = 1) 1 1 ̸#
1D (r = 2) 1 1 0
2D (r = 3) ̸# 0 0

(ii) Constrained BN-based learner model

Y t
rc

Competence levels
VSF
c = 1

VS
c = 2

V
c = 3

Competence
components

0D (r = 1) ̸# ̸# ̸#
1D (r = 2) ̸# 1 0
2D (r = 3) ̸# 0 ̸#

paint polychromatic diagonals or zigzags – group 3; (S10)
repetition of a pattern – group 3.

Note that, the first group of supplementary skills is made of
the variable S1 alone, which is necessary to implement a 0D
algorithm. The second group includes all the monochromatic
structures and is associated with 1D algorithms. The last
group, which combines all polychromatic structures and the
ability to repeat a structure, identifies the skills without which
it would not be possible to develop a 2D algorithm.

From the annotations collected during the experimental
study in [16] it was possible to extract direct observations
about using each supplementary skill in each task. Conse-
quently, answer nodes Y t

Si
were added to the network for

each task t = 1, . . . , 12 and each supplementary skill Si

with i = 1, . . . , 10. Each schema can be solved using one
or more supplementary skills, but using all of them is not
always possible. Answer nodes Y t

Si
take the value one if the

pupil has used the i-th supplementary skill in the solution of
CAT schema t, and zero otherwise.

As described in Section II-C, a noisy-OR combines the
variables in the same group into the group auxiliary nodes
Gi, with i = 1, . . . , 4, where G4 combines the target skills
Xrc. In contrast, the relation between the group nodes and the
target skills is conveyed through the logical AND.

C. Summary Score Metric

To evaluate pupils’ competence level in a specific CAT
schema, we use the CAT score, a metric provided by [16],
taking values from 0 to 4, as shown in Table IV. Unsolved
CAT schemes, which were not considered in [16], are here
assigned a score of −1.

When using the BN-based learner model, a summary metric
of the inferences at the end of the 12 tasks, hereafter referred
to as the BN-based CAT score, was obtained as the sum of
the marginal posterior probabilities of all target skill nodes
estimated by the model and can be interpreted as the expected
number of competence levels mastered by the student.
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Fig. 5. The 12 CAT schemes T (top); the values of the inhibition parameters λt
rc for the target skill nodes (centre); the value of the inhibition parameters

λt
Si

for the supplementary skill nodes (bottom). The inhibition parameters for both the target and supplementary skill are depicted as a matrix of nine rows
representing the answers, and as many columns as the number of modelled skills. The strength of the skill-answer relation has eleven levels, from 0.1 to 0.6
with a step of 0.05. Darker shades of grey mean lower skill-answer inhibition probabilities and white squares denote non-relevant skills.

TABLE IV
THE CAT SCORE METRIC USED IN [16] TO GRADE A PUPIL ON A SINGLE

TASK (ADAPTED FROM [15]).

VSF VS V

0D 0 1 2
1D 1 2 3
2D 2 3 4

As a baseline summary measure used for checking the
consistency of this score with the expert-based assessment in
[16], we define the CAT score as the average of the individual
scores assigned to the 12 CAT schemes solved by each student
according to Table IV.

D. Parameters’ Elicitation

Having defined the structure of the model for the CAT activ-
ity, it is necessary to set the values of the prior probabilities π∗,
and the 12 inhibitors λt

∗, t = 1, . . . , 12, for both the target and
supplementary skills. As in [15], uniform prior probabilities,
i.e., πrc = 0.50, have been assigned to each skill. However,
when conditioning given the constraints nodes Drc,r′c′ = 1,
their probabilities, before the observation of any answer node,
become π11 = 0.95, π12 = 0.8, π13 = 0.5, π21 = 0.8,
π22 = 0.5, π23 = 0.2, π31 = 0.5, π32 = 0.2, π33 = 0.05.
Concerning the inhibition parameters, we consider two differ-
ent models. Similarly to what was done in [15], in the first
baseline model, hereafter referred to as Model B, all inhibitors
are set to the same value. In contrast, a domain expert has
elicited parameters in the second enhanced model, hereafter
referred to as Model E.

Model B may look trivial and unrealistic, but it allows
one to understand better the effect of the constraints resulting
from ordering the skills and supplementary skills on the model
inferences. The constant value of λ was chosen equal to 0.2,
except for the leak node, associated with all answer nodes and
modelling a guess probability of 0.1, resulting in λleak = 0.9.

Model E is an enhanced version of the baseline model
designed to address the increasing difficulties of the 12 tasks
and the challenges students may encounter applying their skills
to different schemes. The expert elicitation process involved
grouping the 12 schemes into eight categories of increasing
difficulties based on their characteristics: (i) T1, (ii) T2, (iii)

X11 X12 X13 X21 X22 X23 X31 X32 X33

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

(i) Inhibition parameters for the target skills.
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

(ii) Inhibition parameters of the supplementary skills.

Fig. 6. Inhibition parameters λT3
∗ used in the ECS model for schema T3

(Zoom on schema T3 of Fig. 5). The parameters are divided into two sets:
the target skills (top) and the supplementary ones (bottom). The supplementary
skills S4 (paint monochromatic squares), S6 (paint monochromatic ls), and
S7 (paint monochromatic zigzags) are represented as empty columns because
they cannot be used to solve task T3.

T3, T4, (iv) T5, T6, (v) T7, T8, T9, (vi) T10, (vii) T11,
(viii) T12. The expert assumed all tasks could be solved with
0D, 1D, and 2D algorithms. Moreover, given a schema t
and a manifest variable Y t

rc, the same inhibition probability
was assumed for all relevant skills, meaning that all have
the same probability of successfully being applied in solving
scheme t with level rc. In the proposed method, the inhibitor
parameter λrc is used to model the probability of failing a
task of a particular difficulty level rc, assuming the student
has the necessary skills to solve the task. When a task is
more complex or less help is available to the student, the
value of rc increases, which means that the inhibitor parameter
also increases. This is because when the student possesses the
necessary skills to solve a difficult task, the probability of
failing is higher than for a simpler task. Similarly, the inhibitor
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parameter λt
rc is assigned to a particular scheme t and is used

to model the difficulty of implementing a solution of level rc
for that scheme. A high value of λt

rc means that it is difficult
to implement a solution of level rc for that scheme. In other
words, the inhibitor parameter λt

rc provides a measure of the
difficulty of implementing a particular solution for a given
scheme at a given level of complexity.

While the students are generally expected to use 2D al-
gorithms to solve the tasks optimally, there may be cases
where a simpler 2D solution may be optimal. Nonetheless,
in the current implementation, the first two tasks are designed
to serve as starting points for students, introducing them to
the activity. They are expected to be solved using simpler 1D
algorithms. However, this particular case was not included in
our model. This could have been described by setting high
inhibitor values to indicate that certain 2D solutions are more
difficult to implement than others, making them less likely to
be chosen by students.

Our succinct elicitation setup allows summarising both the
BN topology and its parameter values graphically (see the
monochromatic rows at the bottom of Fig. 5) and explained
more in detail in Fig. 6 for CAT schema T3.

The underlying BN has been implemented within the
CREMA Java library [20], which supports the specifications of
noisy gates and inference based on these parametric CPTs. The
network size allowed for exact inferences using the Variable
Elimination algorithm [21].

IV. RESULTS

To evaluate the performance of our models, we processed
the answers provided by all 109 pupils included in the study in
[16], obtaining for each model the posterior probabilities of the
nine target skills and eventually for the supplementary skills.
From the posterior probabilities of the target skills, we derived
the BN-based CAT score, and the original CAT score from
[16], as defined in Section III. Fig. 7 illustrates the correlation
between these two scores for the following four models: the
baseline model from [15] (Model B), the baseline model
with constraints (Model BC), the one which also includes the
supplementary skills (Model BCS) and finally the enhanced
model including both constraints and supplementary skills
(Model ECS). In the scatterplot, the BN-based CAT score,
originally in the [0, 9] range, has been rescaled in the [0, 4]
range to obtain a more direct graphic comparison. In all cases
the Pearson correlation coefficient, indicated in Fig. 7 as ρ,
is very high, confirming consistency between the BN-based
assessment and the one performed by experts.

Table V shows the inference time of each model for all 12
tasks and all 109 students, as well as the estimated inference
time to provide an assessment for a single student in all tasks
and for a single student in a single task. It is important to note
that the inference times for a single student in a single task
may vary depending on the complexity of the task. However,
these average inference times provide a rough estimate of the
performance of the four models in terms of inference time. The
total inference times of the four models can vary significantly,
with Model B and Model BC being particularly fast at under

TABLE V
INFERENCE TIMES FOR ALL MODELS.

Model
Total

inference time
(sec)

Inference time
per student

(sec)

Inference time
per student

per task (sec)

Model B 29.615 0.272 0.023
Model BC 28.940 0.266 0.022
Model BCS 316.555 2.904 0.242
Model ECS 306.517 2.812 0.234

30 seconds, while Model BCS and Model ECS have a much
longer inference time, taking over 5 minutes each. However,
it’s worth noting that when considering the assessment time
for a single student, all models perform very quickly and can
be considered suitable for real-time applications.

Besides the overall consistency of the summary metrics, the
probabilistic assessments derived from the BN-based models
provide more detailed information about student competence
profiles in the form of posterior probabilities for each compe-
tence level and, when included, for the supplementary skills.

When looking at the posterior probabilities for the indi-
vidual students, it is possible to understand their compe-
tence profile better and demonstrate the model interpretability.
Moreover, by comparing competence profiles issued by the
four models considered, it is possible to discern relevant
differences between them and recognise the effects of the
different improvements introduced in this work. To this goal,
we summarise in Table VII the answers provided by four repre-
sentative pupils, in Table VI the BN-based CAT scores versus
the CAT score, and in Tables VIII and IX the corresponding
posterior probabilities inferred by the models for the target and
the supplementary skills, respectively. The subset of students
we use to demonstrate the performance of the models has been
selected by choosing some pupils with interesting situations.

TABLE VI
COMPARISON OF THE BN-BASED CAT SCORES WITH THE CAT SCORE

FROM [16] OF ALL MODELS FOR A REPRESENTATIVE SUBSET OF PUPILS.

Student CAT score BN-based CAT score

21 3.3

2.23 (Model B)
1.65 (Model BC)
1.98 (Model BCS)
2.00 (Model ECS)

33 0.75

2.00 (Model B)
0.00 (Model BC)
1.33 (Model BCS)
1.47 (Model ECS)

81 1.75

2.90 (Model B)
0.07 (Model BC)
1.62 (Model BCS)
1.82 (Model ECS)

92 2.5

1.77 (Model B)
1.42 (Model BC)
1.59 (Model BCS)
1.79 (Model ECS)
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Fig. 7. Scatterplot of the BN-based CAT scores versus the CAT score from [16] for the four models under comparison: B — baseline proposed in [15] –,
BC –baseline model with constraints –, BCS – baseline model with constraints and supplementary skills – and ECS – enhanced model with constraints and
supplementary skills. The legend gives the Pearson correlation coefficient ρ between the two metrics.

TABLE VII
ANSWER TO THE 12 SCHEMES, EXPRESSED AS TARGET AND SUPPLEMENTARY SKILLS, FOR A REPRESENTATIVE SUBSET OF PUPILS.

Student T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

21 1D-V 1D-V 2D-V 1D-V 1D-V 1D-V 2D-V 2D-V 2D-V 1D-V 1D-V 1D-V
S2 S2; S6 S3; S10 S3 S3; S4 S6 S8; S10 S1; S5; S10 S1; S10 S1; S4 S1 S1; S5

33 1D-V 1D-VS 1D-VS 1D-VSF 1D-VS 1D-VS 1D-VS fail fail fail fail failS2 S2; S6 S3 S3 S3 S1; S3 S5

81 1D-V 1D-V 1D-V 1D-VS 1D-V 1D-V 2D-VSF 0D-VS 2D-V fail fail failS2 S2; S6 S3 S3 S3; S4 S6 S1; S5; S10 S1 S1; S10

92 1D-V 1D-V 1D-V 1D-V 1D-V 1D-V 0D-V 0D-V 0D-VSF 1D-VS 2D-V 0D-V
S2 S2; S6 S3 S3 S3; S4 S6 S1 S1 S1 S4; S5 S1; S10 S1

Pupil 21 is a high-performing student, in terms of CAT and
BN-based scores, who consistently used high-level artefacts
for all CAT schemes and primarily used 2D algorithms.

Pupils 33 and 81 cannot be considered high-performing
since they failed to complete some of the CAT schemes.
Pupil 33 solved only the first seven schemes, always using
1D algorithms and almost always relying on the VS artefact.
In comparison, student 81 was successful in the first nine
schemes where he applied different algorithms and artefacts,
but mostly the 1D-V. For both students 33 and 81, the
BN-based CAT scores predicted by the four models vary
significantly, indicating that the models may be producing
different predictions of their abilities. The difference between
the original and BN-based CAT scores is inconsistent across
the models. For both students, the largest difference between
the original and BN-based CAT scores is observed in Model
B, which predicts a much higher score for both students. On
the other hand, Model BC predicts a meager BN-based CAT
score close to 0 for both students, indicating that this model
may not be the most accurate for these particular students. This
suggests that other models may be better suited for predicting
their performance on the CAT.

Pupil 92’s performance was strong, as he successfully com-

pleted all 12 tasks using different skill levels. He solved the
first six schemes with the 1D-V skill, reduced the algorithm’s
complexity in the following ones, changed artefact for some
of the more complex tasks, and applied the highest level skill,
2D-V, in a tricky schema. Regarding the BN-based scores, all
four models predicted a lower BN-based CAT score for student
92 than the original CAT score, although the differences were
not as large as those observed for students 33 and 81. This
suggests that student 92 is a relatively strong performer overall,
but there is potential for improvement in his performance.

For all students, the baseline model assigns posterior proba-
bilities equal or very close to one to the most used skill levels
but fails to recognise that they also possess lower level skills,
to which rather small probabilities, eventually equal to zero,
as for the worst performing students 33 and 81, are assigned.

On the one hand, when the ordering between skills is
explicitly imposed, this problem is solved: the probabilities
of lower skills increase, and those of higher skills decrease.
This may lead to an excessive penalisation of higher skills, as
in the case of pupils 33 and 81, where, as a consequence of the
repeated failures in applying even the lowest competence level,
Model BC decides for the total absence of the competencies
under examination, returning a posterior probability of zero,
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TABLE VIII
POSTERIOR PROBABILITIES P (Xrc = 1|Y ) OF ALL MODELS, FOR A REPRESENTATIVE SUBSET OF PUPILS.

Student Model X11 X12 X13 X21 X22 X23 X31 X32 X33

0D-VSF 0D-VS 0D-V 1D-VSF 1D-VS 1D-V 2D-VSF 2D-VS 2D-V

21

Model B 0.50 0.51 0.67 0.51 0.57 0.96 0.59 0.83 0.80
Model BC 1.00 1.00 1.00 1.00 1.00 1.00 0.69 0.38 0.07
Model BCS 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.95 0.92
Model ECS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

33

Model B 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
Model BC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Model BCS 1.00 1.00 0.52 1.00 1.00 0.05 0.59 0.30 0.00
Model ECS 1.00 1.00 0.69 1.00 1.00 0.39 0.63 0.33 0.03

81

Model B 0.03 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
Model BC 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Model BCS 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.21 0.03
Model ECS 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.67 0.44

92

Model B 0.55 0.40 0.41 0.33 0.13 1.00 0.46 0.05 0.00
Model BC 1.00 0.99 0.99 0.76 0.70 0.68 0.13 0.00 0.00
Model BCS 1.00 1.00 1.00 1.00 1.00 1.00 0.59 0.19 0.01
Model ECS 1.00 1.00 1.00 1.00 1.00 1.00 0.79 0.58 0.41

TABLE IX
POSTERIOR PROBABILITIES P (Si = 1|Y ) OF MODEL BCS AND MODEL ECS, FOR A REPRESENTATIVE SUBSET OF PUPILS.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Student Model paint
dot

fill
empty
dots

rows
columns squares diagonal l zigzag

rows
columns

poly.

diagonals
zigzag
poly.

repetitions

21 Model BCS 1.00 1.00 1.00 1.00 1.00 1.00 0.40 1.00 0.26 1.00
Model ECS 1.00 1.00 1.00 1.00 1.00 1.00 0.52 1.00 0.38 1.00

33 Model BCS 1.00 1.00 1.00 0.42 1.00 1.00 0.38 0.15 0.16 0.13
. Model ECS 1.00 1.00 1.00 0.43 1.00 1.00 0.42 0.21 0.22 0.19

81 Model BCS 1.00 1.00 1.00 1.00 1.00 1.00 0.36 0.34 0.31 1.00
Model ECS 1.00 1.00 1.00 1.00 1.00 1.00 0.39 0.41 0.35 1.00

92 Model BCS 1.00 1.00 1.00 1.00 1.00 1.00 0.34 0.31 0.31 1.00
Model ECS 1.00 1.00 1.00 1.00 1.00 1.00 0.36 0.35 0.35 1.00

even for the skills successfully used by the students in several
schemes. These inferences look too severe for these situations,
where an expert would rather attribute the errors to the specific
difficulties of the failed tasks rather than the total lack of
algorithmic skills.

On the other hand, when the supplementary skills are
included in the assessment (Models BCS and ECS), this
issue is solved, and the result of the posterior inference is
consistent with the hierarchy of competencies defined by
the rubric and the observations collected. In this case, the
model understands that the failure follows from lacking the
supplementary skills necessary to solve specific schemes with
more complex algorithms and not from the lack of target skills.

For instance, according to models BCS and ECS, pupil 21 is
likely to miss monochromatic zigzags (S7) and polychromatic
diagonals and zigzags (S9), justifying the failure in applying
the possessed 2D competence in schemes related to these
supplementary skills.

Finally, employing more elaborate models, such as the ECS
one, may, in some cases, reward the ability to apply high-level
skills in more complex tasks, i.e., those assigned with higher
inhibition probabilities, such as for pupil 92 who managed to
solve scheme T11, a difficult one according to the parameters’
elicitation in Fig. 5, using a 2D-V skill and thus 2D algorithms
are given a much higher probability by Model ECS than by
Model BCS.

A. Discussion

Recent literature shows that BNs are among the most
common tools for modelling student knowledge in ITS [7],
however, in most works, a great deal of effort is devoted
to building an ad-hoc network and eliciting its parameters
[22], [23] or collect data from which they could be learned
[8], [10], [11]. This effort and technical complexity might be

one reason why most ITSs in the literature concern primarily
technical domains. For instance, [24] shows that most ITSs
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focus on computer science education. If the reason for this
phenomenon is that experts in this field are more comfortable
using mathematical models, our proposal to base BN model
elicitation on assessment rubrics, a popular educational tool
for eliciting the relation between skills and behaviours, opens
up the possibility of bringing this method closer to other, less
technical disciplines.

Our study estimated the performance of four different
models (Model B, Model BC, Model BCS and Model ECS)
in assessing the algorithmic competence of 109 pupils based
on their answers to 12 tasks. The models were evaluated by
comparing the BN-based CAT score derived from the posterior
probabilities of the target skills with the original CAT score
obtained from the expert assessment. The results show a high
correlation between the two scores in all models, indicating
consistency between the BN-based assessment and the one
performed by experts. The probabilistic assessments derived
from the BN-based models provided more detailed information
about student competence profiles in the form of posterior
probabilities for each competence level and supplementary
skills. The analysis of the models’ posterior probabilities
for the individual students highlighted relevant differences
between the four models showing the effects of the improve-
ments introduced in the study. The model interpretability was
demonstrated by comparing competence profiles issued by
the four models considered. The study found that Model
B assigned posterior probabilities close to one of the most
used skill levels but failed to recognise that the students
also possessed lower-level skills, thus violating the ordering
between competencies assumed by the assessment rubric.
Instead, this issue was solved when the ordering between skills
was explicitly imposed (Model BC). The result of the posterior
inference was consistent with the hierarchy of competencies
defined by the rubric. Finally, including the supplementary
skills in the assessment (Model BCS) and refining the model’s
parameters (Model ECS) produced more detailed competence
profiles and the evaluation quality more consistent with the
observations collected and their interpretation by the experts.

Our study has demonstrated the effectiveness and efficiency
of our approach to student knowledge modelling. Specifically,
we found that the noisy-OR network structure can model
student knowledge with high accuracy and minimal effort once
the assessment rubric is defined. We first evaluated the baseline
model, defined by only two parameters (i.e., slip and guess
probabilities) assumed to be constant across questions and
skills. Even with this minimal parameterisation, we found that
the inferences about the learner’s knowledge were consistent
with the expert assessment. This suggests that the model is
effective even when the number of parameters is small and
can serve as a starting point for subsequent refinements. We
have illustrated this refinement process in the enhanced model,
which used different values of the inhibition parameters to
describe the different task complexities while keeping the
elicitation cost limited thanks to some simplifying assump-
tions. This refinement was shown to improve the quality of
the assessment. Further refinements could be introduced by
removing some of the assumptions.

Our approach is highly practical and efficient for real-world

educational settings. The initial effort required for elicitation is
almost equivalent to that used to define the rubric, and subse-
quent refinements can be made with little additional exertion.
Findings suggest that our approach can facilitate accurate and
efficient student knowledge modelling for various educational
contexts and teachers with a non-technical background.

V. CONCLUSION

This article is an extension of the work initially presented
in the SoftCOM conference paper [15], which proposed a
procedure for deriving a learner model for automatic skill
assessment directly from the competence rubric of any set of
tasks. This study aims to solve the two main limitations of
the previous approach. Firstly, although partially implied by
the structure of the model and implicitly defined in the assess-
ment rubric, the ordering between competence levels was not
strictly enforced in [15]. Secondly, in the previous modelling
approach, either disjunctive or conjunctive gates must be
used, while sometimes it would be helpful to combine both
or implement more general relations between competencies.
Supplementary skills, complementary to those in the rubric and
not under assessment but necessary for the accomplishment of
the task, were not included in the model. In this article, we
provide a method to fulfil both needs. The first one is met by
introducing dummy observed nodes in the network without
changing its structure. The second was achieved by designing
a network with two layers of gates, the first performing the
disjunctive operation through noisy-OR gates and the second
executing the conjunctive one by a logical AND.

The approach has been illustrated, and its feasibility demon-
strated by implementing the automatic assessment of the Cross
Array Task (CAT) [16]. Four models based on noisy gates
Bayesian networks (BNs) have been developed and evaluated.
By comparing the BN-based CAT score obtained for the 109
pupils performing the CAT to the original scores assigned by
the experts, we have shown the consistency of the four models
developed with the expert assessment. Moreover, by analysing
the more detailed individual student assessment provided by
the posterior probabilities, we have shown that by adding
constraints and supplementary skills to the original baseline
model, as well as by refining its parameters, it was possible
to improve the quality of the assessment, its consistency the
student behaviours, and the coherence between the model out-
comes and the partial ordering between competencies defined
by the assessment rubric, increasing the modelling tool’s flex-
ibility and allowing for a more accurate result. Outcomes also
confirmed that changes from our previous modelling approach
do not compromise the model compact parametrisation, its
simple elicitation by experts and its interpretability, derived
from using noisy gates BNs [13].

The proposed approach offers a promising practical, and ef-
ficient student knowledge modelling solution. By allowing for
a straightforward translation of assessment rubrics into a flex-
ible and scalable mathematical model, this approach enables
more widespread use of Intelligent Tutoring and Assessment
Systems (ITAS) that can interact with learners automatically
and in real time. The combination of assessment rubrics and
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the noisy-OR network structure makes this approach useful for
teachers seeking to enhance student learning and performance,
especially those without a technical background.

While the presented work focuses mainly on expert-based
elicitation, ongoing work explores the possibility of improving
the model by updating its parameters based on the evidence
collected during user interaction.

REFERENCES

[1] P. Dawson, “Assessment rubrics: towards clearer and more replicable
design, research and practice,” Assessment & Evaluation in Higher
Education, vol. 42, no. 3, pp. 347–360, 2017.

[2] A. T. Corbett and J. R. Anderson, “Knowledge tracing: Modeling the
acquisition of procedural knowledge,” User modeling and user-adapted
interaction, vol. 4, no. 4, pp. 253–278, 1994.

[3] S. E. Embretson and S. P. Reise, Item response theory. Psychology
Press, 2013.

[4] D. Koller and N. Friedman, Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[5] E. Millán, J. L. Pérez-de-la Cruz, and E. Suárez, “Adaptive Bayesian
networks for multilevel student modelling,” in International Conference
on Intelligent Tutoring Systems. Springer, 2000, pp. 534–543.

[6] M. C. Desmarais and R. S. d Baker, “A review of recent advances in
learner and skill modeling in intelligent learning environments,” User
Modeling and User-Adapted Interaction, vol. 22, no. 1, pp. 9–38, 2012.

[7] E. Mousavinasab, N. Zarifsanaiey, S. R. Niakan Kalhori, M. Rakhshan,
L. Keikha, and M. Ghazi Saeedi, “Intelligent tutoring systems: a sys-
tematic review of characteristics, applications, and evaluation methods,”
Interactive Learning Environments, vol. 29, no. 1, pp. 142–163, 2021.

[8] D. Hooshyar, R. B. Ahmad, M. Yousefi, M. Fathi, S.-J. Horng, and
H. Lim, “Sits: A solution-based intelligent tutoring system for students’
acquisition of problem-solving skills in computer programming,” Inno-
vations in Education and Teaching International, vol. 55, no. 3, pp.
325–335, 2018.

[9] W. Xing, C. Li, G. Chen, X. Huang, J. Chao, J. Massicotte, and C. Xie,
“Automatic assessment of students’ engineering design performance
using a bayesian network model,” Journal of Educational Computing
Research, vol. 59, no. 2, pp. 230–256, 2021.

[10] L. Wu, “Student model construction of intelligent teaching system based
on bayesian network,” Personal and Ubiquitous Computing, vol. 24,
no. 3, pp. 419–428, 2020.

[11] E. U. Rodriguez-Barrios, R. A. Melendez-Armenta, S. G. Garcia-
Aburto, M. Lavoignet-Ruiz, L. C. Sandoval-Herazo, A. Molina-Navarro,
and L. A. Morales-Rosales, “Bayesian approach to analyze reading
comprehension: A case study in elementary school children in mexico,”
Sustainability, vol. 13, no. 8, p. 4285, 2021.

[12] Y. Huang, J. Guerra-Hollstein, J. Barria-Pineda, and P. Brusilovsky,
“Learner modeling for integration skills,” in Proceedings of the 25th
Conference on user modeling, adaptation and personalization, 2017,
pp. 85–93.

[13] A. Antonucci, F. Mangili, C. Bonesana, and G. Adorni, “Intelligent
tutoring systems by bayesian nets with noisy gates,” The International
FLAIRS Conference Proceedings, vol. 35, May 2022. [Online].
Available: https://journals.flvc.org/FLAIRS/article/view/130692

[14] J. Pearl, Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kaufmann, 1988.

[15] F. Mangili, G. Adorni, A. Piatti, C. Bonesana, and A. Antonucci,
“Modelling assessment rubrics through bayesian networks: a pragmatic
approach,” in 2022 International Conference on Software, Telecommu-
nications and Computer Networks (SoftCOM). IEEE, 2022, pp. 1–6.
[Online]. Available: https://ieeexplore.ieee.org/document/9911432

[16] A. Piatti, G. Adorni, L. El-Hamamsy, L. Negrini, D. Assaf,
L. Gambardella, and F. Mondada, “The CT-cube: A framework for
the design and the assessment of computational thinking activities,”
Computers in Human Behavior Reports, vol. 5, p. 100166, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2451958821001147

[17] M. Castoldi, Valutare le competenze. Carocci, 2009.
[18] A. Jonsson and G. Svingby, “The use of scoring rubrics: Reliability,

validity and educational consequences,” Educational research review,
vol. 2, no. 2, pp. 130–144, 2007.

[19] E. Poulakis and P. Politis, Computational Thinking Assessment: Litera-
ture Review. Cham: Springer International Publishing, 2021, pp. 111–
128.

[20] D. Huber, R. Cabañas, A. Antonucci, and M. Zaffalon, “Crema:
A java library for credal network inference,” in Proceedings of the
10th International Conference on Probabilistic Graphical Models, ser.
Proceedings of Machine Learning Research, M. Jaeger and T. D.
Nielsen, Eds., vol. 138. Skørping, Denmark: PMLR, 23–25 Sep 2020,
pp. 613–616. [Online]. Available: https://proceedings.mlr.press/v138/
huber20a.html

[21] M. Chavira and A. Darwiche, “Compiling bayesian networks using
variable elimination.” in IJCAI, vol. 2443, 2007.

[22] A. Ramírez-Noriega, R. Juárez-Ramírez, and Y. Martínez-Ramírez,
“Evaluation module based on bayesian networks to intelligent tutoring
systems,” International Journal of Information Management, vol. 37, no.
1, Part A, pp. 1488–1498, 2017.

[23] M. Eryılmaz and A. Adabashi, “Development of an intelligent tutoring
system using bayesian networks and fuzzy logic for a higher student
academic performance,” Applied Sciences, vol. 10, no. 19, p. 6638, 2020.

[24] A. A. Soofi and M. U. Ahmed, “A systematic review of domains,
techniques, delivery modes and validation methods for intelligent tu-
toring systems,” International Journal of Advanced Computer Science
and Applications, vol. 10, no. 3, 2019.

Giorgia Adorni is a PhD candidate at the Swiss 
AI Lab IDSIA, joint institute USI-SUPSI, with a 
background in Computer Science and Informatics. 
Her research interests include Artificial Intelligence, 
Machine Learning, Computer Science Education, 
Educational Robotics, Learning Technologies, and 
Human-Robot Interaction.

Francesca Mangili is a Senior Researcher at IDSIA, 
the Swiss AI Lab affiliated with the two Universities 
USI and SUPSI. She teaches courses on probability 
and applied statistics at SUPSI and has authored 
more than 40 peer-reviewed publications. Her main 
research interests are in the area of statistics, prob-
abilistic reasoning and machine learning with appli-
cations in various fields among which the medical 
and educational ones stand out.

Alberto Piatti is director of the Department Edu-
cation and Learning of the University of Applied 
Sciences and Arts of Southern Switzerland and pro-
fessor in STEM Education. He has studied mathe-
matics at the Swiss Federal Institute of Technology 
in Zürich and holds a PhD in Economics from the 
University of Lugano.

64 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 1, MARCH 2023

Claudio Bonesana is a Machine Learning Engineer
and Researcher at IDSIA, the Swiss AI Lab affiliated
with the two Universities USI and SUPSI. His main
research interests are in the area of machine learning,
distributed systems, and graphical models for AI and
their application to real world problems.

Alessandro Antonucci is a Senior Lecturer-
Researcher at IDSIA, the Swiss AI Lab located in
Lugano affiliated with the two Universities of South-
ern Switzerland. He is the author of more than 100
peer-reviewed publications and an Area Editor of
the International Journal of Approximate Reasoning.
His research interests mostly focus on probabilistic
graphical models for AI reasoning and machine
learning and their application to explainability and
causality theory.




