
Chapter 1

A Methodology for Bridging the Gap
between UML and Codesign

Ananda Shankar Basu�, Marcello Lajolo�, Mauro Prevostini�

�NEC Laboratories America
Princeton NJ, USA

�ALaRI, University of Lugano
Lugano, Switzerland

Abstract The Unified Modeling Language (UML) is getting more popular among system
designers due to the need to raise the level of abstraction in system specifica-
tions. We present here a methodology that integrates UML specifications with
a hardware/software codesign platform. This work aims to give a contribution
toward SoC Design Automation starting from system level specification down to
hardware/software partitioning and integration.

1. Introduction

With the increasing design complexity and the reduction of the time to market
windows, the design of electronic systems has become a challenging task to be
handled by traditional methodologies. Embedded systems design in compari-
son to traditional software development requires not only to verify the functional
correctness, but also to satisfy tight performance and cost constraints. Hence,
new methodologies are needed to improve design productivity and derive high
performance low cost implementations keeping in mind the reuse of pre de-
signed components.

The software community, after several years of work, converged on a set of
notations for developing specifications of object oriented systems known as the
Unified Modeling Language or UML [17] that has been very successful as a
visual way for describing software. However, UML is not limited to software
modeling and the development of UML 2.0 has been undertaken with the express

� � � � � ���� 	
���
 �� ����� ���	�� � � � � �

2

intention of producing a language that has benefits for a much wider audience
than just software developers, including the world of systems engineering.

In this work, we present an integration of a UML based modeling method-
ology with a C based design technology called ���� (Application to C to
Exploration to System LSI) [8] that leverages on high level synthesis and cov-
erification tools and aims to assist the designer in the hardware/software parti-
tioning and architecture selection phases. ���� has the unique advantage with
respect to all similar approaches to be able to leverage off the strengths of two
key pieces in NEC’s C based design flow [23]: �����, a behavioral hard-
ware synthesis tool and ��	��
	��, a hardware/software coverification tool.
UML complements����with an object oriented modeling language with both
graphical and textual notations, organized in a set of diagrams, each diagram
capturing a different aspect, or level of abstraction, of the system. The result is a
unified design flow from system specification down to system implementation.

This chapter is organized as follows. Section 1.2 talks about the state of the art
in electronic system level (ESL) design and focuses on our main contributions.
Section 1.3 describes the ���� codesign flow, which is an integral part of our
methodology. Section 1.4 talks about the hardware oriented modeling aspects
of UML. Section 1.5 describes how the model can be verified in the UML
environment. Section 1.6 talks about the link between UML specifications and
the codesign environment. Section 1.7 presents our conclusions.

2. State of the Art and Contribution

As the complexity of systems increases, so does the importance of good
specification and modeling techniques. Many factors contribute to the success
of a project, and certainly one we cannot do without is a rigorous modeling
language standard (see, e.g., [7, 13]). Introduced in recent years,UML [17] is
now widely used, historically for requirements specification and for the design
of complex software systems and since at least a couple of years also for hard-
ware modeling and for embedded systems design. Although UML has a lot
of advantages, is still not fully reliable for hardware description, especially for
event semantics [3, 9]. This lack of semantics for hardware modeling exists
because UML was originally thought by the software development community.
The Object Management Group (OMG) [14] is at the moment assessing it in
order to define standard semantics able to improve hardware description mod-
eling. These new standards have been recently adopted by OMG through UML
2.0 [22].

On the other hand, Electronic System Level (ESL) design has been a hot area
for Electronic Design Automation (EDA) vendors and startups in particular,
but there are so many entries now that marketplace confusion is more likely
than widespread adoption. ESL point tools are many, but flows that can go

� � � � � ���� �
���
 �� ����� ���	�� � � � � �

A Methodology for Bridging the Gap between UML and Codesign 3

from concept to implementation are few. For example, commercial hardware
and software coverification tools from companies such as Mentor Graphics,
CoWare, VAST, Virtio and Axys can provide fast instruction set simulators
linked to various hardware simulators. They mainly focus on the functional
and performance modeling problem for software dominated embedded systems,
although they do not address the issues of high level hardware modeling and
refinement. The main limitation of these tools is that they often require to model
the hardware at the RT level and even though recently some of these vendors
have started to offer the possibility to perform a mix C/RTL coverification
(e.g. C Bridge from Mentor Graphics), none of them offers yet an automated
behavioral synthesis path from behavioral specifications.

An emerging area is also the one of coprocessor synthesis [11, 19, 4], where
the main idea is to combine the software compilation and the hardware syn-
thesis technologies to provide a system that allows designers to explore and
implement their designs directly from descriptions written in algorithmic C.
The main limitation of this approach is that it is based on the assumption that
the designer has already been able to come up with a feasible hardware/soft-
ware partitioning for the entire design and the coprocessor synthesizer can then
provide the possibility to perform some software acceleration by offloading
compute intensive algorithms from the CPU to dedicated hardware. Although
very useful, tools of this type can only provide a partial support to a complete
SoC design flow because it is well known that many decisions regarding the
efficiency (performance, power, area etc.) of the system have largely been fixed
by the time a designer commits to a particular architecture.

Alternative and complementary methodologies and solutions must hence be
provided in order to help the designer during the initial phases of the design pro-
cess when coarse hardware/software partitioning tradeoffs have to be analyzed.
Our work is an attempt to try to fill this gap by proposing a practical integration
between a UML based modeling methodology and an existing hardware/soft-
ware codesign technology.

3. The ACES Codesign Flow

The overall flow presented in this chapter is shown in Figure 1.1. Our
proposed methodology starts with the UML specification of the system, fol-
lowed by exploration of the UML database for extraction of functional and
structural information. This is followed by an interactive process performed
through a web based interface that allows to capture UML specifications and
design constraints provided by the designer, like architectural specifications and
hardware/software partitioning, and export the entire structure of the design into
the ���� [8] codesign environment.

� � � � � ���� �
���
 �� ����� ���	�� � � � � �

4

In ���� the system is described at the behavioral level as a network of
components that can communicate by both means of events as well as shared
variables. A web based interface acts as an intermediate layer between UML and
codesign through which the user can drive the codesign process by performing
the important tasks of component and communication mapping. A library
of precharacterized architectural templates is provided in order to allow the
designer to explore different design solutions.

The following sections describe in detail the various phases in this design
flow.

UML

Web-based Interface

Functional Specification
(Class, State machines, Activity

and Sequence Diagrams)

Functions
Extraction

Design
Summary

Component
Mapping

Platform
Selection

Code
Generation

Communication
Refinement

Structure
Extraction

UML DB Exploration
and Code Generation

Design Problem
Formulation

(Use Case Diagram)

Discrete
Event Models

Partitioning

SystemC
Behavioral HW/SW

Co-Simulation

Interface
Synthesis

Co-Simulation

Debug
optimization

SW
Synthesis

HW
Synthesis

Design
Summary

Codesign Environment

Platform
Specification

Figure 1.1. Design Flow

3.1 UML Specifications

UML is an object oriented modeling language that consists of graphical and
textual notations, organized in a set of diagrams, each diagram capturing a
different aspect or level of abstraction of the system [17]. After getting the
requirements specification of the system to be designed, the first step is to
capture the functionality of the system as a whole using Use Case Diagrams.
In the second step, the functionality is decomposed into components within
Class ,describing the SoC’s structure, State Machines, Activity and Sequence
Diagrams, describing the SoC’s behavior. Constraints (i.e. performance) are
captured using Stereotypes, which are simple extension mechanism of UML,

� � � � � ���� �
���
 �� ����� ���	�� � � � � �

A Methodology for Bridging the Gap between UML and Codesign 5

and propagated and budgeted to the components. In the following step, the
model is simulated in the UML environment in order to check whether the
functional behavior of the system matches the original specifications.

For a first analysis of a possible integration between UML and codesign, we
have started by considering a UML specification flow in which first an Object
Model Diagram (OMD) is defined to capture the structural decomposition into
interacting components. An OMD contains two sets of classes: the ones whose
behavior could potentially be implemented either in hardware and in software
and others that do not have to enter in the codesign flow, for example, test-
benches and strictly software oriented components. The first set of classes are
distinguished by a specific set of UML stereotypes and additionally they are also
used to differentiate between the types of behavioral specification associated
with a particular class. For example, the stereotype Partitionable StateMachine
is used for classes with statemachine behavior and Partitionable Text is used
for classes with textual specifications. We will talk in more details about this
item in Section 1.4 Communication among objects of classes can be specified
through links connecting ports of different objects. Ports are stereotyped as out-
put or input which allows us for semantic verification of connection between
ports during the structural information exportation process Visually, interfaces
among classes, are described by means of ports and connectors (see [18]). The
behavior of the classes participating in the codesign process can be specified
graphically using state machines as well as textually in the form of behavioral
SystemC code, attached as a description to a class.

As a next step, the UML Functional Specification must be translated into
���� Discrete Event Models to conjugate the convenience of using the graph-
ical UML Platform interface for specification with the possibility to use the
analysis and synthesis tools available using the ���� codesign methodology.
We have also proposed a possible way to specify the architectural platform in
which system modules would be deployed onto different architectural compo-
nents using the UML Deploymemt diagrams.

3.2 System Level API

We provide a specific API, basically an extended UML library, in order
to allow the user to describe the type of communication that he wants to be
performed. The API combines transaction level modeling for the hardware in-
terface and OS and device driver levels for the software interface into a unified
semantics. The objective is to provide designers with a minimal set of high level
primitives that can be used to abstract and specify the behavior of the system.
The proposed generic API for design specification is presented in the following
Table. It is based on the POSIX [21] standard, a well defined and accepted pro-
gramming interface for Operating Systems. The API is divided in four parts:

� � � � � ���� �
���
 �� ����� ���	�� � � � � �

6

Process Management, Communication, Synchronization and Timing. Process
management includes functions to control process creation and execution. The
Communication part encompasses shared memory and message passing based
communication, both blocking and nonblocking style. Synchronization in-
cludes primitives for process synchronization, like mutexes, semaphores and
condition variables. Finally, the Timing section allows some control over the
timing behavior of the system, providing a timed wait and controlling timeouts
for blocking operations.

Process ������� �������	
� ������
���� ����

Management �������
������	
�

������� ������
�	
�

������� �������	
�

Communication ���� ���
������
���� ��
��

���� ����	�������� ��
��

�����
 ��� ���
����� �

���� ��
��

�����
 ��� ��	������� �

����
���� ��
��

Synchronization ����� �����������

����� �������������

���� ��	������

���� ���������

���
 ��� ��	������ ������

���
 ��� �	���������

���
 ��� ����
���������

Timing �	�� ��	���	���

������� ��	��	
�

����� ���� ���������� �	���

���� ��	� �������� �	���

���
 ��� ��	� �������� ������ �	���

Table: The API functions

The API is thought to be integrable with any system level specification lan-
guage like, for instance, SystemC. The range of specification styles possible
to target with the API is very broad. Hardware oriented specifications might
use bit manipulation and low level constructs more intensively, while software
oriented specifications could use pointers, memory allocation and stack manip-
ulation more frequently. Nevertheless, the API we propose is neutral and can
accommodate either style.

In the Process Management section of the API, four functions are defined.
The function ������� ������ is used to instantiate and start the execution of a
new process. The function �	
� is the entry point of the process. Note that the
actual code of the process, be it hardware or software, is already available. The
API function will create a new context for the new process and start executing
the initial function. Also note that in case of hardware processes, if more

� � � � � ���� �
���
 �� ����� ���	�� � � � � �

A Methodology for Bridging the Gap between UML and Codesign 7

than one process share the same hardware implementation, there is a need to
synthesize a scheduler within the hardware implementation, so that time sharing
of the hardware is possible. ������� ��
��� stops and removes a process
from the scheduler list forever, freeing all the resources that were held by that
process. Finally, ������� �	���
� and ������� ���	�� are used to stop
and resume the execution of a process, respectively. A process is suspended
by a ������� �	���
� call, and stays suspended until some other process
executes ������� ���	�� for that specific process.

Two different communication models are supported in the API, message
passing and shared memory. Message passing is abstracted by the concepts
of ports, and provides the primitives ���� ��
� and ���� ������� to imple-
ment the communication. Blocking and nonblocking styles are supported, and
are specified by the designer through the argument ����. A blocking send
blocks the sender until the receiver reads the message. Similarly, a blocking
receive blocks the receiver until a message is available in the corresponding
port. Shared memory communication is modeled with the ������ ��� ����

and ������ ��� ����� primitives. Here, two styles are also possible, syn-
chronous and asynchronous, specified in the parameter ����.

In the Synchronization section, three different synchronization mechanisms
are defined by the API: mutexes, semaphores and condition variables. A call to
���� ���� will block the calling process if the semaphore value is zero, mean-
ing that none of the shared resources are available, while a call to ���� ����

increments the value of the semaphore, and unblocks a possibly waiting process.
Mutexes are similar to binary semaphores, i.e., semaphores initialized with the
value of one. The process calling �	���
��� will block in case the mutex
value is zero, and �	��� 	

��� will set the mutex value to one, allowing one
of the possibly waiting processes to continue. Finally, condition variables allow
processes to wait for some event or condition to happen. The process calling
��
� ��� ���� will block until the condition is met and the corresponding
��
� ��� ���
�
 is invoked. Alternatively, ��
� ��� ��������� can be
used to signal an event when multiple processes should resume execution as a
result of one event.

Finally, the Timing section allows the specification of the timing behavior of
processes. Processes can wait for a fixed amount of time using the API called
���� ����. The waiting time is provided in the parameter ����. Additionally,
it is also possible to specify timeouts for each of the blocking synchronization
primitives, with ���� ���� ���, �	���
��� ��� and ��
� ��� ���� ���.

3.3 Interface Synthesis

When the input design description contains communication primitives from
the System Level API, there is a need to synthesize the communication interface

� � � � � ���� �
���
 �� ����� ���	�� � � � � �

8

between the processes. Depending on the design partitioning, the interface will
need to connect two hardware modules, two software modules, or a hardware
and a software module. This phase is controlled through a web based interface
that acts as an intermediate layer between UML and codesign and that will be
presented in detail in Section 1.6.4 in the context of a real application.

In this section, we show examples of custom interface synthesis for differ-
ent partitions. We refer to the process sending data as the producer, and the
processor receiving data as the consumer.

Hardware to Hardware Communication. In the case where two processes
that communicate through ports are mapped to a hardware implementation,
there are different alternatives for interface synthesis. However, since this is
a hardware to hardware communication, it is not necessary to generate RTOS
code or software to handle this specific communication.

One possible architecture for a port based hardware to hardware communi-
cation is shown in Figure 1.2. In this case, there is a direct data connection
between producer and consumer. Additionally, control lines are synthesized
according to the API usage. If the port is ever used for a blocking send, then an
acknowledge line from the consumer to the producer is necessary. Therefore,
the producer is suspended until it receives an acknowledge from the consumer
in case of a blocking communication. For communications with multiple con-
sumers, the producer wait for the acknowledge of all consumers. This behavior
is implemented with a logic OR of the individual acknowledges of the con-
sumers, as shown in 1.2. Similarly, an event line is added from the producer
to each consumer for the case when blocking receives are specified. Since the
event and acknowledge control signals are only synthesized when needed, they
are shown with dashed lines in Figure 1.2.

Producer
Consumer

Evt_p

p_Data p_Data

p_Event

p_Ack

Consumer

Evt_p

port_receive(p,...)

port_send(p,...)

Figure 1.2. Interface Synthesis for HW to HW Communication

Other architectures are also possible from the same System Level API. For
instance, it is possible to generate a Transaction Level Model with AMBA
bus transactions for each port primitive. In this case, the ���� ��
� and
���� ������� primitives are replaced by a set of calls to the AMBA Transac-
tion Level API [1].

� � � � � ���� �
���
 �� ����� ���	�� � � � � �

A Methodology for Bridging the Gap between UML and Codesign 9

Port

Data

Evt/Ack

Processor

Producer Consumer

port_send(p,...) port_receive(p,...)

Figure 1.3. Interface Synthesis for SW to SW Communication

Software to Software Communication. When two software processes
are mapped to the same processor, the interface synthesis is simpler. Our
framework will generate a software data structure in memory, shared between
the processes, that will keep the data along with event and acknowledge control
signals. All the producer has to do is to update two memory locations, with
data and event signaling (in case of blocking receives), while the consumer will
read the data memory and update the acknowledge bit of the same port. Figure
1.3 shows the interaction between the processes.

Hardware to Software Communication. Hardware to software commu-
nications can be implemented by either interrupts or polling, using memory
mapped addresses in the latter case. In both cases, we will need some RTOS
support in order to coordinate the processes. One possible solution is shown in
Figure 1.4. Our framework will generate a bus adaptation layer for the hard-
ware module, so that it can send and receive data from the bus. In the case of
a memory mapped communication, a device driver is also generated and runs
inside the processor, monitoring the bus for activity in the memory mapped
region. The device driver is responsible for transferring data from the bus to
the processor memory, to an equivalent port structure as the one shown in Fig-
ure 1.3. The software process will access the port data structure as it did in the
software to software case, retrieving data and updating event flags. If instead an
interrupt based communication is specified, then an Interrupt Service Routine
(ISR) needs to be synthesized. The ISR will be responsible for receiving the
event signaling from the producer. In the interrupt based communication, the
actual data is still transferred through a memory mapped location to the port
structure.

Software to Hardware Communication. In software to hardware com-
munications, the producer is running in a processor, communicating with a
hardware module. In our model, this kind of communication is always memory
mapped. The producer will update a port data structure, and a device driver
propagates data and events to and from the bus. Events and acknowledge signals
are generated for the receiver whenever necessary.

� � � � � ���� �
���
 �� ����� ���	�� � � � � �

10

Port ConsumerDevice
Driver

Producer

Processor

port_send(p,...) port_receive(p,...)

interrupt line

D
e
c
o
d
e
r

Figure 1.4. Interface Synthesis for HW to SW Communication

Note that the device driver can be unique for all the software to hardware and
hardware to software communications. It has to monitor a set of software ports,
transferring data to the bus, as well as monitor the bus for memory mapped
communications.

Port ConsumerDevice
Driver

Producer

Processor

Port ProducerDevice
Driver

Consumer

Processor
Bus

Bridge

CPU1

Bus
CPU2

Bus

port_receive(p,...)

port_send(p,...)

D
e
c
o
d
e
r

D
e
c
o
d
e
r

Figure 1.5. Interface Synthesis for Multiprocessor Communication

Multiprocessor Communication. Finally, in case the processes are mapped
to different processors, with different buses, a bridge will also be synthesized.
Figure 1.5 shows the proposed architecture. In this scenario, the producer runs
on processor 1, connected to System Bus 1, while the consumer runs on pro-
cessor 2, connected to System Bus 2. The producer will see the bridge as the
consumer. Meanwhile, the consumer will see the bridge as the producer. Both
processes will see a hardware to software communication, and the port will be
accessed through a memory mapped address. In addition to the bridge, device
driver code is synthesized for both processors, linking the software process to
the RTOS and to the bridge hardware.

For shared memory communication, two different architectures are possi-
ble, depending on synchronous or asynchronous communication. In the syn-

� � � � � ���� 	�
���
 �� ����� ���	�� � � � � �

A Methodology for Bridging the Gap between UML and Codesign 11

chronous mode, a locking structure is generated for each shared memory, so
that access is granted exclusively for each process. Every memory access has
to obtain the lock first. In the asynchronous mode, only the memory is synthe-
sized. The locking mechanism is implicit in the API call for shared memory
access. Every shared memory will be directly connected to the system bus,
accessible by the CPU. Additionally, a dedicated memory port will be available
for each hardware module accessing the memory, so that using the bus is not
necessary while accessing shared data. Therefore, there is less contention and
higher parallelism in the implementation.

RTOS Synthesis. In addition to communication interface synthesis, the
generation of RTOS support is required. In this case, our System Level API
has to be mapped to OS specific resources, adapting the generic API to the
functionality available in the target RTOS. Since our API is based on POSIX, the
mapping is trivial when targeting a POSIX compliant OS, like Embedded Linux
[20]. Alternatively, it is possible to target non POSIX RTOSes by mapping the
API calls to the specific RTOS. That is the case with eCos [10]. Finally, the
API based description can be used as input to tools that generate a customized
OS infrastructure, like Polis [2] and Phantom [12].

3.4 Our HW/SW Codesign Environment

Input to our codesign environment is a set of modules ��, �� � � ��� that
implement a design. Modules are described in SystemC extended with the pro-
posed API functions. The SystemC modules are partitioned into hardware and
software implementations. Currently, the partitioning process is manual. Once
the design is partitioned, hardware, software and interfaces are synthesized.
Hardware synthesis is handled by an inhouse SystemC behavioral synthesizer,
that produces synthesizable RTL for each SystemC module. Software modules
are generated according to the operating system support desired by the de-
signer. At the time, our environment can generate software modules based on
the POLIS framework [2], the Phantom Compiler [12] and any POSIX based
operating system, like Embedded Linux [20] or eCos [10] with the POSIX
adaptation layer. Software is compiled to a specific processor, which can be a
NEC V850 or an ARM946. Finally, the interface is generated according to the
partition and the communication style specified. We have simulators available
that allow us to simulate the synthesized hardware, selected processor (cycle ac-
curate in the case of V850 and instruction based on the case of ARM), software
and communication interfaces.

� � � � � ���� 		
���
 �� ����� ���	�� � � � � �

12

4. Modeling Hardware Related Aspects in UML

This section deals with the hardware oriented modeling aspects of UML.
In particular, it describes methods for specifying a system using the different
flavors of UML diagrams, some depicting the structure and some depicting the
behavior. It shows how hierarchy in hardware design can be represented at
the specification level using available UML features. It also talks about our
proposed enhancement of textual specifications and ways to integrate that in
our codesign flow. Lastly, it speaks about the UML2.0 enhancements relevant
to hardware oriented support, in particular the usefulness of timing diagrams
as well as the specification of interfaces, ports and connectors. To create our
model we used Rhapsody V5.2 which is the UML tool provided by I-Logix
Inc.

4.1 Object Model Diagrams (OMD)

The OMD helps designers in modeling the structure of the system by means
of classes. In our design flow we assume that each instantiated class is a
functional system component. Figure 1.6 describes the top level OMD views for
our example model that implements a simple matrix multiplication algorithm.
It shows the block IndexControl, that controls the execution of the algorithm,
a memory object and a hierarchical block MatrixMult. The OMD shows the
static structure of the specified system, in particular, classes and their internal
structure like the objects instantiated within them and relationships among the
objects. The OMD can also show the relationships of a class with respect to
other classes, such as inheritance or generalization and associations. We have
used the OMD in a way to show the hierarchical view of a design, where each
OMD shows the details pertinent to that hierarchy. In this way, the OMD can
be used to represent hardware modeling. In our system, there are three basic
partitionable objects (IndexControl, DataRetrieve, Multiplier) and a memory
object. We have created two OMD’s to show the hierarchical break down of the
design. The top level object model diagram in figure 1.6 shows the highest level
view of the design under test. Hierarchical objects are marked with stereotype
net while basic partitionable objects are marked either as Partitionable Text
or Partitionable StateMachine. The top level view also shows the input and
output stimuli that needs to be generated from the test benches in order to
simulate the model. The hierarchical component MatrixMult is described in
figure 1.7 which shows its component classes like DataRetrieve and Multiplier.
Also note that the same Memory object appears in both the OMD views to
show the relationship it shares with different objects across different levels of
hierarchy. All relationship between objects are specified using links, which are
connected via ports. The links can specify event based communication or pure
data communication based on the stereotype attached to them. Event based

� � � � � ���� 	�
���
 �� ����� ���	�� � � � � �

A Methodology for Bridging the Gap between UML and Codesign 13

communication triggers a transition in a state machine (see section 1.4.3), but
pure data communications do not trigger any transitions. Another kind of link
is used to specify the relation of an object to a memory. These links have an
associated direction and are shown as an arrow. For example, in figure 1.6, the
link between IndexControl and Memory belongs to one of this type.

top

<<top_level>>

IndCntr:IndexControl

<<Partitionable_Text>>

1 MatMult:MatrixMult

<<net>>

1

Default::MatrixMult.mem:Memory

<<memory>>

1

End

Line

Control

Next

Start

Progress

Column

Next

Start

Column

Control

Line
Progress

End

Top level
instance

Hierarchical
components are

stereotyped as net

Top level
design entity

Figure 1.6. Top Level Object Model Diagram

MatrixMult

mem:Memory

<<memory>>

1

DataRetr:DataRetrieve

<<Partitionable_Text>>

1

Mult:Multiplier

<<Partitionable_StateMachine>>

1

Column
Y_Data

X_Data
Line

Next

Control

X

Y

Line

Column

Start

Next

Control

Ports are
connected through

Links

State machine exported
to codesign environment

Memory elements are
stereotyped

All communications are port
to port, using UML ports

Textual description
passed to codesign

environment
<<net>>

next next

Figure 1.7. matrixMultiplier Object Model Diagram

� � � � � ���� 	�
���
 �� ����� ���	�� � � � � �

14

4.2 Sequence Diagrams

DataRetrieveIndexControl

/
/

/
/

Repeated
Row X Column
Times

\
\
\
\
\

readMemory()

storeResultToMem()

Next()

Start()

sendData()

computeProduct()

port_send(X_Data, x, mode);

port_send(Y_Data, y, mode);

sendRowColumn()

next()

Multiplier

Figure 1.8. Sequence Diagram of matrixMultiplier

A sequence diagram shows object interactions arranged in time sequence. It
shows the objects participating in the interraction and the sequence of messages
exchanged between them. After Use Cases and OMDs have been developed,
a Sequence Diagram can be specified as an additional form of interaction to
help creating testbenches. Figure 1.8 shows the exchange of signals and their
sequence between the various objects in the matrixMultiplier system. Data
communication across the objects through the function calls is shown in the
figure. API calls can appear inside the functions, for example the function
sendData() calls internally the API port send().

4.3 State Machines

The next step is to create the state machines, that are descriptions based on
Harel statecharts [7], used to model the behavior of each instantiated class in
the system. The designer is responsible to figure out for each objects what the
states are, and how transitions happen between them. The transition indicates
one movement from one state to another. Each transition has a label that comes
in three parts: �����������
��	�� ��	�������������. All the parts are
optional. States can also have some internal activity, like actions on entry, ac-
tions on exit and actions in state, and there are some mechanisms to specify a
delay for executing a transition. States can be broken into several orthogonal
state machines that run concurrently and superstates can be used in order to
share common transitions and internal activities among states. As an exam-
ple, Figure 1.9 describes the state machine for the IndexControl object in the
matrixMultiplier example. The Index Control is responsible for the execution
sequence of the matrix multiplication. It is basically composed of two nested
loops, that advance the current line and column of the multiplication. Current

� � � � � ���� 	�
���
 �� ����� ���	�� � � � � �

A Methodology for Bridging the Gap between UML and Codesign 15

IndexControl’s
state machine

IndexControl

Idle

Init>

CheckRow>

SendRowColumn>

CheckCol

EnabledH

C

C

C

C

Exit>

Working

DIsabled

[col_count < Col]

[col_count >= Col]/row_count ++;

Next

/col_count ++;

[row_count < Row]

disable

[row_count >= Row]/triggerEnd();

enable

tm(1)

tm(1)

[progress == 0]

[progress == 1]/this->GEN(enable)

[progress == 1]

[progress == 0]/this->GEN
(disable)

Nested
state

Action on entry:
sendRowColumn();

Default history
transition

History
connector

Orthogonal state:
and line

Figure 1.9. State Machine of IndexControl

line and column are communicated to the Data Retrieve module by two ports,
named Line and Column.

Here is shown an ��� state containing a nested state machine with a �������
connector. An ��� state is an orthogonal state which represents simultaneous
independent substates that an object can be in at the same time. A �������

connector stores the most recent active configuration of a state, so a transition
to a history connector restores this configuration.

4.4 Textual Specifications

Figure 1.10 shows how we manage the textual format of the behavioral de-
scription. Through the Rhapsody tool we have to set, for each system compo-
nent, which is the stereotype that specify the type of the behavioral description.
In the "Description dialog box" we edit the textual (SystemC) description of the
system module. A module can potentially contain both a state machine as well
a textual description for its behavior in the form of SystemC. In the codesign
phase, it will be possible to associate different instantiations of the same module
to different form of specifications, i.e some to state machines, some to textual
description.

4.5 UML 2.0 Enhancements

UML 2.0 enhancements are not changing dramatically the modeling elements
of UML 1.x. As it is said in [5]: "UML 2.0 doesn’t represent a substantial re-

� � � � � ���� 	�
���
 �� ����� ���	�� � � � � �

16

Object stereotype can
be selected from a

dropdown list Textual(SystemC)
description for
IndexControl

Figure 1.10. Behavioral Description: Textual Format

definition of the modeling elements". Most of the changes were performed in
the behavioral diagrams rather than in the structural diagrams. For instance
in the interaction diagrams the collaboration diagram disappeared, while the
sequence diagram notation is now able to support nested diagrams notation and
conditional behavior. In addition there are three new interaction diagrams: tim-
ing, communication and interaction overview diagram. Among the behavioral
diagrams, the activity diagram was improved significantly and now it is possible
to model the concurrent behavior relying on tokens similar to Petri Nets [15].

In this section we will talk more about UML2.0 enhancements relevant to
hardware modeling. In particular we will focus on structural diagrams like
the Deployment diagrams. We will also spend a few words on an interaction
diagram, the timing diagram, and its related elements specialized for realtime
systems. In addition we will talk about the specification of interfaces, ports and
connectors.

Deployment Diagrams. A Deployment diagram captures the configura-
tion of runtime processing elements and the software component instances that
reside on them. It is a graph of nodes, representing the hardware resources, and
communication paths representing physical connections among the resources.
A node can be a CPU or some other processing element and can have its own
memory. Components represent software modules, tasks or processes that run
on a node. Hence deployment diagrams specify the runtime physical architec-
ture of a system.

� � � � � ���� 	�
���
 �� ����� ���	�� � � � � �

A Methodology for Bridging the Gap between UML and Codesign 17

M1

V850

IndexControl DataRetrieve

Bus1

BusIntfc1

Hardware1

Multiplier

Figure 1.11. Deployment Diagram: Platform Specification and Component Mapping

Platform Specification using Deployment Diagrams. The deployment
diagram can be used to specify a platform architecture in our proposed method-
ology. Normally the user has to select an architecture from a list of predefined
platforms to be considered in the codesign phase. These predefined platforms
are shown as an interconnection of hardware resources like CPU, hardware
elements and memories, connected by means of buses or dedicated point to
point connections. Depending on the user’s choice to map a design module
either to hardware or software, the modules are deployed to the corresponding
elements in the architectural platform. We propose an additional stage in our
design methodology where the platform can also be specified graphically by
the user, making use of the UML Deployment diagram. Other than the pre-
defined platforms, we would also provide the basic resources like the CPUs,
switches, hardware elements, buses, bus bridges, etc., from which the user can
select, and connect them using communication paths to build his own platform.
There would be necessary checkings to ensure the semantic correctness of the
usage of the architectural components as well as their interconnection protocol.
The design components can then be deployed to the nodes in the architectural
platform. Information from the deployment diagram would then be exported
to the codesign environment for further steps to cosimulation.

An example of our proposed scheme is shown in Figure 1.11. It shows the
V850 platform specification and the default configuration of the modules in the
matrixMultiplier application.

� � � � � ���� 	�
���
 �� ����� ���	�� � � � � �

18

Timing Diagrams. The timing diagram shows the change in state along a
lifeline in terms of a defined time unit. Figure 1.12 describes the timing diagram
related to the behavior of the IndexControl object. The diagram is related
to Figure 1.9 which describes the state machine of IndexControl. The states
represented by the timing diagram of IndexControl are: Init, Idle, Working and
Exit. The object will change its internal state depending on the event that will
occur. Events are: enable, disable and end. Figure 1.12 shows that when the
event enable occurs, the IndexControl goes from state Idle to state Working,
whereas it changes from Working back to Idle when the event disable occurs.
The module goes in state Exit when, while beeing in state Working, the event
end occur.

Init

Idle

Working

Exit

sdTimingDiagram : IndexControl

enable

disable
triggerEnd

enable enable enable

disable disable

Figure 1.12. Timing Diagram for IndexControl

Timing diagrams are very helpful to specify the duration and timing con-
straints of realtime systems.

Interfaces, Ports and Connectors. Figure 1.13 shows how we model
interfaces, ports and connectors between IndexControl and MatrixMult objects.
Interfaces are specified through ports and connectors. Ports are identified by
little squares on the object boundaries while connectors might be little plain
circles or arcs. Circled connectors describe the provided interface (e.g the
object sends a signal through this port), arc connectors describe the required
interface (e.g. the object waits for a signal through this port).

Interface direction (input/output) can be shown graphically only using UML
2.0 semantics which allows to specify whether an interface requires (input) or
provides (output) a service (a signal in our case study). For links, the direction
cannot be specified, so we are using an input/output stereotype attached to a
port in order to specify the direction. Connections to memories do not use ports,
but direct links with objects.

A port is an interaction point assigned to an object and can exchange messages
with other external objects or send messages to and from their parts. A port
enables to specify instantiated classes independently of the environment in

� � � � � ���� 	�
���
 �� ����� ���	�� � � � � �

A Methodology for Bridging the Gap between UML and Codesign 19

Required
Interface

Provided
Interface

Provided Interface
coupled with Required

Interface

MatMult:MatrixMult

<<net>>

1
IndCntr:IndexControl

<<Partitionable_Text>>

1

Start
start

Next

next

Column
column

Control
control

Line
line

Control
control

End
end

Start
start

Line
line

Progress
progress

Next

next

Column
column

Required Interface
coupled with

Provided interface

Figure 1.13. Interfaces, Ports and Connectors between IndexControl and MatrixMult

which they will be embedded. The internal part of the object can be completely
isolated from the environment. In our methodology, ports are used to extract
the interface signals of a module needed in its SystemC implementation (see
section 1.4.1).

5. Model Verification in UML

This section deals with verification aspects of UML. In particular, we dis-
cuss the event semantics in UML, and propose some UML enhancements for
supporting a pure discrete event simulation that is more suitable for hardware
modeling. We also describe how to take advantage of other useful UML fea-
tures like animated sequence diagrams and state machines during the system
verification process.

During the design phase, designers should periodically validate their UML
models so that they can find bugs very early in the project. Discovering bugs
in the design phase is much cheaper than in later phases. In this section we
present animated diagrams, that are important features provided by UML tools,
and we also discuss event semantics in UML.

5.1 Animated Sequence Diagrams and State Machines

The first technique we use is a particular feature provided by the UML tool
Rhapsody from I-Logix([16]), which allows the designer to simulate the model
by animating its sequence diagrams and state machines. This allows the de-
signer to visualize the system behavior during a specified test case and validate
the model. Rhapsody also provides the possibility to compare the animated
sequence diagrams with those developed during the Analysis phase. This helps

� � � � � ���� 	�
���
 �� ����� ���	�� � � � � �

20

in validating the model versus the requirement specification. Figure 1.14 shows
the animated state machine of IndexControl at the beginning of its behavior. It
can be seen that the "IndexControl" main state and the initial "Init" state are
highlighted by means of a violet colour. This means that the IndexControl ob-
ject is in that particular state at that moment. This is very useful for designers
when they need to verify the model behavior.

SendRowColumn>

C

C

H

C

C

IndexControl

Idle

Exit>

Working

CheckCol

CheckRow>

Init>
DIsabled

Enabled

Next

[col_count >= Col]/row_count ++;

/col_count ++;

[row_count < Row]

[col_count < Col]

enabledisable

[row_count >= Row]/triggerEnd();
tm(1)

progress == 0]

[progress == 1]/this->GEN(enable)

progress == 0]/this->
GEN(disable)

tm(1)

[progress == 1]

Figure 1.14. Animated State Machine

5.2 Event Semantics in UML

The native communication model in UML is based on asynchronous events
with a single queue. In this model events are processed in the following fashion:

1. An event is created when it is sent by one object to another.

2. It is then queued on the queue of the target object thread.

3. An event that gets to the head of the queue is dispatched to the target
object.

4. The event is processed by the receiving object and then deleted by the
execution framework.

The main drawback of this semantics is that it is essentially SDL-like, and
hence it is not adequate for hardware modeling where instead a real discrete
event engine would be needed. In particular a global event queue and a support

� � � � � ���� ��
���
 �� ����� ���	�� � � � � �

A Methodology for Bridging the Gap between UML and Codesign 21

for event ordering based on their timestamps is mandatory for simulating real
hardware.

UML 2.0 has tried to address this issue by allowing to manage events as an
event pool without defining a priori their order of dispatching. This leaves open
the possibility of modeling different models of computation. Methodologies
like the one presented in [6] have already shown how it is possible to extend
UML very easily and efficiently in order to support new models of computation.

Unfortunately, many UML tools that are currently on the market still use
the native communication model of UML and hence it is not yet possible to
rely on a general solution for modeling hardware behavior in UML. For this
reason, we have decided to use UML only for system specification but not for
hardware/software cosimulation and validation.

6. Transformation from UML to Codesign

In this section we present the link between UML specifications and the ACES
hardware/software codesign environment known as ACES. Items that will be
discussed are: UML database exploration, behavioral code generation and ex-
port of structural information necessary for the codesign environment.

6.1 UML Database Exploration

After the application is modeled and analyzed using the UML tool, we get
a repository that contains information of the model in the internal database.
We have used Rhapsody from I-Logix, Inc. as UML tool. The database
generated by Rhapsody is organized as follows. The main project consists of
a list of packages. A package is a mechanism to organize different project
elements into groups. A package consists of the list of classes, functions,
objects, events, global variables, diagrams as well as packages. Each class has
a list of attributes, methods, objects instantiated within it, links between the
objects and other modeling elements.

6.2 Code Generation

In this phase, the behavior of the modules specified in UML is converted to
SystemC code in order to be imported into the ACES codesign environment.
From this SystemC representation, ACES is then able to perform both hardware
and software synthesis. In our proposed methodology, the behavior of a module
can be specified either through a state machine as shown in Figure 1.9 or a
textual specification as shown in Figure 1.10. The type of the specification can
be selected from a drop down list.

When the user selects the textual specification, the code generator just copies
the user specified code into the file needed by ACES. Input and output descrip-

� � � � � ���� �	
���
 �� ����� ���	�� � � � � �

22

tion for the ports and signals would be automatically extracted by the code
generator from the OMD.

On the other hand, when the user specifies the behavior through a state
machine, the code generator has to explore the UML database in traversing
the states of the state machine and generate the corresponding code. A sketch
of the algorithm for this code generation process is shown in Figure 1.15.
The algorithm needs to know the events in the model, the action/guard for
the transitions, entry and exit actions in a state, in transitions to a state, out
transitions from a state, etc. It is possible to browse through the entire object
model and extract the relevant information from the state machine. Also UML
allows the behavior to be specified using Activity Diagrams, which are very
similar to State machines, and the same algorithm can be used for generation
of the behavioral code.

The algorithm is called on the root state of each state machine for which code
has to be generated. In every state, it first emits the code specified by the user in
the action on entry portion of the state. Then it checks out transitions from the
state. For the transitions triggered by events, it issues a wait statement on that
event, then it emits the code specified in the action on exit portion, followed
by a goto statement, the label being the target state. In case of a conditional
transition, it issues an "if then else" statement with goto labels depending on
the condition. It also issues the code (if any) specified in the action section of
the transition. Then the algorithm is called recursively on each state reachable
by the current out transition. For an AND state, the same code generation
algorithm is called on each of the substates within the AND state. The behavior
is also the same for a state with a nested state machine.

The output of the code generator is a list of SystemC files, each corresponding
to the behavior of a specific object in the system to be considered in the codesign
flow. Figure 1.16 shows a portion of a SystemC description generated for the
state machine of object IndexControl corresponding to Figure 1.9. We have
chosen an unstructured style for the generated code, due to its simplicity and
efficiency, but many variants (e.g. nested switch, state pattern, state tables, etc.)
are possible. Events are implemented as boolean terminals.

We have implemented and tested the algorithm using Rhapsody UML tool,
which provides API functions that allow us to extract all required information
from a UML project database. However we would like to emphasize that this
code generation algorithm is very general and can be utilized also with other
UML tools.

6.3 Exporting Structural Information

In order to start with the codesign process, the last thing we need is to extract
a summary of the design, essentially a textual representation containing a list

� � � � � ���� ��
���
 �� ����� ���	�� � � � � �

A Methodology for Bridging the Gap between UML and Codesign 23

codeGenerate(state S) {
1. If S is visited, return;
2. Mark S as visited.
3. Issue code specified in the action-on-entry section (This code can

be directly copied)
4. Get out transitions {T} from state S;
5. {U} = empty;
6. for each out-transition ‘t’ of {T} do {

if ‘t’ is conditional {
issue code specified in the action-on-exit section;
s_t = target state if condition is true;
s_f = target state if condition is false;
issue if-then-else with goto label as ‘s_t’ or ‘s_f’ depending
on condition;
insert ‘s_t’, ‘s_f’ in {U}; }

else {
s = target state of ‘t’, insert ‘s’ in {U};
if ‘t’ is triggered by event ‘e’ {

issue wait on event ‘e’; }
issue code specified in the action-on-exit section;
issue goto with label as ‘s’; }

issue code specified in the action section of transition ‘t’; }
for each ‘u’ in {U} do

codeGenerate(u);
}

Figure 1.15. Algorithm to Extract Code from UML State Machine

#include <IndexControl.h>
extern sc_int<8> mem[Row*Column]; // External memories
SC_MODULE(IndexControl) {
sc_in_clk clk;
sc_in<bool> rst;

// Input terminals
sc_in<bool> Next; // input event */
// Output terminals
sc_out<bool> End; // output event
sc_out<sc_int<8>> row; // output data
… Omitted …
SC_CTOR(IndexControl) {

SC_CTHREAD(main,clk.pos());
watching(rst.delayed() == 0);

}
void main(void) {
...
CheckRow:

col_count=0;
if (row_count < Row) {

goto CheckCol;
}
else { triggerEnd(); // Send End

goto Init;
}

CheckCol: ... Omitted ...
};

Figure 1.16. Code Generated for Module IndexControl

� � � � � ���� ��
���
 �� ����� ���	�� � � � � �

24

of all the partitionable objects and their interconnections as well as description
of the memory object. More specifically, this phase generates the files which
are necessary by ACES as input to proceed to cosimulation.

Main {
Open UML project database
Get list of packages
For each package do {

get list of defined classes
find class from list marked as top_level
DFS_Traverse(top level class) }

}
DFS_Traverse(class C) {

Mark class as visited
get list of object instantiations in class
For each object do {

If object is a memory instance {
generate memory descriptions }

else {
generate structural descriptions
put object’s master class in DFS_List }

}
For each master class in DFS_List do {

DFS_Traverse(master class) }
}

Figure 1.17. Pseudocode for Extracting Structural Information

In order to export the structural information to ACES, we need to traverse
the design hierarchy and generate the textual descriptions. The algorithm is de-
scribed in Figure 1.17. The algorithm makes a breadth first search traversal of
the design hierarchy and generates the text files. In order to identify the highest
level of the hierarchy, the user needs to specify a stereotype top level to the top
level module. Any intermediate hierarchical modules are stereotyped as net,
whereas the leaf level modules are marked either as Partitionable StateMachine
or Partitionable Text. Example of the text files generated for the matrixMul-
tiplier example is shown in Figure 1.18. The generated files consists of the
following:

1. A file describing the structure of the system. It consists of all the class
instantiations in a hierarchical fashion, showing the inputs and outputs
at each level of hierarchy and also the port connection of the instantiated
classes.

2. A file describing all the signals that are necessary for connecting the
objects of the system. It shows the list of signals along with their source
and destination objects, and also in particular the ports of the object with
which the ends are connected. Any source or destination which is in the
outer hierarchy is shown as OUT.

� � � � � ���� ��
���
 �� ����� ���	�� � � � � �

A Methodology for Bridging the Gap between UML and Codesign 25

3. A description of the memory objects used in the system, specifying the
memory name, objects that access the memory, and other details like total
size of the memory, word length and access type.

Structure
net top:
input Progress;
output End;
module IndexControl IndCntr [Progress/Progress,

Row/IndCntr_e_Row,
Column/IndCntr_e_Column,
Start/IndCntr_e_Start,
Next/MatMult_e_Next,
End/End,
Control/IndCntr_e_Control] %IMPL_IndCntr;

module MatrixMult MatMult [Row/IndCntr_e_Row,
Column/IndCntr_e_Column,
Start/IndCntr_e_Start,
Next/MatMult_e_Next,
Control/IndCntr_e_Control] %IMPL_MatMult;

.
net MatrixMult:
input Row;
input Column;
input Start;
output Next;
input Control;
module DataRetrieve DataRetr [Row/Row,

Column/Column,
Next/Next,
X_Data/DataRetr_e_X_Data,
Y_Data/DataRetr_e_Y_Data] %IMPL_DataRetr;

module Multiplier Mult [X/DataRetr_e_X_Data,
Y/DataRetr_e_Y_Data,
Control/Control] %IMPL_Mult;

Signals
IndCntr_e_Control IndCntr.Control
net_MatMult.Control
IndCntr_e_Column IndCntr.Column
net_MatMult.Column
Progress OUT IndCntr.Progress
IndCntr_e_Start IndCntr.Start net_MatMult.Start
End IndCntr.End OUT
IndCntr_e_Row IndCntr.Row net_MatMult.Row
MatMult_e_Next net_MatMult.Next IndCntr.Next

#net MatrixMult
Next DataRetr.Next OUT
Column OUT DataRetr.Column
DataRetr_e_X_Data DataRetr.X_Data Mult.X
Row OUT DataRetr.Row
DataRetr_e_Y_Data DataRetr.Y_Data Mult.Y
Control OUT Mult.Control

Memories
mem DataRetr 1000 UMEM <16,1> shared
mem IndCntr 1000 UMEM <16,1> shared
mem Mult 1000 UMEM <16,1> shared

#SystemC Descriptions

IndexControl.cpp

Multiplier.cpp

DataRetrieve.cpp

Figure 1.18. Generated Input Files for Codesign Environment

6.4 Web Based Interface

Figure 1.19 refers to the HTML page that is generated at the beginning
of this phase. The two screen shots show the same page and respectively
the top part (left side) and the bottom part (right side). This page can be
opened using any web browser and is organized as follows. Starting from the
top, there is a brief summary of the project containing its name and a short
description. By clicking on a link, it is possible to see all the verbose report
provided by the UML tool containing all the information about the project that
has been collected in the UML database. The third line is used in order to
select the platform onto which to implement the desired functionality. The
selection is performed through a menu window where the user can pick any of
the architectural templates available in a library provided with the codesign tool.
An architectural template represents the platform for the system implementation
and the user is responsible for selecting the platform that is best suitable for
the system that he needs to implement (one or multiple CPUs, DSPs, simple or
very complex bus hierarchy, etc).

The selection of the platform is directly reflected in the graphical content,
presented in the middle of the page, where on the left side there is the functional
view of the system exported from the UML specifications and on the right side
there is the picture of the selected platform. By changing the target platform,

� � � � � ���� ��
���
 �� ����� ���	�� � � � � �

26

Figure 1.19. HTML Page Generated from UML Specifications

Figure 1.20. Mapping on a Dual Processor Architecture

� � � � � ���� ��
���
 �� ����� ���	�� � � � � �

A Methodology for Bridging the Gap between UML and Codesign 27

Figure 1.21. Communication Refinement

the picture on the right is automatically updated. For example in Figure 1.19 the
platform contains only one processor, while in Figure 1.20 the platform contains
two processors and a two level bus hierarchy. The idea behind this solution is to
support a function architecture codesign approach that requires the separation
of the functionality from the architecture selected for its implementation.

Finally, at the bottom of the page are listed all the objects present in the
functional specifications and the user can specify the implementation (i.e., the
hardware or software component of the platform onto which the functionality
will be implemented.) for each of them through a menu window associated to
each objects. This is what we call component mapping phase. The number
of choices available for this mapping depends on the selected platform. For
example, in the platform shown in Figure 1.19, only two choices are possible
(Software1, Hardware1) due to the fact that it is a simple single processor
architecture with one hardware component connected to the processor bus. But
in the multiprocessor architecture shown in Figure 1.20, five different choices
are possible, since in this platform there are two processors and three hardware
units.

The component mapping phase ends when the user clicks the button “COM-
PONENT MAPPING”. This starts the process of analysis and characterization

� � � � � ���� ��
���
 �� ����� ���	�� � � � � �

28

of all interface signals and opens a new html page, like the one shown in Fig-
ure 1.21, where all signals are listed.

At this point, the communication mapping phase can start. The table shows
all different types of connections: hardware to software, software to hardware,
hardware to hardware and software to software connections. A connection can
be recognized by its name, a color associated to its type, its source and its des-
tination. The last column shows the specific implementation of the connection.
Software to hardware connections are implemented in memory mapped I/O,
while hardware to software connections are by default implemented in memory
mapped, but the user can alternatively specify an interrupt based implementa-
tion. Hardware to hardware signals are by default implemented as point to point
communications, but the user can alternatively require the communication to
be performed on the bus (memory mapped). Finally, software to software con-
nections are implemented by the realtime operating system (RTOS). This list of
signals presented in the table refers to a specific CPU in the selected platform
and its associated system bus. In case of multiprocessor platforms, several list
of signals, one per CPU, are generated.

When all implementation options have been specified, the user can proceed
to the communication mapping phase. At this point physical addresses will
be generated for all memory mapped communications and specific interrupt
lines of the processor will be selected for signals implemented in interrupt. The
result is a new page, not shown here, similar to Figure 1.21, but where the last
column shows now the physical addresses and the interrupt lines that have been
selected. After having examined all the communications, the user can still go
back and change some implementation options or, if satisfied, proceed to the
next hardware/software cosimulation phase.

7. Conclusions

The complexity of current embedded systems requires large teams of design-
ers that interact especially at the early design stages when architecture selection
and hardware/software partitioning take place. Models and tools that allow to
visualize and document the design abstractions and the interactions between
different components or levels of abstraction of a specification are essential.
UML being platform independent and with a rich graphical notation can serve
this purpose. We presented a methodology that specializes the UML standard
notation for modeling embedded systems platforms and protocols leading to an
integration with an existing hardware/software codesign technology.

� � � � � ���� ��
���
 �� ����� ���	�� � � � � �

References

[1] ARM Limited. AMBA AHB Cycle Level Interface Specification, 2003.

[2] F. Balarin et.al. Hardware-Software Co-Design of Embedded Systems:
The Polis Approach. Kluwer Academic Publishers, 1997.

[3] A. S. Basu, M. Lajolo, and M. Prevostini. UML in an Electronic
System Level Design Methodology. In UML-SOC’04 (DAC Workshop),
San Diego, California, pages 47–52, 2004.

[4] CriticalBlue Homepage. �����������
�
	�����

[5] H. E. Eriksson, M. Penker, B. Lyons, and D. Fado. UML 2 Toolkit.
Wiley Publishing Inc., 2004.

[6] P. Green, M. Edwards, and S. Essa. Enhancing UML to Support the
Specification of Behavior for Embedded Systems-on-a-Chip. In UML-
SOC’04 (DAC Workshop), San Diego, California, 2004. pages 53–58.

[7] D. Harel. Statecharts: A Visual Formalism for Complex Systems. In
Science of Computer Programming, 1987.

[8] M. Lajolo. IP-Based SoC Design in a C-Based Design Methodology. In
IP Based SoC Design 2003, 2003. pages 203–208.

[9] M. Lajolo, A. S. Basu, and M. Prevostini. UML Specifications Towards
a Codesign Environment. In Proceedings of FDL’04, Lille, France, 2004.
pages 313–324.

[10] A. Massa. Embedded Software Development with eCos. Prentice Hall,
2002.

[11] Mentor’s Application Specific Assistant Processor.
������
������������

[12] A. Nacul and T. Givargis. Code Partitioning for Synthesis of Embedded
Applications with Phantom. In Proceedings of ICCAD’04, Nov 2004.

� � � � � ���� ��
���
 �� ����� ���	�� � � � � �

30

[13] S. Narayan, F. Vahid, and D. Gajski. System Specification with the
SpecCharts Language. In IEEE Design and Test of Computer, 1992. pages
6–12.

[14] Object Management Group (OMG) Homepage. �����������

[15] W. Reisig. Petri Nets: An Introduction. Springer-Verlag, Berlin and New
York, 1985.

[16] Rhapsody Homepage. �����
������������������������������

[17] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, 1998.

[18] K. Scott. Fast Track UML 2.0. Apress, 2004.

[19] Synfora Homepage. ������
��������

[20] The Embedded Linux Consortium Homepage.
�������������
�
	�����

[21] The Open Group and IEEE. IEEE Std 1003.1, 2004.
�������
���	�������

�
��	��� !"!#$!!��������

[22] Unified Modeling Language (UML) Homepage. ����	�
����

[23] K. Wakabayashi and T. Okamoto. C-Based SoC Design Flow and EDA
Tools: An ASIC and System Vendor Perspective. IEEE Trans. Computer-
Aided Design, 19(12):1507–1522, Dec 2000.

� � � � � ���� ��
���
 �� ����� ���	�� � � � � �

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 839.055]
>> setpagedevice

