
Università
della
Svizzera
italiana

USI Technical Report Series in Informatics

KernelGen – the design and implementation of
a next generation compiler platform
for accelerating numerical models on GPUs
Dmitry Mikushin1, Nikolay Likhogrud2, Eddy Zheng Zhang3, Christopher Bergström4

1 Faculty of Informatics, Università della Svizzera italiana, Switzerland
2 Lomonosov Moscow State University, Russian Federation
3 Department of Computer Science, Rutgers University, USA
4 PathScale Inc.

Abstract

GPUs are becoming pervasive in scientific computing. Originally served as peripheral
accelerators, now they are gradually turning into central computing nodes. However,
most current directive-based approaches for parallelizing sequential legacy code such
as OpenACC and HMPP simply off-load “hot” CPU code onto GPUs, entailing a lot of
limitations such as unsupported external calls and coarse-grained data dependence
analysis. This paper introduces KernelGen, which is a parallelization framework with
robust parallelism detection mechanism and a novel GPU-centric execution model.
KernelGen supports the major scientific programming languages including C and For-
tran, and has multiple backends that can generate target code for both X86 CPUs and
NVIDIA GPUs. The efficiency of KernelGen has been demonstrated by the performance
improvement up to 5.4x compared with three major commercial OpenACC compilers
over a benchmark suite of numerical kernels.

Report Info

Published
July 2013

Number
USI-INF-TR-2013-2

Institution
Faculty of Informatics
Università della Svizzera italiana
Lugano, Switzerland

Online Access
www.inf.usi.ch/techreports

1 Introduction

To take advantage of massive deployment of GPU-enabled computing clusters, we need to conduct trans-
lation on a broad range of legacy scientific applications (mostly sequential) into GPU code. The CUDA and
OpenCL programming models are well suited for re-writing small programs with a few intensively used com-
putational kernels. However, for larger applications consisting of many individual interacting blocks, such
as applications in the numerical models, the complexity of setting up efficient interaction between different
building blocks manually to generate new GPU code increases dramatically. Many companies and research
groups are postponing the porting process of their applications into GPU code. In addition to GPU-specific
implementation, they often require to keep the conservative CPU version, which adds extra overhead in the
development and support of segmented code base. Moreover, scientific specialists who are used to work-
ing with simple CPU code in Fortran in their problem domain, could hardly deal with complicated details of
GPU parallelism, which further limits their research productivity. Driven by the need to simplify this process
of programming GPUs for different problem domains, a number of new programming models/paradigms
have been proposed and implemented:

• Directive-based extensions to existing high-level languages with user-annotated parallelism. This
type of programming technologies introduce sets of directives (annotations) for marking up the code
regions intended for execution on GPU. Based on this information, compiler automatically generates

1

http://www.inf.usi.ch/techreports/

hybrid executable binary. In order to standardize the set of directives for C/C++/Fortran, commer-
cial compiler vendors formed OpenACC [1] and OpenHMPP [4] consortiums. The F2C-ACC source-
to-source processor [7] is able to perform directive-based GPU code generation for a subset of Fortran
programming language. Similar set of directives is being developed by Intel for Many Integrated Core
(MIC) platform [3].

Despite the expressiveness of high level code to be parallelized, directive-based extensions still require
notable developer effort in organizing correct and efficient computations. Some of aforementioned
compilers perform extra checks to ensure loops parallelism and transformation correctness, others –
blindly follow the user preference. Compilers are often “over conservative” while making decisions
about loops parallelism based on internal analysis, and user may need to force parallelization with
additional directives (for example, “loop independent” directive of OpenACC). Most of directive-based
compilers do not support generation of GPU kernels for loops with calls to functions from other object
files or external libraries, leading to severe limitations of translating large structured applications into
reusable GPU code modules.

• Domain-specific languages (DSL) designed to express the parallelism of algorithms in specific prob-
lem domain. In recent years, many DSLs and embedded DSLs have emerged. The main idea is to
bring the language features and specific problem domain features closer, and meantime – avoiding
strict specialization for any particular hardware. DSLs introduce an additional level of programming
abstraction, which is translated by compiler or source-to-source processor into specific target architec-
ture code. For instance, PATUS [6] is a C-like DSL designed for programming finite difference problems
on rectangular grids. Efficient code could be generated for multicore CPUs with support of SSE and AVX
extensions. Another DSL library called Stencil++ [9] is proposed for the similar problem domain, but
embedded into C++ and templates are used extensively. An embedded DSL called Halide [13] supports
code generation for x86-64/SSE, ARM v7/NEON and NVIDIA GPUs, and is intended mainly for image
processing.

The evaluation of DSLs/eDSLs is usually performed in comparison to hand-tuned programs, making it
hard to evaluate the possible benefits over automatic directive-based compilers and other DSLs. Every
unique DSL typically has only one development group, limiting its growth and evolution. Utilizing DSLs
in existing programs usually require massive code rewriting, which falls back into the similar problems
for CUDA and OpenCL discussed earlier.

• Automatic analysis to extract parallelism based on polyhedral models. This type of techniques are
intended for detecting data dependencies within loop iteration spaces with exact methods or heurist-
ics. Heuristics are currently utilized by most of commercial compilers, while research and experimental
solutions often implement more complex methods, such as the polyhedral analysis. For instance, [11]
implemented a GCC compiler extension for automatic transformation of parallel loops into OpenCL
kernels, using CLooG polyhedral analysis library [5]. Another similar solution capable of transform-
ing C loops into CUDA kernels is called PPCG [18]. Source-to-source compiler Par4all [17] transforms
C and Fortran code into CUDA, OpenCL or OpenMP kernels using another polyhedral analysis sys-
tem called PIPS. However, these models mainly focus on specific loops parallelization and do not have
sophisticated enough techniques to handle communication between CPUs and GPUs, which has be-
come performance bottleneck for most scientific applications.

In any case, explicit CUDA/OpenCL, directive-based programming models or DSLs require significant
amount of manual code modification. For this reason, it is practically very difficult to completely port a large
scale sequential application to GPUs. If an application is only partially ported, the host-device data synchron-
ization may significantly impact the overall performance. For example, when porting only single WSM5 block
of the WRF [15]model with the PGI Accelerator, the time spent on data synchronization is 40-60% of the total
time [20].

Considering the limitations of existing technologies for porting large scientific applications into massively
parallel architectures, we would like to have a number of desirable properties of next-generation paralleliza-
tion compiler framework:

• Support a large set of existing popular programming languages;

• Automatically extract parallelism and transform the code into GPU code;

2

• Code generation process, integration of both GPU and host code;

• Minimize the data communication between the main system memory and the GPU;

• Allow the co-existence with other levels of parallelism, for instance, MPI.

In this paper, we propose KernelGen, a compiler and runtime prototype that targets at all these above
requirements. We build KernelGen based on existing LLVM infrastructure and some research tools for auto-
matic loops analysis. We would like to summarize the main contributions/novelties of this paper as follows:

• Automatic compilation of unmodified sequential C/Fortran program code into mixed CPU+GPU bin-
ary;

• Runtime data dependency analysis and JIT-compilation of GPU code;

• Language features: parallelization of some goto- or while-loops, loops with pointer arithmetics, impli-
cit loops from Fortran array-wise statements and elemental functions;

• Execution model based on original dynamic code loader and linker, involving deep knowledge of
Fermi/Kepler GPUs ISA;

• Open-source compiler pipeline (with exception of CUDA runtime and driver stack) assembled from
GCC frontends, LLVM-based middle-end and NVPTX backend.

We compare KernelGen with three major commercial OpenACC compilers. We demonstrated the effi-
ciency of KernelGen by up to 5.4x speedup over these commercial compilers and at least similar perform-
ance for the other benchmarks. The rest of the paper is organized as follows: Section 2 describes the compiler
pipeline, linking, execution model and memory management; Section 3 explains the necessary modifications
made to existing parallel loops analysis and transformation tool, in order to generate GPU kernels; Sections
4 and 5 are dedicated to auxiliary compiler subsystems and performance evaluation respectively.

2 KernelGen compiler pipeline

During compiler toolchain development, it is important to choose the most suitable existing infrastructure,
by a number of criteria: existing frontends for different languages, flexibility of internal representation, pres-
ence of the basic optimization passes and efficient backends for target architectures, popularity and com-
munity support. The most suitable candidates are GCC, LLVM [12] and Open64 compilers. GCC compiler
supports the highest number of programming languages, but does not have GPU frontends, while LLVM and
Open64 have backends for NVIDIA PTX ISA. Open64 compiler has frontends for C, C++ and Fortran, gener-
ates fairly efficient code, but unfortunately has very segmented community. LLVM compiler does not have
Fortran frontend, but DragonEgg [14] plugin can bridge GCC frontends with LLVM middle-end and backends.
LLVM has its own NVPTX GPU backend, features simple intermediate representation (LLVM IR) and is de-
veloped much more intensively than GCC or Open64. Driven by these considerations, KernelGen is based on
LLVM.

Although compatibility is extremely important to support large complex applications, it is often neglected
in the novel programming models design. KernelGen compiler works directly with the original application,
no changes in the source code or in the compilation process are required. Technically, KernelGen chains as
a plugin to a slightly modified GCC compiler frontend, and therefore is fully compatible with its command
line options. From the user point of view, this means a program configured to compile with gcc or gfortran
could be simply switched to kernelgen-gcc or kernelgen-gfortran. A hybrid executable created by KernelGen
will contain both CPU-only and GPU-enabled binaries. Depending on the value of kernelgen_runmode en-
vironment variable, either CPU or GPU version of application could be launched.

In order to conserve the original build process, a multi-stage pipeline similar to Link Time Optimization
(LTO) is used: the preliminary representation of GPU code is first embedded into the special section of object
files and then is transformed into GPU kernels source during linking. The final compilation of GPU kernels
into binary code is performed by request in runtime (JIT, just-in-time compilation). The basic flowgraph of
KernelGen compiler pipeline is shown in Fig. 1.

As the result, the original application is converted into the set of GPU kernels: one (for executable) or
more (for multiple shared libraries) main kernels, and many computational loops kernels. The main ker-
nels are executed on GPU in single thread. They are intended to track the static and dynamic data, execute

3

1. Compile-time part

1.1. Generate binary CPU code

1.2. Generate LLVM IR code

1.3. Branch loops into separate
functions in LLVM IR

1.4. Embed LLVM IR for loops
into object file

2. Link-time part

2.1. Load LLVM IR from objects

2.2. Extract main entry into
separate LLVM IR module

2.3. Resolve (link) dependencies
in LLVM IR code

2.4. Embed LLVM IR modules
for loops and main entry
into executable binary

3. Run-time part

3.1. Load LLVM IR from binary

3.2. Load external LLVM IR for math
and workflow control

3.3. Optimize, codegen & launch GPU
kernel for main entry, from LLVM
IR

3.4. Analyze, optimize, codegen &
launch GPU kernels for GPU-
efficient loops, from LLVM IR

3.5. Handle CPU host calls

Figure 1: KernelGen compiler pipeline

some simple serial code, launch computational kernels on GPU and offload onto CPU the non-portable host
functions calls, as well as the code portions inefficient for GPU execution. While the main kernels are serial,
the computational loops kernels are executed in parallel to completely utilize the GPU resources. Thus, the
largest possible portion of code is executed on GPU, while CPU only coordinates kernels interaction. For
instance, in MPI application compiled with KernelGen each process will run a main GPU kernel, a set of
computational kernels and some hostcalls for MPI routines. CUDA-aware implementation of MPI [16]may
additionally eliminate CPU-GPU data roundtrips, if messages could be passed between GPUs in peer-to-peer
mode.

KernelGen execution model has a lot of common with Intel MIC native mode, but works on GPUs, where
scalar multiprocessors could be efficiently deployed, without the need of code vectorization.

2.1 Compilation

During individual objects compilation both x86-assembler and LLVM IR are generated, thus the application
could still be deployed on host without GPUs. In order to parse the source code, the GCC compiler fron-
tends are used together with the DragonEgg plugin, converting the GCC’s gimple into LLVM IR. In LLVM IR
of each object the computational loops are extracted into separate functions callable through the generic
kernelgen_launch interface:

i n t kernelgen_launch (
char ∗ kernel ,
unsigned long long szdata ,
unsigned long long szdatai ,
unsigned i n t ∗ data)

where kernel is the function name (in runtime is replaced with the fixed function address), szdata and szdatai
are the sizes of function arguments and integer function arguments respectively (integer arguments are used
as a signature for searching precompiled kernel binaries in runtime), and data are the function arguments
aggregated into naturally aligned structure.

Stacks of nested loops are extracted into separate functions using the LLVM BranchedLoopExtractor pass
in compile-time. As result of this pass, each loop in LLVM IR is cloned into its own function (that may later
become a GPU kernel), execution switches between original version and function call, depending on the
result of branching instruction:

i f (kernelgen_launch (kernel , szdata , szdatai , data) == −1) {
// Launch o r i g i n a l loop .

}

With such conditional construct the KernelGen runtime library is able to switch between different loop rep-
resentations. For instance, if the particular loop is identified as non-parallel, the kernelgen_launch returns
-1, and the main kernel executes its original code. This loop may still have nested parallel loops, which will
be recursively visited in the same fashion. If the whole stack of nested loops is non-parallel, or makes calls to
unresolved external CPU functions, or is estimated to have no GPU execution benefit, then it is executed on
host using the kernelgen_hostcall interface:

4

__device__ void kernelgen_hostcall (
char ∗ kernel ,
unsigned long long szdata ,
unsigned long long szdatai ,
unsigned i n t ∗ data) ;

In case of the host call request, the main GPU kernel issues a callback to host, passes function name and
argument list and suspends until the host call is finished. Host compiles and executes the requested function
using the Foreign Function Interface (FFI).

Fortran code compilation has a useful side-effect of GCC-based frontend: in GIMPLE IR many high-level
constructs are expanded into explicit loops. For instance, array-wise statements and elemental functions will
end up as plain loops in LLVM IR:

complex∗16 , a l l o c a t a b l e , dimension (:) : : c1 , c2 , z
. . .
z = conjg (c1) ∗ c2

This way KernelGen can parallelize and port to GPU implicit loops, which are not covered by the current
directive-based approaches.

2.2 Linking

When linking individual objects in the resulting application or library, LLVM IR code also gets linked into
IR-module for main kernel, and one IR-module for each individual loop kernel – completely optimized and
inlined. At the end on linking, IR code is embedded into application binary and then optimized and compiled
in runtime, on demand.

Special care must be taken of the global variables and constants. Although global values are located in
GPU global memory, they could not be shared across kernels compiled into separate object files, due to the
absence of GPU dynamic linker. To workaround this issue, all global values uses are indexed during linking
and replaced with actual addresses in runtime at LLVM IR level.

2.3 Execution model

The main kernel is launched with application startup and runs on GPU all the time. When host call or compu-
tational kernel is executed, the main kernel suspends (actively spins on atomic CAS) and continues execution
only after the callback is finished. To work with this design, GPU must support the concurrent kernels exe-
cution (CKE) or kernel preemption. CKE is supported by NVIDIA GPUs with Compute Capability 2.0 and
higher, while on AMD GPUs this feature is not supported. For this reason KernelGen currently works only
with NVIDIA GPUs.

The kernelgen_launch and kernelgen_hostcall calls consist of two parts: GPU device-functions and CPU
calls. These functions perform the final binary code generation and GPU kernel launch or arguments loading
and CPU function launch using FFI, respectively. The message passing between host and device parts can
be organized through GPU global memory or host pinned memory. To guarantee the correct values delivery,
read and write operations must be atomic. For this reason, the interaction has been implemented using the
global memory.

On Kepler K20 GPUs previously compiled kernels can be launched right from the main kernel, without
CPU host call, using the feature of dynamic parallelism.

Since the main GPU kernel makes calls to other computational kernels, it must be able to pass any of
its data as their arguments. But the data allocated in local memory cannot be shared between kernels. To
workaround this limitation, the original NVPTX backend was modified to host local variables in .global PTX
data section, making them shareable across all GPU kernels and host.

2.4 Memory management

One of the unique design solutions behind KernelGen is the memory management subsystem. Initially,
the whole application data is kept in GPU memory, along with the code. In order to make CPU functions
calls compatible with this concept, the memory synchronization layer is introduced. Once the CPU function
tries to access the address in the GPU memory range, the segmentation fault signal handler maps the GPU

5

1. Loop analysis

1.1. Load LLVM IR for loop (or nested loops stack)

1.2. Substitute addresses of global variables from runtime

1.3. Substitute pointer and integer parameters

1.4. Run polly preopt passes

1.5. Check the loop is eligible for polyhedral analysis

1.6. Create loop ISL description

1.7. Use CLooG to find parallel loops in ISL representation

2. Codegen & optimize for GPU

2.1. Generate GPU-specific LLVM IR from the result-
ing CLooG AST

2.2. Compute the GPU grid and strides for parallel
loops

2.3. Run standard LLVM IR optimizations

2.4. Codegen LLVM IR to PTX with NVPTX backend

Figure 2: Loops analysis and parallel GPU code generation pipeline in KernelGen compiler. Optimization is performed
for entire SCoP, code generation – for each individual function

memory pages into CPU tables and copies the input data. After the host call is finished, the “dirty” pages are
synchronized back with the GPU.

Memory synchronization is limited to use only page-aligned mapping (4096 bytes), therefore having all
data items aligned by page boundary would be a very convenient simplification at this moment. Unfortu-
nately, current CUDA runtime (5.0) ignores the alignment settings. In order to workaround this issue, all data
items are padded to page size at CUBIN level, using libelf library functions.

3 Generating GPU kernels for parallel loops

KernelGen performs the final step of LLVM IR analysis and binary GPU code generation in runtime, right
before the corresponding code region is approached during program execution, similar to JIT-compilation.
Such an approach is used to strengthen assumptions about data dependencies, based on the actual values of
pointers and loops dimensions.

3.1 Runtime context substitution & analysis

Upon the first GPU kernel launch, only LLVM IR representation of code region exists. Each launch is per-
formed with an aggregated structure of pointer and value arguments. First, integer values and pointers are
substituted into LLVM IR. Additional LLVM pass transforms exact memory accesses into ISL form, compat-
ible with Polly and CLooG. Once unknown parameters are eliminated, polyhedral transformations of loops no
longer depend on poor compile-time alias analysis information and can reliably determine if certain memory
ranges are intersecting. This method solves a usual issue of computational functions with parameter input
and output arrays of unknown origin, which compiler has to mark “may alias” and consider even simple loop
as potentially having dependent iterations. In OpenACC such cases can only be handled manually, either by
specifying restrict attribute for pointers or “loop independent” directive for loops.

3.2 Polyhedral analysis

Polly [8] (from the polyhedral analysis), a part of LLVM infrastructure, is a set of loops transformation passes
based on CLooG [5]. It is able to identify the parallel loops in LLVM IR, add extra small loops (tiles) for more
efficient caching, perform loops interchanging, and map loops onto multiple CPU threads with OpenMP. For
the given source code CLooG builds an abstract syntax tree (AST), and splits some fused loops. Thanks to
splitting, the equivalent partially parallel representation could be carried out even for loops that were origin-
ally non-parallel. Such approach is rarely used, most of the modern compilers only check the existing loops
parallelism without deep analysis.

Polly works with the parts of program, whose control flow and memory access patterns could be pre-
dicted, depending on the fixed set of parameters. Such parts are called static control parts (SCoPs) The part
of a program is a SCoP if the following conditions are met:

1. SCoP contains only for-loops and if-conditions:

6

(a) Each loop has a single integer induction variable incremented from a lower bound to an upper
bound by a unit stride. Upper and lower bounds are affine expressions of SCoP-independent
integer parameters and induction variables of parent loops;

(b) Expressions in if-conditions must be affine and may depend on SCoP parameters and induction
variables.

2. Memory accesses are performed using offsets applied to pointer-parameters of SCoP. Offsets are affine
expressions of SCoP parameters and induction variables;

3. Only calls to functions without side effects are allowed within SCoP.

The first condition implies the structured control flow: it shall be possible to logically split the code into
a hierarchy of single-entry, single-exit fully enclosed basic blocks. Instructions breaking the control flow
(break, goto) are not allowed. Given affine expressions and SCoP parameters, Polly can use methods of linear
programming to compute the loops boundaries and memory accesses patterns.

If Polly had worked with program in high-level language (AST) directly, many constructs such as pointer
arithmetics, while loops or goto operators would have violated the above requirements. In LLVM IR, an
assembler-level language Polly works with, pointer arithmetics is lowered into register operations, and any
loop, regardless its type (for, while) is implemented uniformly, as conditional branch. As a consequence,
Polly has two nice features:

• parallelize some goto- and while-loops, which is not supported by the OpenACC standard;

• parallellize loops with pointer arithmetics, which is unsupported at least in PGI OpenACC.

During adaptation of Polly for GPU kernels generation, the existing OpenMP code generator has been
partially reused. In OpenMP case, if the outer loop is parallel, then its body is wrapped into separate function
and is called through the libgomp – GNU OpenMP implementation. The mapping of loop iterations on CPU
threads is performed by OpenMP runtime, and only the most outer loop is parallelized. For KernelGen this
logic was modified in the following ways:

1. Not only the outer loop, but all nested loops are processed recursively, to utilize the multidimensional
GPU compute grids;

2. Iteration space of each loop (up to 3D) is mapped onto GPU compute grid, favoring coalesced GPU
global memory transactions.

Suppose in a given nested loops stack it is possible to parallelize N closely-nested loops. Then the kernel
can be launched on a grid with N dimensions (for CUDA N ≤ 3). For each dimension mapped onto GPU
threads KernelGen generates code to compute the thread index in block and block index in grid. Each parallel
loop corresponds to single grid dimension in reverse order: the most inner loop corresponds to X dimension
(this allows to coalesce memory transactions of threads in the same warp). For each parallel loop KernelGen
generates code to determine the lower and upper boundaries of the iteration space executed by GPU thread.
Finally, the code for loops with modified boundaries and strides is generated.

Fig. 2 shows loops analysis and parallel GPU code generation pipeline of KernelGen compiler.

4 Extra runtime subsystems

4.1 GPU math module

Introduction of LLVM backend for generating GPU assembly (NVPTX backend) was positioned by NVIDIA
as “open-sourcing” the CUDA compiler. However, NVIDIA’s frontend for C/C++/CUDA is proprietary and
closed-source, while clang supports only a very limited subset of CUDA keywords. Another significant part
of compiler unavailable in LLVM is the GPU C99 math functions library. Since in CUDA compiler these func-
tions are implemented as C/C++ headers, their use with other languages available in LLVM is problematic,
with exception of a subset of builtins. For instance, such functions as double-precision sin, cos, pow are not
available. In KernelGen this problem has been solved by converting standard C/C++ CUDA math headers
into LLVM IR either using clang (required numerous code modifications, resulting IR code is possibly not

7

Data arrays allocation:
OpenACC – on host
KernelGen – on GPU

Generate input data on host

OpenACC: allocate GPU input/output buffers
and copy input data from host to GPU

GPU kernel:
nested spatial

loops for 3D grid

Time steps iterations

OpenACC: copy output data from GPU to host

Input/output data is persistent in GPU memory

Figure 3: Organization of numer-
ical programs in KernelGen per-
formance test suite.

nregs = 1
JMP c[0x3][0x8];

nregs = 2
JMP c[0x3][0x8];

nregs = 63
JMP c[0x3][0x8];

…

Launch kernel2
(with nregs = 62)

nregs = 0
JMP c[0x3][0x8];

nregs = 62
JMP c[0x3][0x8];

c[0x3][0x8]

kernel1 binary code

kernel2 binary code

Launch kernel1
(with nregs = 0)

Dynamic GPU code
container-kernel

(loader + free space)

Entry-point kernelsClient program

JMP address
loaded into GPU
constant memory

…

…

Empty space (NOPs)

Load kernel code into container before the first launch

Code loader kernel

CUBIN ELF module

Figure 4: KernelGen custom dynamic kernels loader: new kernels code is
loaded into dummy container-kernel address space and executed through one
of 63 kernels-stubs denoting the register count and kernel code starting address.

entirely valid) or by dumping IR from cicc (a part of nvcc CUDA compiler pipeline). In latter case, IR math
module could be produced by compiling an empty .cu-file and dumping IR code from cicc using debugger.
IR code generated by cicc is compatible with the actual LLVM version and allows to perfom IR-level linking
of client application code and math functions module, regardless the used original high-level language. For
instance, using this method KernelGen is able to generate GPU kernels for Fortran programs.

4.2 Asynchronous GPU kernels loader

KernelGen needs to compile kernels in runtime and load their binaries into the GPU memory in the back-
ground of launched main kernel. Normally, manual kernels loading could be performed with cuModuleLoad
and cuModuleGetFunction functions of standard CUDA Driver API. But both of these calls are implicitly syn-
chronous, probably due to the memory allocation. Facing this problem, KernelGen had no way, but to provide
its own implementation for loading kernels code into preallocated GPU memory region.

The kernel loader is based on the following concept. Initially, a large empty kernel (containing NOPs)
is loaded into GPU memory with regular CUDA Driver API functions, to act as a container for other kernels
code. Once runtime needs to load a new kernel, its binary code is copied into container address space, which
is known through the Effective Program Counter value (LEPC instruction of Fermi ISA). This way container
can host the code of many smaller kernels one after another (with some extra offset for proper instruction
cache flushing). In fact, such dynamic kernels loader generally works as a simple memory pool. But there
is also one extra characteristic to track: the register count. Dynamic loader creates 63 kernel stubs (entry
points) using 1 to 63 registers. Once particular kernel launch is requested for the first time, its code is loaded
into container, using device-side memory copying kernel (kernel loader), since cudaMemcpy will not permit
copying to unmanaged memory range. Then, the entry-point kernel with matching register count, the spe-
cified GPU compute grid and code address is launched. The only instruction of entry point kernel performs
jump to the start of actual kernel code specified in the fixed item of GPU constant memory (Fig. 4). As result,
new kernels launches are performed without calls to cuModuleLoad and cuModuleGetFunction. Since there
are no LEPC, absolute JMP and NOP instructions in CUDA C or PTX assembler, kernel loader/container and
entry points are implemented in Fermi ISA, using AsFermi assembler [10]. Entry points register counts are
defined in the sections of CUBIN ELF binary and are also set by AsFermi.

The described method could be further generalized into a tool for dynamic GPU binary code modifica-
tion.

4.3 GPU kernels dynamic linker

Loops kernels are expected to have no static GPU memory allocations (all data is passed over the aggregated
parameters structure), but still may make calls to other device functions, for instance, GPU math. Thus,

8

kernel loader should either support loading of called functions or let all kernels to reuse functions coming
with the main kernel module, where they always present to serve the fallback branches. The current ptxas
assembler (converts PTX to GPU ISA, e.g. to Fermi ISA) supports two modes for device functions calls:

• cloning=yes – in this mode every device function will have multiple copies, each one specialized for
particular call site, which usually allows to perform more efficient register allocation for the price of
larger code size. Cloned functions bodies follow the caller code and are accounted into the caller code
size in CUBIN ELF records. Functions addresses used in calls are hard-coded in callers assembly. This
mode is activated by default;

• cloning=no – in this mode a single copy of device function is shared across all call sites, possibly re-
quiring more registers, but keeping the code very compact in comparison to cloned version. Functions
addresses used in calls are unresolved (JCAL 0x0), ELF relocation table contains called functions names
for the corresponding JCAL instructions offsets. Shared device functions are normal functions directly
visible in CUBIN ELF symbols table or cuobjdump.

Some of GPU math functions have static memory allocations (e.g. trigonometric tables). For this reason,
KernelGen shares functions across all kernels, using a mechanism, similar to conventional dynamic linking:

• all kernels are compiled with cloning=no;

• for loops kernels – only kernel code is loaded, for main kernel – kernel body, functions and the corres-
ponding data;

• kernel loader and main kernel are merged into single module, to have all kernels in the same module

• upon main kernel load, KernelGen custom dynamic linker builds a table of functions names and their
absolute addresses;

• upon loop kernel load, KernelGen custom dynamic linker resolves functions calls defined by the relo-
cation table with (name, address) table of main kernel, replacing JCAL 0x0 instruction with a JCAL to
actual function address, using AsFermi assembler.

4.4 GPU dynamic memory heap

Several types of CUDA API functions, such as device memory allocation or loading of GPU binary module
always force synchronization of all asynchronous operations. Since KernelGen execution model requires per-
sistent run of main GPU kernel during entire application lifetime, any additional memory allocation or CUDA
module load would result into a deadlock. This behavior of standard CUDA functions forced KernelGen to
introduce alternative implementations.

The host version of GPU memory allocation function is reasonably synchronous. But even the device
malloc function appears to be synchronous, which is unexpected, since the memory buffers for individual
threads should be preallocated. For this reason, KernelGen currently implements its own simple dynamic
GPU memory pool.

5 Evaluation

KernelGen is being tested on three types of applications: behavior correctness tests, performance tests and
user applications. Behavior tests are intended to track code generation issues, performance tests allow to spot
performance regressions in comparison to earlier KernelGen builds and other compilers. In performance
testing, preference is given to intercomparisons between KernelGen and other parallelizing compilers, rather
than with hand-written GPU kernels, because it allows to better analyse compiler capabilities within its class
of software.

Performance test suite consists of several typical single and double precision numerical algorithms on
2D or 3D regular grids. Each algorithm is performed in 2-3 parallel spatial loops enclosed into non-parallel
time iterations loop (Fig. 3). KernelGen automatically recognizes parallel spatial loops inside non-parallel
time iterations loop, while OpenACC compilers do this only with appropriate manually inserted OpenACC
directives. Tests are partially adopted from [6], short descriptions are presented in Table 1. The test suite is

9

Table 1: KernelGen performance benchmark

Test Description d
im

s

language Test Description d
im

s

language

divergence divergence operator 3D C matmul matrix-matrix multiplica-
tion

2D Fortran

gameoflife Conway’s game of life 2D C matvec matrix-vector multiplica-
tion

2D C

gaussblur Gaussian blur 25-point ap-
proximation

2D C sincos z := sin(x) + cos(y) 3D Fortran

gradient gradient operator 3D C tricubic tricubic interpolation 3D C

jacobi Jacobi method iterations 2D Fortran uxx1 approximation of second
derivative

3D C

lapgsrb Laplace operator 25-point
approximation

3D C vecadd arrays sum 3D C

laplacian Laplace operator 7-point
approximation

3D C wave13pt 13-point 2 levels in time
explicit scheme for wave
equation

3D C

specially designed to perform comparisons with directive-based language extensions. The current version
supports OpenACC and OpenMP extensions for MIC (KernelGen compiles the same code, ignoring all direct-
ives). Fig. 6 shows normalized performance differences between tests kernels compiled with KernelGen, PGI,
CAPS and PathScale (PathScale currently supports only Fermi GPUs). The corresponding absolute execution
times and register counts are listed in Table 2. Fig. 5 shows an extra intercomparison between KernelGen and
CPU versions of the corresponding kernels.

GPU kernels performance is sensitive to compute grid block size. During KernelGen performance evalu-
ation the block size of {128, 1, 1} (or {128, 1} for 2d tests) has been identified as fastest one for all tests. Simil-
arly, OpenACC compilers should be able to set some good compute grid config, in case user has not specified
it explicitly. PGI also uses {128, 1} blocks by default, but both for 2d and 3d loops. Since the default CAPS
configuration for compute grid is very inefficient, a manual gang/vector setup has been introduced in all
tests.

GPU kernels produced by all evaluated compilers are generic with respect to loops dimensions, which
means the same kernel code should be able to handle an arbitrary problem size. For this reason, generic ker-
nels include additional checks and strides for processing multiple grid points in each thread, in case problem
dimension is larger than the corresponding compute grid dimension. Thanks to runtime constants substi-
tution and JIT-compilation, KernelGen is able to generate more efficient kernel code for particular problem
domains, eliminating unnecessary loops and branches. Specialization is automatically turned off, if kernel is
recompiled too often, falling back to generic version.

Tests matmul and matvec intentionally perform uncoalesced dot product as inner loops. In this case,
compiler’s best bet is to perform loop unrolling and fuse multiple loads into single wider load (e.g. four LD.32
into single LD.128), to consume as much memory bandwidth as possible. KernelGen only unrolls loops by
factor of 3 and optimizes reduction, loads fusing is performed by ptxas. This optimization results into 1.5x-
5.5x speedup over PGI and CAPS on K10 GPUs (Fig. 6e-6h).

Test tricubic uses a very large compute kernel to stress compiler capability to perform efficient register
allocation and spilling. In some cases significant performance differences could be observed, for instance
PathScale compiler is always slower (Fig. 6a-6d).

KernelGen uses LLVM IR module for GPU math functions, which is likely insufficiently optimized at this
point. For this reason sincos test performance is often worse than OpenACC compilers. Official LLVM IR
math module to be included into recently announced CUDA 5.5 release might be optimized better. Double-
precision sincos does not work for some OpenACC compilers.

Overall, KernelGen is on par with all commercial compilers, and almost always shows the best perform-
ance on K10 GPUs (sm_30). While Tesla C2075 and Quadro 4000 performance footprints are very different
(Fig. 6a-6d), GTX 680 and GTX 680M demonstrate very similar behavior (Fig. 6e-6h).

Additional testing of COSMO [2] and WRF [15] numerical models showed KernelGen is able to generate
consistent GPU-enabled executables for complex applications in reasonable time.

10

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

d
iv

er
g

en
ce

g
am

eo
fl

if
e

g
au

ss
b

lu
r

g
ra

d
ie

n
t

ja
co

b
i

la
p

g
sr

b

la
p

la
ci

an

m
at

m
u

l

m
at

v
ec

si
n

co
s

tr
ic

u
b

ic

u
x

x
1

v
ec

ad
d

w
av

e1
3

p
t

A
b

so
lu

te
 s

p
ee

d
u

p
 a

g
ai

n
st

 C
P

U
 v

er
si

o
n

c2075

quadro4000

gtx680m

gtx680

(a) KernelGen compared to GCC, single precision

 0

 20

 40

 60

 80

 100

 120

 140

d
iv

er
g

en
ce

g
am

eo
fl

if
e

g
au

ss
b

lu
r

g
ra

d
ie

n
t

ja
co

b
i

la
p

g
sr

b

la
p

la
ci

an

m
at

m
u

l

m
at

v
ec

si
n

co
s

tr
ic

u
b

ic

u
x

x
1

v
ec

ad
d

w
av

e1
3

p
t

A
b

so
lu

te
 s

p
ee

d
u

p
 a

g
ai

n
st

 C
P

U
 v

er
si

o
n

(b) KernelGen compared to GCC, double precision

Figure 5: Absolute speedup of test GPU kernels generated by KernelGen r1780 against CPU versions by GCC 4.6.3 on Intel
Core i7-3610QM (for GCC). Measurements are averaged from 10 invocations of all tests and 10 iterations inside every test

6 Conclusion

KernelGen project implemented an original approach for automatic code porting on NVIDIA GPUs, well-
suited for numerical applications. Conserving the original source code, compiler aims to move onto GPU the
maximum possible portion of code, including memory allocations, creating efficient data layout principally
for GPU computations. KernelGen performs loops parallelism analysis, based on Polly and CLooG, comple-
menting them with GPU-specific LLVM IR code generation. LLVM IR is further lowered into PTX assembler
using NVPTX backend, jointly developed by NVIDIA and LLVM community. Performance testing showed
GPU kernels generated with KernelGen are on par with with three commercial OpenACC compilers.

In order to start broader use of KernelGen in scientific applications, some additional runtime subsys-
tems still have to be implemented. For instance, the current version misses infrastructure for estimating
kernels computational complexity and collecting execution statistics, needed for efficient dynamic switch-
ing between CPU and GPU versions. Parallel kernels generator should be extended to support tiling/locality
for more efficient memory utilization, and reduction idiom recognition. Launching of loops kernels could
be implemented more efficiently on K20 GPUs, where dynamic parallelism allows direct spawning another
kernel launch from the current kernel, without a host call.

KernelGen source code is available under the University of Illinois/NCSA license (with exception of GCC
plugin, which has to be GPL) at the project website: http://kernelgen.org/.

Acknowledgements

This work is supported by the Swiss Platform for High-Performance and High-Productivity Computing1 (HP2C),
testing is performed on cluster “Tödi” of Swiss National Supercomputing Centre (CSCS), cluster “Lomonosov”
of Moscow State University [19] and on hardware donated by HP and NVIDIA.

References

[1] The OpenACCTMapplication programming interface. version 1.0. http://www.openacc-standard.org, Nov.
2011.

[2] Consortium for small-scale modeling. http://www.cosmo-model.org/, Dec. 2012.

[3] The heterogeneous offload model for Intel R© many integrated core architecture. http://software.intel.com/
sites/default/files/article/326701/heterogeneous-programming-model.pdf, Dec. 2012.

[4] OpenHMPP, new HPC open standard for many-core. http://www.caps-entreprise.com/
openhmpp-directives/, Apr. 2013.

[5] C. Bastoul. Code generation in the polyhedral model is easier than you think. In IEEE PACT, pages 7–16, 2004.

1http://hp2c.ch

11

http://kernelgen.org/
http://www.openacc-standard.org
http://www.cosmo-model.org/
http://software.intel.com/sites/default/files/article/326701/heterogeneous-programming-model.pdf
http://software.intel.com/sites/default/files/article/326701/heterogeneous-programming-model.pdf
http://www.caps-entreprise.com/openhmpp-directives/
http://www.caps-entreprise.com/openhmpp-directives/
http://hp2c.ch

Table 2: Absolute times (best time for test is marked blue) and register count of single precision test GPU kernels gen-
erated by KernelGen r1780, PGI 13.02, CAPS 3.2.4 and PathScale ENZO 2013 Beta on NVIDIA Tesla C2075 (Fermi sm_20),
Quadro 4000 (Fermi sm_21), GTX 680 (Kepler sm_30) and GTX 680M (Kepler sm_30). Measurements are averaged from
10 invocations of all tests and 10 iterations inside every test

Test Tesla C2075 GTX 680

KernelGen PGI CAPS PathScale KernelGen PGI CAPS

time n
re

gs

time n
re

gs

time n
re

gs
time time n

re
gs

time n
re

gs

time n
re

gs

divergence 0.008463 18 0.008579 40 0.014654 22 0.008759 0.004810 20 0.009662 49 0.011712 32

gameoflife 0.010180 21 0.011178 28 0.007198 26 0.011088 0.006867 34 0.009714 32 0.008390 25

gaussblur 0.016010 56 0.013287 31 0.013146 26 0.009171 0.008880 51 0.015336 36 0.01503 34

gradient 0.010582 21 0.010745 42 0.022912 23 0.009555 0.005233 22 0.009000 51 0.014492 29

jacobi 0.007825 24 0.010314 23 0.007936 23 0.005524 0.004105 23 0.005348 30 0.005381 26

lapgsrb 0.017307 55 0.014387 61 0.017005 34 0.014023 0.014687 40 0.018369 63 0.017612 44

laplacian 0.008150 18 0.005071 39 0.006507 25 0.007318 0.004670 21 0.004461 48 0.010564 32

matmul 0.000994 16 0.000718 23 0.002466 22 0.001039 0.000548 16 0.000668 33 0.001947 28

matvec 0.016350 16 0.026357 22 0.085751 17 0.022241 0.020611 16 0.035250 25 0.097733 21

sincos 0.010796 22 0.005758 26 0.008202 22 0.004441 0.005845 34 0.003371 29 0.004549 26

tricubic 0.053463 63 0.049090 63 0.043981 47 0.133747 0.036861 61 0.056364 63 0.049621 54

uxx1 0.016480 32 0.020002 59 0.018898 41 0.018825 0.011258 32 0.019175 63 0.015535 44

vecadd 0.004838 12 0.004724 24 0.006068 17 0.004102 0.002623 12 0.003293 31 0.004293 18

wave13pt 0.011779 34 0.009886 54 0.023964 30 0.012920 0.007985 34 0.012204 60 0.015622 35

Test Quadro 4000 GTX 680M

KernelGen PGI CAPS PathScale KernelGen PGI CAPS

time n
re

gs

time n
re

gs

time n
re

gs

time time n
re

gs

time n
re

gs

time n
re

gs

divergence 0.013810 18 0.011191 40 0.015466 22 0.014484 0.007924 20 0.012595 49 0.016064 32

gameoflife 0.020142 20 0.023060 28 0.014457 26 0.022514 0.012555 21 0.015723 32 0.013589 25

gaussblur 0.031713 56 0.027388 31 0.026562 26 0.019262 0.014991 51 0.024847 36 0.024815 34

gradient 0.015171 21 0.014536 42 0.015217 23 0.014158 0.008855 22 0.009870 51 0.019691 29

jacobi 0.015162 24 0.021676 23 0.014963 23 0.011047 0.006325 23 0.008712 30 0.008722 26

lapgsrb 0.031717 55 0.029754 61 0.035739 37 0.027774 0.018310 40 0.026814 63 0.027654 44

laplacian 0.014693 18 0.008560 39 0.013432 25 0.013007 0.007431 21 0.007325 48 0.014407 32

matmul 0.002780 14 0.001494 23 0.005653 22 0.002192 0.000731 16 0.001088 33 0.003221 28

matvec 0.042747 15 0.039113 22 0.118878 17 0.036021 0.028515 16 0.042524 25 0.150424 21

sincos 0.022276 36 0.011623 26 0.016747 22 0.008807 0.008421 22 0.005130 29 0.007263 26

tricubic 0.110995 63 0.097652 63 0.093125 47 0.225702 0.064770 61 0.097441 63 0.085468 54

uxx1 0.028040 33 0.037450 59 0.036532 41 0.033995 0.015521 32 0.022862 63 0.023283 44

vecadd 0.008435 12 0.005331 24 0.008467 17 0.007341 0.004455 12 0.004869 31 0.006491 18

wave13pt 0.019013 34 0.01939 54 0.028230 30 0.023578 0.012462 34 0.015987 60 0.022544 35

12

 0

 1

 2

 3

 4

 5

 6

d
iv

e
rg

e
n
c
e

g
a
m

e
o
fl

if
e

g
a
u
ss

b
lu

r

g
ra

d
ie

n
t

ja
c
o
b
i

la
p
g
sr

b

la
p
la

c
ia

n

m
a
tm

u
l

m
a
tv

e
c

si
n
c
o
s

tr
ic

u
b
ic

u
x
x
1

v
e
c
a
d
d

w
a
v
e
1
3
p
t

K
e
rn

e
lG

e
n
 v

s
o
th

e
rs

,
a
b
so

lu
te

 s
p
e
e
d
u
p

PGI

CAPS

PathScale

(a) Tesla C2075, single precision

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

d
iv

e
rg

e
n
c
e

g
a
m

e
o
fl

if
e

g
a
u
ss

b
lu

r

g
ra

d
ie

n
t

ja
c
o
b
i

la
p
g
sr

b

la
p
la

c
ia

n

m
a
tm

u
l

m
a
tv

e
c

si
n
c
o
s

tr
ic

u
b
ic

u
x
x
1

v
e
c
a
d
d

w
a
v
e
1
3
p
t

K
e
rn

e
lG

e
n
 v

s
o
th

e
rs

,
a
b
so

lu
te

 s
p
e
e
d
u
p

(b) Tesla C2075, double precision

 0

 0.5

 1

 1.5

 2

 2.5

 3

d
iv

e
rg

e
n
c
e

g
a
m

e
o
fl

if
e

g
a
u
ss

b
lu

r

g
ra

d
ie

n
t

ja
c
o
b
i

la
p
g
sr

b

la
p
la

c
ia

n

m
a
tm

u
l

m
a
tv

e
c

si
n
c
o
s

tr
ic

u
b
ic

u
x
x
1

v
e
c
a
d
d

w
a
v
e
1
3
p
t

K
e
rn

e
lG

e
n
 v

s
o
th

e
rs

,
a
b
so

lu
te

 s
p
e
e
d
u
p

(c) Quadro 4000, single precision

 0

 0.5

 1

 1.5

 2

 2.5

 3

d
iv

e
rg

e
n
c
e

g
a
m

e
o
fl

if
e

g
a
u
ss

b
lu

r

g
ra

d
ie

n
t

ja
c
o
b
i

la
p
g
sr

b

la
p
la

c
ia

n

m
a
tm

u
l

m
a
tv

e
c

si
n
c
o
s

tr
ic

u
b
ic

u
x
x
1

v
e
c
a
d
d

w
a
v
e
1
3
p
t

K
e
rn

e
lG

e
n
 v

s
o
th

e
rs

,
a
b
so

lu
te

 s
p
e
e
d
u
p

(d) Quadro 4000, double precision

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

d
iv

e
rg

e
n
c
e

g
a
m

e
o
fl

if
e

g
a
u
ss

b
lu

r

g
ra

d
ie

n
t

ja
c
o
b
i

la
p
g
sr

b

la
p
la

c
ia

n

m
a
tm

u
l

m
a
tv

e
c

si
n
c
o
s

tr
ic

u
b
ic

u
x
x
1

v
e
c
a
d
d

w
a
v
e
1
3
p
t

K
e
rn

e
lG

e
n
 v

s
o
th

e
rs

,
a
b
so

lu
te

 s
p
e
e
d
u
p

(e) GTX 680, single precision

 0

 1

 2

 3

 4

 5

 6

d
iv

e
rg

e
n
c
e

g
a
m

e
o
fl

if
e

g
a
u
ss

b
lu

r

g
ra

d
ie

n
t

ja
c
o
b
i

la
p
g
sr

b

la
p
la

c
ia

n

m
a
tm

u
l

m
a
tv

e
c

si
n
c
o
s

tr
ic

u
b
ic

u
x
x
1

v
e
c
a
d
d

w
a
v
e
1
3
p
t

K
e
rn

e
lG

e
n
 v

s
o
th

e
rs

,
a
b
so

lu
te

 s
p
e
e
d
u
p

(f) GTX 680, double precision

 0

 1

 2

 3

 4

 5

 6

d
iv

e
rg

e
n
c
e

g
a
m

e
o
fl

if
e

g
a
u
ss

b
lu

r

g
ra

d
ie

n
t

ja
c
o
b
i

la
p
g
sr

b

la
p
la

c
ia

n

m
a
tm

u
l

m
a
tv

e
c

si
n
c
o
s

tr
ic

u
b
ic

u
x
x
1

v
e
c
a
d
d

w
a
v
e
1
3
p
t

K
e
rn

e
lG

e
n
 v

s
o
th

e
rs

,
a
b
so

lu
te

 s
p
e
e
d
u
p

(g) GTX 680M, single precision

 0

 1

 2

 3

 4

 5

 6

d
iv

e
rg

e
n
c
e

g
a
m

e
o
fl

if
e

g
a
u
ss

b
lu

r

g
ra

d
ie

n
t

ja
c
o
b
i

la
p
g
sr

b

la
p
la

c
ia

n

m
a
tm

u
l

m
a
tv

e
c

si
n
c
o
s

tr
ic

u
b
ic

u
x
x
1

v
e
c
a
d
d

w
a
v
e
1
3
p
t

K
e
rn

e
lG

e
n
 v

s
o
th

e
rs

,
a
b
so

lu
te

 s
p
e
e
d
u
p

(h) GTX 680M, double precision

Figure 6: Absolute speedup of test GPU kernels generated by KernelGen r1780 against PGI 13.02, CAPS 3.2.4 and Path-
Scale ENZO 2013 Beta on NVIDIA Tesla C2075 (Fermi sm_20), Quadro 4000 (Fermi sm_21), GTX 680 (Kepler sm_30) and
GTX 680M (Kepler sm_30). Values above 1 – KernelGen version is faster than competitor’s, values below 1 – competitor’s
version is faster than KernelGen. Measurements are averaged from 10 invocations of all tests and 10 iterations inside
every test

13

[6] M. Christen, O. Schenk, and Y. Cui. Patus for convenient high-performance stencils: evaluation in earthquake sim-
ulations. In SC, page 11, 2012.

[7] M. Govett. Development and use of a Fortran → CUDA translator to run a NOAA Global Weather Model on a
GPU cluster. http://gladiator.ncsa.uiuc.edu/PDFs/accelerators/day2/session3/govett.pdf, Apr.
2009.

[8] T. Grosser, H. Zheng, R. A, A. Simbürger, A. Grösslinger, and L.-N. Pouchet. Polly - polyhedral optimization in LLVM.
In First International Workshop on Polyhedral Compilation Techniques (IMPACT’11), Chamonix, France, Apr. 2011.

[9] T. Gysi. Stencil++ for HP2C Dycore. http://mail.cosmo-model.org/pipermail/pompa/attachments/
20120306/079fadc1/DWD_HP2C_Dycore_120305.pdf, Mar. 2012.

[10] Y. Hou. AsFermi: An assembler for the NVIDIA fermi instruction set. http://code.google.com/p/asfermi/,
Dec. 2012.

[11] A. Kravets, A. Monakov, and A. Belevantsev. GRAPHITE-OpenCL: Automatic parallelization of some loops in poly-
hedra representation. http://gcc.gnu.org/wiki/summit2010?action=AttachFile&do=get&target=
belevantsev.pdf, Oct. 2010.

[12] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis and transformation. In CGO,
pages 75–88, San Jose, CA, USA, Mar 2004.

[13] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. P. Amarasinghe, and F. Durand. Decoupling algorithms from sched-
ules for easy optimization of image processing pipelines. ACM Trans. Graph., 31(4):32, 2012.

[14] D. Sands. Reimplementing llvm-gcc as a gcc plugin. http://llvm.org/devmtg/2009-10/Sands_
LLVMGCCPlugin.pdf, Oct. 2009.

[15] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. Y. Huang, W. Wang, and J. G. Powers.
A description of the Advanced Research WRF version 3. Technical report, 2008.

[16] J. Squyres, G. Bosilca, S. Sumimoto, and R. vandeVaart. Open MPI state of the union. http://www.open-mpi.
org/papers/sc-2011/Open-MPI-SC11-BOF-1up.pdf, Nov. 2011.

[17] M. Torquati, M. Vanneschi, M. amini, S. Guelton, R. Keryell, V. Lanore, F.-X. Pasquier, M. Barreteau, R. Barrère, C.-T.
Petrisor, É. Lenormand, C. Cantini, and F. D. Stefani. An innovative compilation tool-chain for embedded multi-core
architectures. In Embedded World Conference, Nuremberg, Germany, Feb. 2012.

[18] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez, C. Tenllado, and F. Catthoor. Polyhedral parallel code
generation for cuda. ACM Trans. Archit. Code Optim., 9(4):54:1–54:23, Jan. 2013.

[19] V. Voevodin, S. Zhumatiy, S. Sobolev, A. Antonov, P. Bryzgalov, D. Nikitenko, K. Stefanov, and V. Voevodin. Practice of
"Lomonosov" supercomputer. Open Systems, 7, 2012.

[20] M. Wolfe and C. Toepfer. The PGI accelerator programming model on NVIDIA gpus part 3: Porting WRF. http:
//www.pgroup.com/lit/articles/insider/v1n3a1.htm, Dec. 2012.

14

http://gladiator.ncsa.uiuc.edu/PDFs/accelerators/day2/session3/govett.pdf
http://mail.cosmo-model.org/pipermail/pompa/attachments/20120306/079fadc1/DWD_HP2C_Dycore_120305.pdf
http://mail.cosmo-model.org/pipermail/pompa/attachments/20120306/079fadc1/DWD_HP2C_Dycore_120305.pdf
http://code.google.com/p/asfermi/
http://gcc.gnu.org/wiki/summit2010?action=AttachFile&do=get&target=belevantsev.pdf
http://gcc.gnu.org/wiki/summit2010?action=AttachFile&do=get&target=belevantsev.pdf
http://llvm.org/devmtg/2009-10/Sands_LLVMGCCPlugin.pdf
http://llvm.org/devmtg/2009-10/Sands_LLVMGCCPlugin.pdf
http://www.open-mpi.org/papers/sc-2011/Open-MPI-SC11-BOF-1up.pdf
http://www.open-mpi.org/papers/sc-2011/Open-MPI-SC11-BOF-1up.pdf
http://www.pgroup.com/lit/articles/insider/v1n3a1.htm
http://www.pgroup.com/lit/articles/insider/v1n3a1.htm

	Introduction
	KernelGen compiler pipeline
	Compilation
	Linking
	Execution model
	Memory management

	Generating GPU kernels for parallel loops
	Runtime context substitution & analysis
	Polyhedral analysis

	Extra runtime subsystems
	GPU math module
	Asynchronous GPU kernels loader
	GPU kernels dynamic linker
	GPU dynamic memory heap

	Evaluation
	Conclusion

