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1 Introduction

Dynamic analysis which aims to understand the behavior of software systems at runtime is an important area
in software engineering with various applications in debugging [1, 2], program comprehension [3], perfor-
mance optimization [4, 5], and security [6]. However, collecting dynamic profiles not only imposes some ove-
rheads on the base program, but also the overhead attributable to user-specific analyses may significantly
reduce the performance [7]. The wide-scale deployment of shared-memory multicore systems offers a huge
potential to improve the performance of dynamic analyses by offloading the analysis tasks to under-utilized
CPU cores and executing them in parallel. To this end, several approaches have been introduced in litera-
ture [7, 8,9, 10, 11, 12].

Although all these approaches offload dynamic analyses to spare CPU cores to improve the performance,
none of them provide a high-level API with which programmers can develop custom dynamic analysis tools
on multicores. Unfortunately, developing parallel software for shared-memory multicores using today’s pro-
gramming languages can be challenging as well due to the lack of high-level parallelization constructs [13].
Additionally, existing programming constructs do not support all parallelization needs and may not yield the
expected benefits. For instance, one common solution to program parallelization is to use thread pools. Howe-
ver, following this approach to parallelize fine-grained tasks, which is often the case in the domain of dynamic
analysis, will hardly produce any benefits in terms of performance due to increased costs for object allocation,
garbage collection, and communication among the parallel threads. The increased communication costs is
especially a fundamental issue in shared-memory parallel computing where access to shared data structures
is required [14, 10, 12].

In many dynamic analyses, the analysis methods are often fine-grained tasks that can be executed inde-
pendently from the base program methods, i.e., they produce results or side effects on which the execution
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Figure 1: Sequential execution vs. deferred execution

of the base program do not depend. Hence, when parallelizing analysis tasks, one can aggregate the invo-
cations to these methods in thread-local buffers and execute them altogether to make the parallelized tasks
coarse-grained in order to reduce the communication overheads and to avoid allocating an object for each
fine-grained task. To this end, this paper presents the framework of Deferred Methods. As illustrated in Fi-
gure 1, upon invocation of a deferred method (e.g., methods d1 (args) and d2(args)), instead of immedia-
tely executing the method body, the method ID and all its arguments are stored in a thread-local buffer. When
a buffer becomes full, a customizable processor processes the workload conveyed in the buffer altogether, that
is, the respective method bodies are executed using the buffered arguments. The processor is a pluggable
component that implements a particular buffer processing strategy. For example, the buffer can be processed
synchronously by the same thread that has filled the buffer, or it can be asynchronously processed in parallel
by another thread. In this paper, we present a novel adaptive strategy that combines these two processing stra-
tegies at runtime to adapt the CPU utilization to the workload conveyed in buffers and to exploit under-utilized
cores when possible.

Our framework of deferred methods provides a simple, flexible API in standard Java for deferred execu-
tion of methods. Thanks to automated code generation, details regarding concrete buffer implementations
are hidden from the programmer. Nevertheless, this API provides programmers the required primitives for
managing and customized processing of buffers. More importantly, deferred methods offer several key advan-
tages to improve the performance of dynamic analyses. First, deferred methods allow parallel execution of
workloads conveyed in buffers, taking advantage of under-utilized CPU cores. Second, it is possible to process
buffers using different pluggable, custom processing strategies in a flexible way. Third, with deferred methods
communication costs among parallel threads are paid only once per buffer instead of once per method invo-
cation. Finally, as the bodies of deferred methods that are part of the same buffer are executed one after the
other by the same processing thread, locality will improve if those methods execute similar code (e.g., different
invocations of the same method) or if they access the same data structures.

The contributions of the paper include (i) introducing the notion of deferred methods for parallelizing dy-
namic analyses and providing an API in pure Java that automatically generates the required code for buffering
and handling the deferred methods, (ii) providing an adaptive buffer processing strategy that adapts at run-
time to the CPU utilization of the base program and exploits under-utilized cores for improved performance,
and (iii) a detailed performance evaluation with standard benchmarks that confirms the benefits of deferred
methods.

In the rest of this paper, Section 2 presents a motivating example which is used throughout this paper.
Section 3 provides the API of the framework of deferred methods. Section 4 discusses various buffer processing
strategies. Section 5 describes a detailed performance evaluation. Finally, Section 6 compares the framework
with related work, and Section 7 concludes.



1 public aspect BlueprintAspect {

2 private final ThreadLocal<Stack<JPSP>> stackTL =
3 new ThreadLocal<Stack<JPSP>>() {

4 protected Stack<JPSP> initialValue() {

5 return new Stack<JPSP>();

6
7

}

};
8 pointcut allExecs() : execution(* *(..)) ||
9 (execution(*.new(..))) && !within(blueprint.*);
10 before() : allExecs() {
1 Stack<JPSP> localStack = stackTL.get();
12 CallerData.getCallerData(localStack.peek()).
13 regCallee(thisJoinPointStaticPart);
14 localStack.push(thisJoinPointStaticPart) ;
15 }
16 after() : allExecs() { stackTL.get().pop(); }
17 after() returning(Object obj) : call(*.new(..)) &&
18 'within(blueprint.*) {
19 CallerData.getCallerData(stackTL.get () .peek()).
20 regAlloc(obj);
21 }
2 -
23 }
24 ... // CallerData is not shown to save space.

Figure 2: Simplified aspect for blueprint profiling

2 Motivating Example

Profiling blueprints [15] provides graph-like views of a program’s execution to help programmers iden-
tify bottlenecks and give hints on how to remove them. In these views, each node is represented as
a rectangle whose width and height independently illustrate two desired dynamic metrics (e.g., num-
ber of allocated objects and total size of the allocated objects) for a particular program element (e.g.,
method). Additionally, edges indicate relationships among the program elements (e.g., caller/callee re-
lationships) and the properties of edges can show some characteristics of those relationships (e.g., the
width of edges can show the number of times each callee is called). Therefore, to create such visualiza-
tions, we need to collect mappings elem—<Dynamic metricl, Dynamic metric2, Related program
elements and their properties> for each program element elem at runtime. A relatively simple way
to collect such profiles is to instrument programs using aspect-oriented programming languages like As-
pect]'. For example, Figure 2 illustrates a simplified Aspect] program that can be used to collect map-
pings caller—<Number of allocated objects, Total size of allocated objects, Callees
and the number of times each callee is called> for each method?. In this figure, the class
CallerData, which is not shown for space reasons, stores this mapping data for each method mid.
The instance of this class that corresponds to method mid can be obtained by the static method
getCallerData(mid).

The BlueprintAspect keeps a shadow stack of calls for each thread in the thread-local variable stackTL.
This shadow stack is maintained in order to reconstruct the caller/callee relationships. The before () ad-
vice is woven in method entries. By calling the regCallee(...) method, it registers the method invo-
cation in the collection of callees for the method which is currently on top of the shadow stack. Further-
more, the callee’s identifier is pushed onto the shadow stack. Instances of type JoinPointStaticPart
(abbreviated in this paper as JPSP) serve as method identifiers. They are accessed through the Aspect]’s
thisJoinPointStaticPart pseudo-variable.

The first af ter () advice, which intercepts (normal and abnormal) method completion, pops the comple-
ting method identifier off the shadow stack. The second after () advice which is woven after object alloca-
tions, invokes theregAlloc(. . .) method to increment the number and the total size of the allocated objects
for the current caller with the size of the newly allocated object.

Careful consideration of this program reveals that it is not necessary to synchronously call the

lhttp://www.eclipse.org/aspectj/
2In this section, the term method refers to both method and constructor unless explicitly mentioned.



regCallee(...) and regAlloc(...) methods in the before() and the second after () advice by the
same thread that runs the base program. Since the execution of the base program methods does not depend
on the computations performed by these methods, they can be asynchronously executed in parallel by ano-
ther thread using under-utilized CPU cores. However, as will be discussed in our evaluations (see Section 5),
since these methods perform fine-grained tasks, simply parallelizing them does not pay off due to increased
costs for object allocation, garbage collection, and communication among the parallel threads. More speci-
fically, we measured that sequential blueprint profiling introduces an average overhead of factor 10.58-13.07,
while a naive parallel implementation introduces an overhead of up to factor 190 on standard benchmarks.
Thus, to overcome the parallelization overheads and to improve performance, we make the parallelized tasks
coarse-grained by aggregating the invocations to these methods in a thread-local buffer and processing them
altogether when this buffer is full. The following section presents how this can be done with our framework of
deferred methods.

3 Framework API

Our framework of deferred methods provides a simple, flexible API in standard Java for specifying deferred
methods. It also provides the required primitives for managing and customized processing of buffers. We
present this API with the help of the motivating example presented in Section 2. Figure 3 illustrates a layered
class diagram showing how the framework of deferred methods is used. This class diagram includes three
kinds of classes and interfaces: (i) the ones that are provided by the API, (ii) the ones that are implemented
by the application developer, and (iii) the ones that are automatically generated by the framework at runtime.
The actual code implementing this class diagram is illustrated in Figure 4, showing how this framework is used
to refactor the code in Figure 2.

The Deferred interface in Figure 3 is a marker interface that serves only to mark the classes which
calls to their methods should be deferred. Therefore, to use the framework of deferred methods, first the
user needs to extend this interface with the methods that he wants to execute in a deferred way and then
implement the extended interface. Our framework requires this class to be neither abstract nor final, and
all deferred methods must return void. For instance, as can be seen in the refactored code in Figure 4,
there is a new interface named DefMethods that extends the Deferred interface and defines two methods
profCall(...) and profAlloc(...). This interface is implemented in class DefMethodsImpl such that
the methods profCall(...) andprofAlloc(. . .) respectively invoke the methods regCallee(...) and
reghAlloc(...) which are to be deferred.

Based on the class that implements the deferred methods, i.e., DefMethodsImpl, our framework auto-
matically generates a buffer class, i.e., GeneratedBuffer in Figure 3, that implements the Runnable inter-
face. At runtime, our framework automatically replaces each invocation to a deferred method (e.g., Line 29
in Figure 4) with an invocation of a corresponding method (e.g., append_profCall(...)) in the generated
buffer implementation that appends the method ID and all its arguments to the current thread’s buffer. The
buffer content is stored in several arrays. The integer array methodID holds unique IDs representing the invo-
ked deferred methods (i.e., deferred methods are numbered). The other arrays keep the arguments of deferred
methods. Consequently, the element types of these arrays correspond to the types of the arguments of defer-
red methods. If several deferred methods share the same argument type, the same array is used for storing the
arguments to minimize the number of allocated arrays. For instance, in Figure 4, the type of the first argument
of both methods profCall(...) and profAlloc(...) is JPSP. Hence, the field argA in the buffer holds
the first arguments of invocations to both of these methods.

When a buffer becomes full, it is automatically submitted to the specified processor through calling the
process(buffer) method and a new instance of the buffer is created then. Our framework also modifies
the run () method in java.lang.Thread and in all its subclasses so as to submit the thread’s buffer, even
if it is not full, before its termination. The processor then calls the buffer’s run () method which in turn exe-
cutes all method invocations conveyed in the buffer. In contrast to the automatically generated buffer, the
processor implementation has to be provided by the programmer by implementing the Processor interface.
For convenience, our framework includes processor implementations that are suited for various applications.
It also automatically adapts the processing strategy at runtime based on the CPU utilization of the workload
to exploit under-utilized cores when possible. Section 4 provides a detailed discussion of these processing
strategies.

The user may optionally implement the ProcessingHooks interface in his implementation class to re-
ceive callbacks from the framework before and after processing the buffered method invocations. The main
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1 public interface DefMethods extends Deferred {

2 void profCall(JPSP caller, JPSP callee);

3 void profAlloc(JPSP mid, Object obj);

4}

5 public class DefMethodsImpl implements DefMethods {

6 public void profCall(JPSP caller, JPSP callee) {

7 CallerData.getCallerData(caller) .regCallee(callee);
8 }

9 public void profAlloc(JPSP mid, Object obj) {

10 CallerData.getCallerData(mid) .regAlloc(obj);

11 }

12}

13 public aspect DefBlueprintAspect {

14 private static final int NUM_THREADS = 4;

15 private static final DefMethods def =

16 (DefMethods)DeferredExecution. createDeferredEnv(

17 DefMethods.class, DefMethodsImpl.class,
18 new ThreadPoolProc(NUM_THREADS));
19 private final ThreadLocal<Stack<JPSP>> stackTL =

20 new ThreadLocal<Stack<JPSP>>() {

21 protected Stack<JPSP> initialValue() {

22 return new Stack<JPSP>();

23 }

24 };

25 pointcut allExecs() : execution(* *(..)) ||

26 (execution(*.new(..))) && !'within(blueprint.x);

27 before() : allExecs() {

28 Stack<JPSP> localStack = stackTL.get();

29 def .profCall(localStack.peek(), thisJoinPointStaticPart);
30 localStack.push(thisJoinPointStaticPart);

31 }

32 after() : allExecs() { stackTL.get().pop(); }

33 after() returning(Object obj) : call(*.new(..)) &&

34 'within(blueprint.*) {
35 def .profAlloc(stackTL.get () .peek(), obj);

36 }

37 ce

38 }

39 ... // CallerData is not shown to save space.

Figure 4: Simplified aspect for blueprint profiling using deferred methods

use case of this interface is to support the implementation of custom coalescing strategies. For instance,
instead of accessing a shared data structure each time that a method is invoked, one can define some
instance fields in class DefMethodsImpl to record the invocation. These fields can be initialized in the
beforeProcessing () method, updated in the deferred methods, and finally the results can be integrated
into the shared data structure in the afterProcessing() method. In this way, we prevent the shared data
structure becoming a bottleneck in parallelized access.

The interface DeferredEnv provides some methods that can be used by programmers to influence the
management of buffers and processing of deferred methods at runtime. The methods setProcessor(...)
and getProcessor () are used to change or access the processor associated with a deferred environment
and so, they can be used to influence the buffer processing strategy at runtime. The buffer capacity, which
can be queried with method getBufferCapacity(), is initially specified through a system property, and
may be changed at runtime by calling the method setBufferCapacity(int). Changing the buffer capacity
influences subsequent buffer allocations; it does not change the capacity of the current buffer. Although our
framework automatically processes a buffer when it becomes full, method processCurrentBuffer () canbe
used to force immediate processing of the current thread’s buffer, independently of its filling state; afterwards,
a new buffer is created.

Synchronization between the thread invoking a deferred method, and the thread executing it can be achie-
ved by passing a synchronization object (e.g., a Semaphore instance) as an argument to the deferred method.
It is also possible to pass future value objects as arguments to deferred methods, such that the caller can la-
ter wait for a result. This mitigates the restriction that only methods with return type void can be deferred.



public class SynchronousProc implements Processor {
public void process(Runnable buffer) {
buffer.run();

¥

(a) SP processor implementation

public class ThreadPoolProc implements Processor {
private final Executor exec;

public ThreadPoolProc(int numberThreads) {
exec = Executors.newFixedThreadPool (numberThreads) ;

}

public void process(Runnable buffer) {
exec.execute (buffer);

}
(b) TP processor implementation

Figure 5: Two sample processor implementations SP and TP

Additionally, the method createCheckPoint () can be used to create processing checkpoints (instances of
type ProcessingCheckPoint). A processing checkpoint marks the current position in the buffer of the cur-
rent thread T, and allows T to wait for the processing of all deferred methods invoked by it before creating the
checkpoint. For instance, this can be used to make sure that a certain previously invoked deferred method
has been executed before a thread of the base program can proceed. While method isProcessed() of type
ProcessingCheckPoint is non-blocking, method awaitProcessed() is blocking. Since buffers submit-
ted by the same thread may be processed out-of-order (depending on the Processor implementation), it is
not sufficient to wait until the deferred methods conveyed in just the current buffer have been processed; the
deferred methods in previously submitted buffers (for the same deferred environment and the same thread)
must have been processed as well.

Based on the deferred interface provided by the user (i.e., DefMethods), our framework automatically
generates and loads the class GeneratedDeferredEnv. This class acts similar to a dynamic proxy and redi-
rects all invocations to deferred methods to their corresponding methods in the buffer implementation (i.e.,
GeneratedBuffer) which in turn appends that invocation to the buffer for later processing.

The method createDeferredEnv(...) of class DeferredExecution is called by the programmer to
create an instance of the deferred environment. After that, all invocations to deferred methods are buffered
and processed later using this environment. It is also possible for the user to call this method several times to
create several instances of the deferred environment with different buffers and processors for various needs.

4 Buffer Processing Strategies

We propose three strategies for processing the full buffers: (i) synchronous processing (SP) by the thread that
has filled the buffer, (ii) asynchronous (thread-pool) processing (TP) by dedicated threads in a pool, and (iii)
adaptive processing (AP) that reconciles synchronous and asynchronous processing. In the following, the term
producer refers to a thread of the base program that fills buffers, whereas the term consumer refers to a dedica-
ted thread that only processes buffers. The number of producers is the number of threads in the base program,
whereas the number of consumers is a controlled variable depending on the processing strategy.

4.1 Synchronous Processing (SP)

With SP (Figure 5(a)), each full buffer is processed by its producer; there are no consumers. Hence, SP does
not parallelize base program execution and dynamic analysis. SP guarantees that for each producer, the full
buffers are processed in order.

At first glance, SP only incurs extra overheads in comparison with traditional, sequential dynamic ana-
lysis without deferred methods: buffer allocation, initialization, and garbage collection, as well as storing to
and reading from the arrays in the buffer. However, the results of our evaluations in Section 5.4 show that SP
can improve locality since buffers are processed altogether. Furthermore, if the deferred methods implement



some coalescing algorithms, the number of time-consuming actions executed by the dynamic analysis may be
reduced.

4.2 Thread-Pool Processing (TP)

With TP (Figure 5(b)), all buffers are processed by dedicated consumers. In this paper, we assume that the
number of consumers Nrp (i.e., the thread pool size) is fixed, and that the thread pool uses a bounded blocking
FIFO queue of capacity Qrp. That is, if the queue is full, producers block until there is space in the queue. The
use of a bounded blocking queue helps limiting memory consumption when full buffers are produced at a
faster rate than they are consumed. On the other hand, when Qrp is too small, producers might be blocked
too frequently and consumers thus starve. Moreover, with TP, full buffers from the same producer may be
processed out-of-order due to the presence of multiple consumers. In contrast to SP, TP takes the advantage of
under-utilized cores by parallelizing execution of the base program (by producers) and dynamic analysis (by
consumers). Similarly to SB, TP may also benefit from improved locality and from coalescing.

Nonetheless, since the communication of full buffers between threads introduces extra overhead, there are
workloads where SP outperforms TP, as will be shown in Section 5. In particular, if producers keep all cores
busy, there are no under-utilized cores that could be exploited by the consumers.

4.3 Adaptive Processing (AP)

AP aims at combining the benefits of TP and SP. On the one hand, when the producers under-utilize some
cores, consumers can take advantage of the available computing resources for processing full buffers in parallel
with the execution of the base program. On the other hand, when the producers are able to keep all cores busy,
it is more efficient to process a full buffer by its producer than to pass it to a consumer, which would compete
with the producer for CPU time.

Similar to TP, AP maintains a pool of consumers, which are however executing at minimum thread priority.?
As (most) producers are typically executing at normal thread priority, they are generally scheduled more fre-
quently than consumers if they are competing for CPU time (albeit the exact scheduling behavior depends on
the operating system, as state-of-the-art JVMs rely on native threads). Consequently, consumers can execute
when some cores are under-utilized, but rarely preempt producers. Here, we assume the number of consu-
mers N4p equals to the number of cores in the system. That is, if all producers are blocked, the consumers can
exploit all cores if there are enough full buffers to be processed. If the dynamic analysis involves frequently blo-
cking actions (which is not the case for the analyses considered in this paper), a higher number of consumers
may be appropriate.

While AP uses a bounded FIFO queue of capacity Qap, it never blocks a producer. If the queue is full,
the producer itself processes the full buffer, like SP. That is, if there are not enough under-utilized cores for
consumers to keep up with the production of full buffers, the queue becomes full, and then buffer production
is throttled as producers process their full buffers.

While AP significantly outperforms SP and TP in our case studies (see Section 5), it also has some draw-
backs. Out-of-order processing of full buffers from the same producer occurs much more frequently than with
TP. Moreover, AP is prone to starvation, if a producer uses synchronization to wait for the completion of a de-
ferred method (e.g., using a ProcessingCheckPoint); this is however not the case for the dynamic analyses
considered in this paper. If other producers keep all cores busy, consumers may not be able to process full buf-
fers in the queue. However, this problem is mitigated on operating systems where the scheduler dynamically
changes thread priorities (i.e., if a thread has not been scheduled for a long time, its priority is increased). Such
schedulers ensure that the low-priority consumers eventually receive some CPU time, if they are not blocked.

5 Evaluation

In this section we evaluate our framework using the blueprint profiler shown in Figure 4 on two machines
with different micro-architectures. First, we investigate the performance impact of different buffer and queue
capacities in order to select the best values of these parameters. (Section 5.2). Second, we explore the perfor-
mance impact and CPU utilization of different buffer processing strategies (Section 5.3). Third, we analyze the

3We use method setPriority(...) in class java.lang.Thread to manipulate the priorities of the consumers before they are
started. Note that the Java language specification [16] and the JVM specification [17] do not exactly specify the semantics of Java thread
priorities, in order to ease implementation of the JVM on different platforms.



Qap Bap
32 128 512 1024 8192 16384 32768

16 0.70 1.02 1.38 1.70 2.56 2.57 2.60
32 0.72 1.01 1.47 1.73 2.55 2.58 2.61
64 0.72 1.05 1.49 1.78 2.56 2.62 2.60
128 0.71 1.09 1.54 1.84 2.55 2.61 2.59
512 0.73 1.18 1.71 1.94 2.52 2.57 2.56
1024 0.74 1.21 1.72 1.97 2.49 2.50 2.44
2048 0.75 1.26 1.75 1.96 2.42 2.39 2.36

(a) Machine 1

Qap Bap
32 128 512 1024 8192 16384 32768

16 0.35 0.67 1.04 1.34 2.48 2.63 2.67
32 0.35 0.63 1.06 1.42 2.46 2.61 2.70
64 0.34 0.61 1.10 1.48 2.44 2.62 2.67
128 0.33 0.64 1.15 1.51 2.49 2.61 2.66
512 0.35 0.64 1.16 1.53 2.46 2.57 2.57
1024 0.35 0.64 1.18 1.54 2.40 2.47 2.46
2048 0.35 0.64 1.17 1.54 2.28 2.36 231

(b) Machine 2

Table 1: Speedup factor (geometric mean for DaCapo) of blueprint profiling with deferred methods and AP over sequential
analysis for different buffer capacities B4p and queue capacities Qap

impact of deferred methods on locality using hardware performance counters (Section 5.4). Fourth, we inves-
tigate the impact of extended object lifetime due to deferred methods on the consumption of heap memory
and on garbage collection time (Section 5.5). Finally, we summarize the results obtained with a second dyna-
mic analysis—data race detection—in order to confirm that deferred methods are beneficial to a wide range of
different analyses (Section 5.6).

5.1 Evaluation Setup and Baseline

We use the benchmarks in the DaCapo suite (dacapo-2006-10-MR2)* as base programs in our evaluations. To
ensure that the ending time of a benchmark run is not prematurely taken, we extend the benchmark harness
to wait until all pending buffers have been processed. The measurements reported in this paper correspond to
the median of 11 benchmark runs within the same JVM process in order to attenuate the perturbations due to
class-loading, load-time instrumentation, and just-in-time compilation.

Our dynamic analyses are implemented as aspects in the Aspect] language. The analysis aspects are wo-
ven into the base programs with MAJOR [18] (i.e., MAJOR performs the required bytecode instrumentation), an
aspect weaver that enables complete method coverage; that is, every method which has a bytecode representa-
tion is woven, including methods in the Java class library. Thanks to MAJOR, the analyses yield comprehensive
information representing overall program execution (but excluding the execution of native code).

All measurements are collected on two different quad-core machines with different micro-architectures,
an Intel Core i7 Q720 (1.6 GHz, 8 GB RAM) referred to as Machine 1 in this section, and an Intel Core2 Quad
Q9650 (3.0 GHz, 8 GB RAM) referred to as Machine 2. We disable frequency scaling on both machines and
also disable hyper-threading on Machine 1. Both machines run under Ubuntu GNU/Linux 10.04 and we use
Oracle’s JDK 1.6.0_20 Hotspot Server VM (64 bit) with 7 GB maximum heap size and with the default garbage
collector. As discussed in Section 4, we configured the TP and AP buffer processing strategies to use a fixed
thread pool of four threads which is an appropriate choice on our quad-core machines.

Traditional, sequential analysis serves us as a baseline for assessing the speedup thanks to deferred me-
thods. In comparison with the execution of the unmodified benchmarks without any instrumentation, the
baseline introduces an average overhead of factor 10.58 (resp. factor 13.07) on Machine 1 (resp. on Machine 2)
for blueprint profiling, and an average overhead of factor 28.67 (resp. factor 35.51) on Machine 1 (resp. on Ma-
chine 2) for data race detection; the average is computed as the geometric mean of the measurements for all
DaCapo benchmarks.

4http://www.dacapobench.org/



SpP TP AP

Bsp Brp Qrp Bap Qap
Machine 1 32768 8192 2048 16384 64
Machine 2 32768 8192 2048 32768 32

Table 2: Parameters of SP, TP, and AP for blueprint profiling

5.2 Impact of Buffer and Queue Capacities

In the following we investigate the performance impact of buffer capacity (needed for SP, TP, and AP) and queue
capacity (needed for TP and AP) on both machines. The values for these parameters that yield the highest
average speedup (geometric mean for the DaCapo benchmarks) over our baseline are used in the experiments
presented in the next subsections.

Table 1 presents the average speedup factor for deferred blueprint profiling with AP depending on different
buffer capacities Bop and queue capacities Q4p. Note that a more complete exploration of the parameter
space was not possible due to the large number of time-consuming experiments. For each value in Table 1,
11 x 11 =121 benchmark runs are needed (geometric mean of 11 benchmarks, for each benchmark taking the
median of 11 runs within the same JVM process). Consequently, the data for some buffer and queue capacities
the reader might expect (e.g., Bsp = 2048) are not presented here.

Nonetheless, Table 1 presents enough data to observe four trends for blueprint profiling with AP, which
hold for both machines: (i) For a given buffer capacity Bap, the speedup factor is rather stable across different
queue capacities. (ii) For a given queue capacity Q4p, the speedup factor increases with an increasing buffer
capacity. (iii) When the buffer capacity is sufficiently large, (i.e., B4p > 16384), small queue capacities yield
higher speedups than larger queue capacities. (iv) Small buffer capacities may result in slowdowns with respect
to the baseline (i.e., values below 1.0 in Table 1). The last observation also supports our claim that parallelizing
small workloads often does not pay off.

As highlighted in Table 1, the highest speedup factor for deferred blueprint profiling with AP on the first
machine is 2.62 (achieved with Q,p = 64 and B,p = 16384), whereas on the second machine, the highest
speedup factor is 2.7 (achieved with Q4p =32 and B4p = 32768). For the other buffer processing strategies (SP
and TP), we gathered the best parameter settings on both machines in the same way. While the details of this
study cannot be presented in this paper due to space limitations, Table 2 gives a summary of the parameter
settings that yield the highest speedup factors.

5.3 Impact of Buffer Processing Strategies

In the following we explore the performance impact of different buffer processing strategies. Figure 6 summa-
rizes the speedup obtained with deferred methods (over the baseline) for the buffer processing strategies SP,
TP and AP (the concrete parameters are given in Table 2).

We analyze the results for the different buffer processing strategies in more detail by exploring CPU uti-
lization (for the baseline and for deferred execution with SB, TP, and AP) and the number of pending buffers
in the queue (for deferred execution with TP and AP). Because of space limitations, CPU utilization diagrams
are presented only for two benchmarks on Machine 1, the single-threaded bloat (Figure 7) and the multi-
threaded 1usearch (Figure 8). The diagrams correspond to the third run of the respective benchmark within
a single JVM process; hence, class-loading, load-time instrumentation, and just-in-time compilation do not
significantly perturbate the measurements. The data is obtained by sampling CPU utilization every 200ms.

CPU utilization of the baseline is illustrated in Figure 7(a) for bloat and in Figure 8(a) for lusearch. For
the single-threaded bloat, CPU utilization is almost constantly 100%; that is, the benchmark thread keeps
one of the four available cores busy; temporarily reduced CPU utilization is due to blocking actions such as
I/0. For the multi-threaded 1usearch, CPU utilization is about 400% most of the time; that is, the benchmark
executes a well-parallelized workload that does not leave much under-utilized CPU resources.

SP. As shown in Figure 6, the use of deferred methods with SP (which does not involve any parallelization)
outperforms the baseline for many benchmarks, in spite of the extra overheads due to buffer management.
This result suggests that buffering improves locality; this claim is validated later in Section 5.4.

CPU utilization for deferred analysis with SP is illustrated in Figure 7(b) for bloat and in Figure 8(b) for
lusearch. While the CPU utilization is similar to the baseline, there are a few periods where CPU utilization
is reduced. We found this reduction to be caused by extra garbage collections due to the increased memory
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Figure 6: Speedup of blueprint profiling with deferred methods with SP, TP, and AP (over sequential analysis)

consumption because of buffer allocations. For the multi-threaded 1usearch, multiple threads allocate buf-
fers in parallel such that the impact of the extra garbage collections are more significant than for bloat.

TP. In contrast to SP (where the observed speedup is only due to buffering), the speedup with TP is because
of buffering and parallelization. Figure 6 confirms that on average (geometric mean for DaCapo), deferred
analysis with TP yields a speedup of factor 2.33-2.47 over the baseline.

Forbloat in Figure 7(c), the four consumer threads roughly use 200% of the CPU resources (i.e., two cores),
in addition to the CPU utilization of the producer thread (in the base program) of roughly 100%. Figure 6(a)
confirms that deferred analysis with TP yields high speedup of factor 3.67 for bloat on Machine 1. Figure 7(e)
illustrates the number of pending buffers in the queue. There are always less than 300 pending buffers for
bloat.

In contrast to bloat, lusearch does not benefit from deferred analysis with TP, because the producers
constantly keep all cores busy; that is, there are no under-utilized cores the consumers could exploit. In fact,
deferred analysis with TP performs worse than the baseline on both machines (speedup of factor 0.83 in Fi-
gure 6(a)). Figure 8(c) shows that the producers only utilize roughly 100% of the CPU resources, whereas the
four consumers use up to 300%. Figure 8(e) indicates that the queue quickly becomes full (Q7p =2048); that
is, producers are blocked waiting for free space in the queue. Consequently, in the case of lusearch, defer-
red analysis with TP results in many thread switches that introduce extra overhead. In addition, the number
of garbage collections may increase because of the increased memory consumption due to pending buffers.
As shown in Figure 6, xalan, another heavily multi-threaded benchmark, also performs badly under deferred
analysis with TP. For all other benchmarks, which are either single-threaded or synchronized in a way that se-
verely limits parallelism, deferred analysis with TP yields a considerable speedup of factor 2.22-3.72 on both
machines.

AP. Asshown in Figure 6, deferred analysis with AP yields the highest average speedup of factor 2.62-2.7 on
both machines. It also achieves the maximum speedup of factor 4.05 for bloat on Machine 1 and of factor 3.8
for pmd on Machine 2.

Forbloat in Figure 7, there is not much difference in CPU utilization between TP and AP. Still, the speedup
with AP is a factor of 4.05 (in comparison to factor 3.67 with TP) on Machine 1 (Figure 6(a)). The number of
pending buffers with AP is smaller than with TP, because Q4p = 64, whereas Q7p =2048.

For lusearch in Figure 8, CPU utilization with AP is completely different from TP. Because the queue is
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Figure 7: CPU utilization and number of buffers in queue for bloat on Machine 1

often full (Figure 8(f)), the producers process the full buffers most of the times; in contrast to TP, the producers
are not blocked with AP. The consumers have lowest thread priorities and, therefore, execute rarely since the
producers with higher priorities keep all cores busy. The producers use roughly 350% of the CPU resources.
Figure 6(a) confirms that deferred analysis with AP yields a speedup of factor 1.10 for lusearch on Machine 1.
In this particular case, SP still outperforms AP, but the difference in performance is small.

Since under AP all consumers run with lowest thread priorities (whereas under TP all consumers run with
normal thread priorities), we also explore whether TP with lowest thread priorities for the consumers achieves
comparable speedup as AP. However, through evaluating TP with lowest consumer priorities, we did not mea-
sure any significantly different speedup for any of the benchmarks on both machines. In fact, on average
(geometric mean for DaCapo), the speedup for TP with normal consumer priorities is slightly higher on both
machines.

We conclude that AP outperforms SP and TP for most benchmarks, as it achieves to reconcile the benefits
of SP and TP, In those cases where SP or TP outperform AP, the difference in speedup between the winning
strategy and AP is very small.

5.4 Impact on Locality

On the one hand, deferred methods introduce some sources of overhead, such as buffer allocation and garbage
collection, storing to and loading from the buffer, and invocation of a buffer processor. On the other hand,
deferred methods allow parallelization of small workloads and may improve locality. Locality improvement
thanks to deferred methods is quite common in dynamic analysis, as the data structures accessed by analysis
code are typically different from those accessed by the base program. Since the bodies of deferred methods are
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Figure 8: CPU utilization and number of buffers in queue for lusearch on Machine 1

executed altogether when a buffer is processed, deferred methods may improve locality of the analysis code
and sometimes also of the base program because the execution flow in the base program is less “disrupted” by
storing data in a thread-local buffer than by performing analysis actions that may require expensive access to
shared data structures.

To quantify these locality benefits, we use hardware performance counters to measure performance of
the L1-data cache for deferred analysis with SP. As SP does not benefit from parallelization, the fact that the
overheads of buffer management are not noticeable in Figure 6 suggests that they are outweighed by locality
improvements.

Figure 9 summarizes the measured L1-data cache hit rate for the DaCapo benchmarks on Machine 1, com-
paring the baseline with deferred analysis using SP. The results show that deferred analysis with SP increases
L1-data cache hit rate for all benchmarks. On average (geometric mean for DaCapo), the hit rate is 95.1% for
the baseline, and 96.6% for deferred analysis with SP. While measurements of hardware performance coun-
ters confirm that other memory-related performance metrics are also improved, a detailed evaluation of such
results is not in the scope of this paper.

5.5 Impact of Extended Object Lifetime

Two well-known issues concerning the use of buffers are increased heap memory consumption and increased
object lifetime. As threads in the base program may perform blocking actions, filling a buffer can take arbitra-
rily long time. Before a full buffer has been processed, the garbage collector cannot reclaim any of the buffered
objects, thus leading to a higher number of objects alive at the same time. In particular, for generational gar-
bage collection, increased object lifetime can increase garbage collection time, because old objects are moved
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SP TP AP

Bsp Brp Qrp Bap Qap
Machine 1 16384 4096 2048 8192 64
Machine 2 16384 4096 2048 16384 32

Table 3: Parameters of SP, TP, and AP for data race detection

to the next generation. In the case of blueprint profiling, each object allocated in the base program is stored in
a buffer. Consequently, deferred analysis may possibly increase the lifetime of each allocated object.

Figure 10 illustrates the impact of an increasing buffer capacity on garbage collection time and on heap
memory usage (average for DaCapo) with AP on Machine 1. The setting of Q4p corresponds to Table 2 (i.e.,
Qap =64). For buffer capacities between 8192 and 32768, garbage collection time increases only slightly, whe-
reas for larger buffer capacities, garbage collection time increases significantly. Heap memory usage remains
rather stable. These results suggest that increased object lifetime due to deferred methods can have a strong
negative impact on garbage collection time, whereas the extra heap memory consumption for the buffers is
relatively insignificant.

We conclude that too large buffer capacities must be avoided because they can impair performance of the
garbage collector. Similarly, with TP and AP, the queue capacity Qrp respectively Q4p must not be set too large.

5.6 Data Race Detection

To confirm the applicability and effectiveness of deferred methods and of the presented buffer processing
strategies, we evaluate a second dynamic analysis, data race detection. While space limitations prevent us
from presenting the detailed evaluation results, in the following we summarize the achieved speedup over the
baseline, a sequential implementation of data race detection.

Datarace detection is based on Racer [19], an adaptation of the Eraser algorithm [20] for Java. We refactored
an existing parallelized implementation of Racer [11] to use deferred methods. While blueprint profiling acts
upon method invocation, completion, and object allocation, data race detection operates upon field access,
lock acquisition, and lock release.

Following the approach used for blueprint profiling, we first empirically determine the buffer and queue
capacities that yield the highest average speedup (geometric mean for DaCapo) for SP, TP, and AP on Machine 1
and Machine 2; Table 3 summarizes these values. Table 4 presents the average speedup for the different buffer
processing strategies.

The general trend of the speedup factors—that is, increasing from SPB, TP, to AP—is observed similarly to
the case of blueprint profiling. SP only gains marginal speedup on Machine 2, but results in a slight slowdown
on Machine 1. In contrast, TP and AP achieve high speedup, and AP significantly outperforms TP on both
machines. The speedup gains for all three buffer processing strategies are consistent across both machines.
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| SP TP AP

Machinel | 099 1.98 222
Machine?2 | 1.03 1.86 222

Table 4: Geometric mean of the speedup factor for data race detection.

The presented results from data race detection as well as blueprint profiler show that deferred methods
together with the adaptive buffer processing strategy AP allow to effectively parallelize base program execution
and dynamic analysis, yielding consistent speedup in different case studies and on different machines.

6 Related Work

Dynamic Analysis on Multicores. Offloading the analysis overheads to under-utilized cores to improve the
performance of dynamic analyses is becoming increasingly popular in recent years with the widespread de-
ployment of multicores [7, 10, 12, 9, 8, 11].

PiPA (Pipelined Profiling and Analysis) [7] applies pipelining techniques to parallelize profiling on multi-
cores. It performs low overhead profiling in the same thread of the application to generate profiles, and then
it uses several threads to rebuild the collected profile and and to analyze it. To reduce the costs of profiling
and communication among the parallel threads, PiPA keeps the collected profiles and analysis in a buffer. In
another work [10], a dynamic analysis framework is introduced which uses CAB (Cache-friendly Asymmetric
Buffering), a lock-free ring buffer, to enable efficient communication between the base program and analysis
threads. In contrast to our framework of deferred methods, although both of these approaches also use buf-
fering to reduce thread communication overheads, they do not provide an API for programmers to develop
parallelized dynamic analyses. On the other hand, our framework provides such an API and automatically
generates the required code for parallelizing the base program and handling the buffers.

[12] also takes advantage of multicores to parallelize the profiling tasks with the base program. However,
its approach to reduce the communication overheads is based on the observation that it is not necessary to
communicate all the data items to the profiler and it itself can compute some needed information based on
the already communicated data. As such, it benefits from compiler support to determine the set of data items
to forward and the set to be computed by the profiler. On the contrary, our framework does not restrict the
data items to be communicated to the profiler; instead, we store the data items in thread-local buffers and
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communicate them altogether when a buffer becomes full.

Both Shadow Profiling [9] and SuperPin [8] are profiling techniques that fork off a shadow process that runs
in parallel with the base program process. In these techniques, the shadow process executes the instrumented
code while the thread of the base program runs the uninstrumented code. However, both Shadow Profiling
and SuperPin are limited to single-threaded applications, target parallelism at the level of processes, and use a
low-level instrumentation scheme without providing an API for developing parallelized applications.

The work in [11] introduces the notion of buffered advice, a mechanism for the Aspect] aspect-oriented
programming language in which advice invocations that are marked with an @Buffered annotation are ag-
gregated in a thread-local buffer, and processed altogether when this buffer is full. Compared to buffered ad-
vice, our framework provides the following improvements: (i) while buffered advice is limited to the Aspect],
deferred methods offer a general solution for Java; (ii) while buffered advice requires new language features,
deferred methods do not depend on any new language constructs; (iii) while buffered advice supports only
a single buffer with a singleton processor, deferred methods support several buffers with different processing
strategies; (iv) deferred methods support processing check points; and (v) coalescing of deferred methods is
possible.

Thread Management and Scheduling. Thread pools are widely adopted for task parallelization and perfor-
mance improvement in modern applications [21]. For instance, [22] presents a number of examples in the
domain of realtime middleware infrastructure where thread pools are used to improve the performance of
programs on multicores.

[23] provides a framework based on dynamic performance tuning to determine where and how to create
speculative threads at runtime in the context of the Thread-Level Speculation (TLS) execution model. TLS al-
lows potentially dependent threads to run speculatively in parallel. The creation of speculative threads is based
on the performance impact estimated by monitoring hardware counters of the speculative threads. Another
work presented in [24] also uses dynamic feedbacks at runtime to determine the optimal number of threads
for each loop in a parallel application on a SMT multiprocessor.

In the field of thread scheduling, there are many approaches showing the importance of correct thread-to-
CPU mapping. For instance, [25] illustrates how and to what extent contention for shared resources, such as
cache, memory controller, and memory bus can be mitigated via thread scheduling. [26] presents a compiler-
supported approach to map an already parallelized application to cores. It uses machine learning techniques
to model the machine behavior and to predict the optimal number of threads and optimal scheduling policy
for any given program.

While all the aforementioned approaches work at low levels (e.g., operating system) to automatically de-
termine the number of threads or to schedule them, our framework provides a high-level API for programmers
and supports pluggable buffer processing strategies to explore under-utilized core.

7 Conclusion

The wide-scale spread of multicores offers a significant opportunity to improve the performance of dynamic
analyses by parallelizing the analysis tasks with the base program execution. However, since these analyses are
often fine-grained, the potential benefits of parallelism would otherwise be offset by the overheads of thread
communication, plus the allocation and garbage collection of wrapper objects. This paper addressed this
issue by presenting the framework of deferred methods, a simple, flexible API in standard Java that helps im-
prove locality and reduce communication among the parallel threads by aggregating the invocations to ana-
lysis methods in thread-local buffers and processing them altogether. In this framework, while programmers
can provide their own buffer processing strategies, the details of buffering are hidden and the required code is
automatically generated.

We also presented an adaptive buffer processing strategy that adapts to the CPU utilization of the workload
conveyed in buffers in order to exploit under-utilized cores when possible. A thorough performance evaluation
with two different cases studies (a profiler and a data race detector) on two different quad-core machines with
standard benchmarks confirmed that this framework is effective in improving the performance of dynamic
analyses. In particular, our framework together with the adaptive buffer processing strategy resulted in an
average speedup of factor 2.2-2.7 for our case studies.

For future work, we plan to extend this framework and automatically tune the capacity of buffers at runtime
for improved performance. We also intend to explore the use of this framework in other application domains
such as graphical user interfaces (GUIs).
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