
The UM-MAIS Methodology for Multi-channel Adaptive
Web Information Systems

C. Batini & D. Bolchini & S. Ceri & M. Matera &

A. Maurino & P. Paolini

Received: 12 April 2006 /Revised: 29 January 2007 /
Accepted: 26 February 2007 / Published online: 5 May 2007
Springer Science + Business Media, LLC 2007

Abstract Multichannel Adaptive Web Information Systems (WISs) are emerging as a new
class of information systems, characterized by their powerful use of mobility and context-
awareness. Different methodologies have been proposed so far for the analysis and design
of Multichannel Adaptive WISs, specifically focused on the front-end layer or the back-end
layer, but no methodology has aimed to cover all the lifecycle and to design all the
components that characterize Multichannel Adaptive WIS. This paper fills such a gap, by
presenting UM-MAIS (Unified Methodology for Multichannel Adaptive Information
Systems), a new methodology that capitalizes on well-established existing methods. It
supports the analysis and design of the various components of Multichannel Adaptive WISs
(including the user’s experience) in a comprehensive and unified manner with special
emphasis on context modeling, personalization, and adaptation.

Keywords adaptive web information systems . design methodologies . context modelling .

requirements analysis . services oriented architecture . web applications

World Wide Web (2007) 10:349–385
DOI 10.1007/s11280-007-0025-x

DO25; No of Pages

C. Batini :A. Maurino (*)
Università di Milano Bicocca, Milano, Italy
e-mail: maurino@disco.unimib.it

C. Batini
e-mail: batini@disco.unimib.it

S. Ceri :M. Matera : P. Paolini
Politecnico di Milano, Milano, Italy

S. Ceri
e-mail: ceri@elet.polimi.it

M. Matera
e-mail: matera@elet.polimi.it

P. Paolini
e-mail: paolini@elet.polimi.it

D. Bolchini
Università della Svizzera Italiana, Lugano, Switzerland
e-mail: davide.bolchini@lu.unisi.ch

1 Introduction

The design and development of information systems have been often tackled from two
autonomous and independent viewpoints. From one hand, significant efforts have been
performed for the analysis, design, and implementation of the so called front-end layer,
which is in charge of allowing end users to interact with information systems; the Web
paradigm is the “de facto” standard to model the interaction between users and systems
through dynamic hypertext interfaces. From the other hand, several studies have been
conducted for supporting the design and development of the back-end layer, involving the
definition of the operative and informative services that automate information systems. In
this context, Service Oriented Architectures (SOAs) are assuming prominent relevance as a
framework for (Web) service provisioning.

Recently, Multichannel Adaptive Web Information Systems (Multichannel Adaptive
WISs) are emerging as a new class of information systems characterized by the powerful
use of mobility and context-awareness. As traditional Web information systems,
Multichannel Adaptive WISs consist of three main components: the data source, the
hypertext front-end and the back-end services. So far the design of Multichannel Adaptive
WISs has been undertaken by methods that focus separately on specific components and
phases of the lifecycle: several methods cover requirement analysis [9, 11, 12, 39], other
methods cover conceptual modeling [16, 17, 26, 44], other methods address service design
[7, 37]. None of them is sufficient for managing the complexity introduced by mobility and
context-awareness. In particular:

– Methods are unable to guide analysts and designers in discovering and implementing
requirements, which are specific to mobility and context-awareness.

– Even when providing conceptual abstractions for capturing adaptive behaviors, methods do
not address the design of the back-end layer and of the interaction with external services—at
most they provide constructs for representing the invocation of “black-box” services [34].

– When methods support service adaptivity, they do not focus on the front-end layer or
on the non-functional requirements that drive service customization [21].

Therefore we believe that new methods, techniques and tools are required in order to
approach the peculiarity of the adaptability and multi-channel requirements along all the
dimensions. First of all, adaptability issues must be analyzed and then implemented by
adopting “ad-hoc” techniques. Also, while separation of concerns is in general
advantageous for reducing the effort of system development, we believe that “communi-
cation” between the different design dimensions is required. Therefore, separate methods
addressing different dimensions can be fruitfully adopted only if cross-interactions and
possible “adaptors” are clearly defined.

Given the previous premises, this paper proposes a new methodology, UM-MAIS (Unified
Methodology for Multichannel Adaptive Information Systems), that has been conceived in the
context of the MAIS Italian project [42]. UM-MAIS results from the integration of three
existing and field-tested methods for requirement analysis [12], hypertext front-end design
[16] and service design [21]. UM-MAIS capitalizes on the strength of these three methods,
and tries to overcome the limitations of the current approaches by:

– Offering a set of analysis and design techniques that specifically focus on adaptivity
and multi-channel issues.

– Covering all the main dimensions characterizing Multichannel Adaptive WISs, by
means of a unified method and a pool of tools assisting the whole development cycle.

350 World Wide Web (2007) 10:349–385

– Offering a systematic view over the Multichannel Adaptive WIS development,
clarifying the different analysis and design activities, the flow of knowledge and the
cross-interactions between the different figures undertaking such activities.

The resulting framework supports an agile paradigm [1] that allows designers to refine the
different Multichannel Adaptive WIS components through a number of successive iterations.
It is also in line with the model-driven approach proposed by OMG [46], since it proposes the
definition of a set of abstract models that are then translated and/or refined into new model
representations, as long as the implementation of the application code is generated.

This paper illustrates the set of methods, techniques and tools characterizing UM-MAIS,
and also shows the methodology at work for the development of a Multichannel Adaptive
WIS for the management of Italian archaeological sites. In particular, Section 2 discusses
the rationale and the framework of our research, by illustrating the main motivations behind
the definition of UM-MAIS, and comparing our approach with related work. Section 3
outlines the methodology, by introducing a global view of the main phases and activities,
and illustrates the running case that we use throughout the paper for exemplifying concepts.
The following sections then provide details about how adaptability and multi-channel issues
are approached in the different design phases. In particular, Section 4 describes the
requirement management activities. Section 5 illustrates the activities in the High-Level
Design phases, which allow designers to sketch an overall picture of the Multichannel
Adaptive WIS, by defining its “in-the-large organization” for data, hypertext, and service
design. Sections 6 and 7 deal, respectively, with Low-Level Hypertext and Service Design.
Section 8 then illustrates the tools developed so far for supporting the activities previously
described. Finally, Section 9 draws our conclusions and future work.

2 Rationale and background

The characterizing feature of Multichannel Adaptive WISs is the ability to capture and
exploit the execution context. Context can be captured at several architectural levels,
ranging from the application front-end, capturing context by means of mobile devices, to
the application back-end, capturing context-specific state information. Figure 1 represents
the context reference model that has been conceived within the MAIS project [42], and that
we also adopt in this paper. According to Figure 1 the context is composed by the user
profile, the environment, and the channel.

& The user profile describes the properties associated with the user; it is distinguished
in domain-independent and domain-dependent user profile. The former contains all
the characteristics that describe the users along their social distinctive properties. It
includes personal data, their physical abilities and general interests. The latter refers
to the specific domain in which the context is considered, and it usually contains
preferences related to specific services.

& The environment collects the information about the geographical position, the
ambient condition, the temporal details and the actions that characterize the
interaction of the users with the surrounding space.

& Finally, the channel describes the elements that characterize the interaction of the
users with the platform used to access services. The considered model characterizes
the channel through its device, network, application protocol and network interface
features.

World Wide Web (2007) 10:349–385 351

At the front-end layer, the emphasis is on adaptability with respect to the user device, the
user profile, and the context of use. The main goal is to provide users with contents
adhering to the format and the presentation modality that are more appropriate for the
current context of use, and with services for which quality (e.g., availability, connectivity,
quality of data, etc.) is dynamically negotiated.

At the back-end layer, the emphasis is on the adaptability with respect to the user profile,
the environment, and the channel. The back-end infrastructure should therefore enable the
provision of services which best fit with the service requests and expected quality of service
(QoS). Moreover, services have to be adapted to the specific communication channel being
used (for example by considering peculiar network speed, or the device capabilities).

Figure 1 The context model [14].

352 World Wide Web (2007) 10:349–385

So far the design of the different architectural components addressing the previous issues has
been approached by several and separate methods, each one focusing on a specific architectural
layer. The methodology that we propose in this paper proposes the seamless integration of three
individual methods originally focusing on specific issues, with the aim of covering all the different
components of aMultichannel AdaptiveWIS, as well as all the phases of its lifecycle. In particular:

– Requirement management, i.e. the phase of the method initiating the lifecycle at the
highest level of abstraction, is based on the AWARE method (Analysis of Web
Application REquirements) [12]. In line with the traditional approach of goal-oriented
requirement engineering [3, 22, 38], AWARE recognizes the central role of all the
relevant stakeholders and their goals in eliciting, analyzing and specifying the require-
ments for a Web application. AWARE also assumes that the “why” of the stakeholders’
requirements has to be sought and documented, in order to keep track of the reasons
behind the requirements and the design decisions.

– Web application design (both data and hypertext design) is based on the WebML
method, a visual language combined with a methodology that supports the
specification of the content structure of a Web application and the organization of
the hypertext interfaces for content presentation and service invocation [16, 34]. The
WebML-based development is also supported by a case tool that assists the visual
modeling of the application schemas and their automatic transformation into the
application code, executed by means of a proper runtime environment.

– Service design is based on the WSMoD (Web Service Modeling and Design)
methodology [21], which addresses the design of Web services according to specific
quality of services (QoSs) rather than functional descriptions only. Furthermore,
WSMoD exploits general knowledge available, expressed by ontologies describing
services, their qualities, and the context of use, to help the designer in expressing
service requirements in terms of design artifacts. WSMoD improves the effectiveness
of the process, defining a Platform Independent Model that includes the description of
specific context of service provision, without considering implementation details.

The three stand-alone methods have already proved their effectiveness in several
experiences. The UM-MAIS methodology combines them trying to cover all the ground
from the high-level user requirements down to the deployment of Web application and
services. In particular, the emphasis is on: (1) specializing the methods for application
analysis and design to cope with adaptivity and multi-channel issues [20, 50], as well as
(2) coupling the method in a loose manner, as it has been envisioned and tested in the
context of the MAIS project [42]. The overall goal is to provide a comprehensive framework,
assisting the whole development cycle through a precise flow of knowledge between the
different analysis and design activities, by preserving separation of concerns through the
adoption of each individual method to effectively manage some specific aspects.

In order to compare our methodology with other relevant works proposed so far, in the
rest of this section we will illustrate some approaches in the three fields of action of
requirement engineering, Web application design and service design. The described related
works further highlight the lack of unified methodologies.

2.1 Related work

In the research area of requirement engineering, one of the most consolidated paradigms is
the so-called Goal-Oriented Requirement Engineering (GORE) [53]. The methods relying
on this paradigm (see for example KAOS (Knowledge Acquisition in automated

World Wide Web (2007) 10:349–385 353

Specification) [57], GBRAM (Goal-Based Requirement Analysis Method) [3], i* [56]) all
share a common assumption: before specifying the requirements of a system it is crucial to
elicit and identify the goals of all the relevant stakeholders, since they are the key drivers of
the whole development. Existing goal-oriented approaches focus mainly on traditional
information systems, mission-critical applications or complex software systems in general,
with the aim of supporting a clear and consistent specification of the operations and
transactions to be performed by the system. However, the domain of Web, which is
characterized by information- and communication-intensive applications that need to
convey structured contents and messages to a variety of target audiences, has received little
attention from the requirement engineering community. By addressing this lack, the UM-
MAIS methodology provides the analysts with a model, called AWARE [12], consisting of
a simple set of concepts, terms, and notations to carry out requirement analysis in this
realm. In particular, AWARE indicates how to elaborate the different user profiles by
representing the target audience of the site. It takes their characteristics into account, as well
as their goals, tasks and expectations with respect to the application-to-be.

Several approaches have been proposed for the design and development ofWeb applications,
addressing advanced adaptation and personalization mechanisms [23, 26, 31, 44]. Recent
research efforts specifically address the special needs of mobile Web applications and portable
device characteristics [30]. However, despite the numerous advantages offered by conceptual,
model-based development of Web applications [25], only few attempts exists that aim to
model context-aware behaviours at a conceptual level.

On top of the model-based framework of the Hera project, authors propose a component-
based XML document format for the implementation and deployment of component-based,
adaptive Web presentations (AMACONT project), with particular emphasis on the context
of use [5, 24]. Adaptation depends on user profile data and device characteristics, and it
mainly concerns layout and presentation properties of Web pages. The implementation of
AMACONT-based applications is supported by an automatic code generation mechanism
for adaptive documents and multiple communication channels, starting from AMACONT
components and Hera schemas. However, the Hera methodology adopted for specifying the
application schemas is based on a conventional, non-adaptive interpretation of hypertext.
Barna et al. [5] address exactly the above mentioned lack of dynamism at the model level,
and show how the Hera design methodology [54] can be used successfully for the design of
adaptive Web applications. By appropriately updating the user model at runtime, Hera
schema views defined over the application data can yield adaptive characteristics.

SiteLang [49] is an algebraic language with an operational semantics based on entity-
relationship structure and abstract state machines. It allows the specification of entire Web
sites, i.e. of structure (data schema, static integrity constraints), behavior (processes and
dynamic semantics), information support (views, units and containers), and interaction
(scenes, media objects and dialogue steps), based on the so-called application “stories” [8].
The modeling approach takes a variety of context types (Customer’s scenario context,
Vendor’s WIS-context, Developer’s WIS-context, and WIS’s scene context) into account.
Nevertheless, this method has the limit of making the implementation less intuitive with
respect to the model-driven approaches mentioned above.

Among the other proposals, Baumeister et al. [6] explore Aspect-Oriented Programming
techniques for modeling adaptability in the context of the UML-based Web Engineering
method (UWE [31]). The main contribution of this work can be identified in the strong
separation of concerns between navigation and adaptation, achieved by interpreting
adaptation as an orthogonal aspect with respect to application modeling. This assumption
is in line with our approach that considers adaptability as an orthogonal design dimension,

354 World Wide Web (2007) 10:349–385

which considers context as the primary actor influencing the application and the service
behaviour. However, in this approach the authors concentrate mainly on some limited
aspects for front-end adaptability, such as link hiding, adaptive link annotation and adaptive
link generation, while content and service adaptation is not considered.

In UM-MAIS we propose the use of a conceptual model, WebML [16] for Web
application design, trying to strengthen the advantages offered by the above mentioned
methods and reduce some of their lacks. Our approach is based on a model-based paradigm,
which offers high-level intuitive constructs for specifying the application structure and
behaviour. Due to the formal definition of construct semantics, the resulting specifications
can then be transformed into running code, by means of consolidated generative techniques
[18], thus facilitating the overall development process.

Different approaches (such as agent-based and model driven) for the design of Web
services have been proposed by many research and industrial projects. The works presented
in [29, 47, 48] exploit the use of an MDA approach for designing Web services. In [48] the
authors present an example of a tool for both modeling a business project by means of a
Platform Independent Model and by generating the corresponding WSDL description. [47],
while in [29] the authors present an MDA strategy to develop Web services. As in our
methodology, a Platform Independent Model to model Web services is produced, and then,
WSDL and Ws-BPEL specifications are produced by means of a translator tool. However,
these methodologies do not provide Web service descriptions with QoS specifications and
do not use ontologies to support designers. A different approach is shown in [37] where the
authors propose agent-oriented software development techniques to design Web services.
These techniques support early and late requirement analysis, as well as architectural and
detailed design, but do not offer ontology support for QoS description.

Recently, Self-serv [7], another model-driven approach for designing Web services, has
been presented to facilitate the rapid and scalable composition of Web services. It supports
the declarative composition of new services from existing ones, the composition of Web
services with multi attributes, dynamic selection, and peer-to-peer orchestration of
composite service executions. Self-serv addresses QoS issues, defines a fixed Web services
quality model, composed of five different QoS dimensions, namely execution price,
execution duration, reputation, reliability, and availability.

Despite all the previous methods focusing on specific aspects, the complexity of
Multichannel Adaptive WISs demands for integrated methods, able to cover all the facets of
the layered design, and for the identification and definition of possible cross-interactions. In
our approach, in order to facilitate the transition between high-level goals to Web site
requirements, in the requirement management phase a goal refinement technique and
hypermedia taxonomy to organize the requirements set are adopted. Furthermore, while all
the previous methods for Web application design neglect the issues related to the design of
the back-end layer, our notation for Web application modelling also includes some
primitives for service invocation [34]; the methodology then has the advantage to combine
application design with service design by addressing the cross interactions and the
interfaces between the two design activities, as well as the occurring flow of knowledge.

3 The UM-MAIS methodology at a glance

Figure 2 shows the main phases of the methodology. UM-MAIS starts with Requirement
Management, a phase resulting from a suitable enrichment of the AWARE methodology
[12]. Inputs for this phase are the user-centered business requirements collected during the

World Wide Web (2007) 10:349–385 355

initial customer interviews. Requirement analysis enables the capture of the picture of the
involved project stakeholders (including users), their (communication, business and
operational) goals and salient scenarios of use that can highlight adaptability needs. Finally,
an organized set of requirements is provided—concerning various application aspects, from
data, to hypertext, to services—as important indications to be considered by the designers.

The output of the requirement analysis is the input to the Design phases, namely the
High-Level Design and Low-Level Design. Main design steps in UM-MAIS refer to:

1. Data design, which produces a first representation of the information needed by the
hypertext front-end and the invoked services. It drives the overall application development
and it is the first contact point between front-end (hypertext) and back-end (service) design.
During Data design, the main information assets and their relationships are specified by
using well-known notations, such as E-R schemas or UML class diagrams.

2. High-Level Hypertext Design and Service Design, which are strictly related and clarify
“in-the-large” the organization of the hypertext front-end and the main functionalities
to be covered by back-end and external services. They define a preliminary coarse
structure of the front-end, by identifying the hypertexts by addressing the functionality
of the application users, and their organization throughout different areas and pages.
This step is based on the use of the WebML model and method [16], and pays special
attention to identifying adaptive and context-aware behaviors. Moreover, during this
phase, existing services supporting the application are discovered, and new services

Figure 2 Phases of the UM-MAIS methodology.

356 World Wide Web (2007) 10:349–385

required for the specific needs of the application are specified. This task is based on the
use of WSMoD methodology [21].

3. Low-Level Hypertext Design and Service Design, which detail and formalize the above
specifications, and can be performed in parallel, with loose interaction. Also in these
phases both WebML and WSMoD methods are adopted.

Some interactions between High-Level Hypertext and Service Design must occur. First
of all, the hypertext designer highlights some activities that cannot be fully addressed
through the hypertext design and that therefore need the invocation of external (e-services)
operations. Such uncovered requirements are checked by the service designer against
existing services; if some suitable services already exist, then the service designer provides
the hypertext designers with the details (for example a WSDL specification) about how to
invoke them within the application. Conversely, the service designer provides the hypertext
designer with a high-level specification of the service(s) to be developed, including their
functional and non functional requirements. This information is useful to identify the flow
of information (i.e., input and output parameters) from the hypertext modules (e.g., pages)
invoking the service(s) to the service(s) and vice-versa. It is worth noting that the previous
cross-interactions, in turn may also suggest new data to be included in the overall data
schema previously defined. Therefore, an iterative flow characterizes the High-Level
Design phase.

The Low-Level Hypertext and Service Design phases can then be performed almost
independently, still adopting WebML and WSMoD to respectively produce, a detailed
specification of the hypertext front-end and of back-end services. This specification, when
provides the input to the implementation phase, consists of:

– AWebML-based, detailed hypertext specification, which describes the organization of
contents in the hypertext pages, possible invocation of back-end services, and the
adaptability rules to be executed to adapt the hypertext front-end (i.e., navigation and
page contents and presentation).

– A detailed specification of services in terms of UML diagrams (i.e., class, sequence and
activity diagrams) and standard languages for service description, namely WSDL to
describe the functional interface of services, and WSOL (Web Services Offering
Language) [51] to describe non functional requirements that a service provides.

In the Low-Level Design phase, some feedback actions over data design are still
possible, as the detailed description of hypertexts and services might highlight some
requirements which did not emerge before. Due to the possible new requirements, it is
possible that some fragments defined in the common data schema and used both by the
front-end and the back-end layer need to be modified. In this case, all the choices in the two
layers related to these fragments need to be re-discussed. This leads to a number of
iterations and cross-interactions between the designs of the two layers.

It is worth noting that UM-MAIS does not impose a rigid progression of the design
activities; rather it suggests a cycle of cross-refinements, in which the three activities (data
design, front-end design and back-end design) cooperate. The mutual interactions may
depend on a technological, organization and legal constraints, such as:

– The availability of legacy systems to be integrated in the new design (services may be
already available; thus their detailed specification is already available and gives precise
constraints to the data design activity from the first iterations of design).

– The internal business processes already existing, and the changes that the new WIS
imposes upon the current organization of activities.

World Wide Web (2007) 10:349–385 357

– Some legal restrictions, posing constraints over the services to be adopted (e.g., digital
signature for electronic document exchange).

– General directives (e.g., accessibility requirements) constraining the front-end
organization, independently from the invoked back-end services.

3.1 Running case

In the following sections, we will describe in more details the methodological steps and the
suggested activities for Requirement Management, High-Level Design and Low-Level Design.
Wewill also exemplify themethodology by discussing the design of aMultichannel AdaptiveWIS
for the management of Italian archaeological sites. The system is in charge of extending an existing
project MARIS [15] adding functionalities for the acquisition of data on cultural heritages.

The broad presence of sites and archeological items over the Italian territory requests the use
of mobile devices and networks to automate the data acquisition process. The mission of the
system is to define a complete and up-to-date repository of the state of all the cultural heritages
with the goal of building the Italian risk map of archaeological sites. In particular, the risk map
has to allow users to process data regarding territorial danger factors and monuments’
vulnerability conditions. Special attention has to be put in the data acquisition phase.

Therefore, each site must be completely described, by filling in a site description card.
The data acquisition is realized by operative teams that, by means of mobile devices such as
laptops, PDAs or smart phones, they can collect accurate information in an electronic way.
If, during the data acquisition phase, there is clear evidence of an immediate risk for the
monument, Field Operators have to immediately notify the headquarters about the danger.
During archeological campaigns, operative teams are placed in mobile camps that
communicate with the headquarters by means of internet connections. Therefore, different
users exploit the information system in different ways, according to their preferences and
goals. In particular:

– Headquarter Operators need to interact with the information system to plan the
reconnaissance campaigns.

– Field Operators need to access the site description card for the site currently visited.
Among them, a field manager may coordinate the work of the other operators.

– Mobile Camp Operators need to know the geographic position of operative teams,
their features and competencies in order to manage the reconnaissance campaign, for
example by moving an operative team from an archaeological site to another one when
some specific interventions are required.

– Local and state administrators need to access the information system to improve the
decision-making processes for conservative interventions.

By discussing the previous scenarios in the rest of the paper we will show how the UM-MAIS
methodology can provide support in covering the analysis and the design of a Multichannel
Adaptive WIS in a unified manner. For more information about the system, the interested reader
is referred to [35, 36], and http://www.mais-project.it/html/riskmanagement.htm.

4 Requirement management

As shown in Figure 3 requirement management proceeds along two activities: Requirement
elicitation and Requirement analysis and classification. These two activities are

358 World Wide Web (2007) 10:349–385

http://www.mais-project.it/html/riskmanagement.htm

accomplished in accordance with the AWARE methodology. In order to cover the design of
Multi-channel Adaptive WISs, in the rest of this sections we will show how AWARE has
been enriched to address requirements related to adaptivity and to Web service integration.

4.1 Requirement elicitation

Requirement elicitation is the activity aiming tomake requirements surface. As suggested by goal-
based approaches to requirements analysis, requirements are not just “there” to be found, but they
may emerge after the identification of the relevant users involved in the project and their goals.

The elicitation process is facilitated by a set of guiding principles, which support a
complex and difficult activity, often taking much of the initial resources of the project, and
crucial for the strategic decisions to be taken afterwards. Two of the most important users
have to be considered: stakeholders and final users. The former are those people who have
an interest in the success of the application or may share knowledge and visions for its
success. In our case study, a stakeholder playing the role of “financial partner” or main
funder of the initiative is the Municipality, together with other actors, such as the private
associations and public institutions investing for the preservation of the cultural heritage
sites at issue. Final users are also an important category of stakeholders. They will use the
services provided by the system, and services have to be adapted to their characteristics. In
this phase, users may be described in terms of a “personal” characteristic of an archetypal
visitor. A user profile aggregates one or more relevant characteristics, which tentatively
describe a potential visitor of the application.

In our running example, relevant user profiles are defined on the basis of their technical
role, they are: Field Operators, Headquarter operators, Mobile Camp Operators, Local
and state administrations. Both stakeholders and users, depending on their specific roles,
and own goals with respect to the application to build. More specifically:

1. Stakeholders have a direct interest in the successful deployment and use (e.g. the client or
his representatives) of the applications. Other stakeholders may not have goals, but they
can project their visions on the application. The municipality, for example, aims to give
the highest visibility to the project on regional newspapers and communication channels.

Figure 3 Steps in the require-
ment analysis phase.

World Wide Web (2007) 10:349–385 359

2. The users have goals, which should be defined as plausible motivations for visiting the
application, or the objectives of their interaction. User goals may vary in granularity
from low-level, specific and punctual information seeking (“find the exact position of
the Roman tomb in the park”), also called—functional goals—to higher-level, open-
ended, ill-defined needs or expectations (“decide if the archaeological site is worth
evaluating”), also called soft-goals [56].

Typical questions to identify that may help to elicit the goals of the users are:

& Why should a given user make use of the application?
& What is the expected outcome of his/her interaction?
& In which circumstances should s/he use the application? For which purpose?

The raw material emerged during the initial elicitation has to be refined in order to more
precisely represent the concrete goals and needs of users, and to be usable by the analysts,
and fed into design. AWARE adopts a refinement process to pass from high-level goals of
all stakeholders (including users) to sub-goals and eventually to application requirements.
The analysis of such material may be guided by the following lines of inquiry:

& Clarify the meaning of a high-level goal—Often user goals and main stakeholder
goals are too vague, abstract or generic, posing obstacles to devising operative
indications for the designers. For example, if a user goal is “Update the level of
knowledge,” analysts should ask: what does it mean specifically? How can it be
specified?

& Refine into subgoals—Analysts should elicit possible subgoals which may
contribute to the accomplishments the long-term goal. For example, “How can
the checking of the site status be accomplished?.” Plausible subgoals are: “to
update description cards,” or “to orchestrate the team work.”

Organizing the material gathered during elicitation more systematic way, a table for each
user profile may be sketched, like the one illustrated in the following.

Profile name: Field operator
Goals:
• Update the level of knowledge of the site
• Check the site status and report to the headquarter
Sub goals:
• Update site description cards
• If field manager, orchestrate the team work
• Manage emergency in situ

An effective activity to facilitate this elicitation process is the development of user
scenarios. Scenarios are task-oriented vivid descriptions of envisioned use of the
application, which can assist analysts in discovering new requirements, exemplify goals,
surface new goals and better define stakeholders. Scenarios are commonly recognized as
powerful drivers for goal-based approaches; they are partial descriptions of the wide
spectrum of the potential interaction capabilities of the application to be developed.
Therefore, they should be used either to exemplify and make more concrete elements of
the goal analysis or to anticipate design details and interaction paradigm already during
requirements. An example of the scenario for the Field Operators is shown in the
following.

360 World Wide Web (2007) 10:349–385

Scenario 1: Campaign reschedule
Mobile Camp Operators need to cover the analysis of a new site, for which more hotspots than expected have
just been discovered. To this end, Mobile Camp Operators need to know which operative teams are active
and how many Field Operators are involved, as well as where the various operative teams are located, in
order to select the most appropriate one with respect to the kind of required intervention.
Through the systems the Mobile Camp Operators locate two operative teams with a competence profile
matching the required task, select both teams and send the intervention request to the field managers with
task details (where to go, what to do, etc.). The field manager receives the message and, according to the
network conditions available, sends the task details to their team members located nearby on the site and ask
them all to reach him at the mobile camp to organize the intervention. Each team member reads the requested
intervention and saves the results of the current activity. Once the mobile camp is reached, one of the teams
moves to the new location and starts the campaign; the field manager sends two Field Operators to scan the
site to the specific hotspot indicated by the headquarter, in order to create the descriptive cards for all the
hotspots identified.

4.2 Requirement analysis and classification

During requirement analysis and classification, on the basis of the input received by the
elicitation activity, and thanks to the concrete examples of uses depicted in the scenarios, an
organized set of requirements is defined. Requirements are expressed at a high-level of
abstraction, in order to capture the key aspects of the system to be developed. In real
projects, the definition of requirements is iterative, in such a way that requirements may be
detailed, better specified or changed according to the development of the design. In order to
relate better the requirement management activity with the design phases, requirements are
now classified in terms of data, hypertext/application, and service requirements, according
to the prevailing issue addressed.

Data Requirements describe the information assets that the application should manage to
accomplish the expected goals. An important dimension of data requirements are the
content requirements, meant as the set of ideas and messages that the site communicates to
its users. Ideas and messages are mainly specified in term of provided information chunks.
Examples of of this kind of requirements for the case study are the following:

– DR1 Site information. The application should contain detailed information about all the
archeological sites managed by the system. For each archeological site, detailed
information about its location and its preservation status of the relevant hotspots is
provided.

– DR2 Team information. The application should also contain information about the team
work status, their location, as well as about who Field Operators of a given team are,
what their skills and tasks are.

Hypertext Requirements describe the strategies for the users to access contents through
the hypertext front-end. An important dimension of the hypertext requirements concern the
access paths to the content, meant as the indications about the navigational paths available
to the user in order to reach the needed content. Examples of requirements of this kind for
the case study are the following:

– HR1 Access to sites. Archeological sites may be accessed by location, size,
archeological importance, preservation status

– HR2 Access to teams. The access to the teams is organized by current GPS position,
and by team skills and is shown according to the device of final users

World Wide Web (2007) 10:349–385 361

Service Requirements concern service request and delivery. They should assume that the
design of Web services cannot be confined to a technological problem, since it has deep
business, social, and organizational impacts. As a consequence, their design must take into
account all aspects related to the context of application. An important dimension of this class
of requirements is the one concerning the operations that are visible to users to complete a
task. User operation requirements especially influence the organization of the hypertext front-
end. Examples of requirements of this kind for the case study are the following:

– SR1 Manage description card. Field Operators can create and edit the description card
of each hotspot

– SR2 Field Operators communicate with mobile camp. Field Operators can send the
updated information to the Mobile Camp Operators according to the specific features
of the mobile network used by Field Operators. Mobile Camp Operators can call any
field operator when needed and provide instructions on tasks

– SR3 Emergency communication. Field Operators indicate information about any
emergency detected on site to the mobile camp by using the fastest mobile channel
available.

Once a first list of requirements is founded, the Requirement analysis and classification
step consist in evaluating the impact of the adaptability on the application. Adaptability
requirements can be defined by analyzing the impact on some of the context dimensions (e.g.
user profile, location, action, channel-network and channel-device) on the requirements
elicited and classified so far. Some examples of questions in which adaptability issues might
surface are:

User profile

& Which aspects of the application are common to all user profiles?
& Where does the application mostly differ for one user profile with respect to

another? How?
& Which physical conditions can reduce usability?

Location

& Howdoes a change in location affect the interactionwith the application? For which users?
& In which circumstances should the application adapt to the user’s location?
& What elements of the location (light, temperature, distance from a point, ...) are

relevant for such adaptive behavior?

Action

& Which user activity provokes a modification in the application behavior?
& Which user profiles will carry it out?
& What elements of the application are typically affected?

Channel-network

& What is the expected quality of service offered by the network links connecting the
various locations where the application will be deployed (from headquarter to
mobile camp, from mobile camp to field operator, and vice versa)?

& What kind of networks can be considered?
& What main characteristics differentiate networks from one another?

362 World Wide Web (2007) 10:349–385

Channel-device

& What are the devices typically used by the user profiles?
& In which circumstances will a given user profile make use of his/her device?
& What main characteristics differentiate devices from one another?

A matrix (as the one shown in Table 1) can be used to understand what elements of the
application are context-sensitive and should give input for designing an adaptive behavior.
Each intersection between a requirement and a context dimension provokes reflection on the

Table 1 Adaptability requirements resulting from the cross checking of context dimensions.

Context
dimensions/
requirements

User profile Location Action Channel–network Channel–
device

DR1–site
information

– CR1–site information
are available to the
field operator
according to the
network conditions
available

CR6/
CR7

DR2–team
information

– CR6/
CR7

HR1–access to
sites

CR2–headquarter and
mobile camp view all
sites under
coordination; field
operator views only
the site s/he is
operating with

– CR6/
CR7

HR2–access to
teams

CR3–headquarter and
mobile camp view all
sites under
coordination; field
operator views only
the site s/he is
operating with

– CR6/
CR7

SR1–manage
description
cards

CR4–the system
proactively indicates
to the Filed operator
the information about
the hotspot s/he is
close to

– CR6/
CR7

SR2–field
operators
communicate
with mobile
camp

– CR5–the most
reliable and efficient
network connection
is selected according
to the available
service

CR6/
CR7

SR3–
emergency
communication

– CR6/
CR7

World Wide Web (2007) 10:349–385 363

kind of adaptation desired and provides more analytic indications that will be considered
during design. Furthermore, new requirements are discovered that enrich the requirement set.

As shown in the matrix, some adaptability requirements are cross-concerns, and thus
valid for the application in its whole. They are:

– CR6 Multi-device access. The application should be made available on PDAs (for Field
Operators), laptops (for the Mobile Camp Operators), as well as on traditional desktops
(for Headquarter operators and Local and State administrations).

– CR7 Device-adaptive interaction. The application should be delivered and browsed in
a format appropriate to the current adopted devices and also the current activity they
are performing.

Although a requirement may concern more than one dimension, UM-MAIS suggests that
it is better to refine a requirement to the point where exactly one dimension can be assigned to
it. If a requirement cannot be easily and clearly assigned to exactly one dimension, then it is
still too general to serve as input for design and should be further refined. This separation of
concerns facilitates the achievement of an agreed granularity level. Not all dimensions have to
be used in any project. Application requirements for a specific project may be specified only
on some dimensions, which are considered relevant and meaningful at requirement time.

Once the set of requirements has been defined, it is important to perform a traceability
activity [10, 27], i.e. to pass smoothly towards design by highlighting the relationships
between the defined overall goals, the requirements gathered, and the subsequent design
artifacts. In general, we can consider a specification as “traceable” if the origin of each of
the artifacts or objects described in such a specification is clear and if it facilitates the
referencing of each object in future development or enhancement documentation. In UM-
MAIS, we report traceability in two directions, namely backward traceability (from
requirements to the goals) and forward traceability (from requirements to high-level design
artifacts), e.g., as to backward traceability, requirements should be connected to the goals in
order to see how the defined requirements satisfy or address the goals. Moreover, it should
be clear how the goals have been taken into consideration in the requirements definition.

5 High-level design

In this phase the requirements previously collected are translated into specifications,
clarifying the organization of the data schema, of the hypertext front-end and of the services.

5.1 Data design

UM-MAIS is data-driven: the design starts from the specification of the main information
assets; it then proceeds with the definition of the front-end able to support both the
hypertext, and with the broad definition of the needed services.

Data design covers the translation into information objects of knowledge about the front-
end and service domain. For adaptive context-aware systems, the data-driven approach
primarily implies the representation at the data level of context, which in our case includes
user profile, and distribution channels. The data designer starts from the requirements
defined in the previous phase and selects entities that will be involved in the specific
application, from the context reference model presented in [14] (see Figure 1). In this way,
both content customization and context-based adaptive behaviors for the hypertext front-
end can be achieved in a totally dynamic way.

364 World Wide Web (2007) 10:349–385

The requirements about content and service are used for identifying and organizing the
main application data around which the application and the invoked services are built.
Requirements about the user profile and the channel model instead are translated into three
different “sub-schemas” complementing the application data:

– User sub-schema consisting of some information entities representing user profiles and
possible users’ clustering into groups. User clustering may depend on user common
features, or simply on the role played by users within the application.

– Personalization sub-schema, consisting of entities and relationships that interconnect
users with application objects (i.e., entities in the application sub-schema), thus
expressing both user preferences and ownership over some data instances. In general,
relationships defined between users and any other data allow personalizing thus data,
with respect to the identified types of users.

– Context sub-schema, which includes information objects, such as Device, Location,
Channel and Activity, describes particular properties of context to be considered by the
application front-end and by services for providing adaptability. Associations between
context data objects and user objects represent the connection of each user to her/his
(personal) context. The context sub-schema can vary depending on the front-end and service
domain and, also, on the adaptability goals to be fulfilled. Therefore, our approach only
prescribes to have the user as the center of this sub-schema, since these entities represents the
actual starting point for navigating the context model and extracting context information.

Figure 4 illustrates the data schema for our running application; it represents the most
relevant information entities that derive from the requirements illustrated in Section 3, as well
as the meta-data required for managing adaptability and context-awareness. In particular:

– The User sub-schema is centered on the entity User, which provides a basic profile of
the users pf the application. The entity Group represents clusters of users, and supports the
management of access rights for groups of users. As better described in Section 5.2,

Figure 4 High-level data schema for the case study.

World Wide Web (2007) 10:349–385 365

the entity Site View allows associating users (and user groups) with views over the
application’s data source. In the association of the case of adaptive context-aware
applications, users may indeed require different interaction and navigation structures,
according to varying context properties and different devices.

– The Personalization sub-schema includes all the relationships departing from the entity
User, which express both user preferences and ownership over the instances of the
target entities. For example, the relationships between User and AlertMessage
represent the association of the users with the Alert messages sent and/or received.
In general relationships defined between the entity User and any other entity allows the
personalization of the entity contents with respect to the identity of users.

– Context sub-schema, which includes some entities, such as Device and GPSLocation,
describes particular properties of context to be considered by the application which
provides adaptability. Context entities are connected to the entity User to associate each
user to her/his (personal) context.

The other entities in the schema represent application data. They store the archeological sites to
be monitored, the interventions that operative teams are required to execute over archeological
sites, and the alert messages that the Mobile Camp Operators may send to the operative teams to
require exceptional interventions. Moreover, as result of the scenario of Section 4, a set of data are
needed to represent the message notifications to Field Operators sent by Mobile Camp Operators.

5.2 High-level hypertext design

For the design of the application front-end, we capitalize on the experience gained with the
WebML methodology [16]. WebML proposes some high-level abstractions characterized
by the following properties:

1. The Web application provides its users with one or more site views, i.e., one or more
hypertexts, each one serving the needs of a specific device, or of a specific set of
functions supporting a specific user profile and activity. Every site view is divided into
areas, and each area contains a set of pages, which are the actual interface elements
delivered to the users. Pages consist of units, conceptually representing content
elements to be published under different formats (e.g., single data instances, sets of
data instances, indexes, etc.) or page components for collecting input (e.g., forms).
Links connect pages (and units within pages), and carry the information that enables
their computation. Such a modular decomposition into views, areas, pages, and units is
particular of WebML, but is a rather classical top-down decomposition.

2. In each site view, the navigation schema of the Website should be expressed as
hypertext of named pages, connected by named links, with the obvious interpretation
that the user’s click on a link causes the loading of the page pointed by the link.
Clicking on some links may also trigger back end or external services.

3. For each site views, it should also be possible to express that some pages invoke back-
end services [13].

Recently, WebML has been extended for addressing adaptability and context-awareness
[17, 19, 20]. The development process for context-aware applications follows the activity
flow typically tackled for conventional Web applications. However, some new issues are
considered to exploit context, and to achieve adaptive behaviors:

– New modeling abstractions are used to represent mechanisms for context data acquisition,
so as the application can rely on a “fresh” representation of the current usage environment.

366 World Wide Web (2007) 10:349–385

– New modeling abstractions are adopted to specify the rules for adaptive behaviors
based on the acquired context data.

In the rest of this section we will discuss the previous issues, showing the required
conceptual modeling extensions.

5.2.1 Identifying areas and pages

The first, coarse-grained step aims to identify the site views to be provided. Starting from
the hypertext requirements, a preliminary structure for each site view is then defined, to
represent areas and pages which form the hypertext. At this point the designer of context-
aware applications also needs to identify those pages and areas that must feature a context-
aware behavior and/or must interact with services. As illustrated in Figure 5, our basic
assumption is that context-awareness is a property to be associated only to some pages of
an application, not necessarily to the application as a whole. Location-aware applications,
for example, adapt “core” contents to the position of a user, but “access pages” might not be
affected by the context of use. We therefore tag adaptive pages with a “C” label (standing
for context-aware), to distinguish them from conventional pages. This label indicates that
some adaptability actions must be associated with the page. During application execution
these actions must be evaluated prior to the page computation, since they can serve to
customize the page content or also to modify the predefined navigation flow. As shown in
Figure 5, adaptability actions are specified outside pages, thus they are kept separate with
respect to the page specification. The aim is to keep the orthogonality of adaptivity with
respect to page and navigation design, and also to highlight the two different logics behind
pages and context clouds: while pages act as a provider of contents and services, the
context clouds act as modifiers of these contents and services.

In order to continuously evaluate the context state and execute page adaptability actions,
the C-pages must be provided with autonomous intervention capabilities. The standard
HTTP protocol underlying Web applications implements a strict pull paradigm. Therefore,
such capabilities can be achieved by periodically refreshing the viewed page and granting
the adaptive logic of the application the possibility to intervene on the application itself

Figure 5 Conventional pages
and C-pages in an adaptive hy-
pertext [19].

World Wide Web (2007) 10:349–385 367

before rendering the actual response. Polling mechanisms, such as the HTML http-equiv
META-option, or also JavaScript, JavaApplets, or Flash scripts, provide a valuable
“simulation” of the required active behavior [19]. On one hand they trigger the adaptability
actions attached to the page, as required by context model changes; on the other hand, they
enable the communication of client-side sensed context data to the application server. When
available, such parameters are indeed appended to the page request.

Figure 6 shows the high-level design for two site views in the running case that address
the Mobile Camp Operators and the Field Operators. Both the site views include a login
page, where users authenticate themselves and are redirected to one of their associated site
views. For sake of simplicity, here we assume that only one site view is associated to each
user group. Actually, more than one site view can be defined for each group, for example to
address the variability of the adopted devices and/or the performed activities. In the case of
multiple site views the choice of the site view is realized after login where the user is
redirected to after login will depend on the current state of context (i.e., current device,
current activity, etc.).

The Team Tracking page in the Mobile Camp Operator site view, and the View Map
Page in the Field Operator site view are C-labeled. This means that such pages need to be
augmented with reactive behaviors, based on some context-data. However the hypertext
design annot fully cover all the requirements, and the integration of external services is
needed. In this case the hypertext designers send out the list of uncovered requirement to
the service designers, and expect the high-level functional description of the external
services back from them. However the hypertext designers already include some place-
holders within the hypertext schema, to highlight the fact that some pages will also invoke
services. In particular, the Alert Message page in the Employee site view invokes the
SendMessage service, whose design is illustrated in more details in Section 6.

5.3 High-level service design

The High-Level Service Design phase of UM-MAIS is inspired by the WSMoD
methodology. Inputs of this phase are: (a) the data schema, (b) the set of uncovered
requirements provided by the hypertext designer, and (c) the shared knowledge of the
application domain. According to the WSMoD vision, the design of services is not limited to
functional specification only, but also has to consider the set of qualities that have to be
offered, and the context in which the service is provided. To manage the complexity of the
design, a shared knowledge, with special attention to the non-functional requirements is
needed. Ontologies, representing this shared knowledge in a more formal way, seem to be

Figure 6 High-level hypertext schema, specifying the organization of two site views in the running
example. C-pages and service invocation are sketched.

368 World Wide Web (2007) 10:349–385

crucial in providing the rational for making any decision at the different levels of abstraction.
To support the service design, three ontologies have been adopted in UM-MAIS:

& Service Ontology (OntoServ in the following)
& Quality Ontology (OntoQoS)
& Context Ontology (OntoContext)

The three ontologies capture all the relevant types of knowledge associated with
services, together with semantic relationships among them. In particular OntoServ has the
purpose of classifying and describing relevant properties of the different services according
to the domain characteristics. they include the set of services (both internal and external)
that can be used by the service designer. OntoContext represents the context model
introduced in Section 2, while the most important ontology is OntoQoS, that is the result of
a unique effort in classifying the qualities that can be associated to services. Currently
OntoQoS includes the description of more than 300 domain-independent QoS dimensions
[21]. Top-level ontologies are (a) QoS_Architectural, including QoS aspects of software
and hardware architecture, e.g. screen resolution, (b) QoS_Network, representing QoS
related to network, e.g. bandwidth, (c) QoS_Physical, related to physical aspects of devices,
e.g. power consumption, and (d) QoS_ServiceLevel, describing QoS intrinsic to Service.
QoS_ServiceLevel includes dimensions that are independent from specific domains, such
as price, privacy or usability. Moreover, according with specific application domains,
OntoQoS can be augmented with domain dependent dimensions.

Starting from the set of uncovered requirements, the service designer identifies abstract
services. For each of them, s/he classifies requirements into functional and non functional.
In this paper functional means the operations that a service is expected to provide, while the
term non-functional (or sometimes the term quality) refers to all the other characteristics
associated with a service, related to QoS, user profiles, and delivery channels. The
discovery of functional requirements is performed with standard techniques and they will
not be described further. The discovery of the non-functional requirements is more difficult;
in this case the use of ontologies plays a central role. Browsing the service ontology
OntoServ, the service designer can progressively establish the existing service category that
the identified services belong to; through service classification, the designer can discover
the relations with QoS and the characteristics of services. In a similar way, the designer can
exploit OntoContext to identify the context dimensions relevant for services. The designer
can decide to adopt the specifications extracted from the ontologies, or to augment them by
adding new properties and relations. The list of concepts derived from ontologies is used by
the service designer to define a more precise description of both the functional and non
functional features of the needed services, that can be used by the hypertext designer in the
High-Level Hypertext Design phase. The next step in the High-Level Service Design phase
is to evaluate the availability of services that are suitable to provide one or more previously
identified operations. OntoServ can help the designer in this analysis, which can lead to
three possible results:

– No service exists. In this case the service designer starts the activity of functional
modeling of the new services and then sends the new UML class diagrams to the
hypertext designer, which can modify navigation according to the functionalities
exposed in the UML diagrams.

– There exist services that partially satisfy requirements. The designer extracts the high-
level description of the service from available documentation and then, if necessary,
integrates that description with the functional specifications the service does not

World Wide Web (2007) 10:349–385 369

support, by creating an augmented UML functional class diagram. At the end of this
phase the UML class diagram are sent to the hypertext designer.

– Services that fully satisfy requirements exist. The service designer simply sends their
functional descriptions (e.g. the WSDL description) to the hypertext designer.

5.3.1 High-level service design in the running case

According to the results of analysis performed in Section 5.2.1 a number of requirements are
not fully covered by the hypertext specification such as SR2—Field Operators communicate
with the mobile camp, CR1—site information is available to the field operator according to the
network conditions available, and CR5—the most reliable and efficient network connection is
selected according to the service. The hypertext specification demands the satisfaction of these
requirements to services. For the sake of brevity we restrict our discussion only to the above
described requirements.

According to SR2 it is possible that a Mobile Camp Operators needs to notify some
changes in the working plan to operative teams due unexpected reasons (for example there
is the need of special photographic skill in a given site). Operative leader cannot use
traditional Web interface, thus there is the need of a flexible notification service able to send
the site address (with or without tasks to do) by exploiting different distribution channels.
Among others, the use of cellular phones that allow user locating, are considered a strategic
objective in order to involve the totality of Field Operators. To support this complex
service, a multi-channel flexible notification service, FlexSend, has to be developed to
deliver messages over different channels, according to specific receiver contexts
(preferences, device, and activity).

Figure 7 shows a fragment of OntoServ and OntoQoS, with relationships defined
between the two ontologies (dashed lines). According to the WSMoD methodology the
service designer has to establish the Web service category that the service belongs to. The
Web service is delivered on Internet and can be considered as a special kind of mail service;
specifically it is a message delivery service. Consequently, the new service is added in the
OntoServ ontology; this means that it inherits all the properties of a generic delivery
service. Hence, from the relations with the QoS ontologies, the business expert identifies

Figure 7 A fragment of OntoServ and OntoQoS and their relationships.

370 World Wide Web (2007) 10:349–385

availability and other qualities as relevant for the new service. Moreover, new qualities can
be associated with the new service as characterizing quality, such as usability (CR1, and
CR5).

The service designer now has to associate measures and ranges of values to qualities.
According to the type of quality, measures can be expressed by a domain expert as: (a) sets
of acceptable values, to be chosen and specified later in the contract between the user and
the provider, and (b) constraints, expressed by a minimum or maximum accepted level. In
much a similar way, OntoContext supports the identification of meaningful information to
define user profiles.

In order to know the exact position of the operative teams, it is necessary to consider
mobile devices, to exploit the location capabilities of these devices and related technology.
In the following we use the term Situation to couple UserActivity and Location. For
example, the field operator according to the day-to-day schedule carries out an activity,
(goes to a site, takes photos, etc.) in a specific location, van, sites, mobile camp, etc. For the
sake of simplicity, in this paper we consider locations and communication channels as
strictly related, even if the relationship is more complex in the real scenario. Hence, a user
is requested to select the situation he/she prefers from a list of predefined combinations.

A check among existing services available lets us conclude that no existing services can
be exploited in the design of FlexSend. For the GetAddressBook operation, we may assume
that FlexSend can take advantage of user profiles as described in Section 4 that maintains
information about Field Operators.

Figure 8 shows the class diagram that provides an abstract description of the new
service. In this phase we are not interested in specifying the channel as a technological
component, but only as an abstract resource involved in sending a message. Thus, in the
class diagram, derived from the one presented in Figure 8, the designer introduced a
Channel class characterized by a generic description attribute and by the send() method.
The abstract class Message is extended in terms of two classes: Confirmation Message and
Requested Message, which represent the two kinds of messages the Web service is

Figure 8 FlexSend class diagram.

World Wide Web (2007) 10:349–385 371

requested to deliver. The service designer extends the class Message by adding two
specialized classes and by adding basic operation supporting the FlexSend service.

At the end of this phase, the UML class diagram is sent to the hypertext designer who can use it
in the definition of the Low-Level Hypertext Design phase. In the class diagram, for example, the
hypertext designer will find the input/output parameters needed for FlexSend and their types.

6 Low-level hypertext design

The fine-grained design of the hypertext refines the rough schemas produced as output of
the coarse-grained design step, by detailing the design of pages and of their possible
adaptive behaviors (for C-pages). As outcome of this phase, the application designer
produces well formalized hypertext schemas, one for each site view, that serve as reference
during the implementation phase.

The design of adaptive behaviors for C-pages assumes a central role. Generally it
requires the specification of:

– Context management operations, addressing context data acquisition and the
consequent context model updating. These are the first actions executed every time a
C-page is accessed, to gather an updated picture of the current context.

– Hypertext adaptability actions, addressing the definition of actions for page and
navigation customization. The event triggering these actions is the page refresh. The
most recurrent condition pattern consists in evaluating whether context has changed,
hence triggering adaptability actions. Based on the result of condition evaluation,
different actions can be triggered:

& Adapting page content. Parameters produced by context data acquisition
actions and by condition evaluation can be used for page computation. The
result is a page where contents are filtered with respect to the current context.

& Adapting navigation. In some cases, the effect of condition evaluation within the
context cloud can be an automatic, i.e., context-triggered, navigation causing the
redirection to a different page. The specification of context-triggered navigation
only requires the connection of the last link of the context cloud action chain to an
arbitrary destination page of the hypertext, to redirect the user to that page.
Therefore, links exiting the context cloud and directed to other pages than the
cloud’s source page represent automatic navigation actions.

& Adapting the whole hypertext structure, to face coarse-grained adaptation
requirements, for example due to changes of the user’s device, profile and
activity within a multi-channel, mobile environment.

For more details about the specification of context management and hypertext
adaptability in WebML, the user is referred to [19, 20].

6.1 Low-level hypertext design of the case study

Figure 9 illustrates the detailed design of the Alert Message page in the Mobile Camp
Operator site view, which allows operators to select some field operators belonging to the
closest teams, and to send an alert message, asking for an exceptional intervention. In order
to adapt the message to the characteristics of the devices currently used by the recipients,

372 World Wide Web (2007) 10:349–385

the message posting is realized through the FlexSend service, whose detailed design will be
illustrated in Section 7.

The Closest Teams unit displays information about the teams that are currently
operating close to the mobile camp operator. The selection of such teams is operated by
taking into account the current GPS position of the mobile camp operator (Get Latitude
and Get Longitude units), and retrieving the teams that are currently located in the same
area (Get Team unit) into the data source. The data source maintains an updated
representation of the context, also including the current association of teams to their last
identified position (see Figure 4). Being the Alert Message page a C-page, the operations
needed to retrieve the current position of the mobile camp, as well as the team located

Figure 9 Low-level hypertext design of the Alert Message Composition page.

World Wide Web (2007) 10:349–385 373

nearby are executed periodically, according to a specified refresh interval [CDM+06]. This
operation constitutes the so-called context cloud for the Alert Message page.

The list of the operators working in the closest teams is then displayed (Choose
Recipients unit), so that the mobile camp operator can choose the users to be alerted. A
form (Compose Message) allows the camp operator to enter the message subject and body,
and possible attachments. When the mobile camp operator pushes the form submit button,
an operation chain is activated that uses the data entered in the form for:

– The creation of a new message instance (Create unit).
– The association of (through the Connect unit) the message to the sender and to the

recipients. The sender OID is retrieved by the CurrentUser unit, while the recipients
OIDs are provided by the Choose Recipients index, previously used by the sender for
the selection of the Field Operators to be notified. In this way, the application keeps
trace of the message, as well as of its sender and recipients.

– Invoking the external FlexSend service, whose input is the message previously created
and stored in the application data source, its sender and its recipients.

7 Low-level service design

The goal of this phase is to enhance functional UML diagrams generated in the High-Level
Service Design with adaptability features related to the QoS, context, and user. The phase is
composed of three steps: Adaptability Design, Customization, and Web Service Description.

7.1 Adaptability design

Non functional requirements and the functional UML diagrams defined in High-Level
Service Design are inputs to the Adaptability Design phase, whose goal is to include non-
functional requirements, user requirements and specification of logical channels into the
diagrams. In this phase the designer makes use of the three ontologies, OntoQoS, OntoServ
and OntoContext describing quality properties, services, and context. The phase consists of
two activities: Data and Operation Design and Interaction Design.

In the Data and Operation Design activity, the designer enriches UML class-diagram
of services with non-functional requirements by means of the QoSContext UML profile
[21]. The designer browses the common data schema, OntoQoS and OntoContext to
retrieve both QoS dimensions, user profiles and logical description of distribution channels
that will be supported by the service. Channel specifications specialize the channel
component defined in the High-Level Service Design phase, by including: (a) the channel
components (device, network interface, network, protocols) and their properties, and (b) the
range of values and value constraints of logical components. The designer can now evaluate
the service, since it has been designed in the previous phase, to verify if it can be provided
over a channel. In case of conflicts, the designer redesigns the UML diagrams to fulfill the
new quality requirements imposed by channel characteristics and in this case, notifies the
new UML functional diagrams to hypertext designer.

A crucial aspect of this activity is the way the system can be aware of the current context
for a given user. UM-MAIS adopted the reflective architecture developed in MAIS [4] to
supply the designers (and the developers) with reflective components that automatically
detect the current context. In this phase, the designer includes the reflective classes that

374 World Wide Web (2007) 10:349–385

represent the reflective components. Note that the MAIS classes exploited in this paper are
independent from any specific implementation, thus preserving the Model Driven approach.
Developers can make the choice of adopting the MAIS reflective architecture [2] or
replacing it with another reflective mechanism.

The Interaction Design activity deals with the enrichment of interaction diagrams (e.g.
UML sequence diagrams) with user, channel and QoS requirements previously extracted
from ontologies. During this phase the designer evaluates the functionalities of the new
service to verify if they satisfy the interaction scenarios and when necessary executes the
Data and Operation Design activity to add or change functionalities again. For example, the
designer may discover that in order to address the mobile channel, due to a different screen
size, information has to be presented with a different format than in PCs. Therefore, since
the logical behavior changes, different operations are needed and a new interface has to be
conceived to support the new channel.

7.2 Customization

Customization further refines the current design specifications by evaluating the concrete
deployment scenario. Design decisions taken so far are compared with the different
characteristics of end users and providers to verify the adequacy of service qualities, and
user and channel profiles. This process ensures that the delivered service will be effective
from both technological and business perspectives. Note that we are still dealing with high-
level specifications. The result of the Customization activity is an extended instance of the
Platform Independent Model, which includes, functional, non-functional, and contextual
aspects, but it is still independent from specific technological details. The Customization
activity includes Channel Customization, and User Customization that validate the service
specification with respect to actual channel and user profiles.

Channel Customization evaluates the UML diagrams defined so far, with respect to the
available technologies. The different concepts represented in ontologies and involved in
service design are characterized by a wide set of influence relations. For example, the
usability QoS dimension is influenced by comprehensibility, learnability, operability, and
pleasantness. In this activity, the influence relations embedded in ontologies are exploited to
quantitatively evaluate the quality dimensions with respect to the context for the new
service. Such relations can be characterized by composition laws that express how a quality
value can be derived from given values of influencing qualities. In the case of linear
dependency among QoSs, the Simple Additive Weighting (SAW) technique [33, 58] can be
adopted. SAW basically consists in associating a weight with every influencing dimension
to express the level of influence in a composition. The score is obtained by summing the
weighted values of the influencing dimensions. Weights are normalized, i.e. their sums
equal to 1, hence the value of every node in this case is normalized in ranges in [0...1].
However, in the case there is a non linear dependency among QoS, the SAW method cannot
be used and thus, a proper composition law (i.e., a function or a table of values) has to be
added by domain experts.

To accomplish the task of evaluating the dimensions involved in the design, the activity
starts with the extraction from OntoQoS of quality dependency graphs to represent the
influence relations between qualities. Nodes of the graph represent ontology instances. Edges
among nodes represent influence relations. A dependency graph is often a tree, or it can be
transformed into a tree with a top-level quality as root and influencing qualities as children.
The transformation consists in duplicating nodes with more then one father. This is justified

World Wide Web (2007) 10:349–385 375

by the different kind of influence that a quality can have in different cases. On a dependency
tree, we apply the following procedure to evaluate a certain Quality Dimension QD:

& Domain experts associate values with leaf nodes of the sub-tree with QD as root.
& Designers compute the value of the root dimension QD, applying the composition

laws iteratively.
& Domain experts compare and evaluate results with the current specification

assumptions.

For example, the output of this activity could be that the provisioning of a Web service
over a GPRS network is inefficient due to slow transmission speed, or that accessing a
service via cellular phone cannot meet the desired usability requirements due to screen size
and pointing tools.

When the quality analysis leads to unsatisfactory results, the designer has three
alternatives: (a) constraints can be relaxed; this computation task is a typical operation
research problem that can be automated by means of Integer Programming tools, such as
Lp-Solve [32], (b) another distribution channel to provide the service may be selected; (c)
the service has to change. When the evaluation does not satisfy business requirements, QoS
dimensions directly controlled by the designer are considered. In fact, a QoS dimension can
be further classified as dependent on the delivery channel, or dependent on the service-
supplier profile. In particular it is:

& Delivery-based QoS, representing the instances of QoS dimensions offered by
service provider (e.g. network speed). These QoS dimensions are not directly
controllable by the designer and they often represent constraints that he/she has to
consider in the design of the Web service.

& Service-based QoS, representing the instances of QoS dimensions that are not
offered by the service provider. The designer is responsible for setting specific
values for such instances.

The aim of the User Customization activity is to provide quality thresholds that are
determined by the end user profile stored in the OntoContext ontology. Profiles define
service requirements for individual and group users. In order to check the usability of the
provided services, specific peculiarities of every user should be highlighted (see [28]).

The quality evaluation of an end user profile starts with the identification of the
influence relations between the QoS computed in the Channel Customization and the user
profile characteristics derived from OntoContext ontology. Then a User Profile—QoS
matrix is defined. The values of the matrix are weights, that is numeric values that represent
the level of influence between User Profile and QoS dimensions. Such numeric values are
domain dependent and therefore assigned by domain experts. Values are normalized so that
the sum of weights of each column is equal to 1.

7.3 Web service description

At this stage of the design process, we need to transform diagrams into Web service
descriptions using standard languages. The Web service description step delivers the WSDL
and WSOL documents. Final UML diagrams and description documents are the input for
the Implementation and Deploy phase that deals with the actual implementation
technologies (e.g., .NET, Java) and application server (e.g. JBoss, WebSphere, etc). This
step is out of the scope of our methodology. According to the most accepted

376 World Wide Web (2007) 10:349–385

implementations of the SOA, each Web service has to be described by a WSDL document.
WSDL, however, lacks the description of certain aspects such as the QoS offered and the
behavior of the Web service [45, 58]. Unfortunately, there are no widely accepted standards
to describe such relevant information. Consequently, UM-MAIS directly supports the
production of the WSDL and WSOL [51] descriptions but the designer is free to translate
the results of previous phases in another Web service description language. The choice of
UML as modeling language offers the possibility of describing diagrams in XMI (XML
Metadata Interchange). The designer, by means of XSLT technology can translate a UML
diagram described in XMI into another XML specification.

OMG provides a guidelines in order to design a UML class diagram able to be translated
into WSDL description [43]. The class diagram modeled with the UML profile above
defined can be automatically translated into WSDL as shown in the running case. In a
similar way we developed a XSL stylesheet able to translate UML diagrams into WSOL
specification as shown below.

7.4 Low-level service design in the case study

7.4.1 Adaptability design

Once the service designer has defined the UML class diagrams (Figure 8), in the Data and
Operation Design activity, he first identifies functional-aware and level agreement qualities,
among the qualities identified in the High-Level Service Design. Functional-aware qualities, e.g.
Message priority, Attachment preferences, and so on, have to be evaluated on the diagrams of
Figure 8. Moreover personal experience and knowledge supported by ontologies, allow the
designer to complete the requirement list by adding new items. In FlexSend the designer
introduces QoS_MessageConstraint and QoS_ServiceConstraint classes to model qualities
related to the Message and FlexSend classes. Then these classes can be further refined
according to OntoQoS relations. For example, Usability that has been selected as a requirement
by domain experts can be refined according to the relations stored in ontologies.

A second activity concerns level-agreement qualities, for example privacy in message
delivery. Such features are relevant in the case of the inspected archaeological site if it is not
aware of illegal excavations. Privacy can be implemented by means of encrypt and decrypt
messages and attachments. Moreover, different cryptographic algorithms can implement the
privacy level. These requirements lead the modification of class and sequence diagrams to
include a new class defining encrypt/decrypt features. The class diagram is also augmented
with methods and attributes to complete the specification. The updated version of the class
diagram for FlexSend is augmented with functional-aware qualities that have been added as
attributes of the message class. A similar approach is used to model instances of the
OntoServ, and OntoContext ontologies. The R_User_Information class includes meaningful
information supplied by the MAIS Reflective Architecture (e.g. available channels and
location). Thus information is automatically provided by devices (e.g. mobile phone)
equipped with reflective middleware. Figure 10 reports the refined class diagram of
FlexSend; for the sake of readability, we report only a one-level refinement for usability.

The actual configuration for the selected channels drives and constraints the design of
the new service. In the case study, samples of chosen configurations are:

& C1: Notebook, any interface, Wi-Fi Network, SMTP protocol;
& C2: Personal Computer\Notebook, any interface, any network, SMTP protocol;
& C3: Mobile phone, GSM\UMTS interface, GSM\UMTS, SMS\MMS protocol.

World Wide Web (2007) 10:349–385 377

Figure 10 A fragment of class diagram describing QoS refinements.

378 World Wide Web (2007) 10:349–385

Due to the fact the exposed interface of FlexSend is not modified, there is no need for
further interactions with the hypertext designer. In the Interaction Design activity the
designer defines and models the interaction between users and service. In FlexSend, the
sender issues a request to send a message. The service behavior depends on sender
parameters and on receiver context. For example, if there are no available channels to
deliver the message according to the requested QoS dimension, the service applies one of
the predefined delivery policies.

7.4.2 Customization

Following the running case we show how to check if the value of usability obtained is
compliant with the business requirements. As we said, usability depends on Comprehensibility,
Learnability, Operability and Pleasantness. Furthermore, Comprehensibility depends on
ScreenQoS and SoundQoS. Finally, ScreenQoS depends on the quality attributes of the screen
device (resolution, size, etc).

To evaluate a quality, on one hand we need to consider the requirements stated in the High-
Level Service Design phase, on the other hand a possible configuration for actual channels has to
be selected. In our case, business experts have requested a Medium level of usability. Hence, a
usability value ‘medium at least’ can be regarded as usability>0.6. At this point, the selection of
one or more channel configurations is performed. For example, in OntoContext the device
component class is composed of hardware and software components, the hardware components

Table 2 Example of a channel
configuration. Characteristic Value

Resolution 176×208
Size 2.000

BitsForPixel 24
ColorCapable Yes
ImageCapable Yes

Figure 11 SAW method.

World Wide Web (2007) 10:349–385 379

are CPU, input system, display, sound system, memory, and power. Moreover each sub-
component is described in terms of its technological characteristics.

We need to assign values to define the technical characteristics of the device display. An
example of configuration is given in Table 2. As we did for usability requirements, we
assign a normalized value to ScreenQoS equal to 0.7.

Figure 11 shows how to evaluate Usability and Comprehensibility when the device
selected for the end user provides ScreenQoS=0.7 and SoundQoS=0.3. In this case, we
obtain that Comprehensibility is equal to 0.38 and Usability is equal to 0.682. This value
satisfies our design hypothesis and so any further activity is not necessary.

At this point, the influence relations are used to define a User profile/QoS matrix.
Table 3 reports the User Profile/QoS matrix for the FlexSend case study. We assume that the
value of Body function and Education are equal to 0.6 and 0.4 so the value of
Comprehensibility, obtained by summing weighted values is 0.76. The value represents
the threshold of usability requested by users of the FlexSend service. The actual version of
the Web service generates a comprehensibility value, as shown in Table 3, that does not
achieve the threshold and so the design assumptions have to be revised.

Analyzing the QoS tree, Comprehensibility is related only to channel device QoS
(ScreenQoS and SoundQoS). Qualities related to the actual version of FlexSend service do not
influence this QoS. So,Comprehensibility is classified as delivery-based QoS. Thus the designer
must return to the previous step, identify the most violated constraints and select new technical
configuration. If this change does not satisfy the business constraints, the designer has to go
back to the previous step and change UML diagrams describing the Web service.

7.4.3 Web service description

In the following, we show an example of WSDL sections that are generated using the UMT
tool and the class diagram produced in the Customization step. The Message class is
translated as a ComplexType in the <type> section of the WSDL document (Figure 12). The

Table 3 User Profile-QoS values matrix.

User profile/QoS Comprehensibility Learnability Operability Pleasantness

Skills 0.2 0.3
Body function 0.6 0.4 0.3
Expertise 0.3
Education 0.4 0.1 0.1
Relation capabilities 0.3 1

<types>
<xsd:complexType name="Message">
 <xsd:sequence>
 <xsd:element name="Message Priority" type="xsd1:String">
 <xsd:element name="Attachment_preference" type="xsd1:String">
 <xsd:element name="Confirmation priority" type="xsd1:String">
 <xsd:element name="Truncate message" type="xsd1:String">
 <xsd:element name="Cost constraints" type="xsd:int">
 <xsd:element name="Security" type="xsd1:String">
 </xsd:sequence>
 </xsd:complexType>

 </types>

Figure 12 ComplexType of FlexSend.

380 World Wide Web (2007) 10:349–385

ComplexType has the same name of the class and the composed part elements represent all
the class attributes. Every attribute is shown with the same name and the same type of UML
attributes (e.g String, Int, Boolean, etc.). The public methods of the class stereotyped as
≪BusinessService≫ are translated as both a WSDL portType and a WSDL binding.

8 Supporting tools

The effectiveness of a methodology is strictly related to the availability of support tools,
models, and artifacts that can be easily used in third party solutions. In order to enhance
interoperability and practical applications, UM-MAIS is supported by an integrated suite of
widely used tools. In this way it is also possible to reduce the well-known learning-curve
problem and resistance-to-change attitude. Table 4 shows the adopted tools for each phase.
The requirement analysis is supported by typical office automation tools that can be easily
adopted by analysts.

Concerning the Data design phase E/R or UML modelers help designers in the definition
of the common data schema. Both High and Low-Level Hypertext Design have been
embedded into a complete development framework for context-aware adaptive Web
information systems, by means of an adaptive deployment platform. It allows also adapting
presentation properties of the generated application [42]. As shown in Figure 13, starting
from extended WebML schemas, developed with the WebML run time environment [55],
XML-formatted “pages” (annotated XML documents) containing presentation-related
properties are generated and refined at each page request.

At runtime the properties are evaluated by a dedicated Rule Engine (rules are formalized
as XSLT transformations) that takes in input properly formatted XML documents and

Figure 13 UM-MAIS approach to modeling and deploying context-aware front-ends.

Table 4 Adopted tools in UM-MAIS.

Tools/Phase Office
automation

WebML
run time

Protege UML
modeller

LP-Solve UMT

Requirements management x
Data design x x
High level hypertext design x
High level service design x x
Low level hypertext design x
Low level service design x x x
Deployment and development x

World Wide Web (2007) 10:349–385 381

produces in output HTML pages adapted to the current context conditions. This seamless
integration of conceptual modeling techniques and technological results allows the
specification of both content and navigation adaptations on one hand, and style or layout
adaptations on the other hand at their right level of abstraction.

Both High- and Low-Level Service Design use Protégé, a popular free-software tool
originally developed at Stanford University for knowledge acquisition [40, 41]. Protégé
allows for the editing of ontologies and building of knowledge bases with a user-friendly
interface and interactive environment. Protégé supports OWL, RDF schema, XML files
with a DTD, and XML schema files. Service designers can navigate the ontologies and/or
augment them to fulfill their requirements. High-Level Service Design phase, Adaptability
and Customization steps of Low-Level Service Design adopt well-known design tools such
as Rational Rose as the UML modeler tool and Protégé tool to exploit ontologies. In the
Customization step we adopt Lp-solve [32] as Integer Linear Programming (see the
Section 7.2). In the Web Service Descriptions step, we have exploited UMT [52], a tool that
provides for model transformation and code generation based on UML models in the form of
XMI. XMImodels are imported by the tool and converted to a simpler intermediate format, which
is the basis for validation and generation towards different target platforms. The intermediate
format is an XML format, which in UMT is called XMI Light. UMT transforms the XMI Light to
the desired target technology using a transformer. In UMT, this is normally XSLT, but it may also
be a Java-implementation. We have extended this tool by adding an XSLT stylesheet in order to
perform the transformation of UML diagrams into WSOL specifications. To support the
automatic generation of Web service descriptions and to provide a unique way to make use of
ontologies in the design of UML diagrams we defined a specific UML profile to identify the core
service elements, QoS dimensions and channel specifications.

The development and deployment phase is supported by the WebML run time tool and
by typical Web service development environments such as IBM Websphere.

9 Conclusion

This paper has shown a methodological framework supporting the design of Multichannel
Adaptive WISs. We have argued that no comprehensive approach covers all the needs of
this new end relevant class of Web applications; we have then motivated the main choices
underlying UM-MAIS, a methodology that fills this gap. UM-MAIS enriches three existing
methodologies devoted for requirement analysis (AWARE), Multichannel Web interface
(WebML), and Multichannel services (WSMoD). We have specifically focused on the
methodological steps that cope with the support of heterogeneous devices and channels and
the adaptation to the context (including individual user profiles). These steps have been
illustrated in detail and shown at work on a running example.

We plan to extend further the methodology in order to cover the deployment and testing
phase, with special attention to the definition of architectural solutions and their impact on
the design choices about Web services. We also plan to provide a unique software
framework that supports all methodological phases, by integrating the tools that are already
available in the context of the AWARE, WebML, and WSMoD methodologies.

Acknowledgement This work has been partially supported by the Italian MURST-FIRB Project MAIS
(Multi-channel Adaptive Information Systems) and by the MURST-FIRB Project eG4M (electronic
Government for Mediterranean Countries).

382 World Wide Web (2007) 10:349–385

References

1. Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J.: New directions on agile methods: a
comparative analysis. In: Proceedings of the 25th International Conference on Software Engineering
(Portland, Oregon, May 03–10, 2003). International Conference on Software Engineering, pp. 244–254.
IEEE Computer Society, Washington, DC (2003)

2. Adorni, M., Arcelli, F., Ardagna, D., Baresi, L., Batini, C., Cappiello, C., Comerio, M., Comuzzi, M.,
De Paoli, F., Francalanci, C., Grega, S., Losi, P., Maurino, A.,Modafferi, S., Pernici B., Raibulet C., Tisato, F.:
The MAIS approach to Web service design. In: Proceedings of Tenth International Workshop on
Exploring Modeling Methods in Systems Analysis and Design (EMMSAD) (2005)

3. Antón, A.I.: Goal-based requirements analysis. In: Proceedings of the Second International Conference
on Requirement Engineering RE ‘96 (1996)

4. Arcelli, F., Raibulet, C., Tisato, F., Adorni, M.: Architectural reflection in adaptive systems. In: SEKE
2004, pp. 74–79 (2004)

5. Barna, P., Houben, G.-J., Frasincar, F.: Specification of adaptive behavior using a general-purpose design
methodology for dynamic web applications. In: AH’04—Proceedings of Adaptive Hypermedia, pp. 283–
286 (2004)

6. Baumeister, H., Knapp, A., Koch, N., Zhang, G.: Modelling adaptivity with aspects. In: ICWE 2005,
pp. 406–416

7. Benatallah, B., Sheng, Q.Z., Dumas, M.: The Self-serv environment for web services composition. IEEE
Internet Computing (2003)

8. Binemann-Zdanowicz, A., Kaschek1, R., Schewe1, K., Thalheim, B.: Context-aware web information
systems. In: Proceedings of the First Asian-Pacific Conference on Conceptual Modeling, Dunedin, New
Zealand, pp. 37–48 (2004)

9. Boehm, B., Port, D., Abi-Antoun, M., Egyed, A.: Guidelines for the Life Cycle Objectives (LCO) and
the Life Cycle Architecture (LCA) Deliverables for Model-based Architecting and Software Engineering
(MBASE), USC technical report USC-CSE-98-519, Los Angeles, CA, 90089, 1999

10. Boerstler, J., Janning, T.: Traceability between requirements and design: a transformational approach. In:
Proceedings of 16th International Computer Software & Application Conference, pp. 362–368 (1992)

11. Bolchini, D., Mylopoulos, J.: From task-oriented to goal-oriented web requirements analysis. In:
Proceedings of International Conference on Web Information System Engineering WISE’03, Rome, Italy
(2003)

12. Bolchini, D., Paolini, P.: Goal-driven requirements analysis for hypermedia-intensive web applications,
In: Requirements Engineering Journal, RE’03 special issue, Springer, Berlin (2004)

13. Brambilla, M., Ceri, S., Comai, S., Fraternali, P., Manolescu, I.: Model-driven specification of web
services composition and integration with data-intensive web applications. IEEE Data Eng. Bull. 25, 53–
59 (2002)

14. Cappiello, C., Comuzzi, M., Mussi, E., Pernici, B.: Context management for adaptive information
systems. Electr. Notes Theor. Comput. Sci. 146(1), 69–84 (2006)

15. Central institute for conservation (Istituto centrale per il restauro), the Risk map of cultural heritage,
verified 28 September 2006, http://www.icr.arti.beniculturali.it/rischio/rischio00e.htm

16. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-intensive Web
Applications. Morgan Kauffmann (2002)

17. Ceri, S., Daniel, F., Matera, M.: Extending WebML for modeling multi-channel context-aware web
applications. In: Proceedings ofWISE’03Workshops, pp. 225–233, IEEE Press, Rome, Italy, (December 2003)

18. Ceri, S., Fraternali, P., Bongio, A., Butti, S., Acerbis, R., Tagliasacchi, M., Toffetti, G., Conserva, C.,
Elli, R., Ciapessoni, F., Greppi, C.: Architectural issues and solutions in the development of data-
intensive web applications. In: Proceedings of CIDR 2003, Asilomar, CA, USA (January 2003)

19. Ceri, S., Daniel, F., Facca, F., Matera, M.: Model-driven engineering of active context-awareness. In:
Atzeni, P., Catarci, T., Pernici, B. (eds.) Special issue on multi-channel adaptive information systems,
WWW Journal (2007)

20. Ceri, S., Daniel, F., Matera, M., Facca, F.: Model-driven development of context-aware web applications.
ACM Transactions on Internet Technology 7(1), (2007), January

21. Comerio, M., De Paoli, F., Grega, S., Maurino, A., Batini, C.: WSMoD: a methodology for QoS-based
web service design. International Journal of Web Service Research 2, (2007)

22. Dardenne, A., Fickas, S., van Lamsweerde, A.: Goal-directed concept acquisition in requirements
elicitation. In: Proceedings IWSSD’91, Como (1991)

23. De Bra, P.: Adaptive educational hypermedia on the web. Commun. ACM 45(5), 60–61 (2002), May
24. Fiala, Z., Hinz, M., Houben, G.-J., Frasincar, F.: Design and implementation of component-based

adaptive web presentations. In: ACM SAC’04, pp. 1698–1704 (2004)

World Wide Web (2007) 10:349–385 383

http://www.icr.arti.beniculturali.it/rischio/rischio00e.htm

25. Fraternali, P.: Tools and approaches for developing data-intensive web applications: a survey. ACM
Comput. Surv. 31(3), 227–263 (1999)

26. Gómez, J., Cachero, C., Pastor, O.: Conceptual modeling of device-independent web applications. IEEE
multimed. 8(2), 26–39 (2001)

27. Gotel, O., Finkelstein, A.: An analysis of the requirements traceability problem. In: Proceedings of
International Conference on Requirements Engineering (ICRE), pp. 94–101, IEEE CS Press (1994)

28. Graziani, P., Billi, R., Burzagli, L., Gabbanini, A., Palchetti, B., Bertini, E., Kimani, S., Sbattella, L.,
Barbieri, T., Bianchi, C., Batini, C.: Definition of user typologies. MAIS internal report R7.3.1 (2003)

29. Groenmo, R., Skogan, D., Solheim, I., Oldevik, J.: Model-driven web services development.
International Journal of Web Services (2004)

30. Kappel, G., Proll, B., Retschitzegger, W., Schwinger, W.: Customization for ubiquitous web applications
a comparison of approaches. International Journal of Web Engineering and Technology (2003)

31. Koch, N., Kraus, A., Hennicker, R.: The authoring process of the UML-based web engineering
approach. In: First International Workshop on Web-oriented Software Technology (IWWOST01) (2001)

32. LP_SOLVE.: Linear Programming Code, March 1 2006. Available at: http://www.cs.sunysb.edu/
~algorith/implement/lpsolve/implement.shtml (2005)

33. Lum, W.Y., Lau, F.C.M.: User-centric content negotiation for effective adaptation service in mobile
computing. IEEE Trans. Softw. Eng. 1000–1111 (2003)

34. Manolescu, Ioana, Brambilla, Marco, Ceri, Stefano, Comai, Sara, Fraternali, Piero: Model-driven design
and deployment of service-enabled web applications. ACM Transactions on Internet Technology 5(3),
439–479 (2005)

35. Maurino, A.: Using mobile information systems for automatic data acquisition of complex
archaeological sites. International Conference on Computer Applications and Quantitavie Methods in
Archaeology, Tomar (2005)

36. Maurino, A., Modafferi, S.: Challenges in designing of cooperative mobile information systems for the
risk map of Italian cultural heritage. In: First Workshop on Multichannel and Mobile Information
Systems held in conjunction with WISE, Rome (2003)

37. Mylopoulos, J., Lau, D.: Designing web services with tropos. In: Proceedings of International
Conference on Web Services (2004)

38. Mylopoulos, J., Chung, L., Yu, E.: From object-oriented to goal-oriented requirements analysis.
Commun. ACM 42(1), 31–37 (1999)

39. Nawrocki, J.R., Jasiñski, M., Walter, B., Wojciechowski, A.: Extreme programming modified: embrace
requirements engineering practices. In: International Conference on Requirement Engineering, Germany,
pp. 303–310 (2002)

40. Noy, N.F., Fergerson, R.W., Musen, M.A.: The knowledge model of Protégé—2000: combining
interoperability and flexibility. In: EKAW, pp. 17–32 (2000)

41. Noy, N.F., Sintek, M., Decker, S., Crub´ezy, M., Fergerson, R.W., Musen, M.A.: Creating semantic web
contents with Protégé—2000. IEEE Intell. Syst. 16, 60–71 (2001)

42. Pernici, B. (ed.): Mobile Information Systems, Infrastructure and Design for Adaptivity and Flexibility.
Springer, Berlin (2006)

43. Radhakrishnan, R., Wookey, M.: Model driven architecture enabling service oriented architectures. 1
March 2006, http://www.omg.org/news/whitepapers/mdasoa.pdf (2004)

44. Schwabe, D., Guimaraes, R., Rossi, G.: Cohesive design of personalized web applications. IEEE Internet
Computing 6(2), 34–43 (2002)

45. Shuping, R.: A framework for discovering web services with desired quality of services attributes. In:
Proceedings of International Conference of Web Services (ICWS), pp. 208–213 (2003)

46. Siegel, J.: OMG Staff Strategy Group. Developing in OMG’s Model-driven Architecture (2001)
47. Skogan, D., Gronmo, R., Solheim, I.: Web service composition in UML. In: Proceedings of the Eighth

IEEE Intl Enterprise Distributed Object Computing (EDOC) (2004)
48. Stephenson, J.: Service Oriented Architecture, OptimalJ, CBDI Report, Retrieved March 1 2006 http://

www.omg.org/mda/mda_files/CBDI-SOAOptimalJ-US2003.pdf (2003)
49. Thalheim, B., Dusterhoft, A.: SiteLang: Conceptual modeling of internet sites in conceptual modeling In:

ER 2001, Yokohama, Japan (2001), November 27–30
50. Torlone, R., et al.: Methods and tools for the development of adaptive applications. In: [43], pp. 209–247
51. Tosic, V., Patel, K., Pagurek, B.: WSOL Web Service Offerings Language, CAiSE 02/WES ‘02: Rev.

Papers from the International Workshop on Web Services, E-business, and the Semantic Web, pp. 57-67,
London, UK (2002)

52. UMT.: SINTEF,UMLModel Transformation Tool, RetrievedMarch 1 2006 http://umt-qvt.sourceforge.net (2005)
53. van Lamsweerde, A.: Goal-oriented requirements engineering: a roundtrip from research to practice. In:

Proceedings of the Requirements Engineering Conference, 12th IEEE International (RE’04) (2004)

384 World Wide Web (2007) 10:349–385

http://www.cs.sunysb.edu/~algorith/implement/lpsolve/implement.shtml
http://www.cs.sunysb.edu/~algorith/implement/lpsolve/implement.shtml
http://www.omg.org/news/whitepapers/mdasoa.pdf
http://www.omg.org/mda/mda_files/CBDI-SOAOptimalJ-US2003.pdf
http://www.omg.org/mda/mda_files/CBDI-SOAOptimalJ-US2003.pdf
http://umt-qvt.sourceforge.net

54. Vdovjak, R., Frasincar, F., Houben, G.-J., Barna, P.: Engineering semantic web information systems in
Hera. J. Web Eng. 2(1–2), 3–26 (2003)

55. WebRatio.: http://www.webratio.com/ (Accessed in September 2006)
56. Yu, E.: Towards modelling and reasoning support for early-phase requirements engineering. In:

Proceedings of IEEE International Conference on Requirements Engineering RE’97 (1997)
57. Yu, E., Mylopoulos, J.: Why goal-oriented requirements engineering. In: Proceedings of the Fourth

International Workshop on Requirements Engineering: Foundation for Software Quality, Pisa, Italy (1998)
58. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware middleware for

web service composition. IEEE Trans. Softw. Eng. 30(5), 311–327 (2004)

World Wide Web (2007) 10:349–385 385

http://www.webratio.com/

	The UM-MAIS Methodology for Multi-channel Adaptive Web Information Systems
	Abstract
	Introduction
	Rationale and background
	Related work

	The UM-MAIS methodology at a glance
	Running case

	Requirement management
	Requirement elicitation
	Requirement analysis and classification

	High-level design
	Data design
	High-level hypertext design
	Identifying areas and pages

	High-level service design
	High-level service design in the running case

	Low-level hypertext design
	Low-level hypertext design of the case study

	Low-level service design
	Adaptability design
	Customization
	Web service description
	Low-level service design in the case study
	Adaptability design
	Customization
	Web service description

	Supporting tools
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

