
High-Performance Transaction Processing in Sprint

Lásaro Camargos?,† Fernando Pedone† Marcin Wieloch†

?State University of Campinas (Unicamp), Brazil

†University of Lugano (USI), Switzerland

University of Lugano
Faculty of Informatics

Technical Report No. 2007/01
January 2007

Abstract

Sprint is a middleware infrastructure for high performance and high availability data
management. It extends the functionality of a standalone in-memory database (IMDB)
server to a cluster of commodity shared-nothing servers. Applications accessing an IMDB
are typically limited by the memory capacity of the machine running the IMDB. Sprint
partitions and replicates the database into segments and stores them in several data servers.
Applications are then limited by the aggregated memory of the machines in the cluster.
Transaction synchronization and commitment rely on total-order multicast. Differently from
previous approaches, Sprint does not require accurate failure detection to ensure strong
consistency, allowing fast reaction to failures. Experiments conducted on a cluster with 32
data servers using TPC-C and a micro-benchmark showed that Sprint can provide very good
performance and scalability.

1

1 Introduction

High performance and high availability data management systems have traditionally relied on
specialized hardware, proprietary software, or both. Even though powerful hardware infrastruc-
tures, built out of commodity components, have become affordable in recent years, software
remains an obstacle to open, highly efficient, and fault-tolerant databases.

In this paper we describe Sprint, a data management middleware targeting modern multi-tier
environments, typical of web applications. Sprint orchestrates commodity in-memory databases
running in a cluster of shared-nothing servers. Besides presenting Sprint’s architecture, we
discuss three issues we faced while designing it: (a) how to handle distributed queries, (b) how
to execute distributed transactions while ensuring strong consistency (i.e., serializability), and
(c) how to perform distributed recovery.

Distributed query processing in Sprint differs from that in traditional parallel database ar-
chitectures in two aspects: First, high-level client queries are not translated into lower-level
internal requests; instead, as a middleware solution, external SQL queries are decomposed into
internal SQL queries, according to the way the database is locally fragmented and replicated. In
some sense this approach resembles that of multidatabase systems, except that the component
databases in Sprint have the same interface as the external interface, presented to the clients.
Second, Sprint was designed for multi-tier architectures in which transactions are pre-defined
and parameterized before the execution. This has simplified distributed query decomposition
and merging.

Sprint distinguishes between physical servers, part of the hardware infrastructure, and logical
servers, the software component of the system. These come in three flavors: edge servers (ES),
data servers (DS), and durability servers (XS). A physical server can host any number of logical
servers. For example, a single DS only, both a DS and an XS, or two different instances of a
DS. Edge servers receive client queries and execute them against the data servers. Data servers
run a local in-memory database (IMDB) and execute transactions without accessing the disk.
Durability servers ensure transaction persistency and handle recovery.

IMDBs provide high throughput and low response time by avoiding disk I/O. IMDBs have
traditionally been used by specific classes of applications (e.g., telecommunication). Current
performance requirements and cheaper semiconductor memories, however, have pushed them to
more general contexts (e.g., web servers [19], trading systems [31], content caches [13]). In most
cases, applications are limited by the memory capacity of the server running the IMDB. Sprint
partitions and replicates the database into segments and stores them in the recovery of several
data servers. Applications are limited by the aggregated memory capacity of the servers in the
cluster.

Data servers in Sprint never write to disk. Instead, at commit time update transactions
propagate their commit votes (and possibly updates) to the transaction participants using a
persistent total-order multicast protocol implemented by the durability servers. As a conse-
quence, all disk writes are performed by durability servers only, ensuring that during normal
execution periods disk access is strictly sequential. Durability servers are replicated for high
availability. If a durability server crashes, data servers do not have to wait for its recovery to
commit update transactions; normal operation continues as long as a majority of durability
servers is operational. Data servers are replicated for performance and availability. When a
data server crashes, another instance of it is started on an operational physical server. The new
instance is ready to process transactions after it has fetched the committed database state from

2

a durability server.
Sprint distinguishes between two types of transactions: local transactions access data stored

on a single data server only; global transactions access data on multiple servers. Local transac-
tions are preferred not only because they reduce the communication between servers and simplify
pre- and post-processing (e.g., no need to merge the results from two data servers), but also be-
cause they do not cause distributed deadlocks. Although in theory there are many ways to deal
with distributed deadlocks, in practice they are usually solved using timeouts [11]. Choosing the
right timeouts for distributed deadlock detection, however, is difficult and application specific.
We solve the problem by ordering global transactions and thus avoiding distributed deadlocks.

Finally, Sprint does not rely on perfect failure detection to handle server crashes. Tolerating
unreliable failure detection means that the system remains consistent even if an operational
server is mistakenly suspected to have crashed, another one is created to replace it, and both
simultaneously exist for a certain time. Since Sprint ensures serializability even in such cases,
failure detection can be very aggressive, allowing prompt reaction to failures, even if at the
expense of false suspicions.

We have implemented a prototype of Sprint and conducted experiments using MySQL 5 in
“in-memory” mode (i.e., no synchronous disk access) as the local data engine at data servers.
Experiments with TPC-C revealed that:

• When the database was large enough to fill the main memory of 5 DSs, Sprint outperformed
a standalone server by simultaneously increasing the throughput and reducing the response
time by 6x.

• In a configuration with 32 DSs, Sprint processed 5.3x more transactions per second than
a standalone server while running a database 30x bigger than the one fitting in the main
memory of the single server. If the database on the single server doubles in size, growing
beyond its main memory capacity, then Sprint can process 11x as many transactions per
second.

• The abort rates due to our distributed deadlock prevention mechanism for configurations
ranging from 1 to 32 DSs were quite low, aborting fewer than 2% of TPC-C transactions.

• Terminating transactions using a total order multicast proved to be 2.5x more efficient
than using an atomic commit protocol with similar reliability guarantees.

Experiments with a micro-benchmark allowed us to evaluate Sprint’s performance under a
variety of workloads. Results demonstrated that:

• When the database was large enough to fill the main memory of 8 DSs, Sprint had better
throughput than a standalone server for all possible combinations of global/local and read-
only/update transactions. In some cases, the improvement in throughput was more than
18x.

• When the database was small enough to fit in the main memory of a standalone server,
Sprint provided better throughput than the single server in workloads dominated by local
transactions, both in cases in which 50% of the transactions updated the database and
when all transactions only read the database.

3

• Experiments revealed that abort rates are highly dependent on the percentage of global
transactions in the workload, up to 25% of aborts when all transactions are global, and less
sensitive to the operations in the transactions. Workloads with 50% of global transactions
were subject to 13% of aborts.

The rest of the paper is structured as follows. Section 2 states assumptions and presents
definitions used in the paper. Section 3 overviews Sprint’s architecture. Section 4 details the
transaction execution and termination protocol. Section 5 discusses recovery. Section 6 describes
our system prototype. Section 7 presents experimental performance results. Section 8 reviews
related work, and Section 9 concludes the paper. Proofs of correctness are presented in the
Appendix.

2 Background

2.1 Servers, communication and failures

Sprint runs in a cluster of shared-nothing servers. Physical servers communicate by message
passing only (i.e., there is no shared memory). Logical servers can use both point-to-point and
total order multicast communication.

Total order multicast is defined by the multicast(g,m) and deliver(m) primitives, where g
is a set of destinations and m is a message. It ensures that (a) if a server delivers message m,
all operational destination servers will also deliver m (agreement), and (b) if two servers deliver
messages m and m′ they do so in the same order (total order) [12].

Physical servers can fail by crashing but do not behave maliciously (i.e., no Byzantine fail-
ures). A server may recover after a failure but loses all information stored in main memory
before the crash. Each server has access to a local stable storage (i.e., disk) whose contents
survive crashes. The failure of a physical server implies the failure of all the logical servers it
hosts.

We do not make assumptions about the time it takes for operations to be executed and
messages to be delivered. The system employs unreliable failure detection [4]: (a) failed servers
are eventually detected by operational servers, but (b) an operational server may be mistakenly
suspected to have failed (e.g., if it is too slow).

2.2 Transactions and databases

A transaction is a sequence of SQL statements terminating with a commit or an abort statement.
Each transaction has a unique identifier. A transaction is called read-only if it does not modify
the database state, and update otherwise.

Sprint guarantees the traditional ACID properties [11]: either all transaction’s changes to
the state happen or none happen (atomicity); a transaction is a correct transformation of the
database state (consistency); every concurrent execution is equivalent to a serial execution of
the same transactions using a single copy of the database (isolation or one-copy serializability);
and the effects of a transaction survive database crashes (durability).

Transactions are scheduled at individual IMDBs according to the two-phase locking rule [3].

4

3 Sprint architecture

Figure 1 overviews the architecture of Sprint. Clients submit transactional requests to edge
servers. Requests regarding the same transaction should be submitted to the same ES; new
transactions can be started on different ESs. Edge servers are started up and shut down accord-
ing to load-balancing and fault-tolerance requirements.

Database tables are partitioned over the DSs. An assignment of the database to DSs and
the mapping of DSs onto physical servers is called a database configuration. Data items can
be replicated on multiple DSs to allow parallel execution of read operations. This comes at
the expense of write operations, which should modify all replicas of a data item. The database
configuration changes when a DS fails and a new instance of it is created on a different server.

The Query Decomposer receives SQL statements from the clients and breaks them up into
simpler sub-statements, according to the current Database Configuration. The Dispatcher inter-
acts with the data servers, using either point-to-point or multicast communication, and ensures
proper synchronization of transactions. The Result Assembler merges the results received from
individual data servers and returns the response to the client.

Query
Decomposer

Dispatcher

Edge Server (ES)

Client

Result
Assembler

Total-order
Multicast

Execution Manager

Total-order
Multicast

Log
Manager

Recovery
Manager

On-Disk
Log

Durability Server (XS) Data Server (DS)

new
DS

Database
Configuration

In-Memory
Database

Figure 1: Sprint architecture

The Execution Manager receives SQL statements, submits them to the local In-Memory
Database, collects the results, and returns them to the corresponding edge server. The Execution
Manager also participates in the transaction termination protocol: Update transactions are
multicast to the durability servers upon termination.

All permanent state is stored by the durability servers. This includes both the database state
and the database configuration. The Log Manager implements stable storage with a sequential
On-Disk Log. Since all disk writes are performed by the durability servers only, during most
of the execution disk access is strictly sequential. The Log Manager informs the edge servers
and the Execution Manager about the state of terminating update transactions. Rebuilding the
state of a failed data server from the log is performed by the Recovery Manager.

5

4 Data management in Sprint

In the absence of failures and failure suspicions, transaction execution in Sprint is very simple.
For clarity, Sections 4.1 and 4.2 explain how the protocol works in such cases. Section 4.3
discusses how failures and failure suspicions are handled.

4.1 Transaction execution

Edge servers keep two data structures, servers and status, for each transaction they execute.
The first one keeps track of the data servers accessed by the transaction and the second one
stores the current type of the transaction: local or global. These data structures exist only during
the execution of the transaction and are garbage collected once it is committed or aborted.

The execution of local transactions is straightforward: every SQL statement received from
the client is forwarded to the corresponding DS for processing and the results are returned to
the client. If a transaction executes an operation mapped onto more than one DS or onto a DS
different than the one accessed by a previous operation, it becomes global. When it becomes
global, the transaction is multicast to all DSs—in fact only the transaction id is multicast. Each
global transaction is multicast only once, when the ES finds out that it is global; subsequent
requests are sent to the DSs using point-to-point communication (see Figure 2).

DS2DS1 DS3C ES

Total Order
Multicast

Local
Transaction

Global
Transaction

SQL
stmt

results

SQL
stmt

results

SQL
stmt

results

Figure 2: Transaction execution

The multicast primitive induces a total order on global transactions, used to synchronize
their execution and avoid distributed deadlocks. When a global transaction T is delivered by
a DSk, the server assigns it a unique monotonically increasing sequential number seqk(T). The
Execution Manager at DSk implements the following invariant. Hereafter we say that two global
transactions conflict if they access data on the same DS and at least one of the transactions
updates the data; and that a DS receives a transaction T when it first receives an operation for
T .

6

(a)

Ti
transactions

-
seq(T)

DSi

IMDB

in execution

Tj
transactions

-
seq(T)

DSj

IMDB

in execution

(b)

Tj Ti
transactions

1 -
seq(T)

DSi

IMDB

waiting

Tj
transactions

1
seq(T)

DSj

IMDB

(c)

Tj Ti
transactions

1 2
seq(T)

DSi

IMDB

Ti Tj
transactions

2 1
seq(T)

DSj

IMDB

(d)

Tj
transactions

1
seq(T)

DSi

IMDB

Tj
transactions

1
seq(T)

DSj

IMDB

deadlock detected

Figure 3: Deadlock resolution

• Execution order invariant. Let Ti and Tj be global conflicting transactions. If Ti is received
after Tj by DSk, then seqk(Ti) > seqk(Tj).

Sequential numbers define the executing order of global transactions. Intuitively, serializ-
ability is guaranteed by the local scheduler at each DS and the fact that no two DSs order the
same transactions differently—we present a formal correctness argument in the Appendix. Lo-
cal deadlocks are resolved by the in-memory database executing the transactions. Distributed
deadlocks are resolved by avoiding cycles in the scheduling of transactions.

Consider for example the execution in Figure 3. In step (a) Ti and Tj execute locally on
DSi and DSj , respectively. In step (b), Tj requests a data item on DSi, is multicast to DSi and
DSj , and receives sequential number 1 at both DSs. Tj becomes global now. In step (c), Ti

requests access to DSj , is multicast, and assigned sequential number 2 at both DSs. To keep the
algorithm’s invariant, Ti is aborted. This happens first on DSi, which notifies the edge server
handling Ti so that other DSs involved in the transaction abort it too. In step (d) Tj executes
on both DSs.

The price to pay for simple and timeout-free deadlock resolution is the abort of transactions
that may not in fact be deadlocked. In the example in Figure 3, assume that Ti’s second request
accesses a data item on DSl, l 6= j and j 6= i. There is no deadlock involving Ti and Tj now.
However, to enforce the execution order invariant, DSi will still abort Ti. In our experiments we
observed that despite this simplified mechanism, abort rates were low (see Section 7).

4.2 Transaction termination

Read-only transactions are committed with a message from the ES to the DSs involved in the
transaction. The transaction terminates when the ES receives an acknowledgment from each
DS.1 If a DS fails and cannot send the acknowledgment, the ES will suspect it and abort the

1To see why acknowledgments are needed, assume that a transaction finishes after a message is sent from the
ES to the DSs concerned. Let Ti be a read-only transaction, Tj an update transaction, and X and Y data items

7

transaction. Acknowledgments are needed to ensure correctness despite DS failures. They are
discussed in more detail in Section 5.

Termination of update transactions is more complex. Committing an update transaction
involves the XSs to guarantee that the committed state will survive server failures. Termination
of update transactions is based on total order multicast. Figure 4 illustrates termination in the
absence of failures and suspicions. The ES handling the transaction sends a prepare message
to all DSs involved in the transaction (message 1). Each DS multicasts its vote to the ES, the
participating DSs, and the XSs (messages 2a and 2b).

Although any total order multicast algorithm can be used in Sprint, message 2b in Fig-
ure 4 zooms in on the execution of the Paxos protocol, used in our prototype. Both messages
exchanged among servers and the disk accesses done by the XSs, which play the role of “ac-
ceptors” in Paxos parlance, are depicted. Figure 4 includes two optimizations to the Paxos
algorithm, as described in [17]: (a) XS1 acts as the “coordinator” and has previously executed
“Phase 1” of Paxos, and (b) the replies from the acceptors are directly sent to all “learners”
(i.e., multicast destinations).

If a DS is willing to commit the transaction, it multicasts together with its vote the update
statements executed by the transaction. Upon delivering a message from every participating
DS or an abort message, each destination server can determine the outcome of the transaction:
commit if all DSs have voted to commit it, and abort otherwise. If the outcome is commit, each
DS locally commits the transaction against its IMDB.

Terminating update transactions with a total order multicast serves two purposes: First, it
provides a simple way for data servers to render their state persistent (on the XSs). Second, it
avoids the shortcomings of more traditional atomic commitment protocols (e.g., 2PC may block
in the presence of failures [3]; 3PC is quite complex and cannot tolerate false failure suspicions
[9]). Finally, notice that although conceptually each DS should execute a multicast with its
vote, in practice the coordinator (XS1 in Figure 4) can batch the votes of several DSs and send
them all together to the acceptors, reducing the number of messages and disk writes.

4.3 Termination under failure suspicions

Most of the complexity involved in terminating a transaction in case of suspicion of a partic-
ipating DS stems from the possibility of wrong suspicions, that is, the ES suspects a DS that
did not crash. Handling such cases is complex because the suspected DS could have multicast
its vote to commit the transaction when the ES suspects it and acts accordingly (e.g., locally
aborting the transaction and telling the client). As a result, some servers may take the DS’s
vote into account to determine the outcome of the transaction, while others may not, reaching
an inconsistent decision.

Ensuring that all concerned servers reach the same outcome when terminating an update
transaction is done as follows: If an ES suspects the failure of a DS during transaction ter-
mination, it multicasts an abort vote on behalf of the DS. As before, a transaction can only
commit if all participating DSs vote to commit it. But now, the votes considered in the decision
are the first ones delivered for each DS. For unsuspected DSs, only one vote will be delivered;
for suspected DSs, there will be possibly multiple votes. In any case, the total order multicast

in DSX and DSY . Ti reads X from DSX , which then fails and is replaced by DS′
X . Tj then updates X and Y

in DS′
X and DSY , and commits. Finally, Ti reads Y and commits. The execution is not serializable: Ti sees X

before Tj and Y after Tj .

8

ensures that all destination servers deliver transaction votes in the same order, and therefore
reach the same decision. For simplicity, hereafter we refer to the first vote delivered for a DS as
simply the DS’s vote for the transaction, irrespectively of its sender.

2b

XS3XS2XS1DS2DS1ES

commit T

committed T

1
2a

local
commit

local
commit

T has been
committed

T has been
committed

T has been
committed

Figure 4: Terminating an update transaction

5 Recovering from failures

5.1 Edge servers

If an ES fails during the execution of a transaction, the DSs involved will eventually detect the
failure and abort the transaction. If the ES fails during the termination protocol, the transaction
may end up committed or aborted, depending on when the failure occurs: If the ES’s request
to terminate the transaction reaches all participating DSs, these are willing to commit the
transaction, and their votes are delivered before any other votes for the transaction, then the
outcome will be commit.

A new instance of an ES can be promptly created on any physical server. During bootstrap,
the ES sends a message to one of the XSs asking for the current database configuration. The
ES will be ready to process requests once it receives the database configuration.

5.2 Data servers

5.2.1 The basic idea

Sprint’s approach to recover a failed DS is to simply create another instance of it on an oper-
ational physical server. Since DSs run “pure” IMDBs (i.e., configured to avoid disk accesses),
there is no database image to be restored from the local disk after a crash. As a consequence, a
new copy of the failed DS can be deployed on any physical server using the state stored by the
durability servers.

While this strategy simplifies recovery, care is needed to avoid inconsistencies. For example,
consider the following execution. Transaction Ti reads data item di from DSi and transaction

9

Tj reads data item dj from DSj . Then, both DSs fail and are replaced by new copies, DS′i and
DS′j . Ti requests to modify dj , stored on DS′j , and Tj requests to modify di, stored on DS′i.
Thus, both transactions become global and are multicast. Neither DS knows about the past
reads, and so, Ti and Tj are not properly synchronized. Moreover, since DS′i has not received
any operation from Ti, Tj ’s sequence number is not checked against Ti’s, and its write operation
is locally executed. Similarly, DS′j executes Ti’s write operation. As a result, both Ti and Tj are
committed, violating serializability.

5.2.2 Avoiding inconsistencies due to recovery

Sprint avoids inconsistencies by ensuring that a transaction can only commit if the DSs it accesses
are not replaced during its execution. We achieve this property by using incarnation numbers
and incarnation number vectors to compare the configuration of the system when a transaction
starts and when it tries to commit. Incarnation numbers are unique identifiers of each instance
of a DS; they can be implemented by simply counting how many times a DS has been replaced
or “incarnated”. An incarnation number vector contains one incarnation number per DS in the
system.

When a transaction starts, it is assigned the vector with the most up to date incarnation
numbers the ES has seen. At the termination time, the incarnation number of each DS involved
in the transaction is compared against its vector to check whether the transaction can commit.
The revisited condition for commit is as follows:

• Consistent termination invariant. A transaction T can commit if for each DS participating
in T

– DS’s vote is to commit T , and

– DS’s incarnation number matches its entry in the transaction’s incarnation number
vector.

In our prototype the database configuration is extended with an incarnation number vector.
When a transaction starts, the ES hosting it assigns its current view of the vector to the trans-
action and, later, the vector assigned to the transaction is sent along with the prepare message
sent by the ES as part of the procedure to terminate the transaction (message 1 in Figure 4).
Each DS can check locally if the conditions to commit the transactions are met.

When an ES suspects the failure of a DS, it multicasts a change-DS request to all servers
together with the identity of the physical server to host the new instance of the DS. Upon
delivering this request, all servers consistently increase the incarnation number of the particular
DS and update the database configuration. Since vote messages, multicast by the DS itself or
by the ES on behalf of the suspected DS, are ordered with respect to change-DS messages, all
servers reach the same outcome regarding a transaction.

Acknowledgment messages sent by the DSs as part of the commit of a global read-only
transaction return the current DS’s incarnation number. To make sure that the transaction has
observed a consistent view of the database, the incarnation numbers in the transaction’s vector
should be up to date. Acknowledgments allow edge servers to identify possibly inconsistent
states.

Figure 5 depicts the termination of transaction T when one of the participating DSs, DS1,
fails. After the failure, ES eventually suspects DS1 and multicasts the message change-DS1.

10

Upon delivery of this message, the servers update the incarnation number of DS1 and the
database configuration. Since T ’s incarnation vector cannot match the new state of the system,
both ES and DS2 will decide to abort T . The physical server that will host the suspect DS also
delivers message change-DS1 and starts the recovery procedure, described next.

XS3XS2XS1DS2DS1ES

commit T

aborted T

suspect DS1

new
DS1

aborted T

change-DS1

update
database

config. update
database

config.

update
database

config.

update
database

config.

Recover
DS1

Figure 5: Recovery of a data server

Finally, notice that while sequential numbers are assigned to transactions to avoid distributed
deadlocks, incarnation number vectors are assigned to transactions to ensure consistent execution
in the presence of DS recovery.

5.2.3 Rebuilding the state of failed DSs

In principle, the state of a failed DS can be recovered from another DS if it is replicated. In
any case, the database state of a DS can be recovered from the logs kept by the XSs. In this
case, the new DS needs an initial database image and the missing updates to be applied to the
image. After installing the initial database image, the log entries can be locally replayed.

Sequential numbers locally assigned to global transactions by the failed DS are not recovered
by the new DS, which simply resets its sequence number counter. If a DS receives a request from
a global transaction and it misses its sequential number because the transaction was delivered
before the DS instance was created, the DS simply aborts the transaction.

Quickly recovering a failed DS is important for availability. Transactions requesting a data
item stored on the failed DS cannot execute until the server is replaced. In our experiments,
recovering a failed DS running the TPC-C benchmark can take a few minutes. If higher avail-
ability is required, then DSs should be replicated. Although read-only transactions accessing a
replicated data item will succeed provided that at least one DS storing the item is operational,
update transactions will fail since all replicas of the item must be available in order for the
transaction to be committed.

To increase the availability of update transactions when replication is used, a failed DS
should be removed from the database configuration. This is done by having the ES multicast a

11

request to increase the incarnation number of the suspected DS and exclude it from the current
database configuration.

5.3 Durability servers

Recovering an XS is straightforward. Once the server is operational, it can take part in multicast
instances—this follows directly from the Paxos protocol. Delivered messages missed by the
recovering XS can be retrieved from operational XSs. Besides implementing Paxos, XSs also
play a role in recovering failed DSs. In order to do it efficiently, each XS periodically creates an
image on disk of the current database state. This state is built from the messages delivered by
the XSs, as part of the termination protocol of update transactions.

6 Implementation

In the following we describe our system prototype. The middleware is implemented in Java with
one independent multithreaded module per logical server. Point-to-point communication uses
TCP and UDP sockets; multicast relies on a communication library built on top of UDP sockets
and IP multicast.

6.1 Edge servers

Clients submit pre-defined parameterized SQL statements to ESs, which split them by looking
up the Database Configuration directory. Each SQL statement type is decomposed into “sub-
SQL statements” to be sent to the concerned DSs. The directory also contains a pointer to the
post-processing procedure used to merge the results returned by the DSs in case of complex
queries. Post-processing procedures should be written by the application programmer or could
be chosen from a library of standard procedures.

The mapping of client statements onto data server statements depends on the type of the SQL
request and the way the database is partitioned and replicated among the DSs. For example, the
directory in Figure 6 assumes that DSs are numbered from 0 to N−1 and tables “employee” and
“country” are hash partitioned on their primary keys (“employee.id” and “country.id” modulo
N). Statement type 1 is a simple lookup executed only by the DS storing the required record.
Statement type 2 is executed by all DSs. In both cases the ESs have no post-processing to
do; the results are simply forwarded to the clients. Statement type 3 is a join between two
tables. The original statement is split into two sub-statements. Procedure “f join(...)” merges
the results before returning them to the client. Both sub-statements are sent to all DSs. Tables
relatively small, such as “country”, could be stored entirely on one or more servers.

Optimizing the database partitioning and automatizing the breaking up of complex queries
accordingly has been the theme of much research in parallel database systems (e.g., [16, 21, 35]).
Some of these techniques could be integrated into the edge server logic, but this is out of the
scope of the present work.

6.2 Data servers

Data servers receive and execute transactional requests. Transactions are received by two
threads, one for point-to-point and the other for multicast communication, and enqueued for

12

SQL request (input) Data server Post-processingType sub-SQL request (output)

SELECT * FROM employee WHERE id=? id % N -1 SELECT * FROM employee WHERE id=?

UPDATE employee SET salary=salary*1.1
WHERE salary < ? 0..(N-1) -2 UPDATE employee SET salary=salary*1.1

WHERE salary < ?

SELECT * FROM employee, country
WHERE employee.country = country.id
AND employee.salary > ?

0..(N-1)
f_join(...)

3

COMMIT all concerned -4 COMMIT

...

SELECT * FROM country

SELECT * FROM employee WHERE
 salary > ?

0..(N-1)

Figure 6: Database Configuration directory

execution. Threads from an execution pool take requests from the queue and submit them to
the local database or to the XSs, in case of commit requests. As part of a commit request,
ESs send to each DS involved in the transaction the identity of the participating DSs. This
information is transmitted to XSs together with the updates performed by the transaction. DSs
can then know when they have received the votes from all DSs involved in the transaction.

6.3 Durability servers

Durability servers participate in the total order multicast protocol and build images of the
database stored by the DSs to speed up their recovery. The multicast library consists of a set
of layers implementing Paxos [17]. The library is tailored for LANs, making heavy use of IP
multicast. Total order multicast is implemented as a sequence of consensus executions. In each
instance, XSs can decide on a sequence of multicast messages.

Durability servers build images of the database space using local on-disk databases. SQL
statements of committed transactions are submitted to the local database asynchronously. Al-
though building this image prevents the access to the disk of an XS from being strictly sequential,
by keeping this procedure on a minority of them, the sequential pattern is still kept in the critical
path of transactions. Ideally, the database image is directly extracted from the database via
some special API call. When not possible, it can be extracted with a simple “SELECT *” query.

7 Performance evaluation

7.1 Experimental setup

In all experiments we used a cluster of nodes from the Emulab testbed [32]. Each node is
equipped with a 64-bit Xeon 3GHz, 2 GB RAM (although we had slightly less than 1 GB
available in our experiments), and a 146GB HDD. We performed experiments with up to 64
nodes, all connected through the same network switch. The system ran Linux Red Hat 9, and
Java 1.5.

Data servers used MySQL in “in-memory mode”, meaning that synchronous disk accesses
were switched off during the execution and the database of a single DS fitted in its main memory.

13

Under these conditions, servers cannot recover from failures like on-disk databases do. Instead,
when a DS recovers from a crash, any local state written to disk asynchronously by MySQL is
discarded.

Durability servers used a local Berkeley DB Java Edition to store information on disk.
Berkeley DB does not keep a database image on disk, but only a log. All access to disk is
strictly sequential. During the recovery experiments, XSs also had MySQL to build the recovery
of DSs images.

7.2 Multicast scalability

We initially evaluated the scalability of the total order multicast protocol. Table 1 reports
the average and the maximum number of successfully multicast messages, i.e., delivered by all
destinations, per second (mps). There are 2 ∗ f + 1 acceptors, which are also learners.

Receivers Message Resilience
(learners) Size f = 1 f = 3 f = 5

8 16 B 6476 (6851) 5190 (5446) —
16 16 B 6051 (6651) 4042 (4875) 3298 (3623)
32 16 B 5537 (5897) 4390 (4218) 3924 (4034)
8 1000 B 1182 (1663) 766 (1027) —
16 1000 B 1177 (1749) 801 (902) 434 (606)
32 1000 B 1170 (1588) 800 (943) 468 (595)
64 1000 B 1145 (1389) 791 (915) 447 (508)

Table 1: Performance of the multicast protocol

During the experiments, multiple threads constantly multicast messages to all receivers;
there was no other traffic in the network. As part of the protocol, acceptors log messages on
disk before delivering them (see Figure 4). In all cases, messages were delivered within a few
milliseconds.

The performance of our total order multicast primitive is highly sensitive to the resilience, but
not much to the number of receivers. There is not much variation with the number of receivers
since our library is based on IP-multicast and all nodes are connected to the same physical
switch. For the experiments in Sections 7.3 and 7.4 we used a multicast using 3 acceptors.

Smaller messages lead to higher throughput since more of them can be bundled into the
payload of a single network message. We ran experiments with 16-byte and 1000-byte mes-
sages, corresponding respectively to the average size of the micro-benchmark and the TPC-C
transactions we used in our experiments.

7.3 The TPC-C benchmark

For TPC-C, we range partitioned all but the Items table according to the warehouse id. The
Items table is only read, and replicated on all data servers. With this partitioning, about 15%
of the transactions were global, and 92% of them updated the database. Each DS stored locally
5 TPC-C warehouses. A warehouse in MySQL has around 100MB, resulting in a database
of approximately 500 MB per DS. There were 6 to 8 ESs and 3 XSs, each one running on a
dedicated physical server.

14

7.3.1 The impact of a cluster of IMDBs

Figure 7 illustrates the advantages of placing the database in the main memory of servers. It
also shows compares Sprint to a standalone MySQL database. Sprint has constant response
time for increasing database sizes, varying from 500 MB to 15 GB in these experiments. We
have isolated the effects of parallelism by having a single client execute transactions. As a
consequence, throughput = 1 / response time.

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140 160

Re
sp

on
se

 ti
m

e
(m

se
c)

Number of warehouses

Standalone DB
Sprint

Figure 7: TPC-C with a single client

The response time of transactions executing in Sprint increases slightly with the number of
DSs since there are more receivers in the multicast protocol. In our experiments, DSs vary from
1 to 32. A configuration with 1 DS has response time of about 45 msec, and a configuration
with 32 DSs has response time of 56.7 msec, corresponding to throughputs of 22.2 tps and 17.6
tps, respectively. For 25 warehouses, for example, Sprint improves both the throughput and the
response time of a standalone server by 6x.

When the database fits in the main memory of a standalone server, the overhead introduced
by Sprint makes it unattractive. However, this rapidly changes as the database grows. If the
standalone server had more main memory, the curves in Figure 7 would cross at some point
right of the current crossing point, but the trend would be the same.

7.3.2 Throughput and response time

Figure 8 depicts the attained throughput in transactions per second (tps). The system load was
varied by varying the number of clients. In most cases, 100 msec corresponds to the maximum
throughput.

Besides presenting configurations of Sprint with a varying numbers of DSs, we also show the
performance of the system when transactions are terminated with Paxos Commit, an atomic
commit protocol [9] (“8AC” in the graph). Paxos Commit has the same latency as Two-Phase
Commit but is non-blocking [9]. It allows data servers to contact durability servers directly (see
Figure 4), saving one communication step when compared to total order multicast, where data
servers should contact the coordinator first. We show the curve for 8 DSs only since this was
the best performance achieved.

Although Paxos Commit saves one communication step, it introduces more messages in the
network and does not allow the coordinator to bundle several application messages into a single

15

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300 350 400 450 500

Re
sp

on
se

 ti
m

e
(m

se
c)

Throughput (tps)

1
2
4
8

16
32

8AC

Figure 8: Throughput and response time of TPC-C

proposal. As a result, in Sprint it proved to be less efficient than terminating transactions with
a total order multicast.

Table 2 compares Sprint with a standalone database when multiple clients submit transac-
tions. The throughput is for response times of 100 msecs. We also include the performance of
Sprint with Paxos Commit (“Sprint (AC)”).

In a configuration with 32 DSs, Sprint processed 5.3x more transactions per second than a
standalone server (i.e., 412 tps/77.5 tps) while running a database 30x bigger than the one that
would fit in the main memory of the single server (i.e., 15.3GB/506MB). If the database on the
single server doubles in size (i.e., Sprint’s database is 15x bigger), then the throughput becomes
11x that of the single server.

#WH #DS tps DB size
5 1 47 506 MB

10 2 65 994 MB
Sprint 20 4 110 1.9 GB

40 8 186 3.8 GB
80 16 289 7.6 GB

160 32 412 15.3 GB
Sprint (AC) 40 8 75 3.8 GB
Standalone 5 — 77.5 506 MB
Database 10 — 37.4 994 MB

Table 2: Sprint vs. standalone database (TPC-C)

7.3.3 Abort rates

We also evaluated the abort rates of TPC-C transactions. The values depicted in Figure 9 were
collected during the same experiments as the ones shown in Figure 8.

The configuration for 1 DS represents the aborts induced by the local database, mainly due
to local deadlocks and contention. Local aborts happen because in TPC-C many transactions
read and modify a small table with one entry per warehouse. Since there are 5 warehouses
per DS, with a single DS, the contention in this table is high. As the number of DS increases,

16

the probability of real deadlocks decreases. Our mechanism to prevent deadlocks aborts more
transactions than needed but with TPC-C the overall number of aborts is quite low.

0.000

0.005

0.010

0.015

0.020

0.025

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Ab
or

t r
at

e

Number of clients

1
2
4
8

16
32

Figure 9: Abort rate of TPC-C transactions

7.3.4 Scalability

Figure 10 compares the throughput of Sprint to the throughput of a standalone MySQL as the
database grows. The number of warehouses determines the size of the database, as depicted in
Table 2. In all points in the graph we selected the number of clients that maximizes throughput.
When the database fits in the main memory of a single server, then Sprint’s overhead makes
it unattractive. Configurations with 2 DSs or more can store a database bigger than the main
memory of the single server. In such cases, Sprint has better performance than a standalone
server. High throughput is also due to the parallel execution of transactions in multiple servers.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100 120 140 160

T
hr

ou
gh

pu
t (

tp
s)

Number of warehouses

Sprint
Standalone DB

Figure 10: Scalability of Sprint and standalone DB

17

7.3.5 Recovering from failures

To evaluate the time needed by data servers to recover after a failure, we performed experiments
with 28 TPC-C clients running for maximum throughput in order to generate large logs, the
worst scenario for recovery. Clients issued transactions through 8 edge servers, and 8 data servers
were online. In these experiments the database images were created every 10 minutes, what is
roughly the time to increase the size of the logs by 54 MB (i.e., approximately 6.75 MB per DS).
The recovery was started after 10 minutes of execution, right before the database images were
created.

For this scenario the recovery takes, in average, 186 seconds. Out of this time, 27 seconds
were spent on getting the database image from the on-disk database in the durability server,
sending it through the network, and installing it on the new data server. The remaining time,
159 seconds, was spent receiving the log and applying the updates to the database.

Although the size of the database image (≈ 500 MB) is much larger than that of the log
(≈ 6.75 MB), applying the updates takes much longer than loading the image into MySQL.
This happens because while applying the updates from the logs is performed by means of SQL
statements, loading an image into MySQL can bypass the JDBC interface.

To maximize the effect of the recovery procedure on the normal transaction processing, the
experiments were performed while one of the three durability servers was unavailable. However,
no meaningful variation on the response time of the operational data servers was verified within
this period, showing that the procedure was not disruptive to the system.

How good is recovery in our worst-case analysis? “Five-nines availability” implies about 5
minutes of downtime a year at most. If the whole system became unavailable due to a crash,
that would mean in the average a little less than two data server crashes a year if database
images are created in 10-minute intervals. In Sprint, however, if a data server crashes, the
database becomes only partially unavailable; transactions accessing operational servers can still
be executed.

7.4 Micro-benchmark

To evaluate Sprint’s performance under a variety of workloads, we conducted experiments using
a micro-benchmark. Our micro-benchmark has very simple transactions, containing only two
operations. In doing so, we stress communication among servers and reduce local processing on
the IMDBs. By varying the ratios of local/global, and read-only/update transactions, we had
fine control over the amount of communication induced by each workload.

The database used in the experiments was composed of a single table hash partitioned
according to the primary key. Database rows had 100 bytes of application data. There were
three attributes in the table: two integers, “id” and “value”, where id is the primary key, and
a 92-character string, “txt”. Read-only transactions were composed of two requests of type:
“SELECT value FROM table WHERE id=?”; the id was randomly generated for each SQL statement.
Update transactions had a SELECT and an update request: “UPDATE table SET value=? WHERE
id=?”; both value and id were randomly generated for each SQL statement.

7.4.1 Throughput versus workload

In the experiments that follow, each data server stored a local database with approximately
300 MB of application data (375 MB of physical data). We conducted experiments with 8

18

DSs, leading to an overall database with 2.4 GB, uniformly divided among data servers. As a
reference, we also performed experiments with a standalone MySQL.

The goal of these experiments was to determine the maximum sustainable throughput under
different transaction mixes. During the experiments, we made sure that there were enough
clients and edge servers to fully load the system. Figure 11 shows the throughput of Sprint for
response times of at most 20 milliseconds.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

tp
s)

Read-only transactions (%)

(a)

(b)

(c)

(d)

Local (100%-0%)
Mixed (75%-25%)
Mixed (50%-50%)

Global only

Figure 11: Micro-benchmark throughput

Figure 11 fully characterizes the behavior of Sprint running the micro-benchmark with 8 DSs.
Four points in the graph deserve special attention: (a) all transactions are global and update
the database, (b) all transactions are global and only read the database, (c) all transactions are
local and only read the database, and (d) all transactions are local and update the database.
Point (a) requires two multicasts: one to synchronize and another one to terminate transactions.
Point (b) has better throughput than (a) because there is a single multicast per transaction and
no aborts to ensure the execution order invariant (transactions only read the database). Point
(c) provides the best throughput; no multicast is involved. Point (d) requires a single multicast
per transaction, to make it durable. As with (b), there are no aborts due to the execution order
invariant since transactions are all local.

From point (a) to point (b), the throughput increases 4.5x, and from (a) to (d) it increases
3.6x. The advantage of (b) over (d) is due to the use of two “streams” for multicast, one for
synchronizing global transactions and another for terminating update transactions. Since the
first is not used to store transaction state, we disabled disk writes—all information was kept in
main memory only.

Table 3 shows the ratio between Sprint’s throughput and that of a standalone server using
a 2.4 GB database. Not surprising, performance of the former is always better than the latter,
since the database does not fit in the main memory of the single server. Interestingly, the ratio
decreases when we pass from update-only transactions to mixes with 50% of update transactions.
This happens because although the throughput increases in Sprint when more transactions are
read-only, the improvement is not as big as in a standalone database, and therefore the ratio is
smaller. When fewer transactions update the database, a bigger portion of it can be cached in
main memory, improving the performance of the standalone server. In Sprint, the effect is not
as significant since the database is already all in main memory.

Table 3 depicts in bold configurations in which Sprint running with 8 DSs is at least 8 times

19

Local Read-only Transactions
Transactions 0% 50% 100%

0% 2.8x 2.0x 5.8x
50% 4.8x 4.0x 9.0x
75% 6.8x 5.3x 11.2x

100% 10.1x 8.9x 18.8x

Table 3: Throughput improvement w.r.t. single DB

better than a standalone database. In the best mix, when all transactions are local and only
read the database, Sprint has a throughput that is more than 18 times that of a standalone
database. Two factors account for this: higher parallelism (8 DSs as opposed to a single one)
and main memory execution only.

7.4.2 Abort rates

In the following, we consider abort rates under more stringent conditions than TPC-C. Table 4
shows the effects of several transaction mixes on the abort rate. The entries in the table corre-
spond to the experiments depicted in Figure 11. Aborts are highly dependent on the percentage
of global transactions in the workload, but not so much dependent on the percentage of up-
date transactions. When all transactions are global and at least half of the them are updates,
about 25% of transactions are aborted due to our deadlock avoidance mechanism. Notice that
in TPC-C, 85% of transactions are local and 92% are updates.

Local Read-only Transactions
Transactions 0% 50% 100%

0% 0.24471 0.25299 0.00016
50% 0.12098 0.13457 0.00008
75% 0.04762 0.05613 0.00003

100 % 0.00001 0.00001 0.00000

Table 4: Abort rate of micro-benchmark

We have also considered the effects of hot-spots on the deadlock avoidance mechanism. To
do so, we changed the micro-benchmark so that one of the transaction operations is forced to
access at least one DS in the hot spot area, and varied the size of this area. A hot-spot of size
one means that every transaction executes one operation on the designated DS, and so on. The
results depicted in Figure 12 are for the worst case scenario, as shown in Table 4, that is, all
transactions are global and update the database.

When a single DS is in the hot-spot area, transactions are mostly synchronized by a single
data server, and fewer of them abort. With two (or more) DSs in the hot-spot area, local
synchronization does not play the same role. Since most transactions access the same DSs, the
chances of conflicts increase, and so the aborts. As the number of DSs in the hot-spot area
increases, the probability of conflicts decreases together with the aborts, as expected.

7.4.3 Scalability

In the experiments depicted in Figures 13 and 14 we evaluate Sprint’s throughput when the
number of servers increases from 2 to 32 and the database size is fixed to 500 MB of application

20

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0 1 2 3 4 5 6 7

Ab
or

t r
at

e

Hot-spot size

Figure 12: Abort rate with hotspots

data (626 MB of physical data). In all configurations, the data is uniformly distributed among
the servers. In both graphs we also show the throughput of our multicast primitive in messages
per second (mps) and of a standalone MySQL running databases with 250 MB (physically 314
MB) and 500 MB, corresponding to cases in which the database fits comfortably in the main
memory of the single server, and in which it does not. The throughput of the multicast primitive
represents a theoretical upper bound on the number of transactions per second that could be
achieved in workloads with global or update transactions.

Figure 13 considers a mixed workload with 50% of update transactions—in such cases, total
order multicast is always needed to terminate transactions. The reported throughput (in tps)
in all cases corresponds to a response time of at most 20 msecs. When compared to MySQL
with a 500-MB database, Sprint provides about the same throughput when all transactions
are global, and higher throughput when at least 50% of the transactions are local, with peak
performance 6.4x bigger than the standalone server when there are 16 DSs. When compared to
MySQL running a quite small database of 250 MB, Sprint can perform better if the workload
is dominated by local transactions. In such cases, however, the only advantage of Sprint with
respect to a single server is fault tolerance: Sprint can quickly recover from the failure of any
data server and continue operating with the operational servers while the failed server recovers.

Figure 14 depicts the scalability of the system when all transactions only perform read
operations. If transactions are all global, then none of Sprint configurations can process as
many transactions per second as a single MySQL server with a database of 500 MB. When
50% of the transactions are local, Sprint performs better for 8, 16 and 32 DSs; in the largest
configuration the throughput gets close to the theoretical maximum (i.e., multicast primitive).
Finally, when all transactions are local, Sprint scales linearly (notice that the y-axis in the
graph is in log scale). MySQL with a database of 250 MB has a throughput near the theoretical
maximum that Sprint could achieve. Its performance is clearly much higher than Sprint’s, when
multicast is needed. If all transactions are local though, Sprint has a throughput 5x higher than
MySQL.

21

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

tp
s/

m
ps

)

Number of data servers

250 MB

500 MB

Local only
Mixed (50%-50%)

Global only
Multicast

Standalone DB

Figure 13: Scalability of mixed load (50% update).

 1000

 10000

 100000

 0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

tp
s/

m
ps

)

Number of data servers

250 MB

500 MB

Local only
Mixed (50%-50%)

Global only
Multicast

Standalone DB

Figure 14: Scalability of read-only transactions.

22

8 Related work

8.1 On-disk database systems

Increasing the performance and the availability of on-disk databases has been an active area of
research for many years. While commercial products (e.g., [20, 34]) have traditionally favored
failover based on storage systems shared among the cluster nodes (e.g., disk arrays), research
prototypes have targeted clusters of shared-nothing servers (e.g., [14]).

Gray et al. [10] showed that conventional replication algorithms, typically based on dis-
tributed locking [3], can lead to high abort rates as a consequence of concurrent accesses. This re-
sult motivated much research on protocols based on total-order broadcast, or a variant primitive,
to synchronize concurrent accesses and reduce the number of aborts [1, 2, 15, 22, 23, 24, 25, 27].
Some approaches have also considered consistency criteria weaker than serializability. In partic-
ular, many recent works have focused on snapshot isolation [5, 6, 18, 26, 29, 33].

Sprint “decouples” replication for availability from replication for performance. Data servers
can be replicated for performance only: if a data item is often read and rarely updated, then
increasing the number of in-memory replicas of the item will allow more parallel reads; if the
item is rarely read but often modified, then performance is improved by reducing its number of
in-memory replicas. Data availability is ensured (by the durability servers) even if only a single
data server stores the item. Durability servers are used by update transactions at commit time
only, and thus, do not interfere with the database synchronization protocol.

How does Sprint compare to on-disk database replication approaches? Middleware-based
database replication protocols are mainly for fault tolerance. Depending on the workload and
the replication level, usually full replication, throughput can also be improved when replicas
are added to the system. Scalability of fully replicated databases, however, is limited to read-
intensive workloads. Sprint, on the contrary, can be configured for performance under both
read- and write-intensive workloads by judiciously partitioning and replicating the data.

8.2 In-memory database systems

IMDBs were introduced in the early 80’s [8] and successfully used in real contexts (e.g., telecom-
munication industry). To cope with failures, some existing implementations use a primary-
backup technique in which the primary propagates system-level information (e.g., database
pages) to the backups [7]. Backups monitor the primary and if they suspect it has crashed,
some backup takes over. A different approach is proposed in [36] where virtual-memory-mapped
communication is used to achieve fast failover by mirroring the primary’s memory on the back-
ups.

Some contemporary systems have considered IMDBs in clustered environments. MySQL
Cluster [28] replicates and fragments the database space among server clusters to enhance per-
formance and availability. To ensure good performance of update transactions as well, the
approach makes use of deferred disk writes. This means that updates are written to disk after
the transaction has committed. Transaction atomicity is ensured by synchronizing the servers’
disk writes, but some failure patterns may violate the durability property. An alternative ap-
proach to keeping a partitioned database consistent while relaxing durability is discussed in
[30].

The work in [13] consists in interposing an IMDB between applications and on-disk databases
as a content cache. The database is partitioned across individual servers in such a way that

23

queries can be executed in a single database without data transmission or synchronization with
other servers. Sprint could benefit from such a partitioning scheme in order to reduce the number
of global transactions.

9 Final remarks

Sprint’s distributed data management protocol was designed to stress processors, main mem-
ories, and the network, while sparing disk. No restrictive assumptions are made about the
failure model (e.g., no server must be always up) and failure detection. When disk access is
unavoidable, it is done sequentially. The execution model is very simple, favoring local trans-
actions. An implicit assumption of the approach is that by carefully partitioning a database,
many transactions can be made local, maximizing performance.

Performance experiments have demonstrated that for a large range of workloads, Sprint can
extend the functionality of a single-server IMDB to a cluster of such servers. It shows that
middleware architectures can be also employed to design highly efficient and fault-tolerant data
management systems even when the database is not fully replicated. We hope it will open up
new directions in research on high performance and high availability middleware-based database
protocols.

Acknowledgments

We would like to thank Prof. Bettina Kemme and the anonymous reviewers for their suggestions
to improve the presentation of this work, and Apple Computer International and Emulab for
the hardware infrastructure, which allowed us to develop, fine tune, and evaluate Sprint.

References

[1] D. Agrawal, G. Alonso, A. E. Abbadi, and I. Stanoi. Exploiting atomic broadcast in
replicated databases. In Proceedings of EuroPar (EuroPar’97), Passau (Germany), 1997.

[2] Y. Amir and C. Tutu. From total order to database replication. In International Conference
on Distributed Computing Systems (ICDCS), July 2002.

[3] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

[4] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225–267, 1996.

[5] S. Elnikety, S. Dropsho, and F. Pedone. Tashkent: Uniting durability with transaction
ordering for high-performance scalable database replication. In Proceedings of EuroSys,
2006.

[6] S. Elnikety, F. Pedone, and W. Zwaenepoel. Database replication using generalized snapshot
isolation. In Symposium on Reliable Distributed Systems (SRDS’2005), Orlando, USA, 2005.

[7] FirstSQL Inc. The FirstSQL/J in-memory database system. http://www.firstsql.com.

24

[8] H. Garcia-Molina and K. Salem. Main memory database systems: An overview. IEEE
Transactions on Knowledge and Data Engineering, 4(6):509–516, 1992.

[9] J. Gray and L. Lamport. Consensus on transaction commit. ACM Trans. Database Syst.,
31(1):133–160, 2006.

[10] J. N. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a solution.
In Proceedings of the 1996 ACM SIGMOD International Conference on Management of
Data, Montreal (Canada), 1996.

[11] J. N. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

[12] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In Distributed
Systems, chapter 5. Addison-Wesley, 2nd edition, 1993.

[13] M. Ji. Affinity-based management of main memory database clusters. ACM Transactions
on Internet Technology (TOIT), 2(4):307–339, 2002.

[14] B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-r, a new way to implement
database replication. In Proceedings of 26th International Conference on Very Large Data
Bases (VLDB’2000), Cairo, Egypt, 2000.

[15] B. Kemme and G. Alonso. A new approach ro developing and implementing eager database
replication protocols. ACM Transactions on Database Systems (TODS), 25(3), September
2000.

[16] D. Kossmann. The state of the art in distributed query processing. ACM Comput. Surv.,
32(4):422–469, 2000.

[17] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems,
16(2):133–169, 1998.

[18] Y. Lin, B. Kemme, M. Patino-Martinez, and R. Jimenez-Peris. Middleware based data
replication providing snapshot isolation. In International Conference on Management of
Data (SIGMOD), Baltimore, Maryland, USA, 2005.

[19] D. Morse. In-memory database web server. Dedicated Systems Magazine, (4):12–14, 2000.

[20] Oracle parallel server for windows NT clusters. Online White Paper.

[21] M. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice Hall,
1999.

[22] M. Patino-Mart́ınez, R. Jiménez-Peris, B. Kemme, and G. Alonso. Scalable replication in
database clusters. In Disctributed Computing (DISC), 2000.

[23] M. Patino-Martinez, R. Jimenez-Peris, B. Kemme, and G. Alonso. Consistent database
replication at the middleware level. ACM Transactions on Computer Systems, 23(4):375–
423, 2005.

25

[24] F. Pedone and S. Frølund. Pronto: A fast failover protocol for off-the-shelf commer-
cial databases. In Proceedings of 19th IEEE Symposium on Reliable Distributed Systems
(SRDS’2000), Nürnberg, Germany, 2000.

[25] F. Pedone, R. Guerraoui, and A. Schiper. Transaction reordering in replicated databases. In
Proceedings of the 16th IEEE Symposium on Reliable Distributed Systems, Durham (USA),
1997.

[26] C. Plattner and G. Alonso. Ganymed: scalable replication for transactional web applica-
tions. In Proceedings of the 5th ACM/IFIP/USENIX international conference on Middle-
ware, pages 155–174, 2004.

[27] L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P. Vicente. Strong replication in
the globdata middleware. In Workshop on Dependable Middleware-Based Systems, 2002.

[28] M. Ronström and L. Thalmann. Mysql cluster architecture overview. MySQL Technical
White Paper, 2004.

[29] R. Schenkel, G. Weikum, N. Weissenberg, and X. Wu. Federated transaction management
with snapshot isolation. In Selected papers from the Eight International Workshop on
Foundations of Models and Languages for Data and Objects, Transactions and Database
Dynamics, pages 1–25, 2000.

[30] R. Schmidt and F. Pedone. Consistent main-memory database federations under deferred
disk writes. In Symposium on Reliable Distributed Systems (SRDS’2005), Orlando, USA,
2005.

[31] T. Shetler. In-memory databases: The catalyst behind real-time trading systems.
http://www.timesten.com/library/.

[32] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb,
and A. Joglekar. An integrated experimental environment for distributed systems and net-
works. In Proc. of the Fifth Symposium on Operating Systems Design and Implementation,
pages 255–270, Boston, MA, 2002. USENIX Association.

[33] S. Wu and B. Kemme. Postgres-r(si): Combining replica control with concurrency con-
trol based on snapshot isolation. In Proceedings of the International Conference of Data
Engineering, 2005.

[34] Informix extended parallel server 8.3. Online White-Paper.

[35] C. Yu and W. Meng. Principles of Database Query Processing for Advanced Applications.
Morgan Kaufmann, San Francisco, 1998.

[36] Y. Zhou, P. Chen, and K. Li. Fast cluster failover using virtual memory-mapped commu-
nication. Technical Report TR-591-99, Princeton University, 1999.

26

Appendix

In the following we prove two properties of the algorithm: (a) Sprint’s data management protocol
ensures strong consistency, that is, all executions are one-copy serializable, and (b) Sprint detects
and solves distributed deadlocks.

We initially introduce a simple formalism. A history h over a set of transactions T =
{T1, T2, ..., Tn} is a partial order ≺ where (a) h contains the operations of each transaction in T ;
(b) for each Ti ∈ T , and all operations Oi and O′

i in Ti: if Oi precedes O′
i in Ti, then Oi≺O′

i in
h; and (c) if Ti reads X from Tj , then Wj(Xj) ≺ Ri(Xj) in h [3], where Ri(Xj) (resp., Wi(Xi))
is a read (write) operation performed by Ti over data item Xj (Xi).

Proposition 1 Sprint’s data management ensures one-copy serializability.

Proof: We show that every history h produced by Sprint has an acyclic multi-version seri-
alization graph (MVSG). From [3], if MV SG(h) is acyclic, then h is view equivalent to some
serial execution of the same transactions using a single-copy database. MVSG is a directed
graph with the nodes representing committed transactions and edges representing dependen-
cies between them. There are three types of directed edges in MVSG: (a) read-from edges,
(b) version-order edges type I, and (c) version-order edges type II.

From the algorithm, the commit order of transactions induces a version order on every
data item: If � is an order relation on the versions, and Ti and Tj update X, then we have
commit(Ti) < commit(Tj) ⇔ Xi � Xj . To show that MV SG(h) has no cycles, we prove that
for every edge Ti → Tj in MV SG(h), we have commit(Ti) < commit(Tj). The proof continues
by considering each edge type in MV SG(h).

1. Read-from edge – If Tj reads data item Xi from Ti (i.e., Rj(Xi)), then Ti → Tj ∈
MV SG(h).
We have to show that commit(Ti) < commit(Tj). This follows from the fact that since
Ti is an update transaction, it executes in isolation. Other transactions can only read Xi

after Ti has committed.

2. Version-order edge type I. If both Ti and Tj write X such that Xi � Xj , then Ti → Tj ∈
MV SG(h). Since the commit order induces the version order, we have that Xi � Xj ⇔
commit(Ti) < commit(Tj).

3. Version-order edge type II. If Ti reads Xk from Tk, and both Tk and Tj write X such that
Xk � Xj , then Ti → Tj ∈ MV SG(h). We have to show that commit(Ti) < commit(Tj).
Assume that Ti reads Xk from data server DS. Since Tj is an update transaction, it can
only commit if it modifies all data servers storing a copy of X. Consider first an execution
without failures. Since Ti reads Tk’s updates, it access DS after Tk’s commit and before
any other update transaction. Therefore, Tj will be blocked at DS waiting for Ti to finish
and release the lock DS. It follows that commit(Ti) < commit(Tj). Consider now the case
in which Ti reads Xk at DS, this one fails, another instance of it, say DS′, is created, and
Tj updates DS′. Since Ti commits, before failing, DS must have voted to commit Ti. This
vote is totally ordered with the message m that informed about the replacement of DS
by DS′. Had DS’s vote been delivered after m, Ti would have been aborted. Therefore,
DS’s vote must have been delivered before m, and Ti was committed before Tj accessed
DS′. Hence, commit(Ti) < commit(Tj). 2

27

Proposition 2 If a transaction is involved in a deadlock then it is aborted.

Proof: From the multiple-readers single-writer policy, deadlocks involving local transactions
cannot happen. We show that deadlocks involving global transactions are avoided. From the
algorithm invariant (see Section 4.1), a global transaction with a lower sequential number never
waits for a conflicting global transaction with a higher sequential number. Thus, it remains to be
proved that for any pair of transactions Ti and Tj , if seq(Ti) < seq(Tj) at data server DSk, then
seq(Ti) < seq(Tj) at data server DSl. In the absence of failures this trivially follows from the
total order property of total order multicast and the way sequential numbers are assigned by the
algorithm. Consider now that DSl assigns a sequential number to Ti, fails, and upon recovering
assigns a smaller sequential number to Tj . This can only happen if the message informing that
Ti became global is received by DSl before this one fails. Thus, the new instance of DSl, after
the failure, will not have a sequential number for Ti. Upon receiving the first request for Ti, DSl

will abort Ti. 2

28

