
Multicoordinated Paxos

Lásaro Camargos‡? Rodrigo Schmidt†? Fernando Pedone?

‡Unicamp, Brazil †EPFL, Switzerland ?USI, Switzerland

University of Lugano
Faculty of Informatics

Technical Report No. 2007/02
January 2007

Abstract

Algorithm-oriented: Paxos is a round-based distributed consensus algorithm.
In stable runs, proposals are sent to the round leader, which can get a value decided
in two communication steps more. Fast Paxos extends Paxos, allowing fast rounds
as well as classic ones. In fast rounds, a decision can be learned in two commu-
nication steps without relying on a leader but requiring bigger quorums. In this
work, we extend Fast Paxos and allow yet another sort of round in which multiple
quorums of coordinators can be used. Such new rounds have the same expected
latency and quorum size requirements as classic rounds but do not rely on a sin-
gle leader, providing better availability and allowing load balance. Decentralized
rounds like fast ones and ours have a different liveness requirement: the absence
of collisions—which may happen if different values are proposed concurrently. We
show, however, that collisions are inherently more expensive in fast rounds since
they involve extra disk writes. We apply our algorithm to solving Generalized
Consensus, a generalization of agreement problems such as consensus that allows
semantic information to be taken into account when identifying collisions. For that
we extend Generalized Paxos, an algorithm for Generalized Consensus based on
Fast Paxos.

Application-oriented: One of the most important applications of consensus
algorithms is the implementation of state-machine replication for building fault-
tolerant distributed systems. Consensus is used to decide on a total order in which
commands are applied to each replica, ensuring that all replicas perform exactly the
same state transitions. The Paxos consensus protocol delivers such commands to
the replicas within three communication steps, but requires that all commands pass
through a unique leader. Generalized Paxos is an extension of Paxos motivated by
the fact that in many systems commands issued concurrently do not interfere with
respect to their execution order. If this assumption holds, commands are learned
in two communication steps without relying on a unique process. The emphasis on
reducing the number of communication steps in Generalized Paxos has its price,
though. Should the system tolerate the failure of any minority of the processes,
over 3/4 of them must synchronize for commands to be learned during normal
execution. Moreover, when two interfering commands are issued concurrently, a
collision may happen and extra communication steps and disk writes are necessary.
We further generalize Paxos, allowing executions with as many communication steps
as the original Paxos (three) but relying on quorums of coordinators instead of on
a single one. Since different coordinator quorums can be used, the load can be
balanced amongst them. Moreover, the use of coordinators requires fewer processes
to synchronize in order to get commands learned: if the failure of any minority of
the processes should be tolerated, only a majority of them must exchange messages.

Contents

1 Introduction 1

2 Paxos: Classic, Fast, and Generalized 3
2.1 Classic Paxos . 3

2.1.1 The Problem . 3
2.1.2 The Solution . 4

2.2 Fast Paxos . 6
2.3 Generalized Paxos . 9

2.3.1 C-Struct Sets . 10
2.3.2 Generalized Consensus 11
2.3.3 The Generalized Paxos Algorithm 12

3 Multicoordinated Paxos 14
3.1 A Consensus Implementation 14
3.2 The Generalized Algorithm 15
3.3 A Generic Broadcast Implementation 19

3.3.1 A Simple Command History Representation 22
3.3.2 Selecting val in Phase2a 24

4 Practical Issues 25
4.1 Use of multiple coordinators 25
4.2 Collisions . 27
4.3 Liveness . 29
4.4 Reducing disk writes . 30
4.5 Setting rounds and quorums 31

5 Conclusion 33

A Proof of Correctness 35
A.1 Preliminaries . 35
A.2 Abstract Multicoordinated Paxos 36
A.3 Distributed Abstract Multicoordinated Paxos 50
A.4 Multicoordinated Paxos . 60
A.5 Collision Recovery . 66
A.6 Liveness . 67

B TLA+ Specifications 68
B.1 Helper Specifications . 68

B.1.1 Order Relations . 68
B.1.2 Command Structs . 68
B.1.3 Paxos Constants . 70

B.2 Abstract Multicoordinated Paxos 72
B.3 Distributed Abstract Multicoordinated Paxos 76

i

B.4 Basic Multicoordinated Paxos 80
B.5 Complete Multicoordinated Paxos 85

ii

1 Introduction

In the consensus problem, processes must agree on a single value, given a set
of proposals. State-machine replication [6] is probably the most important
application of consensus. In this approach, a reliable service is implemented
by replicating it in several failure-independent processors, where replicas
consistently change their states by applying deterministic commands from
an agreed sequence. A consensus instance is used to decide on each command
in the sequence.

Paxos is an efficient and fault-tolerant consensus protocol originally in-
tended for state-machine replication [7]. During normal execution, a set of
proposer processes (e.g., clients) send their proposed commands to an elected
leader. Upon the receipt of a command C , the leader selects the next con-
sensus instance to which no command has been proposed and forwards C ,
under the selected consensus instance, to a set of acceptor processes. Accep-
tors “accept” C and send a notification to a set of learner processes (e.g.,
replicas). Learners learn the decision of a consensus instance when they
receive a notification coming from a quorum of acceptors. To tolerate the
failure of the leader, each instance of consensus is further subdivided into
rounds, explained later. Instances and rounds are similar in definition but
completely different in purpose and the reader must be careful not to confuse
them.

Even though Paxos provides very good performance, getting commands
delivered by replicas in three communication steps, normal execution de-
pends on the availability of the current leader. If the leader fails, its failure
must be suspected, a new leader must be elected, and this new leader has to
synchronize with a quorum of acceptors before resuming normal execution.
These actions take time and may introduce some temporary unavailability
to the system. The work in [3] is a good example of how real systems should
worry about the failure of the leader in Paxos.

Fast Paxos is an extension of Paxos that admits two modes of execution.
The first mode (classic) looks exactly the same as the original protocol; the
second mode (fast) allows proposers to send their proposals directly to the
acceptors, reducing the minimum time to get a command learned to two
communication steps. Since the leader can be bypassed, its unavailability
is much less disruptive to the system. Nonetheless, this advantage comes
at a price: acceptor quorums used in the fast execution mode must be
significantly bigger than those in the original Paxos algorithm.

Our approach introduces another execution mode to Paxos: classic mul-
ticoordinated, or simply multicoordinated, in which proposers send their pro-
posals to multiple coordinators instead of a single leader. Coordinators
behave similarly to the leader in the original Paxos algorithm, but acceptors
only accept a proposal if it is forwarded by a quorum of coordinators for the
same instance of consensus. After accepting a value, acceptors send a no-

1

tification to the learners, which learn values correctly notified by a quorum
of acceptors. The multicoordinated execution mode has the same latency
as the classic one and acceptor quorums have the same size requirements.
However, since there are multiple quorums of coordinators, a single process
failure does not prevent commands from being learned.

In the fast execution mode, acceptors might accept commands from dif-
ferent proposers for the same instance of consensus. In the worst-case sce-
nario, no quorum of acceptors will accept the same command and learners
will not be able to learn anything based on the received notifications. Our
approach can have a similar problem if coordinators forward different com-
mands for the same instance of consensus, since acceptors will not be able
to accept any value. This problem, called a collision, has many possible so-
lutions, but all incur extra communication steps and, in the fast execution
mode, extra disk writes.

In real applications, though, not all commands must be applied in the
same order to all replicas. This notion of commutable commands can be used
to alleviate the problem of collisions since commands can be forwarded or
accepted out of order as long as they commute. The Generalized Consensus
problem is a generalization of consensus that can take the application se-
mantics into account, like the notion of commutable commands. Moreover,
in this problem, learners can augment their learned data structures and,
thus, a single instance is enough to implement state-machine replication.
Efficient implementations can allow different values (usually sequences) to
be learned, as long as they respect the defined semantics.

Generalized Paxos is an extension of Fast Paxos to efficiently solve Gen-
eralized Consensus. Our main contribution consists of an extension of this
algorithm to allow multicoordinated execution. Since this paper extends
previous works on Paxos, Section 2 presents the whole hierarchy of algo-
rithms ours depend upon. Our algorithms for the consensus and generalized
consensus problems are presented in Section 3. Practical issues like live-
ness, collision recovery, and disk writes are discussed in Section 4. Section 5
concludes the paper and compares our approach to others.

2

2 Paxos: Classic, Fast, and Generalized

2.1 Classic Paxos

The Paxos algorithm originally presented in [7] implements an arbitrary
replicated state machine based on consensus. In this section, we focus on
the Paxos consensus protocol as explained in [8].

2.1.1 The Problem

The consensus problem can be described in terms of agreement among a set
of learner processes, on values proposed by a set of proposer processes [11].
In the context of a distributed application, proposers can be thought of as
clients issuing commands and learners as the application servers that execute
the commands. Clients might also be learners to know whether their issued
commands were accepted by the system.

The safety requirements of consensus are three:

Nontriviality: Any value learned must have been proposed.

Stability: A learner can learn at most one value.1

Consistency: Two different learners cannot learn different values.

The liveness requirement is less obvious, since it should not prevent
progress if any subset of proposers or learners fails. Recall that such roles
can be assigned to clients and we cannot require that they not fail. There-
fore, another set of processes, the acceptors, is necessary to make reliability
assumptions about. We call a quorum any finite set of acceptors that is large
enough to ensure liveness, and define the liveness requirement of consensus
as follows:

Liveness: For any proposer p and learner l , if p, l , and a quorum Q of
acceptors are nonfaulty and p proposes a value, then l eventually learns
some value.

We assume an asynchronous crash-recovery model in which processes
communicate by exchanging messages with no bounds for the time it takes
for messages to be transmitted or actions to be executed. Messages can be
lost or duplicated but not corrupted; processes can fail by stopping only
and never perform incorrect actions. Processes are assumed to have some
sort of local stable storage to keep their state in between failures so that
finite periods of absence are not distinguishable from excessive slowness.
Although we assume processes may recover, they are not obliged to do so

1Stability is usually omitted, since it is tacitly assumed.

3

once they have failed. For simplicity, a process is considered to be nonfaulty
iff it never fails.

The well-known FLP result [5] implies that under such circumstances no
consensus algorithm can ensure the Liveness property if quorums are such
that for every acceptor a, there is a quorum Q not containing a—in simpler
words, if quorums are defined to tolerate the single failure of any acceptor.
As a result, fault-tolerant algorithms must make extra assumptions about
the system. We describe later the extra assumptions made by the algorithms
we present.

2.1.2 The Solution

The Paxos consensus algorithm executes multiple rounds, sometimes called
ballot numbers. It assumes an unbounded number of them, totally ordered
by a relation <. Rounds do not have to be natural numbers or integers,
but some optimizations are possible if, for each round i , there is a round
NextRound(i) such that no round j satisfies i < j < NextRound(i) (c.f.,
last paragraphs of Section 2.2). For simplicity, it can be assumed that
round numbers correspond to the set of natural numbers, unless we define
it differently (Section 4.4).

For each round, an acceptor can “accept” at most one value and the
purpose of a round is to get a value accepted by a quorum of acceptors,
a situation in which we say the value has been chosen. The algorithm
guarantees that if a value is chosen at some round, no other round will ever
choose a different value. Therefore, a learner can safely learn a value v
as soon as it knows that v has been chosen. To prevent two values from
being chosen the following assumption is required, stating that quorums of
acceptors have non-empty intersections.

Assumption 1 (Quorum Requirement) If Q and R are acceptor quo-
rums, then Q ∩ R 6= ∅.

In fact, any general algorithm for asynchronous consensus must satisfy a
similar requirement, as shown in [11] (c.f., Accepting Lemma). A simple
way to ensure this is defining quorums as any majority of the acceptors.

Although there is a total order among rounds, their execution does not
have to follow it, and actions referring to different rounds can even be inter-
leaved. A round is divided into two phases, each one involving two actions.
To orchestrate round executions, Paxos assumes a set of coordinator pro-
cesses, besides proposers, acceptors, and learners. Every round has a single
coordinator, responsible for executing the first action of each round phase.
The algorithm has also actions referring to the proposal and learning of a
value. In the following, we describe each atomic action of the Paxos consen-
sus algorithm:

4

Propose(p, v) Executed by proposer p when it wants to propose value v . It
sends a 〈“propose”, v〉 message to all round coordinators.

Phase1a(c, i) Executed by the coordinator c of round i . To start round i ,
c sends a message 〈“1a”, i〉 to each acceptor a asking a to take part
in round i .

Phase1b(a, i) Executed by acceptor a when it receives a message 〈“1a”, i〉.
The action takes place only if i is greater than any other round a
has ever heard of, where a has heard of j if actions Phase1b(a, j) or
Phase2b(a, j) have been executed. In this case, a sends a message
〈“1b”, i , vval , vrnd〉 to the coordinator of round i , where vrnd is the
highest-numbered round in which a has accepted a value (or an invalid
round number if no value has been accepted by a) and vval is the value
it accepted in vrnd . The pre-condition of this action makes sure that
after it is executed for round i , acceptor a will not execute it for a
round j such that j < i . As we show in action Phase2b, this action
also prevents a from accepting a value for a round j lower than i . This
is a guarantee to the coordinator of i that the pair vval and vrnd will
remain consistent as the information about the latest value accepted
by a for a round number lower than i .

Phase2a(c, i) Executed by the coordinator c of round i after it receives a
“1b” message for round i coming from each acceptor in a quorum. c
sends a message 〈“2a”, i , val〉 to the acceptors, where val is c’s selected
proposal defined as follows. If no “1b” message informed of a previ-
ously accepted value, then c is free to select val among the proposals
received directly from proposers. Otherwise, c must pick up a value
that has been or might be chosen in a previous round to make sure
that no two different values will end up being chosen. This procedure
actually gives Paxos an interesting property: If a value v is chosen at
round j , then no acceptor will ever accept a value other than v at a
round greater than j . Therefore, c must consider only the “1b” mes-
sages with the highest value of vrnd . Moreover, since Paxos ensures
that no two acceptors can accept different values at the same round,
all such messages are guaranteed to have the same value vval and c
picks it up. Hereinafter we use the term pick up a value when referring
to the proposal selection performed by coordinator c during a Phase2a
action.

Phase2b(a, i) Executed by acceptor a when it receives a 〈“2a”, i , val〉 mes-
sage. If a has not heard of a round j greater than i then it accepts val
and sends a message 〈“2b”, i , val〉 to all learners. As we can notice,
the fact that an acceptor only accepts values at round i sent by the
coordinator of i in a phase “2a” message (which is the same sent to

5

all acceptors) ensures that no two acceptors accept different values at
the same round.

Learn(l) Executed by learner l when it receives a message 〈“2b”, i , val〉
from each acceptor in a quorum. The messages imply that val has
been chosen and l can learn it.

If different coordinators keep starting new rounds, it may happen that
no value is ever chosen since no action Phase2b action will be executed. To
ensure liveness, a distinguished coordinator must be selected as a leader, a
position that entitles it to start new rounds. When there is a single leader in
the system, it will be able to start a round that is high enough to overcome
all previously started rounds and make it succeed. However, this is just a
liveness condition; safety is never violated no matter how many coordinators
incorrectly think to be the leader.

Since a coordinator sends the value to be accepted only in the beginning
of phase 2, the first phase of the algorithm can be executed before receiving
any proposal. On a real application, probably many consensus instances will
be needed and the leader can execute phase 1 “a priori” for all consensus
instances. Thus, the amortized latency for solving each instance becomes
only three messages steps if there are no failures and no other coordinator
interferes by starting a higher-numbered round.

2.2 Fast Paxos

It takes at least three communication steps for a proposal to be learned in the
original Paxos algorithm (hereinafter called Classic Paxos): one step for the
proposal to reach the leader and two more for the second phase of the leader’s
current round. Fast Paxos [10] is an extension of the classic algorithm in
which proposers can send their proposals directly to the acceptors, reducing
the latency of reaching a decision in one communication step.

The first difference between Classic Paxos and Fast Paxos is that, in the
latter, each round has its own set of quorums and we call a quorum for round
i an i -quorum. The reason for this is made clear later in this section (see
Assumption 2). As a second difference, Fast Paxos has two sorts of round:
classic and fast. Classic rounds have the same structure as rounds in Classic
Paxos. Fast rounds share the same first phase as classic rounds, but their
second differs slightly.

In a fast round i , after receiving the “1b” messages from an i -quorum,
if the coordinator is free to pick any value, it can send a special value Any
to the acceptors. After receiving the “2a” message with the value Any ,
acceptor a waits for a message 〈“propose”, v〉, in case it has not received
one yet, and behaves as if it had received a message 〈“2a”, i , v〉 from the
coordinator of round i . Note that for the principle of Fast Paxos to work,
proposers should send their “propose” messages to both coordinators and

6

acceptors. Acceptors are still bound to accept just one value per round but,
differently from Classic Paxos, different acceptors can accept different values
in the same fast round. This means that the rule used by the coordinator
of round i to pick up a value after receiving the “1b” messages from an
i -quorum must be revisited.

The heart of the Paxos algorithm (classic or fast) lies in ensuring that
if a value v is chosen at round i , no acceptor will have accepted a value
different from v at any round j such that j > i . This property is guaranteed
by the first phase of each round and the rule used by the coordinator to
pick up the value to be sent in the “2a” message. We say that a value v is
pickable at round i iff no other value was or can still be chosen at any round
j such that j < i .

As explained in the previous section, picking up a value in Classic Paxos
is relatively simple: it suffices to look at the vval field of any “1b” message
with the greatest value for vrnd . To understand the situation with Fast
Paxos, let us assume the coordinator of round i has just received the “1b”
messages for i from an i -quorum Q . If no message has a valid round in the
vrnd field, no value has been or might be chosen at lower-numbered rounds
and any proposed value is pickable. Otherwise, let k be the greatest value
for vrnd received amongst the phase “1b” messages. If all messages in which
vrnd = k report the same value v as vval , it might be the case that v was or
will be chosen at a round j < k (recall the property stated in the previous
paragraph). Moreover, since any k -quorum must intersect Q and acceptors
a in Q have guaranteedly executed action Phase1b(a, i) for round i (i > k),
no value different from v can be chosen at k . Therefore, the coordinator can
safely pick v up.

Now consider the case in which more than one value have been reported
in the phase “1b” messages with vrnd = k (k still being the greatest value for
vrnd reported in the “1b” messages). This implies that no value was chosen
or will be chosen at a round lower than k . As a result, the coordinator must
only figure out which of the values has been or might yet be chosen at k .
There are three cases to consider with respect to the “1b” messages received
with vrnd = k :

1. There is no value v and k -quorum R such that, for every acceptor a
in Q ∩ R, a message 〈“1b”, k , v〉 was received from a. This implies
that no value v has been or might be chosen at k since no k -quorum
has even partially agreed on a value v at k . In this case, any proposed
value is pickable.

2. There is only one value v such that, for some k -quorum R, a message
〈“1b”, k , v〉 has been received from every acceptor in Q ∩ R. This
means that only value v has been or might be chosen at k depending
on what the other acceptors have accepted or might still accept. In
this case, v is pickable.

7

3. There are two different values v and w and two k -quorums R and
S such that, for every acceptor a in Q ∩ R, a message 〈“1b”, k , v〉
was received from a, and, for every acceptor b in Q ∩ S , a message
〈“1b”, k ,w〉 was received from b. This means that either one of the
values has been chosen or might still be chosen depending on what the
other acceptors in R and S accept at k . By the quorum requirement,
R and S have a non-empty intersection, which prevents both values
from being chosen, but this intersection does not intersect Q and i ’s
coordinator cannot decide on which value is pickable.

The way to avoid the third case to happen is by strengthening the as-
sumption made on the intersection of quorums and making sure that the
intersection of any two quorums R and S as shown in case 3 above also
intersects Q . If this is ensured, the situation discussed in case 3 will never
happen and the coordinator can stick to the solutions for cases 1 and 2 only.
Therefore, Fast Paxos relies on the following quorum requirement:

Assumption 2 (Fast Quorum Requirement) For any rounds i and j :

• If Q is an i-quorum and S is a j -quorum, then Q ∩ S 6= ∅.

• If Q is an i-quorum, R and S are j -quorums, and j is fast, then
Q ∩ R ∩ S 6= ∅.

In the general case, this stronger assumption requires bigger quorums. If
every set of n − E acceptors is a quorum for a fast round (fast quorum, for
short) and every set of n−F acceptors is a quorum for a classic round (classic
quorum), where n is the total number of acceptors, then n must be greater
than 2E +F as well as greater than 2F . These constraints are achieved, for
example, if every set of d(2n + 1)/3e acceptors is a fast and classic quorum.
If classic quorums are defined to be any majority of acceptors, fast quorums
must be as big as d(3n + 1)/4e acceptors. It has been shown, however, that
any asynchronous consensus protocol that allows a decision to be reached
in two communication steps must satisfy similar quorum requirements [11]
(Fast Learning Theorem).

If two different values v1 and v2 are proposed at the same fast round i , it
may be that none gets chosen, even in the absence of failures or suspicions,
because of collisions [10]. A collision happens when the acceptors of a
fast quorum accept different values. In pessimistic scenarios, collisions will
prevent any value from being chosen in a fast round. This happens, for
example, if half of the acceptors accepts v1 and the other half accepts v2.
There are three ways to break the tie and recover from a collision, and all
reduce to executing a higher-numbered round. However, depending on how
this new round is chosen, latency can be reduced considerably.

8

Let us assume a collision has happened at round i . The simplest ap-
proach has i ’s coordinator c to monitor the acceptors’ phase “2b” messages
and start a new round from the beginning after it learns the collision has
happened. This approach is expensive as it takes four communication steps
to recover. However, if c is also the coordinator of round i + 1, then c can
exploit the fact that the “2b” messages sent for round i can be interpreted
as “1b” messages for round i + 1, and proceed directly to the second phase
of round i +1, incurring only two communication steps for collision recovery.
This second approach is called coordinated recovery.

As an extension of coordinated recovery, if round i ’s “2b” messages are
also sent to the set of acceptors, they can try to guess the coordinator’s
“2a” message for round i + 1. They do that by interpreting these “2b”
messages for round i as “1b” messages for round i + 1 and applying the
same algorithm as the coordinator does to pick up a value for a phase “2a”
message. As seen before, this algorithm is guaranteed to return a pickable
value. However, there is no guarantee that the acceptors will pick up the
same value and this requires that round i + 1 be fast, allowing acceptors to
accept different values. As explained in [10], some strategies can be used to
try to make them accept the same value. The advantage of this method is
that it takes only one communication step to recover from collisions. This
third approach is called uncoordinated recovery.

2.3 Generalized Paxos

Collisions are the main problem with Fast Paxos because they may happen
even in stable periods of execution (i.e., no failures or suspicions). In a state
machine replication scenario, a collision may happen if two commands are
proposed concurrently to the same instance of consensus. In many systems,
however, commands may commute and there is no need for totally ordering
them since the final state is the same independently of the order in which
they are applied. Consensus, as applied to state machine replication, is too
strong to capture this notion and a collision may happen even if the two
concurrent proposals are commutable.

Generalized Consensus is a generalization of the consensus problem, de-
fined in terms of a data structure called command structure, or simply c-
struct. Depending on the set of c-structs defined, generalized consensus rep-
resents a different problem. As explained in [9], one can define c-struct sets
for traditional consensus, total order broadcast, generic broadcast [13], etc.
C-structs are general enough to capture semantic information like the notion
of commutable commands. An efficient implementation of Generalized Con-
sensus can use this to mitigate the problem of collisions. Generalized Paxos
does exactly that: It extends Fast Paxos to solve Generalized Consensus
and provides very good performance for certain c-struct sets.

9

2.3.1 C-Struct Sets

We use basically the same definitions and notation as the work in [9]. A
c-struct set CStruct is defined in terms of an element ⊥, a set of commands
Cmd , an operator • that appends a command to a c-struct, and a set of
axioms listed later. They are very general data structures. For example,
one could create a c-struct set where c-structs are subsets of Cmd , ⊥ is
the empty set, and v • C simply adds element C to the current value of v .
Another c-struct set could have c-structs as partially ordered sets, ⊥ as the
empty set, and v•C as an operation that extends partially ordered set v with
command C by making C succeed (with respect to the partial order) any
conflicting element of v , given an external conflicting relation over Cmd—a
c-struct set that could capture the notion of commutable commands.

Before we present the five axioms of a c-struct set, some definitions
are necessary. A finite sequence with elements Ci is represented by
〈C1,C2, . . . ,Cm〉. Seq(S) is defined to be the set of all (finite) sequences
whose elements are in the set S (with possible repetitions of elements in the
sequence). Moreover, we use the term c-seq when referring to a finite se-
quence of commands—that is, an element of Seq(Cmd). We can now extend
the operator • to sequences of commands as follows:

v • 〈C1, . . . ,Cm〉 =

{
v ifm = 0,
(v • C1) • 〈C2, . . . ,Cm〉 otherwise

We define that c-struct w extends c-struct v (v v w) iff there exists a
c-seq σ such that w = v •σ. Given a set T of c-structs, we say that c-struct
v is a lower bound of T iff v v w for all w in T . A greatest lower bound
(glb) of T is a lower bound v of T such that w v v for every lower bound
w of T , and we represent it by uT . Similarly, we say that v is an upper
bound of T iff w v v for all w in T . A least upper bound (lub) of T is an
upper bound v of T such that v v w for every upper bound w of T , and we
represent it by tT . If v is a reflexive partial order on the set of c-structs
and a glb or lub of T exists, then it is unique. For simplicity of notation,
we use v uw and v tw to represent u{v ,w} and t{v ,w}, respectively. Two
c-structs v and w are defined to be compatible iff they have a common upper
bound, and a set S of c-structs is compatible iff its elements are pairwise
compatible.

We say that c-struct v is constructible from a set P of commands if v =
⊥•σ, for some c-seq σ containing all elements of P . Moreover, we say that v
contains command C if v is constructible from some set P of commands such
that C ∈ P . We define Str(P) to be the set of all c-structs constructible
from subsets of P for some set P of commands—that is, Str(P) ∆= {⊥ • σ :
σ ∈ Seq(P)}.

A c-struct set CStruct must satisfy axioms CS0-CS4 below. CS0-CS2
are basic requirements to satisfy the properties discussed above. CS3 and

10

CS4 are necessary for Generalized Paxos and similar algorithms to ensure
the safety and liveness properties of Generalized Consensus, described next.

CS0. ∀C ∈ Cmd ,w ∈ CStruct : w • C ∈ CStruct

CS1. CStruct = Str(Cmd)

CS2. v is a reflexive partial order on CStruct .

CS3. For any set P ⊆ Cmd and any c-structs u,v , and w in Str(P):

• v u w exists and is in Str(P).

• If v and w are compatible, then v t w exists and is in Str(P).

• If {u, v ,w} is compatible, then u and v t w are compatible.

CS4. For any command C ∈ Cmd and compatible c-structs v and w in
CStruct , if v and w both contain C then v u w contains C .

2.3.2 Generalized Consensus

We can now generalize the original definition of consensus to deal with a
c-struct set instead of single absolute values. The problem is defined in
terms of a c-struct set CStruct which, as shown in the previous section,
is based on a null value ⊥, a set Cmd of commands, and an operator •.
Proposers propose commands in Cmd and we let learned [l] be learner l ’s
currently learned c-struct (initially ⊥). Generalized Consensus is defined by
the following properties:

Nontriviality: For any learner l , learned [l] is always a c-struct constructible
from some of the proposed commands.

Stability: For any learner l , if the value of learned [l] at any time is v , then
v v learned [l] at all later times.

Consistency: The set {learned [l] : l is a learner} is always compatible.

Liveness: For any proposer p and learner l , if p, l , and a quorum Q of
acceptors are nonfaulty and p proposes a command C , then learned [l]
eventually contains C .

Different instances of the problem are created by different CStruct sets.
In [9], Lamport presents c-struct sets that define traditional consensus, total
order broadcast, generic broadcast, among others.

11

2.3.3 The Generalized Paxos Algorithm

Generalized Paxos is an extension of Fast Paxos to solve Generalized Con-
sensus. The algorithm has the advantage that, by the problem definition, a
collision is not characterized if two acceptors accept different but compati-
ble c-structs. In such case, both acceptors can later extend their accepted
c-structs so that they converge to the same one (since compatible c-structs
have a common upper bound). C-struct sets like command histories with
commutable commands, explained better in Section 3.3, might have very few
incompatible c-structs, which reduces the chances of a collision to happen
and favors the use of fast rounds.

Generalized Paxos relies on the Fast Quorum Requirement (Assump-
tion 2). It assumes that acceptors have previously accepted ⊥ at a round 0
lower than any other round, and has the following atomic actions:

Propose(p,C) The same as in Fast Paxos, except that C must be a com-
mand in Cmd .

Phase1a(c, i),Phase1b(a, i) The same as in Classic Paxos, except that val-
ues are now c-structs.

Phase2Start(c, i) When coordinator c of round i receives a “1b” message
for round i coming from each acceptor in an i -quorum Q , it has to pick
up a value to send back to the acceptors. To understand the action,
we must revisit some definitions and properties of Paxos. We define a
c-struct v to be chosen (and possibly learned) iff there is a round j at
which every acceptor in some j -quorum has accepted an extension of v .
The algorithm keeps the property that if v has been chosen at some
round j and w is accepted by some acceptor at a higher-numbered
round, then v v w . As before, for coordinator c to gather the set of
all possibly chosen c-structs in previous rounds, it suffices to look at
the “1b” messages with the highest-numbered vrnd value. Let k be
such a round number. There are only two cases to consider.

First, if there is no k -quorum R such that, for every acceptor a in
R ∩ Q , c has received a “1b” message from a with vrnd = k , then
c is assured that no c-struct different from ⊥ has been or might be
chosen at k . Moreover, the algorithm ensures that, if a c-struct v has
been chosen at a round j < k , then any value w accepted at k satisfies
v v w . Therefore, c can pick any c-struct received in one of the “1b”
messages in which vrnd = k .

If the first case does not apply, then, for every k -quorum R such that c
has received a “1b” message with vrnd = k from every acceptor in R∩
Q , c calculates the glb of the c-structs vval received in such messages
and adds it to a set Γ initially empty. After that, Γ will contain all c-
structs that have been or might be chosen at lower-numbered rounds.

12

The second condition of the Fast Quorum Requirement ensures that
Γ is compatible and, therefore, has a least upper bound tΓ that can
be safely picked by c.

After picking up a c-struct val based on the previous two cases, c sends
a message 〈“2a”, i , val〉 to all acceptors.

Phase2aClassic(c, i) This action appends commands to a c-struct previ-
ously proposed by the coordinator c of round i . It is executed by co-
ordinator c only if it has already sent a phase “2a” message for round
i to the acceptors. It could be executed for a fast round i , although it
makes more sense to be executed only if i is classic. Let 〈“2a”, i , val〉
be the latest phase “2a” message c has sent for round i and let newval
be val • σ for some c-seq σ of proposed values received in “propose”
messages from proposers. c simply sends a message 〈“2a”, i ,newval〉
to all acceptors.

Phase2bClassic(a, i) Executed by acceptor a when it receives a message
〈“2a”, i , val〉. Let k be the highest-numbered round a has heard of
and v be the latest value accepted by a in k (⊥ if none); if i > k or
i = k and v < val , a accepts val and sends message 〈“2b”, i , val〉 to
every learner.

Phase2bFast(a, i) This action is enabled iff i is fast, i is the highest-numbered
round a has heard of, a has already accepted a value in i , and a has
received a 〈“propose”,C 〉 message. Let v be the latest value a has
accepted in i ; a accepts v • C and sends message 〈“2b”, i , v • C 〉 to
every learner.

Learn(l) Executed by learner l after it receives a phase “2b” message for
some round i from each acceptor in an i -quorum. Let v be the glb of
the values received in such messages; l sets learned [l] to learned [l] t v .

In Generalized Paxos, any round starts by the round coordinator exe-
cuting Phase1a(c, i). Acceptors then should execute action Phase1b(a, i),
followed by the execution of Phase2Start(c, i) by c and Phase2aClassic(a, i)
by the acceptors. After this point, the execution will depend on whether
i is fast or classic. If i is classic, proposers propose, the coordinator
continuosly executes Phase2aClassic(c, i), followed by acceptors executing
Phase2bClassic(a, i) and, then, learners executing Learn(l). If i is fast, pro-
posers propose, acceptors execute Phase2bFast(a, i), and learners execute
Learn(l).

13

3 Multicoordinated Paxos

Fast rounds do not depend on a single coordinator during normal execution,
but do have stricter requirements on acceptor quorum sizes. In our approach,
we extend classic rounds to have multiple coordinators, making them more
reliable while maintaining their latency and acceptor quorum requirements.

In this section, we introduce these multi-coordinated rounds by first ex-
tending the Fast Paxos consensus protocol of Section 2.2. We then present
our our Generalized Consensus protocol. Finally, we present our protocol
applied to solve the Generic Broadcast problem, so that the reader can un-
derstand how it works in a more general instance of Generalized Consensus.

We provide the correctness proof and a formal TLA+ specification of our
generalized consensus protocol in the appendix of this document. The other
protocols’ correctness and formal specifications can be easily derived from
them.

3.1 A Consensus Implementation

As in the original Fast Paxos, in the extended protocol rounds are still
divided into classic and fast, but we relax the assumption that each round
has a single coordinator—note that, in this sense, a classic round differs from
original rounds in Classic Paxos. We define a quorum of coordinators for a
round i , or an i -coordquorum for short, as any set of coordinators satisfying
Assumption 3, below. We say that c is a coordinator of round i if it belongs
to any i -coordquorum.

Assumption 3 (Coord-quorum requirement) For any two quorums of
coordinators P and Q for the same classic round, P ∩Q 6= ∅.

Any coordinator can execute phases “1a” and “2a”, but acceptors will
accept a value only if sent by all coordinators in an i -coordquorum. It is
easy to see that original Classic Paxos rounds (with a single coordinator) are
classic rounds with a single one-element quorum of coordinators. Fast rounds
can have multiple coordinators and Assumption 3 would place no restriction
upon them. However, since fast rounds are meant to avoid coordinators
during normal execution, we see no reason to have something different from
a single coordinator for them except in some very specific scenarios, but we
defer this discussion to a latter section on collision recovery. The algorithm
has the following actions:

Propose(p, v) The same as in Fast Paxos.

Phase1a(c, i),Phase2a(c, i) The same as in Classic/Fast Paxos (since the
Fast Paxos rule to pick up a value is used in action Phase2a), except
that c can be any coordinator of i .

14

Phase1b(a, i) The same as in Classic Paxos, except that a sends the “1b”
message to all coordinators of round i .

Phase2b(a, i) Executed by acceptor a, for round i . This action is enabled if
a as has not heard of a round greater than i and has received a message
〈“2a”, i , val〉 coming from all coordinators in some i -coordquorum with
the same value val . If i is a fast round and val = Any , then a can
accept any value sent in a “propose” message. If i is classic and,
therefore, val 6= Any , then a accepts val . After accepting value v , a
sends the message 〈“2b”, i , v〉 to all learners.

Learn(l) The same as in Classic Paxos.

The main difference between this protocol and Fast Paxos is that, as
described, Phase2b action handles “2a” messages from different coordina-
tors for the same round, ensuring that it only accepts a value that has been
proposed by a whole coordinator quorum. Because coordinators only for-
ward single values to be accepted, the handling of these values is actually
quite simple. It gets more complicated when coordinators and acceptors
must cope with incremental values, as in generic broadcast protocols. This
is shown in the next section. We postpone the discussion about liveness of
Multicoordinated Paxos to Section 4.3.

3.2 The Generalized Algorithm

We now explain the complete Multicoordinated Generalized Paxos algo-
rithm. Rounds are defined as in the previous section and the algorithm
assumes a c-struct set CStruct , the Fast Quorum Requirement (Assump-
tion 2) for quorums of acceptors, and the Coord-quorum Requirement (As-
sumption 3) for quorums of coordinators.

As in Generalized Paxos, we ensure that if a c-struct v is chosen at
a round i , then any c-struct w that is accepted by any acceptor at some
round j > i extends v (v v w). This is guaranteed by the first phase of
a round due to the rule used by the coordinators to pick up a value based
on the phase “1a” messages received by a quorum of acceptors (explained
in Section 2.3.3, action Phase2Start(c, i)). In this section, we embody the
rule in function ProvedSafe(Q , 1bMsg) defined below, where Q is a quorum
of acceptors and 1bMsg is a mapping from every acceptor a in Q to a phase
“1b” message. In previous sections, we did not need to name the fields of
a “1b” message and just considered the structure 〈“1b”, i , vval , vrnd〉. In
order to explain function ProvedSafe, though, we have to name its fields.We
assign the following names to the four fields of a phase “1b” message, in
order: type, rnd , vval , and vrnd .

Definition 1 For any set of acceptors Q, and mapping 1bMsg from each
acceptor in Q to a phase “1b” message, let:

15

• vals(S) ∆= {1bMsg [a].vval : a ∈ S}
Set of vval values sent by acceptors in S ⊆ Q.

• vrnds ∆= {1bMsg [a].vrnd : a ∈ Q}
Set of vrnd values sent in all “1b” messages.

• k ∆= Max (vrnds)
Highest-numbered round in vrnds.

• kacceptors ∆= {a ∈ Q : 1bMsg [a].vrnd = k}
Set of acceptors that sent “1b” messages with vrnd equal to k.

• QinterR ∆= {Q ∩ R : R is a k-quorum }
Set of intersections between Q and every k-quorum R.

• QinterRAtk ∆= {S ∈ QinterR : S ⊆ kacceptors}
Intersections of interest: those in which all elements sent “1b” mes-
sages with vrnd equal to k.

• Γ ∆= {u(vals(inter)) : inter ∈ QinterRAtk}
glb’s of the values sent in the “1b” messages, for every intersection of
interest.

Then ProvedSafe is defined as follows:

ProvedSafe(Q , 1bMsg) ∆= if QinterRAtk = {} then vals(kacceptors)
else {tΓ}

ProvedSafe(Q , 1bMsg) returns a set of c-structs that are pickable for
round i if Q is an i -quorum and every acceptor a in Q has sent “1b”
message 1bMsg [a] with field rnd equal to i . It follows exactly the same rule
as explained in Section 2.3.3 (c.f., action Phase2Start). In simpler words,
if there is no k -quorum R for which all acceptors in R ∩ Q have sent “1b”
messages for round i with field vrnd equal to k , then any value that has
been reported in “1b” messages with vrnd = k are pickable. Otherwise, the
Fast Quorum Requirement ensures that set Γ is compatible. As a result, its
lub exists and is pickable.

To make our algorithm description precise, we must explain the variables
required by each process. Proposers need no internal variables. Coordina-
tors keep only their current round and the latest c-struct they have sent to
the acceptors at that round in a phase “2a” message. The variables of a
coordinator c are the following:

crnd [c] The current round of c. Initially 0.

cval [c] The latest c-struct c has sent in a phase “2a” message for round
crnd [c]. Initially ⊥.

16

An acceptor a keeps three variables:

rnd [a] The current round of a, that is, the highest-numbered round a has
heard of. Initially 0.

vrnd [a] The round at which a has accepted the latest value. Initially 0.

vval [a] The c-struct a has accepted at vrnd [a]. Initially ⊥.

Each learner l keeps only the c-struct it has learned so far.

learned [l] The c-struct currently learned by l . Initially ⊥.

In the following we present the basic atomic actions that compose the
algorithm. They always ensure safety, but some restrictions must be imposed
on their execution for the algorithm to ensure liveness as well. We postpone
the discussion about practical issues such as ensuring liveness or dealing
with collisions to Section 4.

Propose(p,C) Executed by proposer p when it wants to propose command
C . It sends a 〈“propose”,C 〉 message to acceptors and round coordi-
nators.

Phase1a(c, i) Executed by coordinator c, for round i . It is enabled iff

• c belongs to an i -coordquorum and

• crnd [c] < i .

It sends message 〈“1a”, i〉 to the acceptors.

Phase1b(a, i) Executed by acceptor a, for round i . It is enabled iff

• rnd [a] < i and

• a has received a message 〈“1a”, i〉.

The action sets rnd [a] to i and sends message 〈“1b”, i , vval [a], vrnd [a]〉
to the coordinators of round i .

Phase2Start(c, i) Executed by coordinator c, for round i . It is enabled iff

• crnd [c] < i and

• c has received a phase “1b” message for round i from every ac-
ceptor in an i -quorum Q .

First, it picks some value v in ProvedSafe(Q , 1bMsg), where 1bMsg is
a mapping from every acceptor a in Q to the phase “1b” message c
received from a. Then, it sets cval [c] to v , crnd [c] to i , and sends
message 〈“2a”, i , v〉 to the acceptors.

17

Phase2aClassic(c) Executed by coordinator c. It is enabled iff c has re-
ceived a message 〈“propose”,C 〉. It sets cval [c] to cval [c] • C and
sends message 〈“2a”, crnd [c], cval [c]〉 with the updated value of cval [c]
to the acceptors.

Phase2bClassic(a, i) Executed by acceptor a, for round i . It is enabled iff

• rnd [a] ≤ i ,

• a has received a phase “2a” message for round i from every co-
ordinator c in an i -coordquorum L, and

• vrnd [a] < i or vval [a] is compatible with uL2aVals, where L2aVals
is the set of all c-structs received in the “2a” messages for round
i from the coordinators in L.

If vrnd [a] equals i , it sets vval [a] to vval [a] t (uL2aVals); otherwise,
it sets vval [a] to uL2aVals. Then, it sets vrnd [a] and rnd [a] to i (if
this is not the case yet), and sends message 〈“2b”, i , vval [a]〉 with the
updated value of vval [a] to the learners.

Phase2bFast(a) Executed by acceptor a. It is enabled iff

• rnd [a] is a fast round,

• rnd [a] = vrnd [a], and

• a has received a message 〈“propose”,C 〉.

It sets vval [a] to vval [a]•C and sends message 〈“2b”, vrnd [a], vval [a]〉
with the updated value of vval [a] to the learners.

Learn(l) Executed by learner l . It is enabled iff a has received phase “2b”
messages for some round i from an i -quorum Q . It sets learned [l]
to learned [l] t (uQ2bVals), where Q2bVals is the set of all c-structs
received in the “2b” messages for round i from acceptors in Q .

In a general execution scenario, one (or more) coordinators will exe-
cute action Phase1a(c, i) for some high enough round i . Acceptors will
acknowledge it by executing action Phase1b(a, i). All coordinators in i -
coordquorums will then execute Phase2Start(c, i), which will trigger the ex-
ecution of Phase2bClassic(a, i) by the acceptors. This sequence of actions
happens only when a new round starts, which is supposed to happen seldom,
due to failures or collisions. During the rest of the round, a simpler execution
pattern takes place. If the round is fast, proposers execute Propose(p,C),
acceptors execute Phase2bFast(a), and learners execute Learn(l), multiple
times. If the round is classic (multicoordinated or not), proposers execute
Propose(p,C), the round coordinators execute Phase2aClassic(c), acceptors
execute Phase2bClassic(a, i), and learners execute Learn(l), also repeatedly.

18

In [9], Lamport discusses how to deal efficiently with large c-structs and
all the ideas presented there can be directly applied to our algorithm. The
complexity of calculating lubs, glbs, and verifying the compatibility of c-
structs will depend on the c-struct set being used. Most c-struct sets we are
aware of (e.g., those presented in [9]) admit relatively simple implementa-
tions of these operations. The complexity of calculating function ProvedSafe
also depends on how quorums are defined and it can be simplified if quorums
are defined as any set of processes of a certain size (e.g., majority sets).

3.3 A Generic Broadcast Implementation

In the Generic Broadcast problem [13], processes must agree on a partially
ordered set, or poset, of proposed commands. The partial order must order
non-commutable commands, where commutable is defined in terms of a
conflict relation �. In other other words, if two commands C and D are
non-commutable (C � D) and both belong to the poset, then C ≺ D
or D ≺ C . Read only operations are common examples of commutable
commands. Operations changing the same piece of data, as a file in a file
system or a row in a database, may be commutable or not, depending on
the application.

We refer to the posets in the generic broadcast problem as command
histories and define the • operator to append a command to a command
history according to the conflict relation �. • is defined for sequences of
commands as the ordered application of • to each command in the sequence.
More formally, if Cmd is the set of commands that can be broadcast by
processes, (S ,≺) is a command history defined by the set of commands S ⊆
Cmd and the partial order ≺, and 〈C1, . . . ,Cm〉 is a sequence of commands
in Cmd , then:

(S ,≺) • C =

(S ,≺) ifC ∈ S ,
(S ∪ {C},≺•) : ∀a, b ∈ S , a ≺ b ⇔ a ≺• b

∀a ∈ S , a � C ⇒ a ≺• C otherwise

and

(S ,≺) • 〈C1, . . . ,Cm〉 =

{
(S ,≺) ifm = 0,
((S ,≺) • C1) • 〈C2, . . . ,Cm〉 otherwise

We say that command history g extends command history h (h v g) if
there exists a sequence σ of commands such that g = h • σ. As a matter of
fact, command histories are c-structs, and therefore u, t, and “compatible”,
defined on Section 3.2, are also defined for command histories. Moreover,
we use ⊥ to represent an empty command history.

By letting learned [l] be the command history that learner l has learned
at some point in time, we formally define the properties of generic broadcast
as follows.

19

Non-triviality For any learner l , learned [l] only contains proposed com-
mands.

Stability For any learner l , the value of learned [l] at any time is an exten-
sion of learned [l] at any previous time.

Consistency The set {learned [l] : l is a learner} is always compatible.

Liveness For any proposer p and learner l , if p, l , and a quorum Q of
acceptors are nonfaulty, and p proposes a command C , then learned [l]
eventually contains C .

We now extend the multicoordinated protocol from the previous section
to solve the generic broadcast problem. In this new algorithm, as new values
are proposed, acceptors will add new values to their previously accepted
command histories, and increasing prefixes of these command histories are
learned as they become chosen.

To simplify the algorithm’s presentation, we define quorums in terms of
the cardinalities of the sets. For that, let n be the number of acceptors in
the system, F be the maximum number of acceptor failures that does not
prevent progress, and E be the maximum number of acceptor failures that
still allows fast termination. Acceptor quorums are defined as any set of at
least n−F acceptors, and fast acceptor quorums are defined as any set of at
least n − E acceptors. As explained in Section 2.2, as long as 2E + F < n,
Assumption 1 and Assumption 2 are satisfied. As for coordinators, we let
any set with a majority of coordinators be a quorum, what trivially satisfies
Assumption 3.

Also for the sake of simplicity, we formalize the variables informally
introduced in the consensus algorithm. Because the kind of values handled
by these algorithms are different (single values in the first and command
histories in the second), some variables have different types and initial values;
their semantics, however, remains the same.

The coordinator keeps two variables:

crnd [c] The current round of coordinator c. Initially 0.

cval [c] The latest command history c has sent in a phase “2a” message for
round crnd [c] or none, if no value has been sent by c to the acceptors
in its current round. It is initially ⊥ for all coordinators.

An acceptor a keeps three variables:

rnd [a] The current round of a, that is, the highest-numbered round a has
heard of. Initially 0.

vrnd [a] The round at which a has accepted a value for the last time. Initially
0.

20

vval [a] The command history a has accepted at round vrnd [a]. Initially ⊥.

Accordingly to the acceptors’ initialization, learners will always learn
command histories with ⊥ as the smallest element. Therefore, learned [l]
initially equals ⊥, for every learner in the system.

The following actions define the generic broadcast protocol. Therein we
consider generic implementations of command histories or, more generally,
c-structs. We give an efficient implementation of command histories and the
• operator to this protocol at the Section 3.3.2.

Propose(p,C) Executed by proposer p to propose a new command C . It
sends the message 〈“propose”,C 〉 to acceptors and coordinators.

Phase1a(c, i) Executed by any coordinator c to start round i . This action
is enabled iff:

• c is in some i -coordquorum and
• crnd [c] < i .

The action sends a message 〈“1a”, i〉 to all acceptors asking them to
take part in round i .

Phase1b(a, i) Executed by acceptor a, for round i . The action is enables
iff:

• rnd [a] < i .
• a has received a message 〈“1a”, i〉

It sets rnd [a] to i and sends a message 〈“1b”, i , vval [a], vrnd [a]〉 to all
coordinators of round i . The pre-condition of this action makes sure
that after it is executed for round i , acceptor a will not execute it for
a round j such that j ≤ i .

Phase2Start(c, i) Executed by any coordinator c at round i . This action is
enabled iff:

• crnd [c] < i and
• c received a “1b” message for round i from all acceptors in a set

Q of n − F acceptors.

It sends a message 〈“2a”, i , val〉 to the acceptors, where val is the value
that c selected by looking in the “1b” messages coming from acceptors
in Q . val must be an extension of any command history that may have
been decided in a round j < i . The procedure to select val is given at
Section 3.3.2, after we have given an implementation of a command
history, in Section 3.3.1.

Phase2Start sets cval [c] to val and crnd [c] to i and, due to the action’s
pre-condition, is executed only once per round .

21

Phase2aClassic(c) Executed by coordinator c to extend its value for round
crnd [c]. It is enabled iff c has received a 〈“propose”,C 〉message. This
action sets cval [c] to cval [c] • C and sends a 〈“2a”, crnd [c], cval [c]〉
message with the updated cval [c].

Phase2bClassic(a, i) Executed by acceptor a in round i . This action is
enabled iff:

• rnd [a] ≤ i ,

• if i is a fast round, then a received a “2a” message for round i
from some coordinator c; if i is a classic round, then a received
a “2a” message for round i from all coordinators in some set L
with a majority of the coordinators, and

• vrnd [a] < i or vval [a] is compatible with uL2aVals, where L2aVals
is the set of values received in the “2a” messages from coordina-
tors in L.

If vrnd [a] equals i , it sets vval [a] to vval [a] t (uL2aVals); otherwise,
it sets vval [a] to uL2aVals. Then, it sets vrnd [a] and rnd [a] to i (if
this is not the case yet), and sends message 〈“2b”, i , vval [a]〉 with the
updated value of vval [a] to the learners.

Phase2bFast(a) Executed by acceptor a, and enabled iff:

• rnd [a] is a fast round,

• rnd [a] = vrnd [a], and

• a has received a 〈“propose”,C 〉 message.

The action sets vval [a] to vval [a]•C and sends a 〈“2b”, vrnd [a], vval [a]〉
message to all learners with the variables’ updated values.

Learn(l) Executed by learner l . It is enabled iff:

• l has received “2b” messages for some round i from all acceptors
in some set Q of acceptors,

• if i is a classic round, then Q has cardinality n − F ,

• if i is a fast round, then Q has cardinality n − E , and

It sets learned [l] to t(learned [l]uQ2bVals), where Q2bVals is the set
of values received in the “2b” messages received from acceptors in Q .

3.3.1 A Simple Command History Representation

Command history can be represented as sequences of commands. The com-
mand history ⊥, for example, may be represented simply as 〈〉, while the

22

command history
⊥ a

b
c
d , where the arrows point to the previous

elements in the partial order, may be represented as 〈a, b, c, d〉, 〈a, c, b, d〉,
〈a, b, d , c〉, 〈b, d , a, c〉, 〈b, a, d , c〉, or 〈b, a, c, d〉. In the last example, because
the sequences do not represent all the ordering information, the conflict re-
lation (�) is still needed to assess the order of commands in the sequence.

New commands can be added to a sequence by simply appending it at
the sequence’s end, if it is not in the sequence yet. Formally, the • operator
can be defined as follows:

〈c1, . . . , cm〉 • C =

{
〈c1, . . . , cm〉 if ∃i ,C = ci

〈c1, . . . , cm ,C 〉 otherwise.

To determine the longest common prefix between two two command
histories H and I , the following operator checks if the head of H exists on
I before any conflicting command, in which case it is part of their common
prefix. Otherwise, the operator recursively proceeds on the tail of H stripped
of the descendants of its head.

Prefix (H , I) ∆=
if H = 〈〉 ∨ I = 〈〉
then 〈〉
else if ∃j : ∧ Head(H) = I [j]

∧ ¬∃k < j : Head(H) � I [k]
then 〈Head(H)〉 ◦ Prefix (Tail(H), I \Head(H))
else Prefix (Tail(H) \Descendants(Head(H),Tail(H)), I)

Observe that in this definition we extrapolated the use of the set minus
operator, \, to remove some element from a sequence. Although this defini-
tion resembles TLA+, it is not a correct definition in such language because,
besides the unconventional use of \, TLA+ does not allow the definition
of recursive operators, and some rewriting is required for this definition to
conform with that language’s syntax. Nonetheless, we keep this definition
for the sake of simplicity.

To calculate the glb of a set of command histories instead of a simple
pair, the search on the sequence I could be performed in parallel in many
sequences. However, we stick to an iterative approach of simpler under-
standing.

u S ∆= if S = {e}
then e
else let e, f ∈ S , e 6= f

in u (Prefix (e, f) ∪ S \ {e, f })

Determining if two sequences are compatible is more complicated. The
procedure presented below iterates over the first sequence, H , looking for

23

the first element e of H that does not appear in I . If, during this search,
some conflicting ordering is identified among the sequences—in a procedure
similar to the one on the Prefix operator—, the AreCompatible operator
identifies that the sequences are not compatible. If no incompatibility is
found, then the procedure searches for descendants of e in I . If some exists,
then it also indicates incompatibility, as e would have to appear before its
descendant also in I . If none is found, the operator recursively proceeds on
the rest of H , but keeping the list of removed elements in a set of ancestors
A, so that new descendants can be identified in the next steps.

AreCompatible(H , I ,A) ∆=
if H = 〈〉 ∨ I = 〈〉
then true
else if ∃j : ∧ Head(H) � I [j]

∧ ¬∃k < j : Head(H) = I [k]
then false
else if ∃j : Head(H) = I [j]

then if ∃f ∈ A : Head(H) � f
then false
else AreCompatible(Tail(H), I \Head(H),A)

else AreCompatible(Tail(H), I ,A ∪ {Head(H)})

AreCompatible can be rewritten to generate the lub of two sequences
as it goes on verifying their compatibility. This operator would be more
complex, though, and we opted for presenting its simplified version, which
assumes that the sequences are compatible.

H t I ∆= if H = 〈〉
then I
else if ∃j : Head(H) = I [j]

then 〈Head(H)〉 ◦ (Tail(A) t B \Head(A))
else 〈Head(H)〉 ◦ (Tail(A) t B)

Finally, the following operator calculates the lub of a set of compatible
sequences.

t S ∆= if S = e
then e
else let e, f ∈ S : e 6= f

in t ((e t f) ∪ (S \ {e, f }))

3.3.2 Selecting val in Phase2a

Once an implementation of command histories has been picked we can de-
fine how a coordinator c picks the value to be forwarded to acceptors on

24

action Phase2Start in some round i . Thes procedure is described below for
command histories implemented by sequences. In the description, we refer
to the third and fourth fields of a message m =〈“1b”, i , vval [a], vrnd [a]〉 sent
by acceptor a for round i as m.vval and m.vrnd . Let

• Q be a set of acceptors of cardinality n − F , such that c has received
a “1b” message from each acceptor in Q , for round i .

• 1bQ be the set of “1b” messages received by c, from all acceptors in
Q , in round i .

• Let k be the biggest m.vrnd among all messages m ∈ 1bQ .

• Let k -acceptors be the set of acceptors in Q from which c has received
a message m such that m.vrnd = k .

• Let vals(S) be the set m.vval for all messages m ∈ 1bQ received from
an acceptor in a set S .

If k is a classic round, then any subset of k -acceptors with n−2F elements
could combine with the acceptors from which messages were not received to
form quorum R. In this case, the acceptors in R could have chosen any prefix
of the values accepted by the acceptors in R∩Q . Let InterAtk be the set of
all such subsets, that is, subsets of k -acceptors with cardinality n − 2F . If
InterAtk is empty, then c can choose any message m from an acceptor in k -
acceptors, and forward any extension of m.vval to the acceptors. Otherwise,
c must forward an extension of tΓ, where Γ is the longest prefix shared by
acceptors in the sets of InterAtk , i.e., Γ = {uvals(e) : e ∈ InterAtK}. In
the case of simple majority quorums, that is, F = b(n − 1)/2c, n − 2F = 1
and Γ will equal the set of values on messages received from all acceptors in
k -acceptors, and the calculus of glbs can be skipped.

If k is a fast round, then the subsets of k -acceptors in InterAtk must
have cardinality n − 2E , as this is the minimum size of an intersection of
two fast quorums. The rest of the procedure to pick a sequence to extend
remains the same.

4 Practical Issues

4.1 Use of multiple coordinators

As we have mentioned before, Classic Paxos can be seen as an implemen-
tation of our algorithm where all rounds are classic and each round i has
only one i -coordquorum with a single element (the coordinator of round i
in Classic Paxos). We call such rounds single-coordinated as opposed to
multicoordinated ones, which are also classic but have multiple quorums of
coordinators.

25

The main problem of single-coordinated rounds as compared to multi-
coordinated ones has to do with availability. If the coordinator of a single-
coordinated round crashes, time must be spent with the indentification of
the failure (usually done through timeouts), the election of a new coordina-
tor, and the execution of the first phase of a higher-numbered round, before
normal execution can be retaken. The optimization of these tasks may also
effect performance or availability. For example, aggressive failure detection
may trigger false suspicions, and simple leader election algorithms can elect
a crashed process or more than a single leader at a time.

If a round has multiple quorums of coordinators, a single failure will not
require immediate round change, avoiding all the aforementioned availability
problems. A simple implementation of Multicoordinated Paxos would have a
fixed number of coordinator processes in every round and define coordinator
quorums of multicoordinated rounds as any majority of them so that the
Coord-quorum Requirement is satisfied. In such case, the failure of any
minority of the coordinators leaves at least one quorum of coordinators still
available and, therefore, able to forward proposals to the acceptors.

One could argue that fast rounds also do not rely on a single coordina-
tor during normal execution, since acceptors can accept proposals directly
from proposers. However, the Fast Quorum Requirement imposes stricter
restrictions on how fast quorums are defined, which also affects availability
since fewer failures are tolerated.

The existence of multiple quorums of both coordinators and acceptors
also enables implementations with better load balance than classic paxos.
Recall that, in classic paxos, all commands must go through the current
leader (round coordinator) and, depending on the system load, this might
be a performance bottleneck. In Multicoordinated Paxos, for a command
C to be learned in multicoordinated rounds, it must be forwarded by a
coordinator quorum and accepted by an acceptor quorum only. If there
are multiple coordinator and acceptor quorums, no acceptor or coordinator
needs to process all commands proposed. A simple way to distribute the
load has the proposer p of a command C choose (randomly or through some
uniformly distributed function) a quorum of coordinators and a quorum
of acceptors for C . p sends the “propose” message only to the chosen
coordinator quorum, with the chosen quorum of acceptors piggybacked in
the message since all coordinators in the quorum must forward C to the
right acceptors. The coordinators send their “2a” message with C only to
the indicated quorum of acceptors, which accept C and send phase “2b”
messages to the learners. If not all learners should learn about C , the same
approach can be used, forwarding with C the set of learners to which the
phase “2b” messages should be sent.

Fast rounds also allow distributing the load over the set of acceptors.
As before, however, the stricter quorum requirement implies a worse distri-
bution. If fast rounds are composed of d(3n + 1)/4e acceptors, where n is

26

the total number of acceptors (a necessary condition if any majority of the
acceptors is a quorum for a classic round), then it is not hard to verify that
every acceptors will have to process more than 3/4 of the proposed com-
mands. In multi-coordinated rounds, if any majority of the coordinators of
a round i is an i -coordquorum and any majority of acceptors is an i -quorum,
then the load can be distributed so that each coordinator processes at most
(1/2 + 1/nc) of the proposed commands, where nc is the total number of
coordinators for round i , and each acceptor accepts at most (1/2 + 1/n)
of the proposed commands. It is true that in this scenario, each command
must be dealt twice (first by the coordinators and then by the acceptors),
but the coordinators’ action is much cheaper since it must not involve disk
writes, as we show later.

Doing this sort of load balancing does not jeopardize availability. The
optimistic use of a single quorum only does not mean that the other quorums
cannot be used. A clever implementation would resort initially to a single
quorum of coordinators and acceptors. If the command is not learned after
some time has elapsed (triggered by a timeout or a failure suspicion), then
other quorums might be used. This wait time can be set to a minimum since
they will never trigger a round change as discussed in the beginning of this
section.

Lastly, it is clear from the algorithm that the sets of coordinators and
acceptors need not have the same number of elements. Actually, in many
cases it might be better to have more acceptors than coordinators in a round.
Note that the set of coordinators for round i can be completely different from
the set of coordinators of round j 6= i , but this is not the case for acceptors
since they must be queried in every new round to check whether a value
has already been chosen at some previous round. Moreover, the acceptors’
task of accepting a value is more expensive than the coordinators’ task of
forwarding it, since the former requires a disk write but the latter does
not. As a result, implementations might use a high number of acceptors
to improve the system’s resilience or performance (due to load balancing).
But an equally high number of coordinators for a round increases only the
availability of that round, and the load balancing will not be as effective
since the coordinators’ task is cheaper. For a small system, a configuration
with 5 acceptors in total and 3 coordinators for multi-coordinated rounds
(with different sets of coordinators for different rounds) sounds plausible,
since it tolerates the failure of any two processes and does not introduce
temporary unavailability if a single coordinator crashes.

4.2 Collisions

Multicoordinated rounds have a drawback that inexists in single-coordinated
ones—collisions. In multicoordinated rounds, a collision happens when com-
mands proposed concurrently arrive at the coordinators in different orders

27

and this leads to their forwarding of incompatible c-structs. If no coordina-
tor quorum forwards c-structs whose glb can extend the values previously
accepted by the acceptors, the round is stuck since no new command can
get accepted.

This is a different type of collision as compared to the one that may occur
in fast rounds, explained in Section 2.2. In fast rounds, a collision happens
when acceptors accept incompatible c-strucs that cannot further extend the
values learned by learners so far. In this case, however, acceptors pay the
price of accepting commands that will never be learned, which does not
happen in collisions of multicoordinated rounds. This is a major difference
between the two kinds of collisions since acceptors must write on stable
storage every time they accept a value but coordinators do not have to, as
we explain in Section 4.4.

The mechanism to solve collisions in the original Fast Paxos algorithm
presented in Section 2.2 cannot be directly applied to Generalized Paxos.
The only way to adapt it to Generalized Paxos we are aware of cannot toler-
ate the failure of any acceptor. If no other algorithm exists, the techniques
we present below for multicoordinated rounds can be used at the cost of
one extra communication step for the acceptors to identify the collision in
the c-structs they have accepted. Another possibility consists of explicitly
starting a new higher-numbered classic single-coordinated round from the
beginning after its coordinator identifies the collision.

In multicoordinated rounds, collision identification can be done by the
acceptors when they receive the phase “2a” messages from the coordinators
of a classic round i . If two coordinators of the same i -coordquorum send
“2a” messages for round i with incompatible c-structs, acceptors execute
action Phase1b(a, i + 1) as if they had received a phase “1a” message for
round i +1. What comes next will depend on whether round i +1 is classic
or fast.

If round i +1 is classic and enough acceptors identify the collision, which
will normally happen if messages are not lost and processes do not crash,
then the coordinators of round i+1 will execute action Phase2Start(c, i + 1)
based on the received messages, followed by one or more executions of action
Phase2aClassic(c). Thus, the collision in round i will be resolved with only
two extra communication steps (as compared to the usual three of a classic
round). Clearly, to avoid that another collision happens when the coordi-
nators start round i + 1, it is advisable to have it as a single-coordinated
round. After some time of normal execution, if conflicting commands stop
being proposed, the coordinator of round i +1 can start a multicoordinated
round again. This approach is a variation of the coordinated recovery pre-
sented in [10].

If round i + 1 is fast, performance can be improved by setting i + 1-
coordquorums wisely. Since the Coord-quorum Requirement does not place
any restriction when it comes to fast rounds, we can define that any single

28

acceptor by itself constitutes a coordinator quorum for a fast round (play-
ing both roles—acceptor and coordinator). When a coordinator of round
i + 1 (which is also an acceptor) executes actions Phase2Start(c, i + 1) and
Phase2aClassic(c), it can locally accept the values supposedly sent in the
“2a” messages, without actually sending them. This approach can resolve
collisions with only one extra communication step. However, new collisions
might happen when the round i + 1 is started. This is a variation of the
uncoordinated recovery presented in [10], which also presents some interest-
ing ideas to avoid having collisions when round i + 1 is started. We do not
cover them here because the use of a fast round to recover from a collision
in a classic one does not seem to be of practical use. We just present the
idea of the uncoordinated recovery mechanism for completeness.

One might ask herself if there can be some kind of round that does not
rely on a single coordinator but also avoids collisions. In the most general
case, its existence would contradict the FLP result since quorums could be
defined to tolerate a single failure and the absence of collisions would mean
that liveness can be achieved in such rounds.

4.3 Liveness

The possibility of starting new rounds allows the algorithm to progress if a
round does not succeed (because of coordinator crashes or collisions). How-
ever, starting new rounds carelessly is also a problem because new rounds
can be continuously initiated without ensuring liveness. In Classic Paxos
and Fast Paxos, this is prevented by using some (unreliable) leader election
algorithm that eventually elects a single leader that will be responsible for
starting a higher-numbered round under its coordination. In Multicoordi-
nated Paxos, we use the same strategy to prevent the continuous initializa-
tion of of new rounds. Message losses can also prevent liveness. The solution
to that is to have processes keep on re-sending their last message, which can
be optimized as described in Section 2.4.1 of [10].

If the current leader starts a new classic single-coordinated round (of
which it is the only coordinator), liveness is ensured as long as the leader
does not crash and other coordinators do not wrongly think they are the
current leader and try to start a higher-numbered round. If other coordi-
nators interfere, the leader must be notified. This is done by extending the
algorithm a little, making acceptors reply to phase “1a” or “2a” messages
with a round number lower than their current one in order to notify the
coordinator which sent that message that its current round number is too
low to get values accepted. When a coordinator that thinks to be the leader
receives such a message from the acceptors, it can start a higher-numbered
round.

If the leader starts a fast round, liveness is ensured as long as the leader
does not crash during the execution of phase 1 and collisions do not happen

29

during the rest of the round execution. If there are no failures, collisions can
be resolved by adapting the collision recovery mechanisms presented in [10]
to Generalized Paxos, by having acceptors identify collisions and use the
approach we explained in Section 4.2 to solve them, or by simply having the
leader identify the collision and start a new classic single-coordinated round
to solve it.

In classic multicoordinated rounds, liveness is ensured if the leader does
not crash during the execution of phase 1 and neither collisions happen
nor all quorums of coordinators become unavailable during the rest of the
round execution. The failure of the leader is not a problem since another
correct leader is eventually selected which will make sure that a new round
gets started. As for collisions, the mechanism presented in Section 4.2 can
be used—the only restriction we make is that the leader must be one of
the coordinators for the following round, otherwise the leader might think
of the round change as an interference and try an even higher-numbered
round. Last, to cope with the failure of coordinators, the leader must start
a new round if it believes that other coordinators have failed. Their possible
failure can be assessed by monitoring their “2a” messages or some external
failure detection mechanism. When the leader notices that there are not
enough coordinators in the current round to ensure progress, it starts a new
higher-numbered round with a different set of coordinator quorums.

4.4 Reducing disk writes

Assumption 3 imposes no restriction between coordinator quorums of dif-
ferent rounds. If it is always possible to start new rounds with any set of
coordinator quorums, coordinators are not required to write on stable stor-
age. A coordinator that crashes and later recovers could just be seen as
a new coordinator in the system, which is easily implemented by having
an “incarnation” counter associated with its identifier. In the following we
explain how new rounds can be created with any set of coordinator quorums.

Consider round numbers as a records of the form 〈Count , Id ,RType,S 〉,
where Count is a natural number, Id is a coordinator’s unique identifier,
RType is a natural number, and S is a set of coordinator quorums. Counter
Count always allows the creation of a new high-numbered round, Id identi-
fies the coordinator that created the round, RType tells the round type (fast
if 0, classic otherwise), and S identifies all valid coordinator quorums for
this round. A round is uniquely identified by the first three fields, and the
total order relation is given by comparing them lexicographically. Field S
is merely informative and is not taken into consideration when comparing
two rounds. Using this approach, when the current leader wants to start
a new round, it can simply define the four fields according to its current
knowledge.

Since Assumption 2 requires that quorums of different rounds intersect,

30

acceptors cannot lose their state after a crash and assume a different identity
upon recovery. This happens because the values accepted by acceptors can-
not be forgotten, or the algorithm’s safety would be compromised. There-
fore, these values must always be stored in stable storage, incurring a disk
write (or equivalent operation) whenever an acceptor executes a Phase2b
action. As a result, acceptors are not as easily replaceable as coordinators
and more complex strategies must be used [12].

Action Phase1b also changes the internal state of an acceptor and, at
a first sight, this seems to imply that Phase1b must also write on disk.
However, an acceptor a may store rnd [a] only in main memory as long
as, after recovering from a crash, it manages to initialize rnd [a] with a
higher value than the previous one. This is done as follows: Field Count
described previously in this section can be composed of a major and a minor
component, MCount and mCount . When an acceptor executes Phase1b for
some round, if MCount equals the previous value in rnd [a], it changes rnd [a]
in volatile memory only; otherwise, it writes it on disk. During recovery,
the acceptor simulates the reception of a “1a” message with an MCount
higher than the one it has on disk. To get values accepted by the recovered
acceptor, coordinators will be forced to use higher rounds. In the normal
case, acceptors write on disk only once, when they are started. In the
presence of failures, this strategy results in one extra disk write at each
acceptor, per recovery.

4.5 Setting rounds and quorums

The schema used to define round numbers shown in the previous section,
that is, as a vector of the form 〈MCount :mCount , Id ,RType,S 〉 should fit
most of application scenarios. However, there are some specific scenarios for
which this schema should be adapted for better performance. There are two
main points on doing these adaptations: the likeliness of collisions and how
they are recovered, and what type of round follow each other.

For example, if collisions are a constant in the system, then fast rounds
should not be used because the recovery cost could sum up bigger than the
economy provided by fast rounds. If fast rounds are used in conjunction with
coordinated recovery, then they should be followed by single-coordinated
rounds. In the case uncoordinated recovery is considered, fast rounds should
be followed by multi-coordinated fast rounds. (See Section 4.2.)

In the case of the example, where some fast rounds should be followed
by other fast rounds, using the record described above would force the use
of rounds with different Id or Count field. Because recovery relies on a
process knowing exactly what is the next round number, this schema would
not work. A possible solution is to change how the field RType is interpreted
(e.g., letting all RType in the range 0 to 5 be interpreted as fast, instead of
simply 0).

31

The set of coord-quorums can be defined at run-time, considering the
status of the system when a new round is created. To ensure liveness, multi-
coordinated rounds should be followed by single-coordinated rounds (See
Section 4.3). However, this transition need not be brusque, but could be
done through a series of multi-coordinated rounds with smaller quorums,
minimizing the risk of collisions while still allowing for the benefits of multi-
coordination.

Below we present a couple of general scenarios and discuss how round
numbers and quorums could be defined to them. These scenarios are not
necessarily disjoint, and real world systems would probably share the char-
acteristics of both of them, as well as other relevant ones, and a per-case
analysis is needed to find the best solution. Notice that none of the Paxos
algorithms require the ordered use of all ballot numbers and that coordina-
tors are allowed to skip rounds—possibly based on the the dynamics of the
environment it is inserted into. However, because collision recovery explores
the sequential execution of rounds, skipping rounds could prevent efficient
recovery and therefore the rounds’ configuration should be defined a priori
as precisely as possible.

Clustered systems Clustered systems connected through high-speed net-
works have a large probability of spontaneously ordering the messages sent
to the same destinations. In such systems, acceptors executing a fast round
are likely to accept the values in the same order, and values are likely to
be learned in two communication steps, even when conflicting proposals are
made.

In such a scenario, ranges of infinite fast rounds followed by single-
coordinated rounds seems the best configuration: most of the time values
are fast learned and, in the rare case of conflicts, they are solved by the
variant uncoordinated recovery presented in Section 4.2. Coordinators can
always resort to the next single-coordinated round to ensure liveness if un-
coordinated recovery does not succeed.

For this scenario, the values of the RType field in the basic approach can
be mapped to a range of many fast rounds followed by classic rounds, as we
mentioned before. By dividing RType in a major and minor component, as
we did with Count , the number of fast rounds can even be infinite.

If conflicts are rare but tend to be persistent and require coordinated
recovery, then a solution is to map RType’s even values to fast rounds and
odd values to single-coordinated classic rounds.

Conflict prone In widely distributed systems or under high load, mes-
sages tend to get inverted and non-commutable proposals often result in
conflicts. In such environments, if non-commutable commands prevail, then
the algorithms will always end up resorting to single-coordinated classic

32

rounds to finish.
In such an environment, it does not make sense to have fast nor multi-

coordinated rounds, and round numbers can be defined as the set of integer
and partitioned among a finite set of coordinators by some module function.
For an infinite set of coordinators or for having each coordinator as the
leader of infinitely many consecutive rounds, a simplified round number of
the form 〈MCount:mCount , Id〉 could be used.

5 Conclusion

Multicoordinated Paxos is an extension of Paxos that allows multiple coor-
dinators to be used concurrently to improve availability. Our algorithm also
provides means to better balance the load and adapt to changes at runtime.
The possibility of collisions makes our approach more attractive if the ap-
plication semantics can be taken into account. As a result, we have applied
it to Generalized Consensus.

Generic Broadcast is an implementation of Generalized Consensus with
commutable commands. In the same way the algorithms in [13] are similar
to Generalized Paxos, the algorithms in [2] are similar to ours. However,
both [13] and [2] consider the crash-stop model only, do not allow changing
the round type, and, different from Generalized and Multicoordinated Paxos,
may identify a collision even if conflicting commands are received in the same
order.

Spontaneous order as a means to solve consensus was first used in [14].
In fact, B-Consensus is a crash-stop simplified version of the algorithm in
Section 3.1; it was later adapted to the crash-recovery model in [4], but
requiring two disk writes per proposal. Moreover, none of these protocols
has a generalized version, and they rely solely on the spontaneous order
to ensure liveness, while Multicoordinated Paxos can always switch to a
single-coordinated round to ensure progress in the absence of failures.

References

[1] M. Abadi and L. Lamport. The existence of refinement mappings.
Theoretical Computer Science, 82(2):253–284, 1991.

[2] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg.
Thrifty generic broadcast. In Proc. of the 14th Intl. Conference on
Distributed Computing, pages 268–282, Toledo, Spain, 2000.

[3] M. Burrows. The chubby lock service for loosely-coupled distributed
systems. In Proc. of the 7th Symp. on Operating System Design and
Implementation, OSDI’06, November 2006.

33

[4] L. Camargos, E. R. M. Madeira, and F. Pedone. Optimal and practical
wab-based consensus algorithms. In Proc. 12th Intl. Euro-Par Confer-
ence, Euro-Par’06, pages 549–558, Dresden, Germany, 2006.

[5] M. J. Fischer, N. Lynch, and M. S. Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM,
32(2):374–382, April 1985.

[6] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978.

[7] L. Lamport. The part-time parliament. ACM Transactions on Com-
puter Systems, 16(2):133–169, 1998.

[8] L. Lamport. Paxos made simple. ACM SIGACT News (Distributed
Computing Column), 32(4):18–25, December 2001.

[9] L. Lamport. Generalized consensus and paxos. Technical Report MSR-
TR-2005-33, Microsoft Research, 2004.

[10] L. Lamport. Fast paxos. Distributed Computing, 19(2):79–103, October
2006.

[11] L. Lamport. Lower bounds for asynchronous consensus. Distributed
Computing, 19(2):104–125, 2006.

[12] M. Massa and L. Lamport. Cheap paxos. In Proc. of the 2004 Intl.
Conference on Dependable Systems and Networks, June 2004.

[13] F. Pedone and A. Schiper. Handling message semantics with generic
broadcast protocols. Distributed Computing, 15(2):97–107, April 2002.

[14] F. Pedone, A. Schiper, P. Urban, and D. Cavin. Solving agreement
problems with weak ordering oracles. In Proc. of the 4th European
Dependable Computing Conference, pages 44–61, 2002.

34

A Proof of Correctness

A.1 Preliminaries

Our proofs depend on a number of basic definitions and propositions, pre-
sented in this section. Apart from an extra proposition, everything in this
section comes from [9], since we want to follow the same notation and proof
structure as presented in that paper.

Concerning round numbers (hereinafter called ballot numbers), we only
assume that they are totally ordered by a relation < and there is a smallest
ballot number 0. We use balnum as an abbreviation for ballot number, and let
BalNum be the set of all balnums. Balnums can be either fast or classic, but
not both. Quorums of acceptors and coordinators depend upon the ballot
number. We assume both the Fast Quorum Requirement (Assumption 2)
and the Coord-quorum Requirement (Assumption 3). Lastly, we assume a
c-struct set CStruct upon which Generalized Consensus is defined.

We start by defining a data structure called ballot array, used by our
abstract algorithms. Ballot arrays keep the votes of each acceptor at each
balnum and the ballot number at which each acceptor currently is (the
highest-numbered balnum it has heard of). Vote entries are initialized with
a value none that is not in CStruct . Due to that, we extend v to cope with
none such that none v none but ¬(v v w) if either v or w (but not both)
equals none.

Definition 2 (Ballot Array—Definition 1 of [9]) A ballot array bA is
a mapping that assigns to each acceptor a a balnum b̂Aa and to each acceptor
a and balnum m a value bAa [m] that is a c-struct or equals none, such that
for every acceptor a:

• bAa [0] 6= none

• The set of balnums m with bAa [m] 6= none is finite.

• bAa [m] = none for all balnums m > b̂Aa .

We say that a value v is chosen at balnum m if an m-quorum accepts v
at m. We can also define chosen at with respect to a ballot array as follows.

Definition 3 (Chosen at—Definition 2 of [9]) A c-struct v is chosen
at balnum m in ballot array bA iff there exists an m-quorum Q such that
v v bAa [m] for all acceptors a in Q. A c-struct v is chosen in ballot array
bA iff it is chosen at m in bA for some balnum m.

Considering that an acceptor a can only accept c-structs at balnums
equal to or greater than its current one (b̂Aa in ballot array bA), we define
a c-struct to be choosable at balnum m iff it is or can still be chosen at m.

35

Definition 4 (Choosable at—Definition 3 of [9]) A c-struct v is choos-
able at balnum m in ballot array bA iff there exists an m-quorum Q such
that v v bAa [m] for every acceptor a in Q with b̂Aa > m.

A c-struct is safe at balnum m iff it extends any c-struct choosable at
a balnum j such that j < m, and we define a ballot array bA to be safe
iff every entry bAa [m] different from none is safe at m, for every acceptor
a. If acceptors accept only safe c-structs at balnums greater than or equal
to their current ones, the algorithm guarantees that if v is ever chosen at a
balnum i , then no acceptor will have accepted a c-struct w that does not
extend v at a balnum j greater than i .

Definition 5 (Safe at—Definition 4 of [9]) A c-struct v is safe at m in
bA iff w v v for every balnum k < m and every c-struct w that is choosable
at k. A ballot array bA is safe iff for every acceptor a and balnum k, if
bAa [k] is a c-struct then it is safe at k in bA.

The following proposition states that the chosen values of a safe ballot
array are compatible. It implies that an algorithm can satisfy the consistency
property of Generalized Consensus by having acceptors accept only safe
values at balnums that are no lower than their current ones. Its detailed
proof appears in [9].

Proposition 1 (Proposition 1 of [9]) If a ballot array bA is safe, then
the set of values that are chosen in bA is compatible.

A.2 Abstract Multicoordinated Paxos

As in [9], our proof of correctness starts with an abstract algorithm that
can be more easily proved correct. The reason why we cannot use the same
abstract algorithm as in [9] is the difficulty of multicoordinated rounds to
implement the variable minTried used there. As a result, we came up with
an even more abstract algorithm, which can be implemented not only by
Multicoordinated Paxos, but also by the abstract algorithm in [9].

Our abstract algorithm is based upon a subset of the variables used by
the abstract algorithm of [9]:

learned An array of c-structs, where learned [l] is the c-struct currently
learned by learner l . Initially, learned [l] = ⊥ for all learners l .

propCmd The set of proposed commands. It initially equals the empty set.

bA A ballot array. It represents the current state of the voting. Initially,
b̂Aa = 0, bAa [0] = ⊥ and bAa [m] = none for all m > 0. (Every
acceptor casts a default vote for ⊥ in ballot 0, so the algorithm begins
with ⊥ chosen.)

36

maxTried An array of c-structs, where maxTried [m] is either a c-struct or
equal to none, for every balnum m. Initially, maxTried [0] = ⊥ and
maxTried [m] = none for all m > 0

The Abstract Multicoordinated Paxos algorithm satisfies the following
invariants, which, as we prove next, imply the properties Nontriviality and
Consistency of Generalized Consensus.

maxTried Invariant For every balnum m, if maxTried [m] 6= none, then

1. maxTried [m] is proposed.

2. maxTried [m] is safe at m in bA.

bA Invariant For all acceptors a and balnums m, if bAa [m] 6= none, then

1. bAa [m] is safe at m in bA.

2. If m is a classic balnum, then bAa [m] v maxTried [m].

3. If m is a fast balnum, then bAa [m] is proposed.

learned Invariant For every learner l :

1. learned [l] is proposed.

2. learned [l] is the lub of a finite set of c-structs chosen in bA.

Proposition 2 The learned invariant implies the Nontriviality property of
Generalized Consensus.

Proof: By part 1 of the learned invariant. 2

Proposition 3 Invariants bA and learned imply the Consistency property
of Generalized Consensus.

Proof: By the definition of Consistency, it suffices to assume that invariants
bA and learned are true, and prove that, for every pair of learners l1 and
l2, learned [l1] and learned [l2] are compatible. The proof is divided into four
steps, presented below:
1. bA is safe.

Proof: This follows from part 1 of the bA invariant and the definition of
a safe ballot array (Definition 5).

Let: S = {v : v is chosen in bA}
2. S is compatible.

Proof: By step 1 and Proposition 1.
3. For every learner l , learned [l] v tS .

Proof: This is true by part 2 of the learned invariant and axiom CS3,
which implies that if set S is compatible, then the lub of S is equal to or
extends the lub of any subset of S .

37

4. Q.E.D.
Proof: By step 3 and the definition of compatible c-structs. 2

Abstract Multicoordinated Paxos has seven atomic actions, described
below. A complete specification of the algorithm in TLA+ is given in Sec-
tion B.2.

Propose(C) for any command C . It is enabled iff C /∈ propCmd . It sets
propCmd to propCmd ∪ {C}.

JoinBallot(a,m) for acceptor a and balnum m. It is enabled iff b̂Aa < m.
It sets b̂Aa to m.

StartBallot(m,w) for balnum m and c-struct w . It is enabled iff

• maxTried [m] = none,

• w is safe at m in bA, and

• w ∈ Str(propCmd).

It sets maxTried [m] to w .

Suggest(m, σ) for balnum m and c-seq σ. It is enabled iff

• maxTried [m] 6= none and

• σ ∈ Seq(propCmd).

It sets maxTried [m] to maxTried [m] • σ

ClassicVote(a,m, v) for acceptor a, balnum m, and c-struct v . It is enabled
iff

• m ≥ b̂Aa ,

• v is safe at m in bA,

• v v maxTried [m], and

• bAa [m] = none or bAa [m] v v .

It sets bAa [m] to v and b̂Aa to m.

FastVote(a,C) for acceptor a and command C . It is enabled iff

• C ∈ propCmd ,

• b̂Aa is a fast balnum, and

• bAa [b̂Aa] 6= none.

It sets bAa [b̂Aa] to bAa [b̂Aa] • C .

38

AbstractLearn(l , v) for learner l and c-struct v . It is enabled iff v is chosen
in bA. It sets learned [l] to learned [l] t v .

The following proposition proves that the algorithm also satisfies the
Stability property of Generalized Consensus.

Proposition 4 Abstract Multicoordinated Paxos satisfies the Stability prop-
erty of Generalized Consensus.

Proof: For any learner l , the only action that changes the value of learned [l]
is AbstractLearn(l , v). Since, by the definition of lub, this action can only
extend the value of learned [l], Stability is ensured. 2

It remains to prove that the abstract algorithm satisfies the invariants
maxTried , bA, and learned . For the sake of simplicity, however, we use
some extra notation in the proof. First, when analyzing the execution of
an action, we use ordinary expressions such as exp to represent the value of
that expression before the action is executed, and we let exp′ be the value
of that expression after the action execution. Second, to avoid ambiguity,
we let maxTriedInv , bAInv , and learnedInv be expressions representing the
statements of the three invariant properties.

Proposition 5 Abstract Multicoordinated Paxos satisfies the invariants
maxTried, bA, and learned.

Proof: The invariants are trivially satisfied in the initial state. Therefore,
it suffices to assume that the invariants are true and prove that, for every
action α, they remain true if α is executed. We do that in the following,
analyzing case by case.

1. Case: Action Propose(C) is executed, where C ∈ Cmd .
Proof sketch: Action Propose(C) only changes variable propCmd , which is the set
of proposed values, and does that by adding a new element to it. Invariant conditions
that do not refer to this set are obviously preserved. The others are kept true since
the set propCmd only increases and c-structs composed of proposed commands remain
composed of proposed values.

1.1. 1. maxTried ′ = maxTried
2. bA′ = bA
3. learned ′ = learned
4. propCmd ′ = propCmd ∪ C ∧ C /∈ propCmd

Proof: By the definition of action Propose(C).
1.2. maxTriedInv ′ is true.

From its definition, it suffices to:
Assume: maxTried [r]′ 6= none, for any balnum r
Prove: 1. maxTried [r]′ ∈ Str(propCmd ′) and

2. maxTried [r]′ is safe at r in bA′.
1.2.1. maxTried [r]′ ∈ Str(propCmd ′)

39

Proof: By applying the assumption of step 1.2 and step 1.1.1 to
maxTriedInv we verify that maxTried [r]′ ∈ Str(propCmd), and step
1.1.4 tells us that propCmd ⊂ propCmd ′.

1.2.2. maxTried [r]′ is safe at r in bA′.
Proof: By maxTriedInv and steps 1.1.1 and 1.1.2.

1.2.3. Q.E.D.
1.3. bAInv ′ is true.

From its definition, it suffices to:
Assume: bAe [r]′ 6= none, for any acceptor e and balnum r
Prove: 1. bAe [r]′ is safe at r in bA′,

2. r is classic ⇒ bAe [r]′ v maxTried [r]′, and
3. r is fast ⇒ bAe [r]′ ∈ Str(propCmd ′).

1.3.1. bAe [r]′ is safe at r in bA′.
Proof: By bAInv and step 1.1.2.

1.3.2. r is classic ⇒ bAe [r]′ v maxTried [r]′

Proof: By bAInv and steps 1.1.1 and 1.1.2.
1.3.3. r is fast ⇒ bAe [r]′ ∈ Str(propCmd ′)

Proof: Step 1.1.2 and bAInv imply that, if r is a fast balnum,
bAe [r]′ ∈ propCmd . Step 1.1.4 shows that propCmd ⊂ propCmd ′.

1.3.4. Q.E.D.
1.4. learnedInv ′ is true.

Let: h be any learner, without loss of generality.
1.4.1. learned [h]′ ∈ Str(propCmd ′)

Proof: Step 1.1.3 and learnedInv imply that
learned [h]′ ∈ Str(propCmd), and step 1.1.4 implies that
propCmd ⊂ propCmd ′.

1.4.2. learned [h]′ is the lub of a finite set of c-structs chosen in bA′.
Proof: By learnedInv and steps 1.1.2 and 1.1.3.

1.4.3. Q.E.D.
1.5. Q.E.D.

2. Case: Action JoinBallot(a,m) is executed, where a is an acceptor and
m is a ballot number.

Proof sketch: Action JoinBallot(a,m) only changes b̂Aa , setting it to m, which is

bigger than b̂Aa . Invariant conditions that do not refer to b̂Aa are obviously preserved.
It remains to check the conditions stating that certain values are safe or chosen in bA′.

The definition of chosen does not involve b̂Ae for any acceptor e. The definition of

safe is based upon the definition of choosable at, which does refer to b̂Ae , but implies
that a value w that is choosable at round k in bA′ is also choosable at k in bA. By the
definition of safe, this implies that a value x that is safe at a balnum s in bA is also
safe at s in bA′.

2.1. 1. b̂Aa < m
2. b̂A

′
a = m

3. ∀i ∈ Acceptor \ {a} : b̂A
′
i = b̂Ai

40

4. ∀i ∈ Acceptor , j ∈ BalNum : bAi [j]′ = bAi [j]
5. propCmd ′ = propCmd
6. maxTried ′ = maxTried
7. learned ′ = learned

Proof: By the definition of action JoinBallot(a,m).
2.2. If x is safe at s in bA, for any c-struct x and balnum s, then x is safe

at s in bA′.
The proof is by contradiction, as follows.
Assume: There exist c-struct x and balnum s, such that

1. x is safe at s in bA
2. x is not safe at s in bA′

Prove: FALSE
2.2.1. Choose c-struct w and balnum k such that k < s, w is choosable

at k in bA′, and w 6v x .
Proof: w and k exist by assumption 2 of step 2.2 and the definition
of safe at.

2.2.2. w is choosable at k in bA.
2.2.2.1. Choose k -quorum Q such that

∀e ∈ Q : b̂A
′
e > k ⇒ w v bAe [k]′

Proof: Q exists by the definition of choosable at.
2.2.2.2. ∀e ∈ Q : b̂Ae > k ⇒ w v bAe [k]

Proof: Steps 2.1.(1-3) imply that ∀i ∈ Acceptor : b̂Ai > k ⇒
b̂A

′
i > k . Moreover, step 2.1.4 implies ∀i ∈ Acceptor : bAe [k] =

bAe [k]′. If we combine this two formulas with the one of step
2.2.2.1, we can derive the expression of the current step.

2.2.2.3. Q.E.D.
Proof: By step 2.2.2.2 and the definition of choosable at.

2.2.3. Q.E.D.
Proof: If w is choosable at k < s in bA (step 2.2.2), and w 6v x
(step 2.2.1), then x is not safe at s in bA, contradicting assumption
1 of step 2.2.

2.3. maxTriedInv ′ is true.
From its definition, it suffices to:
Assume: maxTried [r]′ 6= none, for any balnum r
Prove: 1. maxTried [r]′ ∈ Str(propCmd ′) and

2. maxTried [r]′ is safe at r in bA′.
2.3.1. maxTried [r]′ ∈ Str(propCmd ′)

Proof: By maxTriedInv and steps 2.1.5 and 2.1.6.
2.3.2. maxTried [r]′ is safe at r in bA′.

Proof: By maxTriedInv , step 2.1.6, and step 2.2.
2.3.3. Q.E.D.

2.4. bAInv ′ is true.
From its definition, it suffices to:

41

Assume: bAe [r]′ 6= none, for any agent e and balnum r
Prove: 1. bAe [r]′ is safe at r in bA′,

2. r is classic ⇒ bAe [r]′ v maxTried [r]′, and
3. r is fast ⇒ bAe [r]′ ∈ Str(propCmd ′).

2.4.1. bAe [r]′ is safe at r in bA′.
Proof: By bAInv , step 2.1.4, and step 2.2.

2.4.2. r is classic ⇒ bAe [r]′ v maxTried [r]′

Proof: By bAInv and steps 2.1.4 and 2.1.6.
2.4.3. r is fast ⇒ bAe [r]′ ∈ Str(propCmd ′)

Proof: By bAInv and steps 2.1.4 and 2.1.5.
2.4.4. Q.E.D.

2.5. learnedInv ′ is true.
Let: h be any learner, without loss of generality.
2.5.1. learned [h]′ ∈ Str(propCmd ′)

Proof: By learnedInv and steps 2.1.5 and 2.1.7.
2.5.2. learned [h]′ is the lub of a finite set of c-structs chosen in bA′.

Proof: learnedInv and step 2.1.7 imply that learned [h]′ is the lub of
a finite set of c-structs chosen in bA. Step 2.1.4 and the definition of
a chosen value imply that a value that is chosen in bA is also chosen
in bA′.

2.5.3. Q.E.D.
2.6. Q.E.D.

3. Case: Action StartBallot(m,w) is executed, where m is a balnum and
w ∈ CStruct .

Proof sketch: Action StartBallot(m,w) changes maxTried [m] from none to w , which
is ensured to be both proposed and safe at m in bA. The action does not change the
other variables. It preserves the maxTried invariant because w is proposed and safe at
m in bA. It preserves the bA invariant because it does not change bA and bAe [m] is
ensured to equal none, for any acceptor e, by the bA invariant itself. It preserves the
learned invariant because it does not change learned or bA.

3.1. 1. maxTried [m] = none
2. w is safe at m in bA
3. w ∈ Str(propCmd)
4. propCmd ′ = propCmd
5. maxTried [m]′ = w
6. ∀i ∈ BalNum \ {m} : maxTried [i]′ = maxTried [i]
7. bA′ = bA
8. learned ′ = learned

Proof: By the definition of action StartBallot(m,w).
3.2. maxTriedInv ′ is true.

From its definition, it suffices to:
Assume: maxTried [r]′ 6= none, for any balnum r
Prove: 1. maxTried [r]′ ∈ Str(propCmd ′) and

42

2. maxTried [r]′ is safe at r in bA′.
3.2.1. maxTried [r]′ ∈ Str(propCmd ′)

Proof: If r = m, by steps 3.1.(3-5). If r 6= m, it is implied by
maxTriedInv and steps 3.1.4 and 3.1.6.

3.2.2. maxTried [r]′ is safe at r in bA′.
Proof: If r = m, by steps 3.1.2, 3.1.5, and 3.1.7. If r 6= m, it is
implied by maxTriedInv and steps 3.1.(6-7).

3.2.3. Q.E.D.
3.3. bAInv ′ is true.

From its definition, it suffices to:
Assume: bAe [r]′ 6= none, for any agent e and balnum r
Prove: 1. bAe [r]′ is safe at r in bA′,

2. r is classic ⇒ bAe [r]′ v maxTried [r]′, and
3. r is fast ⇒ bAe [r]′ ∈ Str(propCmd ′).

3.3.1. bAe [r]′ is safe at r in bA′.
Proof: By bAInv and step 3.1.7.

3.3.2. r is classic ⇒ bAe [r]′ v maxTried [r]′

Proof: Step 3.1.1 and bAInv imply that bAe [m] = none. Now, if
we apply step 3.1.7, we get that bAe [m]′ = none. This implies, by
the assumption of step 3.3, that r 6= m. Thus, the proof follows from
bAInv and steps 3.1.(6-7).

3.3.3. r is fast ⇒ bAe [r]′ ∈ Str(propCmd ′)
Proof: By bAInv and steps 3.1.4 and 3.1.7.

3.3.4. Q.E.D.
3.4. learnedInv ′ is true.

Let: h be any learner, without loss of generality.
3.4.1. learned [h]′ ∈ Str(propCmd ′)

Proof: By learnedInv and steps 3.1.4 and 3.1.8.
3.4.2. learned [h]′ is the lub of a finite set of c-structs chosen in bA′.

Proof: By learnedInv and steps 3.1.(7-8).
3.4.3. Q.E.D.

3.5. Q.E.D.

4. Case: Action Suggest(m, σ) is executed, where m is a ballot number and
σ is a c-seq.

Proof sketch: Action Suggest(m, σ) changes maxTried [m] to maxTried [m]•σ, where
σ is a sequence of proposed commands. The action does not change the other variables.
It preserves the maxTried invariant because σ is proposed and, by the definition of safe
at, any extension of a value that is safe at m in bA is also safe at m in bA. It preserves
the bA invariant because it does not change bA and the bA invariant ensures that
bAe [m] is either none or a value v such that v v maxTried [m], for any acceptor e. It
preserves the learned invariant because it does not change learned or bA.

4.1. 1. maxTried [m] 6= none
2. σ ∈ Seq(propCmd)
3. propCmd ′ = propCmd

43

4. maxTried [m]′ = maxTried [m] • σ
5. ∀i ∈ BalNum \ {m} : maxTried [i]′ = maxTried [i]
6. bA′ = bA
7. learned ′ = learned

Proof: By the definition of action Suggest(m, σ).
4.2. maxTriedInv ′ is true.

From its definition, it suffices to:
Assume: maxTried [r]′ 6= none, for any balnum r
Prove: 1. maxTried [r]′ ∈ Str(propCmd ′) and

2. maxTried [r]′ is safe at r in bA′.
4.2.1. maxTried [r]′ ∈ Str(propCmd ′)

Proof: If r = m, by maxTriedInv and steps 4.1.(2-4). If r 6= m, it
is implied by maxTriedInv and steps 4.1.3 and 4.1.5.

4.2.2. maxTried [r]′ is safe at r in bA′.
Proof: maxTriedInv implies that maxTried [r] is safe at r in bA, and
step 4.1.6 states that bA = bA′. Steps 4.1.(4-5) complete the proof by
implying that maxTried [r] v maxTried [r]′. This is enough because
the definition of safe at implies that if w is safe at k in β, then v is
safe at k in β, for any v such that w v v .

4.2.3. Q.E.D.
4.3. bAInv ′ is true.

From its definition, it suffices to:
Assume: bAe [r]′ 6= none, for any agent e and balnum r
Prove: 1. bAe [r]′ is safe at r in bA′,

2. r is classic ⇒ bAe [r]′ v maxTried [r]′, and
3. r is fast ⇒ bAe [r]′ ∈ Str(propCmd ′).

4.3.1. bAe [r]′ is safe at r in bA′.
Proof: By bAInv and step 4.1.6.

4.3.2. r is classic ⇒ bAe [r]′ v maxTried [r]′

Proof: Step 4.1.6 implies that bAe [r]′ = bAe [r], bAInv implies that
bAe [r] v maxTried [r], and steps 4.1.(4-5) imply that maxTried [r] v
maxTried [r]′, completing the proof.

4.3.3. r is fast ⇒ bAe [r]′ ∈ Str(propCmd ′)
Proof: By bAInv and steps 4.1.3 and 4.1.6.

4.3.4. Q.E.D.
4.4. learnedInv ′ is true.

Let: h be any learner, without loss of generality.
4.4.1. learned [h]′ ∈ Str(propCmd ′)

Proof: By learnedInv and steps 4.1.3 and 4.1.7.
4.4.2. learned [h]′ is the lub of a finite set of c-structs chosen in bA′.

Proof: By learnedInv and steps 4.1.(6-7).
4.4.3. Q.E.D.

4.5. Q.E.D.

44

5. Case: Action ClassicVote(a,m, v) is executed, where a is an acceptor,
m is a ballot number, and v ∈ CStruct .

Proof sketch: Action ClassicVote(a,m, v) sets bAa [m] to c-struct v only if m ≥ b̂Aa ,
v is ensured to be safe at m in bA, and bAa [m] equals none or bAa [m] v v . It is also a
pre-condition to this action that v v maxTried [m], which implies that v is proposed, by

the maxTried invariant. Since only entry bAa [m] (m ≥ b̂Aa) is changed together with

b̂Aa , which is set to m, and the definition of choosable at considers only entries bAe [j]

where j < b̂Ae , no value can be made unsafe at any balnum after the execution of this
action. It preserves the maxTried invariant because it does not change maxTried or
propCmd and it does not make any entry unsafe. It preserves the bA invariant because
no entry is made unsafe and the only entry it changes in bA is set to a safe and proposed
value. It preserves the learned invariant because it does not change learned and any
value that is chosen in bA remains chosen after the action is executed, by the definition
of chosen.

5.1. 1. m ≥ b̂Aa

2. v is safe at m in bA
3. v v maxTried [m]
4. bAa [m] = none ∨ bAa [m] v v
5. propCmd ′ = propCmd
6. maxTried ′ = maxTried
7. ∀i ∈ Acceptor \ {a} : b̂A

′
i = b̂Ai

8. b̂A
′
a = m

9. ∀i ∈ Acceptor , j ∈ BalNum : (i 6= a ∨ j 6= m)⇒ bAi [j]′ = bAi [j]
10. bAa [m]′ = v
11. learned ′ = learned

Proof: By the definition of action ClassicVote(a, v).
5.2. If x is safe at s in bA, for any c-struct x and balnum s, then x is safe

at s in bA′.
The proof is by contradiction, as follows.
Assume: There exist c-struct x and balnum s, such that

1. x is safe at s in bA
2. x is not safe at s in bA′

Prove: FALSE
5.2.1. Choose c-struct w and balnum k such that k < s, w is choosable

at k in bA′, and w 6v x .
Proof: w and k exist by assumption 5.2.2 and the definition of safe
at.

5.2.2. w is choosable at k in bA.
5.2.2.1. Choose k -quorum Q such that

∀e ∈ Q : b̂A
′
e > k ⇒ w v bAe [k]′

Proof: Q exists by the definition of choosable at.
5.2.2.2. ∀e ∈ Q : b̂Ae > k ⇒ w v bAe [k]

Proof: Steps 5.1.(8-9) imply that ∀i ∈ Acceptor : b̂A
′
i > k ⇒

bAi [k]′ = bAi [k]. This equation applied to the one of step 5.2.2.1

45

leads to
∀e ∈ Q : b̂A

′
e > k ⇒ w v bAe [k].

Steps 5.1.(1,7-8) imply that ∀i ∈ Acceptor : b̂A
′
i ≥ b̂Ai . Thus,

∀e ∈ Q : b̂Ae > k ⇒ b̂A
′
e > k , which together with the previous

equation leads us to
∀e ∈ Q : b̂Ae > k ⇒ w v bAe [k].

5.2.2.3. Q.E.D.
Proof: By step 5.2.2.2 and the definition of choosable at.

5.2.3. Q.E.D.
Proof: If w is choosable at k < s in bA (step 5.2.2), and w 6v x
(step 5.2.1), then x is not safe at s in bA, contradicting assumption
1 of step 5.2.

5.3. maxTriedInv ′ is true.
From its definition, it suffices to:
Assume: maxTried [r]′ 6= none, for any balnum r
Prove: 1. maxTried [r]′ ∈ Str(propCmd ′) and

2. maxTried [r]′ is safe at r in bA′.
5.3.1. maxTried [r]′ ∈ Str(propCmd ′)

Proof: By steps 5.1.(5-6).
5.3.2. maxTried [r]′ is safe at r in bA′.

Proof: By maxTriedInv , step 5.1.6 and step 5.2.
5.3.3. Q.E.D.

5.4. bAInv ′ is true.
From its definition, it suffices to:
Assume: bAe [r]′ 6= none, for any agent e and balnum r
Prove: 1. bAe [r]′ is safe at r in bA′,

2. r is classic ⇒ bAe [r]′ v maxTried [r]′, and
3. r is fast ⇒ bAe [r]′ ∈ Str(propCmd ′).

5.4.1. bAe [r]′ is safe at r in bA′.
Proof: If e = a and r = m, it follows from steps 5.1.2 and 5.1.10.
Otherwise, it follows from bAInv , step 5.1.9, and step 5.2.

5.4.2. r is classic ⇒ bAe [r]′ v maxTried [r]′

Proof: If e = a and r = m, it follows from steps 5.1.3 and 5.1.10.
Otherwise, it follows from bAInv and step 5.1.9.

5.4.3. r is fast ⇒ bAe [r]′ ∈ Str(propCmd ′)
Proof: If e = a and r = m, it follows from steps 5.1.3 and 5.1.10,
and maxTriedInv . Otherwise, it follows from bAInv and step 5.1.9.

5.4.4. Q.E.D.
5.5. learnedInv ′ is true.

Let: h be any learner, without loss of generality.
5.5.1. learned [h]′ ∈ Str(propCmd ′)

Proof: By learnedInv and steps 5.1.5 and 5.1.11.
5.5.2. learned [h]′ is the lub of a finite set of c-structs chosen in bA′.

46

Proof: learnedInv and step 5.1.11 imply that learned [h]′ is the lub
of a finite set of c-structs chosen in bA. Steps 5.1.(4,9-10) state that
the only entry of bA that is modified, is extended. The definition of
a chosen value, therefore, implies that a value that is chosen in bA is
also chosen in bA′, completing the proof.

5.5.3. Q.E.D.
5.6. Q.E.D.

6. Case: Action FastVote(a,C) is executed, where a is an acceptor and
C ∈ Cmd .

Proof sketch: Action FastVote(a,C) sets bAa [b̂Aa] to c-struct bAa [b̂Aa] • C only

if bAa [b̂Aa] does not equal none and C is proposed. Since only bAa [b̂Aa] is changed

and the definition of choosable at considers only entries bAe [m] where m < b̂Ae , no
value can be made unsafe at any balnum after the execution of this action. It preserves
the maxTried invariant because it does not change maxTried or propCmd and it does
not make any entry unsafe. It preserves the bA invariant because no entry is made
unsafe and the only entry it changes in bA is extended with a proposed value, and the
extension of a safe c-struct is also safe. It preserves the learned invariant because it
does not change learned and any value that is chosen in bA remains chosen after the
action is executed, by the definition of chosen.

6.1. 1. C ∈ propCmd
2. b̂Aa is a fast balnum
3. bAa [b̂Aa] 6= none
4. propCmd ′ = propCmd
5. maxTried ′ = maxTried
6. bAa [b̂Aa]′ = bAa [b̂Aa] • C
7. ∀i ∈ Acceptor : b̂A

′
i = b̂Ai

8. ∀i ∈ Acceptor , j ∈ BalNum : (i 6= a ∨ j 6= b̂Aa)⇒ bAi [j]′ = bAi [j]
9. learned ′ = learned

Proof: By the definition of action FastVote(a, v).
6.2. If x is safe at s in bA, for any c-struct x and balnum s, then x is safe

at s in bA′.
The proof is by contradiction, as follows.
Assume: There exist c-struct x and balnum s, such that

1. x is safe at s in bA
2. x is not safe at s in bA′

Prove: FALSE
6.2.1. Choose c-struct w and balnum k such that k < s, w is choosable

at k in bA′, and w 6v x .
Proof: w and k exist by assumption 6.2.2 and the definition of safe
at.

6.2.2. w is choosable at k in bA.
6.2.2.1. Choose k -quorum Q such that

∀e ∈ Q : b̂A
′
e > k ⇒ w v bAe [k]′

Proof: Q exists by the definition of choosable at.

47

6.2.2.2. ∀e ∈ Q : b̂Ae > k ⇒ w v bAe [k]
Proof: Step 6.1.7 states that b̂A

′
e = b̂Ae , and step 6.1.8 implies

that bAe [k]′ = bAe [k] if b̂A
′
e > k .

6.2.2.3. Q.E.D.
Proof: By step 6.2.2.2 and the definition of choosable at.

6.2.3. Q.E.D.
Proof: If w is choosable at k < s in bA (step 6.2.2), and w 6v x
(step 6.2.1), then x is not safe at s in bA, contradicting assumption
1 of step 6.2.

6.3. maxTriedInv ′ is true.
From its definition, it suffices to:
Assume: maxTried [r]′ 6= none, for any balnum r
Prove: 1. maxTried [r]′ ∈ Str(propCmd ′) and

2. maxTried [r]′ is safe at r in bA′.
6.3.1. maxTried [r]′ ∈ Str(propCmd ′)

Proof: By steps 6.1.(4-5).
6.3.2. maxTried [r]′ is safe at r in bA′.

Proof: By maxTriedInv , step 6.1.5 and step 6.2.
6.3.3. Q.E.D.

6.4. bAInv ′ is true.
From its definition, it suffices to:
Assume: bAe [r]′ 6= none, for any agent e and balnum r
Prove: 1. bAe [r]′ is safe at r in bA′,

2. r is classic ⇒ bAe [r]′ v maxTried [r]′, and
3. r is fast ⇒ bAe [r]′ ∈ Str(propCmd ′).

6.4.1. bAe [r]′ is safe at r in bA′.
Proof: If e = a and r = b̂Aa , it follows from steps 6.1.3 and 6.1.6,
bAInv , and the definition of safe at, which implies that the extension
of a safe value is also safe. Otherwise, it follows from bAInv , step
6.1.8, and step 6.2.

6.4.2. r is classic ⇒ bAe [r]′ v maxTried [r]′

Proof: It follows from bAInv and step 6.1.8, since r = b̂Ae and
e = a imply that r is not classic, by step 6.1.2.

6.4.3. r is fast ⇒ bAe [r]′ ∈ Str(propCmd ′)
Proof: If e = a and r = b̂Aa , it follows from bAInv and steps 6.1.1
and 6.1.6. Otherwise, it follows from bAInv and step 6.1.8.

6.4.4. Q.E.D.
6.5. learnedInv ′ is true.

Let: h be any learner, without loss of generality.
6.5.1. learned [h]′ ∈ Str(propCmd ′)

Proof: By learnedInv and steps 6.1.4 and 6.1.9.
6.5.2. learned [h]′ is the lub of a finite set of c-structs chosen in bA′.

Proof: learnedInv and step 6.1.9 imply that learned [h]′ is the lub

48

of a finite set of c-structs chosen in bA. Steps 6.1.(3,6-8) state that
the only entry of bA that is modified, is extended. The definition of
a chosen value, therefore, implies that a value that is chosen in bA is
also chosen in bA′, completing the proof.

6.5.3. Q.E.D.
6.6. Q.E.D.

7. Case: Action AbstractLearn(l , v) is executed, where l is a learner and
v ∈ CStruct .

Proof sketch: Action AbstractLearn(l , v) only changes variable learned , which is the
array of learned c-structs, and does that by extending one entry to the lub of it with a
chosen c-struct. Invariants maxTried and bA are obviously preserved. The first part of
the learned invariant is preserved because this extension is proposed, by the definition
of chosen at, the bA invariant and axiom CS3. The second part is obviously preserved
by its definition and the one of the action.

7.1. 1. v is chosen in bA
2. propCmd ′ = propCmd
3. maxTried ′ = maxTried
4. bA′ = bA
5. learned [l]′ = learned [l] t v
6. ∀i ∈ Learner \ {l} : learned [i]′ = learned [i]

Proof: By the definition of action AbstractLearn(l , v).
7.2. maxTriedInv ′ is true.

From its definition, it suffices to:
Assume: maxTried [r]′ 6= none, for any balnum r
Prove: 1. maxTried [r]′ ∈ Str(propCmd ′) and

2. maxTried [r]′ is safe at r in bA′.
7.2.1. maxTried [r]′ ∈ Str(propCmd ′)

Proof: By maxTriedInv and steps 7.1.(2-3).
7.2.2. maxTried [r]′ is safe at r in bA′.

Proof: By maxTriedInv and steps 7.1.(3-4).
7.2.3. Q.E.D.

7.3. bAInv ′ is true.
From its definition, it suffices to:
Assume: bAe [r]′ 6= none, for any acceptor e and balnum r
Prove: 1. bAe [r]′ is safe at r in bA′,

2. r is classic ⇒ bAe [r]′ v maxTried [r]′, and
3. r is fast ⇒ bAe [r]′ ∈ Str(propCmd ′).

7.3.1. bAe [r]′ is safe at r in bA′.
Proof: By bAInv and step 7.1.4.

7.3.2. r is classic ⇒ bAe [r]′ v maxTried [r]′

Proof: By bAInv and steps 7.1.(3-4).
7.3.3. r is fast ⇒ bAe [r]′ ∈ Str(propCmd ′)

Proof: By bAInv and steps 7.1.2 and 7.1.4.

49

7.3.4. Q.E.D.
7.4. learnedInv ′ is true.

Let: h be any learner, without loss of generality.
7.4.1. learned [h]′ ∈ Str(propCmd ′)

Proof: If h 6= l , it follows from learnedInv and steps 7.1.6 and
7.1.2. Otherwise, the definition of a chosen value, bAInv , and
step 7.1.1 imply that v ∈ Str(propCmd). learnedInv implies that
learned [l] ∈ Str(propCmd). Proposition 1 and learnedInv imply that
v and learned [l] are compatible, and axiom CS3 states that its lub
exists and must be in Str(propCmd). The proof is completed by steps
7.1.2 and 7.1.5.

7.4.2. learned [h]′ is the lub of a finite set of c-structs chosen in bA′.
Proof: If h 6= l , it follows from learnedInv and step 7.1.6. Otherwise,
it follows from learnedInv and steps 7.1.1 and 7.1.5.

7.4.3. Q.E.D.
7.5. Q.E.D.

2

A.3 Distributed Abstract Multicoordinated Paxos

As an intermediate step in our proof, we introduce a distributed version of
the abstract algorithm in the previous section. This algorithm has the vari-
ables propCmd , learned , and bA with the same role as in the non-distributed
abstract algorithm. It introduces the variables dMaxTried , a distributed ver-
sion of maxTried , and msgs, used to simulate a message passing system by
holding the messages sent between coordinators, acceptors, and learners.

propCmd The set of proposed commands. It initially equals the empty set.

learned An array of c-structs, where learned [l] is the c-struct currently
learned by learner l . Initially, learned [l] = ⊥ for all learners l .

bA A ballot array. It represents the current state of the voting. Initially,
b̂Aa = 0, bAa [0] = ⊥ and bAa [m] = none for all acceptor a and ballot
number m > 0. (Every acceptor casts a default vote for ⊥ in ballot 0,
so the algorithm begins with ⊥ chosen.)

dMaxTried An array of arrays of c-structs, where dMaxTried [c][m] is either
a c-struct or equal to none, for every coordinator c and balnum m.
Initially, dMaxTried [c][0] = ⊥ and dMaxTried [c][m] = none for every
coordinator c and all balnum m > 0.

msgs The set of messages sent by coordinators and acceptors. (This set is
used to simulate the message passing among processes.)

50

The distributed abstract algorithm is described in terms of the following
actions. Its formal specification in TLA+ is given in the appendix sec-
tion B.3.

Propose(C) executed by the proposer of command C . The action is always
enabled. It sets propCmd to propCmd ∪{C}, from where coordinators
and acceptors can read C .

Phase1a(c,m) executed by coordinator c, for balnum m. The action is
enabled iff dMaxTried [c][m] = none. It sends the message 〈“1a”,m〉
to acceptors (adds it to msgs).

Phase1b(a,m) executed by acceptor a, for balnum m. The action is enabled
iff

• b̂Aa < m

• 〈“1a”,m〉 ∈ msgs

It sets b̂Aa to m and sends the message 〈“1b”,m, bAa〉 to the coordi-
nators.

Phase2Start(c,m, v) executed by coordinator c, for balnum m, and c-struct
v . The action is enabled iff:

• dMaxTried [c][m] = none

• There exists an m-quorum Q such that for all a ∈ Q , there is a
message 〈“1b”,m, bAa〉 ∈ msgs coming from a.

• v = w • σ, where σ ∈ Seq(propCmd), w ∈ ProvedSafe(Q ,m, β),
and β is any ballot array such that, for every acceptor a in Q ,
β̂a = m and c has received a message 〈“1b”,m, ρ〉 from a with
ρ = βa .

This action sets dMaxTried [c][m] to v and sends the message 〈“2a”,m, v〉
to acceptors.

Phase2aClassic(c,m,C) executed by coordinator c, for balnum m and com-
mand C . The action is enabled iff

• C ∈ propCmd .

• dMaxTried [c][m] 6= none

This action sends the message 〈“2a”,m, c, dMaxTried [c][m]•C 〉 to the
acceptors and sets dMaxTried [c][m] to dMaxTried [c][m] • C .

Phase2bClassic(a,m, v) executed by acceptor a, for balnum m and c-struct
v . The action is enabled iff

51

• m ≥ b̂Aa ,

• there is an m-coordquorum L and a c-struct u such that, for every
c ∈ L, acceptor a has received a phase “2a” message for balnum
m with value w satisfying u v w , i.e., u is a lower bound for the
w values, and

• Either bAa [m] equals none and v equals u, or bAa [m] and u are
compatible and v equals bAa [m] t u.

It sets bAa [m] to v , b̂Aa to m, and sends the message 〈“2b”,m, v〉 to
the learners.

Phase2bFast(a,C) executed by acceptor a, for balnum m and command C .
The action is enabled iff

• b̂Aa is a fast balnum,

• bAa [b̂Aa] 6= none, and

• C ∈ propCmd .

It sets bAa [b̂Aa] to bAa [b̂Aa]•C and sends a message 〈“2b”, b̂Aa , bAa [b̂Aa]•
C 〉 to the learners.

Learn(l , v) executed by learner l , for c-struct v . It is enabled iff a has
received phase “2b” messages for some round i from an i -quorum Q
and v is a prefix of the values on those messages. It sets learned [l] to
learned [l] t v .

The distributed abstract algorithm implements the the non-distributed
version in the sense that all behaviors of the former are also behaviors of
the latter. This implementation is stated by the following proposition.

Proposition 6 Distributed Abstract Multicoordinated Paxos implements the
Abstract Multicoordinated Paxos specification.

To prove this proposition we give a refinement mapping [1] from the
distributed version’s states to the non-distributed version’s.

In the following we replace the variables in the non-distributed algo-
rithms by overlined versions. That is, we let expression A refer to expression
E , in the non-distributed algorithm specification, where all occurrences of
variables propCmd , maxTried , bA, and learned are replaced by propCmd ,
maxTried , bA, and learned , respectively. Non-overlined expressions refer
to those in the distributed algorithm. We give the refinement mapping by
defining overlined variables based on the distributed algorithm’s variables
in a way that satisfies the non-distributed specification.

Let the overlined variables be defined as follows.

propCmd ∆= propCmd

52

learned ∆= learned

maxTried ∆=
let Tried(Q ,m) ∆= if ∃c ∈ Q : dMaxTried [c][m] = none

then none
else u {dMaxTried [c][m] : c ∈ Q}

AllTried(m) ∆= {v ∈ {Tried(Q ,m) : Q is an m-coordquorum} :
v 6= none}

in [m ∈ BalNum 7→ if AllTried(m) = {} then none
else tAllTried(m)]

To prove that this is a valid refinement mapping and witnesses the imple-
mentation of the Abstract Multicoordinated Paxos by Distributed Abstract
Multicoordinated Paxos we must show that the distributed version’s intial
states imply the non-distributed version’s initial states, and that each step
of the distributed version implies a step in the non-distributed version, be
it one that changes the overlined variables or does not change anything (a
stuttering step). To simplify these proofs we first prove some properties of
c-structs and of our refinement mapping. (The first proposition actually
regards c-structs in general)

Proposition 7 If, for some ballot number m and ballot array bA, all ele-
ments of S are safe at m in bA, then tS is also safe at m in bA.

By the definition of “safe at”, for all c-structs v choseable at round m in bA
and for all w ∈ S , v v w . Moreover, by the definition of “lower bound”, v
is a lower bound of S and, by the definition of t, v v tS . Therefore, all
elements of S extend v and all c-structs choosable at m in bA, being safe at
m in bA.

Proposition 8 AllTried(m) is compatible for m ≥ 0.

Proof: By the definition of glb, the empty set is compatible and t{} =
⊥. If AllTried(m) is not empty, then it contains the Tried(Q ,m) for all
Q such that Tried(Q ,m) 6= none. By the definition of Tried and u, if
Tried(Q ,m) 6= none, then it is a prefix of dMaxTried [c][m] for all c ∈ Q . Let
Tried(Q ,m),Tried(R,m) ∈ AllTried(m). By the coord-quorum-assumption,
there exists a coordinator c ∈ Q∩R, and AllTried(Q ,m) v dMaxTried [c][m]
and AllTried(R,m) v dMaxTried [c][m]. Therefore, dMaxTried [c][m] is an
upper bound to {Tried(Q ,m),Tried(R,m)}, and they are compatible. Be-
cause its elements are pairwise compatible and due to CS3, AllTried(m) is
compatible.

Proposition 9 dMaxTried = dmaxTried ′ ⇒ maxTried = maxTried ′.

53

Proof: maxTried is defined only over dMaxTried values. If dMaxTried does
not change, then maxTried cannot change.

Hereinafter we refer to to Distributed Abstract Multicoordinated Paxos
as DAP and Abstract Multicoordinated Paxos as AP. As we mentioned
before, the proof of Proposition 6, i.e., that DAP implements the AP, is
divided in two steps: proving the implication among the initial states and
among the steps. The first step is captured by Proposition 10 and the second
step by Proposition 11, below.

Proposition 10 DAP’s initial state implies AP’s initial state.

Proof sketch: First we prove that DAP’s initial state implies that maxTried is initialized
as specified in AP’s. Because the correct initialization of the other variables are trivially
implied (they have the same initialization), we conclude the proof.

1. maxTried [0] = ⊥
Proof: By the specification of DAP, dMaxTried [c][0] = ⊥ for each coor-
dinator c. By the definition of maxTried , Tried , and glb, Tried(Q , 0) = ⊥
for any Q . Therefore, by definition of AllTried , AllTried(0) = ⊥, and by
the definition of lub, maxTried [0] = ⊥.

2. ∀m > 0,maxTried [m] = none
Proof: By the specification of DAP, dMaxTried [c][m] = none for each
coordinator c and round m > 0. By the definition of maxTried and Tried ,
Tried(Q ,m) = none for any Q . Hence, by the definition of AllTried ,
AllTried(m) = {}. By the definition of maxTried , maxTried [m] = none
for any m > 0.

3. Q.E.D.

Proposition 11 A DAP step implements an AP step (a possibly stuttering
one).

Proof sketch: We consider each action of DAP and show that each step either implies
a step of AP or that AP’s variables—propCmd, learned, bA, and maxTried—are left
unchanged. We use TLA+ unchanged v notation to indicate that variable (or sequence
of variables) v did not change in some step.

1. Assume: ∧ C ∈ Cmd
∧ Propose(C)

Prove: Propose(C)
1.1. C /∈ propCmd

Proof: By the definition of Propose.
1.2. propCmd ′ = propCmd ∪ {C}

Proof: By the definition of Propose.
1.3. unchanged 〈learned , bA,maxTried〉

Proof: By the definition of Propose and Proposition 9.
1.4. Q.E.D.

54

2. Assume: ∧ c ∈ Coord
∧m ∈ BalNum
∧ Phase1a(c,m)

Prove: unchanged 〈propCmd , learned , bA,maxTried〉
Proof: By the definition of Phase1a and Proposition 9.

3. Assume: ∧ c ∈ Coord
∧m ∈ BalNum
∧ v ∈ CStruct
∧ Phase2Start(c,m, v)

Prove: ∧ ∨ ∧ maxTried = none
∧ ∨ maxTried ′ = none
∨ StartBallot(m,maxTried ′[m])

∨ ∧ maxTried 6= none
∧ ∨∃σ ∈ Seq(propCmd) :

∧ maxTried ′[m] = maxTried [m] • σ
∧ Suggest(m, σ)

∨ unchanged maxTried
∧ unchanged 〈propCmd , bA, learned〉

3.1. Assume: maxTried [m] = none
Prove: ∨ StartBallot(m,maxTried ′[m])

∨ unchanged maxTried
3.1.1. Assume: maxTried ′[m] 6= none

Prove: StartBallot(m,maxTried ′[m])
3.1.1.1. maxTried ′[m] v v

Proof: By the assumption, for all m-coordquorums Q such that
Tried(Q ,m)′ ∈ AllTried(m)′, c ∈ Q , or Tried(Q ,m)′ would equal
none and it would not belong to AllTried(m)′. By the definition
of glb, Tried(Q ,m)′ v dMaxTried [c][m] = v . Therefore, all ele-
ments of AllTried(m)′ are compatible prefixes of v , and v is an
upper bound of AllTried(m)′. But, by the definition of maxTried ,
maxTried ′[m] = tAllTried(m)′ and by the definition of t and As-
sumption CS3, maxTried ′[m] must be a prefix of v .

3.1.1.2. maxTried [m] = none
Proof: By assumption.

3.1.1.3. maxTried ′[m] is safe at m in bA
Proof: By the definitions of actions ProvedSafe, Phase2Start , and
Phase2aClassic, for all d ∈ Coord , dMaxTried [d][m] is first set to
a safe value and then simply extended, therefore remaining safe.
By the definition of AllTried and Proposition 7, all elements of
AllTried(m)′ are safe. Because maxTried [m] is an extension of
such safe c-structs, it is also safe.

3.1.1.4. maxTried ′[m] ∈ Str(propCmd)

55

Proof: By the definition of action Phase2Start , v ∈ Str(propCmd).
But, by step 3.1.1.1, maxTried ′[m] v v and maxTried ′[m] is con-
structible from a subset of the commands in v . Therefore, by the
definition of Str , maxTried ′[m] ∈ Str(propCmd).

3.1.1.5. Q.E.D.
3.1.2. Assume: maxTried ′[m] = none

Prove: unchanged maxTried
Proof: By assumption.

3.1.3. Q.E.D.
3.2. Assume: maxTried [m] 6= none

Prove: ∨ ∃σ ∈ Seq(propCmd) :
∧ maxTried ′[m] = maxTried [m] • σ
∧ Suggest(m, σ)

∨ unchanged maxTried
3.2.1. Assume: maxTried ′[m] 6= maxTried [m]

Prove: ∃σ ∈ Seq(propCmd) :
∧maxTried ′[m] = maxTried [m] • σ
∧ Suggest(m, σ)

3.2.1.1. ∃σ ∈ Seq(propCmd) : maxTried ′[m] = maxTried [m] • σ
Proof: Let QD be the set of m-coordquorums Q such that
Tried(Q ,m) 6= Tried(Q ,m)′; clearly by the assumption, QD is not
empty and for all Q ∈ QD , c ∈ Q . Moreover, by the definition of
Tried , Tried(Q ,m)′ v v .
Let SomeTried(SD ,m) = t{AllTried(S ,m) : S ∈ SD}. Because
for all Q ∈ QD , Tried(Q ,m) = none, SomeTried({S : S is an
m-coordquorum and S /∈ QD},m) = AllTried(m).
Let Q and R be two m-coordquorums such that Q ∈ QD , R /∈ QD ,
and Q ∩ R 6= ∅; let d ∈ Q ∩ R. So Tried(R,m) = Tried(R,m)′ v
dMaxTried [d][m] and Tried(Q ,m)′ v dMaxTried [d][m], and ei-
ther Tried(Q ,m)′ v Tried(R,m) or Tried(R,m) v Tried(Q ,m)′.
In the first case, SomeTried({S : S is an m-coordquorum and
S /∈ QD},m) = SomeTried({S : S is an m-coordquorum and
S /∈ QD} ∪ {Q},m), and is of no interest. In the second case, the
equality may not hold, what would imply that Tried(Q ,m)′ has
some command that not in AllTried(m). This second case must
hold for some pair Q ,R, since by assumption and the definition of
maxTried AllTried(m) 6= AllTried(m)′. Without loss of general-
ity, let R be such that Tried(R,m) is maximal; by the definition
of v, Tried(Q ,m)′ = Tried(R,m) • σ, for some sequence σ. As
Tried(Q ,m)′ v v ∈ Seq(propCmd), σ ∈ Seq(propCmd). Finally,
by the definition of t, AllTried(m)′ = AllTried(m).

3.2.1.2. Assume: ∃σ ∈ Seq(propCmd) :
maxTried ′[m] = maxTried [m] • σ

56

Prove: Suggest(m, σ)
Proof: All pre and post-conditions of Suggest are assumed:
• maxTried [m] 6= none,
• σ ∈ Seq(propCmd), and
• maxTried ′[m] = maxTried [m] • σ.

3.2.1.3. Q.E.D.
3.2.2. Assume: maxTried ′[m] = maxTried [m]

Prove: unchanged maxTried
Proof: By the assumption.

3.2.3. Q.E.D.
3.3. unchanged 〈propCmd , bA, learned〉

Proof: This is trivially true, because variables propCmd , bA, and
learned are kept unchanged in Phase2Start .

3.4. Q.E.D.

4. Assume: ∧ c ∈ Coord
∧m ∈ BalNum
∧ C ∈ propCmd
∧ Phase2aClassic(c,m,C)

Prove: ∧ ∨ Suggest(m, 〈C 〉)
∨ unchanged maxTried
∧ unchanged 〈propCmd , learned , bA〉

4.1. ∨ Suggest(m, 〈C 〉)
∨ unchanged maxTried

Proof sketch: A Phase2aClassic step either increases maxTried [m] by C or leaves
it as it is. In the first case, it implements a Suggest step; in the second it implements
a stutering step. We first show conditions that are necessary and sufficient for
maxTried to stay unchanged on a Phase2aClassic step. We then show that if it
changes, then a Suggest step follows.

4.1.1. Assume: maxTried ′[m] 6= none
Prove: maxTried [m] 6= none

Proof: The proof is by contradiction. Suppose that maxTried [m] =
none. Then, by the definitions of AllTried and Tried , for all co-
ordinator quorum m-coordquorum Q there is a coordinator d ∈ Q
such that dMaxTried [d][m] = none, and Tried(Q ,m) = none. By
the assumption, for some m-coordquorum Q , Tried(Q ,m)′ 6= none.
Because Tried(Q ,m) = none and Tried(Q ,m)′ 6= none and only
dMaxTried [c][m] was changed, c must be in Q and dMaxTried [c][m] =
none, but this contradicts a pre-condition of Phase2aClassic steps.

4.1.2. Assume: maxTried ′[m] 6= maxTried [m]
Prove: maxTried ′[m] = maxTried [m] • C

Proof: By the assumption, maxTried ′[m] 6= none, and by the step
4.1.1, maxTried [m] 6= none.
Let QD be the set of m-coordquorums Q such that Tried(Q ,m) 6=

57

Tried(Q ,m)′; clearly, ∀Q ∈ QD , c ∈ Q . By the assumption, QD is
not empty and for all Q ∈ QD , Tried(Q ,m) v dMaxTried [c][m] and
Tried(Q ,m)′ v dMaxTried [c][m] •C . Because only dMaxTried [c][m]
was changed and Tried(Q ,m)′ 6= Tried(Q ,m), and by the definition
of u, Tried(Q ,m)′ = Tried(Q ,m) • C .
Therefore, maxTried ′ = t(AllTried(m)∪{Tried(Q ,m)•C : Q ∈ QD}),
and the set AllTried(m)∪{Tried(Q ,m)•C : Q ∈ QD} is compatible.
Because the first set contains all commands of the second but C , the
least upper bound of the first, maxTried differs from the least upper
bound of the union, maxTried ′ only by the adition of C to the first,
and, because they are compatible, maxTried ′ = maxTried • C

4.1.3. Assume: maxTried ′ = maxTried • C
Prove: Suggest(m, 〈C 〉)

4.1.3.1. 〈C 〉 ∈ Seq(propCmd)
Proof: Because C ∈ propCmd and by the definition of Seq .

4.1.3.2. maxTried [m] 6= none
Proof: By step 4.1.1.

4.1.3.3. maxTried ′[m] = maxTried [m] • 〈C 〉]
Proof: By step 4.1.2.

4.1.3.4. Q.E.D.
4.1.4. Q.E.D.

4.2. unchanged 〈propCmd , bA, learned〉
Proof: By the definition of Phase2aClassic, variables propCmd , bA,
and learned are kept unchanged.

4.3. Q.E.D.

5. Assume: ∧ a ∈ Acceptor
∧m ∈ BalNum
∧ Phase1b(a,m)

Prove: JoinBallot(a,m)
Proof: Any Phase1b step clearly implements a JoinBallot step, as all
the latter’s pre and post conditions are also required by the first.

6. Assume: ∧ a ∈ Acceptor
∧m ∈ BalNum
∧ v ∈ CStruct
∧ Phase2bClassic(a,m, v)

Prove: ClassicVote(a,m, v)
6.1. m ≥ b̂Aa

Proof: By the definition of Phase2bClassic.
6.2. v is safe at round m in bA

Proof: Phase2bClassic has as pre-condition that a has received a “2a”
message from all coordinators in some coord-quorum L for round b̂Aa ,

58

and that there is a c-struct u such that for all such messages, u is a
prefix of the value w in each one. Messages “2a” are sent in actions
Phase2Start and Phase2aClassic, and in both cases the value sent is
set to dMaxTried [c][m], where c is the sender coordinator and m is the
round in which the message was sent. Because dMaxTried [c][m] = none
is a pre-condition to action Phase2Start and it changes dMaxTried [c][m]
to something different from none and no other step changes it back to
none, a Phase2Start step happens only once for a given c and m. A
Phase2aClassic action is only enabled after this Phase2Start step, and
it just appends some c-seq to the previous value of dMaxTried [c][m].
Therefore, the value set to dMaxTried [c][m] by the Phase2Start step is
always a prefix of dMaxTried [c][m] in future states. Let firstTried [c][m]
be such initial value. By the definition of Phase2Start and Proposi-
tion 7, firstTried [c][m] is safe at m in bA. Because firstTried [c][m] is a
prefix of any value sent by c on “2a” messages in round m, it is also a
prefix of u, and u must be safe. Since v is equal to or an extension of
u, it is also safe.

6.3. v v maxTried [m]
Proof: Let L be the m-coordquorum from which a has received the
“2a” messages in the Phase2BClassic step and u be the common lower
bound to all values received in such messages according to the action
pre-condition. By the definition of Tried in maxTried , by the defi-
nition of glb, and because dMaxTried [c][m] is only extended for any
coordinator c and balnum m, u v Tried(L,m). By the definition of
AllTried in maxTried and lub, Tried(l ,m) v maxTried [m], and there-
fore u v maxTried [m]. Since v v u, it follows that v v maxTried [m]

6.4. ∨ bAa [m] = none
∨ bAa [m] v v .

Proof: By the definition of Phase2bClassic.
6.5. bAa [m]′ = v

Proof: By the definition of Phase2bClassic.
6.6. unchanged 〈propCmd ,maxTried , learned〉

Proof: By Proposition 9 and the definition of Phase2bClassic.
6.7. Q.E.D.

7. Assume: ∧ a ∈ Acceptor
∧ C ∈ Cmd
∧ Phase2bFast(a,C)

Prove: FastVote(a,C)
Proof: Due to Proposition 9, and the definition of Phase2bFast , any
Phase2bFast step is also a FastVote step, as all the latter’s pre and post
conditions are also satisfied by the first.

59

8. Assume: ∧ l ∈ Learner
∧ v ∈ CStruct
∧ Learn(l , v)

Prove: Learn(l , v)
8.1. v is chosen in bA

Proof: The first pre-condition of Learn implies that all acceptors in
some m-quorum Q executed action Phase2bFast or Phase2bClassic. Be-
cause commands and c-seqs can only be appended to bAa [m] in these
actions, for all acceptors a ∈ Q , v v bAa [m]. Therefore, by the defi-
nition of chosen at, v is chosen at m in bA, and so is v is chosen at
bA.

8.2. ∧ learned ′[l] = learned [l] t v]
∧ unchanged 〈propCmd ,maxTried , bA〉

Proof: By the definition of Learn.
8.3. Q.E.D.

Proof: By the definition of AbstractLearn and steps 8.1 and 8.2.
9. Q.E.D.

A.4 Multicoordinated Paxos

To prove correctness of the algorithm presented in Section 3.2, we first add
the following history variables to the algorithm presented in the previous
section.

crnd An array of balnums, where crnd [c] represents the current round of
coordinator c. Initially 0.

cval An array of c-structs, where cval [c] represents the latest c-struct coor-
dinator c has sent in a phase “2a” message for round crnd [c]. Initially
⊥.

rnd An array of balnums, where rnd [a] is the current round of acceptor a,
that is, the highest-numbered round a has heard of. Initially 0.

vrnd An array of balnums, where vrnd [a] is the round at which acceptor a
has accepted the latest value. Initially 0.

vval An array of c-structs, where vval [a] is the c-struct acceptor a has ac-
cepted at vrnd [a]. Initially ⊥.

msgs2 A set of messages sent by coordinators and acceptors. This variable
is different from the original msgs variable.

We now make some simple changes to the algorithm’s actions in order
to update these history variables accordingly. Notice that the following

60

algorithm is not exactly the same as in the previous section. The pre-
conditions of actions Phase1a, Phase2Start , and Phase2aClassic are slightly
more restrictive. However, it is an obvious implementation of the previous
version.

Propose(C) executed by the proposer of command C . The action is always
enabled. It sets propCmd to propCmd ∪{C}, from where coordinators
and acceptors can read C .

Phase1a(c,m) executed by coordinator c, for balnum m. The action is en-
abled iff ∀j ≥ m : dMaxTried [c][j] = none. It adds message 〈“1a”,m〉
to msgs and msgs2 .

Phase1b(a,m) executed by acceptor a, for balnum m. The action is enabled
iff

• b̂Aa < m

• 〈“1a”,m〉 ∈ msgs

It sets b̂Aa and rnd [a] to m, adds message 〈“1b”,m, bAa〉 to msgs and
message 〈“1b”,m, vval [a], vrnd [a]〉 to msgs2 .

Phase2Start(c,m, v) executed by coordinator c, for balnum m, and c-struct
v . The action is enabled iff

• ∀j ≥ m : dMaxTried [c][j] = none

• There exists an m-quorum Q such that for all a ∈ Q , there is a
message 〈“1b”,m, bAa〉 ∈ msgs coming from a.

• v = w • σ, where σ ∈ Seq(propCmd), w ∈ ProvedSafe(Q ,m, β),
and β is any ballot array such that, for every acceptor a in Q ,
β̂a = m and c has received a message 〈“1b”,m, ρ〉 from a with
ρ = βa .

This action sets dMaxTried [c][m] and cval [c] to v , crnd [c] to m, and
adds message 〈“2a”,m, v〉 to msgs and msgs2 .

Phase2aClassic(c,m,C) executed by coordinator c, for command C . The
action is enabled iff

• C ∈ propCmd .

• dMaxTried [c][m] 6= none

• ∀j > m : maxTried [c][j] = none

This action adds message 〈“2a”,m, c, dMaxTried [c][m] • C 〉 to msgs
and msgs2 , and sets dMaxTried [c][m] and cval [c] to dMaxTried [c][m]•
C .

61

Phase2bClassic(a,m, v) executed by acceptor a, for balnum m and c-struct
v . The action is enabled iff

• m ≥ b̂Aa ,

• there is an m-coordquorum L and a c-struct u such that, for every
c ∈ L, acceptor a has received a phase “2a” message for balnum
m with value w satisfying u v w , i.e., u is a lower bound for the
w values, and

• Either bAa [m] equals none and v equals u, or bAa [m] and u are
compatible and v equals bAa [m] t u.

It sets bAa [m] and vval [a] to v , b̂Aa , rnd [a], and vrnd [a] to m, and
adds message 〈“2b”,m, v〉 to msgs and msgs2 .

Phase2bFast(a,C) executed by acceptor a, for balnum m and command C .
The action is enabled iff

• b̂Aa is a fast balnum,

• bAa [b̂Aa] 6= none, and

• C ∈ propCmd .

It sets bAa [b̂Aa] and vval [a] to bAa [b̂Aa] • C and adds message
〈“2b”, b̂Aa , bAa [b̂Aa] • C 〉 to msgs and msgs2 .

Learn(l , v) executed by learner l , for c-struct v . Executed by learner l . It is
enabled iff a has received phase “2b” messages for some round i from
an i -quorum Q and v is a prefix of the values on those messages. It
sets learned [l] to learned [l] t v .

Variables crnd , cval , rnd , vrnd , vval , and msgs2 appear in no pre-
condition and, therefore, are clearly history variables satisfying conditions
H1-5 of [1]. This implies that the resulting algorithm is equivalent to (i.e.,
accepts the same behaviors as) the previous one without such variables. The
following invariants can be easily proved for this new algorithm:

InvDA1: crnd [c] = k ⇐⇒ ∧ dMaxTried [c][k] 6= none
∧ ∀j > k : dMaxTried [c][j] = none

InvDA2: cval [c] = dMaxTried [c][crnd [c]]

InvDA3: rnd [a] = b̂Aa

InvDA4: vrnd [a] = k ⇐⇒ ∧ bAa [k] 6= none
∧ ∀j > k : bAa [j] = none

InvDA5: vval [a] = bAa [vrnd [a]]

62

InvDA6: 〈“1a”,m〉 ∈ msgs ⇐⇒ 〈“1a”,m〉 ∈ msgs2

InvDA7: 〈“1b”,m, ρ〉 ∈ msgs ⇐⇒ 〈“1b”,m, vval , vrnd〉 ∈ msgs2, where
vrnd is the highest balnum k such that ρ[k] 6= none and vval equals
ρ[vrnd].

InvDA8: 〈“2a”,m, v〉 ∈ msgs ⇐⇒ 〈“2a”,m, v〉 ∈ msgs2

InvDA9: 〈“2b”,m, v〉 ∈ msgs ⇐⇒ 〈“2b”,m, v〉 ∈ msgs2

We can use these invariants to rewrite the pre-conditions of the previous
algorithm’s actions in the following way:

Propose(C) executed by the proposer of command C . The action is always
enabled. It sets propCmd to propCmd ∪{C}, from where coordinators
and acceptors can read C .
This action remains the same.

Phase1a(c,m) executed by coordinator c, for balnum m. The action is
enabled iff crnd [c] < m. It adds message 〈“1a”,m〉 to msgs and msgs2 .
By invariant InvDA1.

Phase1b(a,m) executed by acceptor a, for balnum m. The action is enabled
iff

• rnd [a] < m

• 〈“1a”,m〉 ∈ msgs2

It sets b̂Aa and rnd [a] to m, adds message 〈“1b”,m, bAa〉 to msgs and
message 〈“1b”,m, vval [a], vrnd [a]〉 to msgs2 .
By invariants InvDA3 and InvDA6.

Phase2Start(c,m, v) executed by coordinator c, for balnum m, and c-struct
v . The action is enabled iff

• crnd [c] < m

• There exists an m-quorum Q such that for all a ∈ Q , there is a
message 〈“1b”,m, vval , vrnd〉 ∈ msgs2 coming from a.

• v = w •σ, where σ ∈ Seq(propCmd), w ∈ ProvedSafe(Q , 1bMsg)
(see ProvedSafe as defined in Section 3.2) , and 1Msg is a mapping
from every acceptor a in Q to the phase “1b” message of the
previous condition coming from a.

This action sets dMaxTried [c][m] and cval [c] to v , crnd [c] to m, and
adds message 〈“2a”,m, v〉 to msgs and msgs2 .

63

By invariants InvDA1 and InvDA6. The equivalence between ProvedSafe(Q ,m, β)
(of Section A.3) and ProvedSafe(Q , 1bMsg) (of Section 3.2) is given by InvDA6.

Phase2aClassic(c,m,C) executed by coordinator c, for command C . The
action is enabled iff

• C ∈ propCmd .

• crnd [c] = m

This action adds message 〈“2a”,m, c, cval [c] •C 〉 to msgs and msgs2 ,
and sets dMaxTried [c][m] and cval [c] to cval [c] • C .
By invariants InvDA1 and InvDA2.

Phase2bClassic(a,m, v) executed by acceptor a, for balnum m and c-struct
v . The action is enabled iff

• m ≥ rnd [a],

• there is an m-coordquorum L and a c-struct u such that, for every
c ∈ L, acceptor a has received a phase “2a” message (through
msgs2) for balnum m with value w satisfying u v w , i.e., u is a
lower bound for the w values, and

• Either vrnd [a] < m and v equals u, or vrnd [a] = m, vval [a] and
u are compatible, and v equals vval [a] t u.

It sets bAa [m] and vval [a] to v , b̂Aa , rnd [a], and vrnd [a] to m, and
adds message 〈“2b”,m, v〉 to msgs and msgs2 .
By invariants InvDA3, InvDA4, InvDA8.

Phase2bFast(a,C) executed by acceptor a, for balnum m and command C .
The action is enabled iff

• rnd [a] is a fast balnum,

• rnd [a] = vrnd [a], and

• C ∈ propCmd .

It sets bAa [b̂Aa] and vval [a] to vval [a] • C and adds message
〈“2b”,m, vval [a] • C 〉 to msgs and msgs2 .
By invariants InvDA3, InvDA4, InvDA5, and the fact that rnd [a] ≥ vrnd [a], which
can be inferred by the definition of a ballot array and invariants InvDA3 and In-
vDA4.

Learn(l , v) executed by learner l , for c-struct v . Executed by learner l . It
is enabled iff a has received (through msgs2) phase “2b” messages for
some round i from an i -quorum Q and v is a prefix of the values on
those messages. It sets learned [l] to learned [l] t v .
By invariant InvDA9.

64

The resulting algorithm now has variables bA, dMaxTried and msgs as
history variables, since they do not appear on any action’s pre-condition and
are only updated. This algorithm is, therefore, equivalent to one that does
not contain such variables, which we present below.

Propose(C) executed by the proposer of command C . The action is always
enabled. It sets propCmd to propCmd ∪{C}, from where coordinators
and acceptors can read C .

Phase1a(c,m) executed by coordinator c, for balnum m. The action is
enabled iff crnd [c] < m. It adds message 〈“1a”,m〉 to msgs2 .

Phase1b(a,m) executed by acceptor a, for balnum m. The action is enabled
iff

• rnd [a] < m

• 〈“1a”,m〉 ∈ msgs2

It sets rnd [a] to m, and adds message 〈“1b”,m, vval [a], vrnd [a]〉 to
msgs2 .

Phase2Start(c,m, v) executed by coordinator c, for balnum m, and c-struct
v . The action is enabled iff

• crnd [c] < m

• There exists an m-quorum Q such that for all a ∈ Q , there is a
message 〈“1b”,m, vval , vrnd〉 ∈ msgs2 coming from a.

• v = w•σ, where σ ∈ Seq(propCmd), w ∈ ProvedSafe(Q , 1bMsg),
and 1Msg is a mapping from every acceptor a in Q to the phase
“1b” message of the previous condition coming from a.

This action sets cval [c] to v , crnd [c] to m, and adds message
〈“2a”,m, v〉 to msgs2 .

Phase2aClassic(c,m,C) executed by coordinator c, for command C . The
action is enabled iff

• C ∈ propCmd .

• crnd [c] = m

This action adds message 〈“2a”,m, c, cval [c] • C 〉 to msgs2 , and sets
cval [c] to cval [c] • C .

Phase2bClassic(a,m, v) executed by acceptor a, for balnum m and c-struct
v . The action is enabled iff

• m ≥ rnd [a],

65

• there is an m-coordquorum L and a c-struct u such that, for every
c ∈ L, acceptor a has received a phase “2a” message (through
msgs2) for balnum m with value w satisfying u v w , i.e., u is a
lower bound for the w values, and

• Either vrnd [a] < m and v equals u, or vrnd [a] = m, vval [a] and
u are compatible, and v equals vval [a] t u.

It sets vval [a] to v , rnd [a] and vrnd [a] to m, and adds message
〈“2b”,m, v〉 to msgs2 .

Phase2bFast(a,C) executed by acceptor a, for balnum m and command C .
The action is enabled iff

• rnd [a] is a fast balnum,

• rnd [a] = vrnd [a], and

• C ∈ propCmd .

It sets vval [a] to vval [a] • C and adds message 〈“2b”,m, vval [a] • C 〉
to msgs2 .

Learn(l , v) executed by learner l , for c-struct v . Executed by learner l . It
is enabled iff a has received (through msgs2) phase “2b” messages for
some round i from an i -quorum Q and v is a prefix of the values on
those messages. It sets learned [l] to learned [l] t v .

The algorithm presented in Section 3.2 is a stricter implementation of
the algorithm above, which can be easily verified by simply comparing their
actions. This concludes the proof that Multicoordinated Paxos satisfies the
safety requirements of Generalized Consensus. Section B.4 presents the
unambiguous TLA+ specification of the basic algorithm presented in Sec-
tion 3.2 and Section B.5 presents its complete TLA+ specification including
actions for collision recovery and a simplified version of the mechanism for
reducing the number of disk writes presented in Section 4.4.

A.5 Collision Recovery

The mechanisms for collision recovery described in Section 4.2 simply sim-
ulate the execution of basic actions of the algorithm in a way compatible
with the actual behavior. The interpretation of a collision as a phase “1a”
message for the following balnum, for example, simulates a Phase1a action
for that balnum. Since action Phase1a simply sends a “1a” message with
no guarantee of delivery, the process detecting the collision could be the
only one receiving such a message. Given that these basic actions are al-
ready proved correct, such mechanisms cannot the safety properties of our
specification.

66

A.6 Liveness

That the basic algorithm provides means for ensuring liveness is easy to see,
since new balnums can always be started and a classic balnum has the same
liveness requirements as classic Paxos. The discussion in Section 4.3 extends
Multicoordinated Paxos in this sense and sketches its liveness conditions. A
rigorous liveness proof will appear elsewhere.

67

B TLA+ Specifications

B.1 Helper Specifications

B.1.1 Order Relations

This module was defined in [9].
module OrderRelations

We make some definitions for an arbitrary ordering relation v on a set S . The module
will be used by instantiang v and S with a particular operator and Set.

constants S , v

We define IsPartialOrder to be the assertion that v is an (irreflexive) partial order on a
set S , and IsTotalOrder to be the assertion that it is a total ordering of S .

IsPartialOrder ∆=
∧ ∀ u, v , w ∈ S : (u v v) ∧ (v v w)⇒ (u v w)
∧ ∀ u, v ∈ S : (u v v) ∧ (v v u) ⇒ (u = v)

IsTotalOrder ∆=
∧ IsPartialOrder
∧ ∀ u, v ∈ S : (u v v) ∨ (v v u)

We now define the glb (greatest lower bound) and lub (least upper bound) operators.
To define GLB , we first define IsLB(lb, T) to be true iff lb is a lower bound of T , and
IsGLB(lb, T) to be true iff lb is a glb of T . the value of GLB(T) is unspecified if T has
no glb. The definition for upper bounds are analogous.

IsLB(lb, T) ∆= ∧ lb ∈ S
∧ ∀ v ∈ T : lb v v

IsGLB(lb, T) ∆= ∧ IsLB(lb, T)
∧ ∀ v ∈ S : IsLB(v , T)⇒ (v v lb)

GLB(T) ∆= choose lb ∈ S : IsGLB(lb, T)

v u w ∆= GLB({v , w})

IsUB(ub, T) ∆= ∧ ub ∈ S
∧ ∀ v ∈ T : v v ub

IsLUB(ub, T) ∆= ∧ IsUB(ub, T)
∧ ∀ v ∈ S : IsUB(v , T)⇒ (ub v v)

LUB(T) ∆= choose ub ∈ S : IsLUB(ub, T)

v t w ∆= LUB({v , w})

B.1.2 Command Structs

This module was defined in [9].

68

module CStructs
extends Sequences The Sequences module defines the operation Seq

We declare the assumed objects as parameters. We use Bottom instead of ⊥ .

constants Cmd , CStruct , • , Bottom

We write v ∗∗ σ as the overloaded version of v •σ for a command sequence σ. The recursive
definition below defines the function conc[w , t] = w ∗∗t .
v ∗∗s ∆=

let conc[w ∈ CStruct , t ∈ Seq(Cmd)] ∆=
if t = 〈〉 then w

else conc[w •Head(t), Tail(t)]
in conc[v , s]

Str(P) ∆= {Bottom ∗∗s : s ∈ Seq(P)}

Our algorithms use a value none that is not a c-struct and extend the relation v to the
element none so that none v none, none 6v v , and v 6v none for any c-struct v .

none ∆= choose n : n /∈ CStruct
v v w ∆= ∨ ∧ v ∈ CStruct

∧ w ∈ CStruct
∧ ∃ s ∈ Seq(Cmd) : w = v ∗∗s

∨ ∧ v = none
∧ w = none

v < w ∆= (v v w) ∧ (v 6= w)

We now import the definitions of the OrderRelations module with CStruct substituted for
S and v substituted for �
instance OrderRelations with S ← CStruct

We now define compatibility of c-structs and of sets of c-structs, and of contains, giving
them obvious operator nomes.

AreCompatible(v , w) ∆= ∃ ub ∈ CStruct : IsUB(ub, {v , w})
IsCompatible(S) ∆= ∀ v , w ∈ S : AreCompatible(v , w)
Contains(v , C) ∆= ∃ s, t ∈ Seq(Cmd) : v = ((Bottom ∗∗s) • C) ∗∗t

Here are the formal statements of assumptions CS0-CS4.

CS0 ∆= ∀ v ∈ CStruct , C ∈ Cmd : v • C ∈ CStruct

CS1 ∆= CStruct = Str(Cmd)

CS2 ∆= IsPartialOrder

CS3 ∆= ∀P ∈ subset Cmd \ {{}} :
∧ ∀ v , w ∈ Str(P) :
∧ v u w ∈ Str(P)

69

∧ IsGLB(v u w , {v , w})
∧AreCompatible(v , w)⇒ ∧ v t w ∈ Str(P)

∧ IsLUB(v t w , {v , w})

CS4 ∆= ∀ v , w ∈ CStruct , C ∈ Cmd :
AreCompatible(v , w) ∧ Contains(v , C) ∧ Contains(w , C)⇒

Contains(v u w , C)

assume CS0 ∧ CS1 ∧ CS2 ∧ CS3 ∧ CS4

B.1.3 Paxos Constants

This module was defined in [9], but was extended as needed to define mul-
ticoordinated algorithms. For example, it was extended with the definition
of CoordQuorum(m).

module PaxosConstants
This module defines the data structures for the abstract algorithm. It is basically the same
module PaxosConstants found in the Generalized Paxos paper, except for the introduction
of constants Coord and CoordQuorum(), and assumption CoordQuorumAssumption.

extends CStructs, FiniteSets
Module FiniteSets defines IsFiniteSet(S) to be true iff S is a finite set

We introduce the parameter IsFast , where IsFast(m) is true iff m is a fast ballot number.
The ordering relation � on ballot numbers is also a parameter.

constants BalNum, Zero, � , IsFast()

We assume that Zero is the first balnum, and that � is a total ordering of the set BalNum
of balnums.

assume ∧ Zero ∈ BalNum
∧ let PO ∆= instance OrderRelations with S ← BalNum, v ← �

in PO !IsTotalOrder

We define i ≺ j to be true iff i � j for two different balnums i and j

i ≺ j ∆= (i � j) ∧ (i 6= j)

If B is a set of ballot numbers that contains a maximum element, then Max (B) is defined
to equal that maximum. Otherwise, its value is unspecified.

Max (B) ∆= choose i ∈ B : ∀ j ∈ B : j � i

This section of the module is the only part that differs the original PaxosConstants module
presented in the Generalized Paxos paper. We have added the constants Coord and
CoordQuorum, and the assumptions that coordinator quorums are sets of coordinators
which intersect if they refer to the same ballot number.

constants Learner , Acceptor , Quorum(), Coord , CoordQuorum()

QuorumAssumption ∆=
∀ i ∈ BalNum :

70

∧Quorum(i) ⊆ subset Acceptor
∧ ∀ j ∈ BalNum :
∧ ∀Q ∈ Quorum(i), R ∈ Quorum(j) : Q ∩ R 6= {}
∧ IsFast(j)⇒
∀Q ∈ Quorum(i), R1, R2 ∈ Quorum(j) :

Q ∩ R1 ∩ R2 6= {}

assume QuorumAssumption

CoordQuorumAssumption ∆=
∀ i ∈ BalNum :
∧ CoordQuorum(i) ⊆ subset Coord
∧ ∀Q , R ∈ CoordQuorum(i) : Q ∩ R 6= {}

assume CoordQuorumAssumption

We define BallotArray to be the set of all ballot arrays. We represent a ballot array as a
record, where we write βa [m] as β.vote[m] and β̂a as β.mbal [a].

BallotArray ∆=
{beta ∈ [vote : [Acceptor → [BalNum → CStruct ∪ {none}]],

mbal : [Acceptor → BalNum]] :
∀ a ∈ Acceptor :
∧ beta.vote[a][Zero] 6= none
∧ IsFiniteSet({m ∈ BalNum : beta.vote[a][m] 6= none})
∧ ∀m ∈ BalNum : (beta.mbal [a] ≺ m)⇒ (beta.vote[a][m] = none)}

We now formalize the definitions of chosen at, safe at, etc. We translate the English terms
into obvious operator names. For example, IsChosenAt(v , m, β) is defined to be true iff
v is chosen at m in β , assuming that v is a c-struct, m is a balnum, and β a ballot array.
(We don’t care what IsChosenAt(v , m, β) means for other values of v , m, and β.) We
also assert the three propositions as theorems.

IsChosenAt(v , m, beta) ∆= ∃Q ∈ Quorum(m) : ∀ a ∈ Q : (v v beta.vote[a][m])

IsChosenIn(v , beta) ∆= ∃m ∈ BalNum : IsChosenAt(v , m, beta)

IsChoosableAt(v , m, beta) ∆=
∃Q ∈ Quorum(m) :
∀ a ∈ Q : (m ≺ beta.mbal [a])⇒ (v v beta.vote[a][m])

IsSafeAt(v , m, beta) ∆=
∀ k ∈ BalNum :

(k ≺ m)⇒ ∀w ∈ CStruct : IsChoosableAt(w , k , beta)⇒ (w v v)

IsSafe(beta) ∆=
∀ a ∈ Acceptor , k ∈ BalNum :

(beta.vote[a][k] 6= none)⇒ IsSafeAt(beta.vote[a][k], k , beta)

71

theorem Proposition 1

∀ beta ∈ BallotArray :
IsSafe(beta)⇒ IsCompatible({v ∈ CStruct : IsChosenIn(v , beta)})

ProvedSafe(Q , m, beta) ∆=
let k ∆= Max ({i ∈ BalNum :

(i ≺ m) ∧ (∃ a ∈ Q : beta.vote[a][i] 6= none)})
RS ∆= {R ∈ Quorum(k) : ∀ a ∈ Q ∩ R : beta.vote[a][k] 6= none}
g(R) ∆= GLB({beta.vote[a][k] : a ∈ Q ∩ R})
G ∆= {g(R) : R ∈ RS}

in if RS = {} then {beta.vote[a][k] :
a ∈ {b ∈ Q : beta.vote[b][k] 6= none}}

else if IsCompatible(G) then {LUB(G)}
else {}

theorem Proposition 2

∀m ∈ BalNum \ {Zero}, beta ∈ BallotArray :
∀Q ∈ Quorum(m) :
∧ IsSafe(beta)
∧ ∀ a ∈ Q : m � beta.mbal [a]
⇒ ∀ v ∈ ProvedSafe(Q , m, beta) : IsSafeAt(v , m, beta)

IsConservative(beta) ∆=
∀m ∈ BalNum, a, b ∈ Acceptor :
∧ ¬IsFast(m)
∧ beta.vote[a][m] 6= none
∧ beta.vote[b][m] 6= none
⇒ AreCompatible(beta.vote[a][m], beta.vote[b][m])

theorem Proposition 3

∀ beta ∈ BallotArray :
IsConservative(beta)⇒
∀m ∈ BalNum \ {Zero} :
∀Q ∈ Quorum(m) : ProvedSafe(Q , m, beta) 6= {}

B.2 Abstract Multicoordinated Paxos

This module specifies an abstract version of the Multicoordinated Paxos
algorithm. It is used as the first step in the proof of correctness of Multico-
ordinated Paxos.

module AbstractMCPaxos
This module specifies the Abstract MultiCoordinated Paxos algorithm. It resembles the
specification of the Abstract Generalized Paxos algorithm presented in the Generalized
Paxos paper, but some changes are required since we do not have a minTried variable.

72

extends PaxosConstants

variables propCmd , maxTried , bA, learned

Invariants

Type invariant.

TypeInv ∆= ∧ propCmd ⊆ Cmd
∧ learned ∈ [Learner → CStruct]
∧ bA ∈ BallotArray
∧maxTried ∈ [BalNum → CStruct ∪ {none}]

Other invariants satisfied by the algorithm.

maxTriedInvariant ∆=
∀m ∈ BalNum :

(maxTried [m] 6= none)⇒
∧maxTried [m] ∈ Str(propCmd)
∧ IsSafeAt(maxTried [m], m, bA)

bAInvariant ∆=
∀ a ∈ Acceptor , m ∈ BalNum :

(bA.vote[a][m] 6= none)⇒
∧ IsSafeAt(bA.vote[a][m], m, bA)
∧ ¬IsFast(m)⇒ (bA.vote[a][m] v maxTried [m])
∧ IsFast(m)⇒ (bA.vote[a][m] ∈ Str(propCmd))

learnedInvariant ∆=
∀ l ∈ Learner : ∧ learned [l] ∈ Str(propCmd)

∧ ∃S ∈ subset CStruct :
∧ IsFiniteSet(S)
∧ ∀ v ∈ S : IsChosenIn(v , bA)
∧ learned [l] = LUB(S)

Actions

Propose(C) specifies the action of proposing command C

Propose(C) ∆=
∧ C /∈ propCmd
∧ propCmd ′ = propCmd ∪ {C}
∧ unchanged 〈maxTried , bA, learned〉

Action JoinBallot(a, m) increases the current ballot number of agent a, setting it to m.

JoinBallot(a, m) ∆=
∧ bA.mbal [a] ≺ m
∧ bA′ = [bA except !.mbal [a] = m]

73

∧ unchanged 〈propCmd , maxTried , learned〉

Action StartBallot(m,w) changes maxTried [m] from none to w , where w is proposed and
safe at m in bA.

StartBallot(m, w) ∆=
∧maxTried [m] = none
∧ IsSafeAt(w , m, bA)
∧ w ∈ Str(propCmd)
∧maxTried ′ = [maxTried except ![m] = w]
∧ unchanged 〈propCmd , bA, learned〉

Action Suggest(m, σ) extends maxTried [m] with σ if maxTried [m] 6= none.
The expression [maxTried except ![m] = @ ∗∗s] represents a vector (in fact, it is a
function) which is almost the same as maxTried except for entry m (![m] in the expression),
which is set to the previous value of that entry (@ in the expression) extended with
command sequence s.

Suggest(m, s) ∆=
∧ s ∈ Seq(propCmd)
∧ maxTried [m] 6= none
∧ maxTried ′ = [maxTried except ![m] = @ ∗∗s]
∧ unchanged 〈propCmd , bA, learned〉

Action ClassicVote(a, v) sets b̂Aa to m and bAa [m] to v if

(i) b̂Aa � m
(ii) v is safe at m in bA,
(iii) v v maxTried [m], and
(iv) either bAa [m] equals none or v is an extension of it.

ClassicVote(a, m, v) ∆=
∧ bA.mbal [a] � m
∧ IsSafeAt(v , m, bA)
∧ v v maxTried [m]
∧ ∨ bA.vote[a][m] = none
∨ bA.vote[a][m] v v

∧ bA′ = [bA except !.mbal [a] = m, !.vote[a][m] = v]
∧ unchanged 〈propCmd , maxTried , learned〉

Action FastVote(a, C) extends bAa [b̂Aa] with proposed command C if b̂Aa is a fast bal-

num and bAa [b̂Aa] 6= none . Expression [bA except !.vote[a][bA.mbal [a]] = @ • C]
follows the same principle explained in action Suggest(m, C).

FastVote(a, C) ∆=
∧ C ∈ propCmd
∧ IsFast(bA.mbal [a])
∧ bA.vote[a][bA.mbal [a]] 6= none
∧ bA′ = [bA except !.vote[a][bA.mbal [a]] = @ • C]
∧ unchanged 〈propCmd , maxTried , learned〉

74

Action AbstractLearn(l , v) extends learned [l] to the least upper bound of learned [l] and
v , if v is chosen.

AbstractLearn(l , v) ∆=
∧ IsChosenIn(v , bA)
∧ learned ′ = [learned except ![l] = @ t v]
∧ unchanged 〈propCmd , maxTried , bA〉

Complete Specification

Initial predicate

Init ∆= ∧ propCmd = {}
∧ learned = [l ∈ Learner 7→ Bottom]
∧ bA = [vote 7→

[a ∈ Acceptor 7→
[m ∈ BalNum 7→ if m = Zero then Bottom

else none]],
mbal 7→ [a ∈ Acceptor 7→ Zero]]

∧maxTried = [m ∈ BalNum 7→
if m = Zero then Bottom else none]

Actions combined into the next-state relation.

Next ∆= ∨ ∃C ∈ Cmd : Propose(C)
∨ ∃ a ∈ Acceptor , m ∈ BalNum : JoinBallot(a, m)
∨ ∃m ∈ BalNum, w ∈ CStruct : StartBallot(m, w)
∨ ∃m ∈ BalNum, s ∈ Seq(Cmd) : Suggest(m, s)
∨ ∃ a ∈ Acceptor , C ∈ Cmd : FastVote(a, C)
∨ ∃ a ∈ Acceptor , m ∈ BalNum, v ∈ CStruct :

ClassicVote(a, m, v)
∨ ∃ l ∈ Learner , v ∈ CStruct : AbstractLearn(l , v)

We define Spec to be the complete specification.

Spec ∆= Init ∧2[Next]〈propCmd , learned , bA,maxTried〉

The following theorem asserts the invariance of our invariants

theorem
Spec ⇒ 2(TypeInv ∧maxTriedInvariant ∧ bAInvariant ∧ learnedInvariant)

The following asserts that our specification Spec implies/implements the specification Spec
from module GeneralConsensus.

GC ∆= instance GeneralConsensus
theorem Spec ⇒ GC !Spec

75

B.3 Distributed Abstract Multicoordinated Paxos

This module specifies a distributed version of the abstract algorithm in the
previous section. It adds the exchange of messages and shows how the
distributed data structures can be mapped back to the non-distributed al-
gorithm. It is used as the second step in the proof of correctness of Multi-
coordinated Paxos.

module DistAbsMCPaxos
extends PaxosConstants

The following variables are similar to those in AbstractMCPaxos module. They are
changed in this module as they are in AbstractMCPaxos.

variables propCmd , bA, learned

We describe the state of the message-passing system by the value of the variable msgs.
I .e., processes send messages to each othe by simply putting them in the msgs variable.

As we do not specify liveness for this protocol, we do not explicitly model message loss.
Because no action is required to happen, messages can simply be ignored, modeling the

loss of a message by never executing the action that would read the message.

Message duplication is modeled by not removing the message from msgs once it is read.

variable msgs

We define Msg to be the set of all possible messages. For the sake of clarity and avoiding
errors, we let messages be records instead of tuples. For example, the message 〈“2a”, m, v〉
in the text becomes a record with type field “2a”, bal field m, and val field v .

Msg ∆= [type : {“1a”}, bal : BalNum]
∪ [type : {“1b”}, bal : BalNum, acc : Acceptor ,

vote : [BalNum → CStruct ∪ {none}]]
∪ [type : {“2a”}, bal : BalNum, val : CStruct , coord : Coord]
∪ [type : {“2b”}, bal : BalNum, acc : Acceptor , val : CStruct]

dMaxTried is a distributed version of maxTried . Each coordinator stores in dMaxTried
the longest c-struct it has send in a round, and MaxTried , below, will map it to maxTried .

variable dMaxTried

Refinement Mapping

dMaxTried is mapped to maxTried by the MaxTried operator. It maps the c-structs tried
by all coordinators in some coord-quorum Q in some round m to a single c-struct
Tried(Q , m). The set of all Tried(Q , m), AllTried(m), is then mapped to maxTried .

MaxTried ∆=
let Tried(Q , m) ∆= if ∃ c ∈ Q : dMaxTried [c][m] = none

then none
else GLB({dMaxTried [c][m] : c ∈ Q})

AllTried(m) ∆= {v ∈ {Tried(Q , m) : Q ∈ CoordQuorum(m)}

76

: v 6= none}

in [m ∈ BalNum 7→ if AllTried(m) = {}
then none
else LUB(AllTried(m))]

Invariants

Type invariant. implies Abstract!TypeInv .

TypeInv ∆= ∧ propCmd ⊆ Cmd
∧ learned ∈ [Learner → CStruct]
∧ bA ∈ BallotArray
∧ dMaxTried ∈ [Coord → [BalNum → CStruct ∪ {none}]]
∧msgs ⊆ Msg

Actions

Action Propose(C) adds command C to propCmd .

It implements AbstractMCPaxos!Propose(C) directly.

Propose(C) ∆=
∧ C /∈ propCmd
∧ propCmd ′ = propCmd ∪ {C}
∧ unchanged 〈bA, learned , msgs, dMaxTried〉

Action Phase1a(c, m) executes phase 1a for round m at coordinator c, sending a “1a”
message to all acceptors.

It has no counterpart on AbstractMCPaxos.

Phase1a(c, m) ∆=
∧ dMaxTried [c][m] = none
∧msgs ′ = msgs ∪ {[type 7→ “1a”, bal 7→ m]}
∧ unchanged 〈propCmd , bA, learned , dMaxTried〉

Action Phase1b(a, m) executes phase 1b for round m at acceptor a.

It implements JoinBallot(a, m), and sends a “1b” message to coordinators.

Phase1b(a, m) ∆=
∧ bA.mbal [a] ≺ m
∧ [type 7→ “1a”, bal 7→ m] ∈ msgs
∧ bA′ = [bA except !.mbal [a] = m]
∧msgs ′ = msgs ∪

{[type 7→ “1b”, bal 7→ m, acc 7→ a, vote 7→ bA.vote[a]]}
∧ unchanged 〈propCmd , learned , dMaxTried〉

77

Action Phase2Start(c, m, v) starts phase 2a for round m at coordinator c, proposing the
c-struct v .

It implements AbstractMCPaxos!StartBallot(m, MaxTried ′[m]). Because not all

Phase2Start change MaxTried [m], some steps are stuttering regarding AbstractMCPaxos.

Phase2Start(c, m, v) ∆=
∧ dMaxTried [c][m] = none
∧ ∃Q ∈ Quorum(m) :
∧ ∀ a ∈ Q : ∃msg ∈ msgs : ∧msg .type = “1b”

∧msg .bal = m
∧msg .acc = a

∧ let 1bMsg ∆= [a ∈ Q 7→ choose msg ∈ msgs :
∧msg .type = “1b”
∧msg .bal = m
∧msg .acc = a]

beta ∆= [vote 7→ [a ∈ Q 7→ 1bMsg [a].vote],
mbal 7→ [a ∈ Q 7→ m]]

in ∃w ∈ ProvedSafe(Q , m, beta), s ∈ Seq(propCmd) :
∧ v = w ∗∗s
∧ dMaxTried ′ = [dMaxTried except ![c][m] = v]
∧msgs ′ = msgs ∪

{[type 7→ “2a”, bal 7→ m, val 7→ v , coord 7→ c]}
∧ unchanged 〈propCmd , bA, learned〉

Action Phase2aClassic(c, m, C) is executed by coordinator c of ballot m, for command
C . It adds the command C to c’s previously tried value and forward the new value to the
acceptors.

It implements the AbstractMCPaxos!Suggest(m, 〈C 〉) action.

Phase2aClassic(c, m, C) ∆=
∧ C ∈ propCmd
∧ dMaxTried [c][m] 6= none
∧ dMaxTried ′ = [dMaxTried except ![c][m] = dMaxTried [c][m] ∗∗C]
∧msgs ′ = msgs ∪

{[type 7→ “2a”, bal 7→ m, val 7→ dMaxTried ′[c][m], coord 7→ c]}
∧ unchanged 〈propCmd , bA, learned〉

Action Phase2bClassic(a, m, v) is executed by acceptor a in round m to accept v .

It implements action AbstractMCPaxos!ClassicVote(a, m, v).

Phase2bClassic(a, m, v) ∆=
∧ bA.mbal [a] � m
∧ ∃L ∈ CoordQuorum(m), u ∈ CStruct :
∧ ∀ c ∈ L : ∃msg ∈ msgs : ∧msg .type = “2a”

∧msg .bal = m

78

∧msg .coord = c
∧ u v msg .val

∧ ∨ ∧ bA.vote[a][m] = none
∧ v = u

∨ ∧AreCompatible(bA.vote[a][m], u)
∧ v = bA.vote[a][m] t u

∧ bA′ = [bA except !.vote[a][m] = v , !.mbal [a] = m]
∧msgs ′ = msgs ∪ {[type 7→ “2b”, bal 7→ m, acc 7→ a, val 7→ v]}
∧ unchanged 〈propCmd , learned , dMaxTried〉

Action Phase2bFast(a, C) is executed by acceptor a to accept command C , comming
directly from the proposers (fast accept).

It implements the AbstractMCPaxos!FastVote(a, C) action.

Phase2bFast(a, C) ∆=
∧ C ∈ propCmd
∧ IsFast(bA.mbal [a])
∧ bA.vote[a][bA.mbal [a]] 6= none
∧ bA′ = [bA except !.vote[a][bA.mbal [a]] = @ • C]
∧msgs ′ = msgs ∪ {[type 7→ “2b”, bal 7→ bA.mbal [a], acc 7→ a,

val 7→ bA′.vote[a][bA.mbal [a]]]}
∧ unchanged 〈propCmd , learned , dMaxTried〉

Action Learn(l , v) executed by learner l to learn c-struct v .

It implements the AbstractMCPaxos!AbstractLearn(a, v) action.

Learn(l , v) ∆=
∧ ∃m ∈ BalNum :
∃Q ∈ Quorum(m) :
∀ a ∈ Q : ∃msg ∈ msgs : ∧msg .type = “2b”

∧msg .bal = m
∧msg .acc = a
∧ v v msg .val

∧ learned ′ = [learned except ![l] = @ t v]
∧ unchanged 〈propCmd , bA, dMaxTried , msgs〉

Full Specification

Init defines the initial state.

Init ∆= ∧ propCmd = {}
∧ learned = [l ∈ Learner 7→ Bottom]
∧ bA = [vote 7→

[a ∈ Acceptor 7→
[m ∈ BalNum 7→ if m = Zero then Bottom

else none]],

79

mbal 7→ [a ∈ Acceptor 7→ Zero]]
∧ dMaxTried = [c ∈ Coord 7→ [m ∈ BalNum 7→

if m = Zero then Bottom
else none]]

∧msgs = {}

Next defines how action are combined to generate the next states.

Next ∆= ∨ ∃C ∈ Cmd : Propose(C)
∨ ∃m ∈ BalNum, c ∈ Coord : Phase1a(c, m)
∨ ∃m ∈ BalNum, v ∈ CStruct , c ∈ Coord :

Phase2Start(c, m, v)
∨ ∃m ∈ BalNum, s ∈ Seq(Cmd), c ∈ Coord :

Phase2aClassic(c, m, s)
∨ ∃ a ∈ Acceptor , m ∈ BalNum : Phase1b(a, m)
∨ ∃m ∈ BalNum, a ∈ Acceptor , v ∈ CStruct :

Phase2bClassic(a, m, v)
∨ ∃ a ∈ Acceptor , C ∈ Cmd : Phase2bFast(a, C)
∨ ∃ l ∈ Learner , v ∈ CStruct : Learn(l , v)

Spec is defined as the complete specification.

Spec ∆= Init ∧2[Next]〈propCmd , bA, learned , dMaxTried ,msgs〉

The following theorem asserts the invariance of TypeInv

theorem Spec ⇒ 2TypeInv

The following theorem implies that there is a refinement mapping from DistAbsMCPaxos
to AbstractMCPaxos. Therefore, DistAbsMCPaxos implements AbstractMCPaxos. Be-
cause GeneralConsensus is implemented by AbstractMCPaxos, DistAbsMCPaxos also im-
plements GeneralConsensus

AB ∆= instance AbstractMCPaxos with maxTried ← MaxTried
GC ∆= instance GeneralConsensus

theorem Spec ⇒ AB !Spec
theorem Spec ⇒ GC !Spec

B.4 Basic Multicoordinated Paxos

This module specifies the Multicoordinated Paxos algorithm as presented in
Section 3.2.

module DistMCPaxos
extends PaxosConstants

variables crnd , cval , rnd , vrnd , vval , learned , msgs

80

constant Proposer

cVars ∆= 〈crnd , cval〉
aVars ∆= 〈rnd , vrnd , vval〉

Msg ∆= [type : {“propose”}, cmd : Cmd] ∪
[type : {“1a”}, bal : BalNum] ∪
[type : {“1b”}, bal : BalNum, vval : CStruct ,

vrnd : BalNum, acc : Acceptor] ∪
[type : {“2a”}, bal : BalNum, val : CStruct , coord : Coord] ∪
[type : {“2b”}, bal : BalNum, val : CStruct , acc : Acceptor]

TypeInv ∆= ∧ crnd ∈ [Coord → BalNum]
∧ cval ∈ [Coord → CStruct]
∧ rnd ∈ [Acceptor → BalNum]
∧ vrnd ∈ [Acceptor → BalNum]
∧ vval ∈ [Acceptor → CStruct]
∧ learned ∈ [Learner → CStruct]
∧msgs ⊆ Msg

Actions

Action Send(msg) implements the sending of message msg .

Send(msg) ∆= msgs ′ = msgs ∪ {msg}

DistProvedSafe(Q , 1bMsg) below is the TLA+ version of the ProvedSafe(Q , 1bMsg) func-
tion presented in Section 3.3.

DistProvedSafe(Q , 1bMsg) ∆=
let

vals(S) ∆= {1bMsg [a].vval : a ∈ S}
vrnds ∆= {1bMsg [a].vrnd : a ∈ Q}
k ∆= Max (vrnds)
kacceptors ∆= {a ∈ Q : 1bMsg [a].vrnd = k}
QinterR ∆= {Q ∩ R : R ∈ Quorum(k)}
QinterRAtk ∆= {S ∈ QinterR : S ⊆ kacceptors}
Gamma ∆= {GLB(vals(inter)) : inter ∈ QinterRAtk}

in
if QinterRAtk = {} then vals(kacceptors)

else {LUB(Gamma)}

The following actions are the same as those presented in Section 3.3, just translated into
TLA+.

Propose(p, C)

81

Propose(p, C) ∆=
∧ Send([type 7→ “propose”, cmd 7→ C])
∧ unchanged 〈cVars, aVars, learned〉

Phase1a(c, m)

Phase1a(c, m) ∆=
∧ c ∈ union CoordQuorum(m)
∧ crnd [c] ≺ m
∧ Send([type 7→ “1a”, bal 7→ m])
∧ unchanged 〈cVars, aVars, learned〉

Phase1b(a, m)

Phase1b(a, m) ∆=
∧ rnd [a] ≺ m
∧ [type 7→ “1a”, bal 7→ m] ∈ msgs
∧ rnd ′ = [rnd except ![a] = m]
∧ Send([type 7→ “1b”, bal 7→ m, vval 7→ vval [a],

vrnd 7→ vrnd [a], acc 7→ a])
∧ unchanged 〈cVars, vrnd , vval , learned〉

Phase2Start(c, m)

Phase2Start(c, m) ∆=
∧ crnd [c] ≺ m
∧ ∃Q ∈ Quorum(m) :
∧ ∀ a ∈ Q : ∃msg ∈ msgs : ∧msg .type = “1b”

∧msg .bal = m
∧msg .acc = a

∧ let 1bMsg ∆= [a ∈ Q 7→ choose msg ∈ msgs : ∧msg .type = “1b”
∧msg .bal = m
∧msg .acc = a]

in ∃w ∈ DistProvedSafe(Q , 1bMsg) :
∧ crnd ′ = [crnd except ![c] = m]
∧ cval ′ = [cval except ![c] = w]
∧ Send([type 7→ “2a”, bal 7→ m, val 7→ w , coord 7→ c])
∧ unchanged 〈aVars, learned〉

Phase2aClassic(c)

Phase2aClassic(c) ∆=
∃msg ∈ msgs :
∧ msg .type = “propose”
∧ cval ′ = [cval except ![c] = @ •msg .cmd]
∧ Send([type 7→ “2a”, bal 7→ crnd [c], val 7→ cval ′[c], coord 7→ c])
∧ unchanged 〈crnd , aVars, learned〉

Phase2bClassic(a, m)

82

Phase2bClassic(a, m) ∆=
∧ rnd [a] � m
∧ ∃L ∈ CoordQuorum(m) :
∧ ∀ c ∈ L : ∃msg ∈ msgs : ∧msg .type = “2a”

∧msg .bal = m
∧msg .coord = c

∧ let
A2aMsg(c) ∆= choose msg ∈ msgs : ∧msg .type = “2a”

∧msg .bal = m
∧msg .coord = c

L2aMsgs ∆= {A2aMsg(c) : c ∈ L}
L2aVals ∆= {msg .val : msg ∈ L2aMsgs}

in
∧ ∨ ∧ vrnd [a] ≺ m

∧ vval ′ = [vval except ![a] = GLB(L2aVals)]
∨ ∧ vrnd [a] = m
∧AreCompatible(vval [a], GLB(L2aVals))
∧ vval ′ = [vval except ![a] = @ tGLB(L2aVals)]

∧ rnd ′ = [rnd except ![a] = m]
∧ vrnd ′ = [vrnd except ![a] = m]
∧ Send([type 7→ “2b”, bal 7→ m, val 7→ vval ′[a], acc 7→ a])
∧ unchanged 〈cVars, learned〉

Phase2bFast(a)

Phase2bFast(a) ∆=
∧ IsFast(rnd [a])
∧ rnd [a] = vrnd [a]
∧ ∃msg ∈ msgs :
∧msg .type = “propose”
∧ vval ′ = [vval except ![a] = @ •msg .cmd]
∧ Send([type 7→ “2b”, bal 7→ rnd [a], val 7→ vval ′[a], acc 7→ a])
∧ unchanged 〈cVars, rnd , vrnd , learned〉

Learn(l)

Learn(l) ∆=
∃m ∈ BalNum :
∃Q ∈ Quorum(m) :
∧ ∀ a ∈ Q : ∃msg ∈ msgs : ∧msg .type = “2b”

∧msg .bal = m
∧msg .acc = a

∧ let
A2bMsg(a) ∆= choose msg ∈ msgs : ∧msg .type = “2b”

∧msg .bal = m
∧msg .acc ∈ Q

83

Q2bMsgs ∆= {A2bMsg(a) : a ∈ Q}
Q2bVals ∆= {msg .val : msg ∈ Q2bMsgs}

in
∧ learned ′ = [learned except ![l] = @ tGLB(Q2bVals)]
∧ unchanged 〈cVars, aVars, msgs〉

Full Specification

Init defines the initial state.

Init ∆= ∧ learned = [l ∈ Learner 7→ Bottom]
∧ crnd = [c ∈ Coord 7→ Zero]
∧ cval = [c ∈ Coord 7→ Bottom]
∧ rnd = [a ∈ Acceptor 7→ Zero]
∧ vrnd = [a ∈ Acceptor 7→ Zero]
∧ vval = [a ∈ Acceptor 7→ Bottom]
∧ learned = [l ∈ Learner 7→ Bottom]
∧msgs = {}

Next defines how action are combined to generate the next states.

Next ∆= ∨ ∃ p ∈ Proposer , C ∈ Cmd : Propose(p, C)
∨ ∃ c ∈ Coord , m ∈ BalNum : Phase1a(c, m)
∨ ∃ c ∈ Coord , m ∈ BalNum : Phase2Start(c, m)
∨ ∃ c ∈ Coord : Phase2aClassic(c)
∨ ∃ a ∈ Acceptor , m ∈ BalNum : Phase1b(a, m)
∨ ∃ a ∈ Acceptor , m ∈ BalNum : Phase2bClassic(a, m)
∨ ∃ a ∈ Acceptor : Phase2bFast(a)
∨ ∃ l ∈ Learner : Learn(l)

Spec is defined as the complete specification.

Spec ∆= Init ∧2[Next]〈cVars, aVars, learned ,msgs〉

The following theorem asserts the invariance of TypeInv .

theorem Spec ⇒ 2TypeInv

The following theorem asserts the DistMCPaxos implements GeneralConsensus

PropCmd ∆= {m.cmd : m ∈ {mm ∈ msgs : mm.type = “propose”}}

GC ∆= instance GeneralConsensus with propCmd ← PropCmd

theorem Spec ⇒ GC !Spec

84

B.5 Complete Multicoordinated Paxos

This module specifies the Multicoordinated Paxos algorithm without depen-
dencies, also specifying the collision detection mechanisms and a simplified
version of the mechanism presented in Section 4.4 to reduce the number of
disk writes.

module MultiCoordPaxos
The module imports two standard modules. Module Naturals defines the set Nat of
naturals and the ordinary arithmetic operators; module FiniteSets defines IsFiniteSet(s)
to be true iff S is a finite set and defines Cardinality(S) to be the number of elements in
S , if s is finite.

extends Naturals, FiniteSets, CStructs

Constants

The next statement declares the specification’s constant parameters, which have the fol-
lowing meanings:
Acceptor the set of acceptors.
Learner the set of learners.
FastNum the set of fast round numbers.
Quorum(i) the set of i-quorums.
Coord the set of coordinators.
CoordQuorum(i) the set of coordinator quorums of round i.

constants Acceptor , Learner , FastNum, Quorum(), Coord ,
CoordQuorum()

PosNat is defined to be the set of positive integers.

PosNat ∆= Nat \ {0}

RNum is the set of round numbers. A round number is composed of two parts: the
incarnation number and the sequence number.

RNum ∆= Nat × PosNat

A round number with sequence number 0 is not a valid round number, but it is used to
represent some agents’ states. RType is defined to represent such a set.

RType ∆= Nat ×Nat

We must define a precedence relation between round numbers. We define ≺ to represent
the relation that round i precedes round j iff i has a lower incarnation number than j or
they have the same incarnation number but i has a lower sequence number than j . We
also define � , � , and � accordingly.

i ≺ j ∆= if i [1] < j [1] then true else i [2] < j [2]
i � j ∆= i ≺ j ∨ i = j
i � j ∆= j ≺ i
i � j ∆= j � i

Max (S) is defined to be the maximum of a finite set S of Round Numbers.

Max (S) ∆= choose i ∈ S : ∀ j ∈ S : i � j

85

the following statement asserts the assumption that FastNum is a set of round numbers.

assume FastNum ⊆ RNum

ClassicNum is defined to be the set of classic round numbers.

ClassicNum ∆= RNum \FastNum

FairNum(c) is defined to be the set of classic round numbers for which coordinator c is,
itself, a coordinator quorum.

FairNum(c) ∆= {i ∈ ClassicNum : {c} ∈ CoordQuorum(i)}

The following assumption asserts that the set of acceptors is finite. It is needed to ensure
progress.

assume IsFiniteSet(Acceptor)

The following asserts the assumptions that Quorum(i) is a set of sets of acceptors, for
every round number i , and that the Quorum Requirement holds.

assume ∀ i ∈ RNum :
∧Quorum(i) ⊆ subset Acceptor
∧ ∀ j ∈ RNum :
∧ ∀Q ∈ Quorum(i), R ∈ Quorum(j) : Q ∩ R 6= {}
∧ (j ∈ FastNum)⇒
∀Q ∈ Quorum(i) : ∀R1, R2 ∈ Quorum(j) :

Q ∩ R1 ∩ R2 6= {}

The following asserts the assumptions that CoordQuorum(i) is a set of sets of coordinators,
for every round number i , and that every coordinator is, itself, a coordinator quorum of
infinitely many classic rounds for every possible incarnation.

assume ∧ ∀ i ∈ RNum : CoordQuorum(i) ⊆ subset Coord
∧ ∀ c ∈ Coord , i ∈ RType :

∃ j ∈ PosNat : ∧ j > i [2]
∧ 〈i [1], j 〉 ∈ FairNum(c)

The following asserts the assumption that coordinator quorums of the same round should
always intersect.

assume ∀ i ∈ RNum : ∀Q , R ∈ CoordQuorum(i) : Q ∩ R 6= {}

Message is defined to be the set of all possible messages. A message is a record having
a type field indicating what message it is, and a rnd field indicating the round number.
What other fields, if any, a message has depends on its type.

Message ∆= [type : {“phase1a”}, rnd : RNum]
∪ [type : {“phase1b”}, rnd : RNum, vval : CStruct ,

vrnd : RType, acc : Acceptor]
∪ [type : {“phase2a”}, rnd : RNum, val : CStruct ,

coord : Coord]
∪ [type : {“phase2b”}, rnd : RNum, val : CStruct ,

acc : Acceptor]

86

Variables and State Predicates

The following statement declares the specification’s variables.

variables rnd , vrnd , vval , crnd , cval , amLeader , sentMsg , proposed ,
learned , goodSet

Defining the following tuples of variables makes it more convenient to state which variables
are left unchanged by the actions.

aVars ∆= 〈rnd , vrnd , vval〉 Acceptor variables

cVars ∆= 〈crnd , cval〉 Coordinator variables

oVars ∆= 〈amLeader , proposed , learned , goodSet〉 Most other variables

vars ∆= 〈aVars, cVars, oVars, sentMsg〉 All variables

TypeOK is the type-correctness invariant, asserting that the value of each variable is an
element of the proper set (its “type”). Type correctness of the specification means that
TypeOK is an invariant that is, it is true in every state of every behavior allowed by
the specification.

TypeOK ∆=
∧ rnd ∈ [Acceptor → RType]
∧ vrnd ∈ [Acceptor → RType]
∧ vval ∈ [Acceptor → CStruct]
∧ crnd ∈ [Coord → RType]
∧ cval ∈ [Coord → CStruct ∪ {none}]
∧ amLeader ∈ [Coord → boolean]
∧ sentMsg ∈ subset Message
∧ proposed ∈ subset Cmd
∧ learned ∈ [Learner → CStruct]
∧ goodSet ⊆ Acceptor ∪ Coord

Init is the initial predicate that describes the initial values of all variables.

Init ∆=
∧ rnd = [a ∈ Acceptor 7→ 〈0, 0〉]
∧ vrnd = [a ∈ Acceptor 7→ 〈0, 0〉]
∧ vval = [a ∈ Acceptor 7→ Bottom]
∧ crnd = [a ∈ Coord 7→ 〈0, 0〉]
∧ cval = [c ∈ Coord 7→ none]
∧ amLeader ∈ [Coord → boolean]
∧ sentMsg = {}
∧ proposed = {}
∧ learned = [l ∈ Learner 7→ Bottom]
∧ goodSet ∈ subset (Acceptor ∪ Coord)

Action Definitions

87

Send(m) describes the state change that represents the sending of a message m. It is used
as a conjunt in defining the algorithm actions.

Send(msg) ∆= sentMsg ′ = sentMsg ∪ {msg}

Coordinator Actions

Action Phase1a(c, i) specifies the execution of phase 1a of round i by coordinator c.
Different from the previous specifications, this action changes crnd and cval . This is done
for liveness, to prevent a coordinator from continuously starting new rounds. It could be
done by adding a new variable but we just thought that this way was easier and compliant
with other Paxos specifications.

Phase1a(i , c) ∆=
∧ amLeader [c]
∧ c ∈ union CoordQuorum(i)
∧ crnd [c] ≺ i Reasons for executing Phase1a:

∧ ∨ crnd [c] = 〈i [1], 0〉 1 - Did not do anything in this in-
carnation∨ ∃m ∈ sentMsg : ∧ crnd [c] ≺ m.rnd 2 - Some round interfered with
round crnd [c]∧m.rnd [1] = i [1]

∧m.rnd ≺ i
∨ ∧ crnd [c] /∈ FairNum(c) 3 - Round crnd [c] might have colli-

sions and cannot ensure liveness
in the presence of failures

∧ i [1] = crnd [c][1]
∧ crnd ′ = [crnd except ![c] = i]
∧ cval ′ = [cval except ![c] = none]
∧ Send([type 7→ “phase1a”, rnd 7→ i])
∧ unchanged 〈aVars, oVars〉

MsgsFrom(Q , i , phase) is defined to be the set of messages in sentMsg of type phase
(which may equal “phase1b” or “phase2b”) sent in round i by the acceptors in the set Q .

MsgsFrom(Q , i , phase) ∆=
{m ∈ sentMsg : (m.type = phase) ∧ (m.acc ∈ Q) ∧ (m.rnd = i)}

If M is the set of round i phase 1b messages sent by the acceptors in a quorum Q , then
IsPickableVal(Q , i , M , v) is true according to the following rule, easily derived from the
definition of ProvedSafe in the paper. It allows the coordinator to send the value v in a
phase 2a message for round i .

IsPickableVal(Q , i , M , v) ∆=
let vr(a) ∆= (choose m ∈ M : m.acc = a).vrnd

vv(a) ∆= (choose m ∈ M : m.acc = a).vval
k ∆= Max ({vr(a) : a ∈ Q})
RS ∆= {R ∈ Quorum(k) : ∀ a ∈ Q ∩ R : vr(a) = k}
g(R) ∆= GLB({vv(a) : a ∈ R ∩Q})
G ∆= {g(R) : R ∈ RS}
PrSafe ∆=

if RS = {} then {vv(a) : a ∈ {b ∈ Q : vr(b) = k}}
else {LUB(G)}

in ∃w ∈ PrSafe, s ∈ Seq(proposed) : v = w ∗∗s

88

Phase2Start(i , c, v) specifies the first execution of phase2a in round i by coordinator c.

Phase2Start(i , c, v) ∆= has executed phase1a, but not
phase2a, or another coordinator
executed phase1a.

∧ ∨ ∧ crnd [c] = i
∧ cval [c] = none

∨ crnd [c] ≺ i
∧ ∃Q ∈ Quorum(i) :
∧ ∀ a ∈ Q : ∃m ∈ MsgsFrom(Q , i , “phase1b”) : m.acc = a
∧ IsPickableVal(Q , i , MsgsFrom(Q , i , “phase1b”), v)

∧ cval ′ = [cval except ![c] = v]
∧ crnd ′ = [crnd except ![c] = i]
∧ Send([type 7→ “phase2a”, rnd 7→ i , val 7→ v , coord 7→ c])
∧ unchanged 〈aVars, oVars〉

Phase2a(i , c, v) specifies other executions of phase2a in round i by coordinator c.

Phase2a(i , c, v) ∆= has executed Phase2Start .

∧ crnd [c] = i
∧ cval [c] 6= none
∧ ∃C ∈ proposed : v = cval [c] ∗∗C
∧ cval ′ = [cval except ![c] = v]
∧ Send([type 7→ “phase2a”, rnd 7→ i , val 7→ v , coord 7→ c])
∧ unchanged 〈crnd , aVars, oVars〉

NextRound(i) is the round number following i in the same incarnation.

NextRound(i) ∆= [i except ![2] = @ + 1]

NextRoundP1b(Q , i) is the set of phase 1b messages for round NextRound(i) sent by
acceptors in Q .

NextRoundP1b(Q , i) ∆= MsgsFrom(Q , NextRound(i), “phase1b”)

Action CoordinatedRecovery(i , c, v) specifies our variation of coordinated recovery. With
this action, coordinator c attempts to recover from a collision in round i by sending round
NextRound(i) phase 2a messages for the value v . To ensure liveness, NextRound(i) should
be a fair round, but this is not a requirement for correctness.

CoordinatedRecovery(i , c, v) ∆=
let j ∆= NextRound(i)
in ∧ crnd [c] ≺ j

∧ ∃Q ∈ Quorum(j) :
∧ ∀ a ∈ Q : ∃m ∈ NextRoundP1b(Q , i) : m.acc = a
∧ IsPickableVal(Q , j , NextRoundP1b(Q , i), v)

∧ cval ′ = [cval except ![c] = v]
∧ crnd ′ = [crnd except ![c] = j]
∧ Send([type 7→ “phase2a”, rnd 7→ j , val 7→ v , coord 7→ c])
∧ unchanged 〈aVars, oVars〉

coordLastMsg(c) is defined to be the last message that coordinator c sent, if crnd [c] �
〈0, 0〉.

89

coordLastMsg(c) ∆=
if cval [c] = none

then [type 7→ “phase1a”, rnd 7→ crnd [c]]
else [type 7→ “phase2a”, rnd 7→ crnd [c], val 7→ cval [c], coord 7→ c]

In action CoordRetransmit(c), coordinator c retransmits the last message it sent. This
action is a stuttering action (meaning it does not change the value of any variable, so it
is a no-op) if that message is still in sentMsg . However, this action is needed because
c might have failed after first sending the message and subsequently have been repaired
after the message was removed from sentMsg .

CoordRetransmit(c) ∆=
∧ crnd [c] ∈ RNum
∧ Send(coordLastMsg(c))
∧ unchanged 〈aVars, cVars, amLeader , proposed , learned , goodSet〉

CoordNext(c) is the next-state action of coordinator c that is, the disjunct of the
algorithm’s complete next-state action that represents actions of that coordinator.

CoordNext(c) ∆=
∨ ∃ i ∈ RNum : ∨ Phase1a(i , c)

∨ ∃ v ∈ CStruct : ∨ Phase2Start(i , c, v)
∨ Phase2a(i , c, v)
∨ CoordinatedRecovery(i , c, v)

∨ CoordRetransmit(c)

Acceptor Actions

Action Phase1b(i , a) specifies the execution of phase 1b for round i by acceptor a.

Phase1b(i , a) ∆=
∧ rnd [a] ≺ i
∧ [type 7→ “phase1a”, rnd 7→ i] ∈ sentMsg
∧ rnd ′ = [rnd except ![a] = i]
∧ Send([type 7→ “phase1b”, rnd 7→ i , vrnd 7→ vrnd [a], vval 7→ vval [a],

acc 7→ a])
∧ unchanged 〈cVars, oVars, vrnd , vval〉

MsgsFromCoordQuorum(Q , i , phase) is defined to be the set of messages in sentMsg of
type phase (which may equal “phase1a” or “phase2a”) sent in round i by the coordinators
in the set Q .

MsgsFromCoordQuorum(Q , r , phase) ∆=
{m ∈ sentMsg : (m.type = phase) ∧ (m.coord ∈ Q) ∧ (m.rnd = r)}

Action Phase2b(i , a, v) specifies the execution of phase 2b for round i by acceptor a,
upon receipt of either a phase 2a message or a proposal (for a fast round) with value v .
This action actually implements actions Phase2bClassic and Phase2bFast of the previous
specifications

Phase2b(i , a, v) ∆=
∧ rnd [a] � i

90

∧ ∨ vrnd [a] ≺ i
∨ vval [a] < v

∧ ∨ ∃Q ∈ CoordQuorum(i), u ∈ CStruct :
∧ ∀ c ∈ Q : ∃m ∈ MsgsFromCoordQuorum(Q , i , “phase2a”) :

∧m.coord = c
∧m.val v u

∧ ∨ ∧ vrnd [a] ≺ i
∧ v = u

∨ ∧ vrnd [a] = i
∧AreCompatible(vval [a], u)
∧ v = vval [a] t u

∨ ∧ i ∈ FastNum
∧ vrnd [a] = i
∧ ∃C ∈ proposed : v = vval [a] ∗∗C Sent in classic 2a.

∧ rnd ′ = [rnd except ![a] = i]
∧ vrnd ′ = [vrnd except ![a] = i]
∧ vval ′ = [vval except ![a] = v]
∧ Send([type 7→ “phase2b”, rnd 7→ i , val 7→ v , acc 7→ a])
∧ unchanged 〈cVars, oVars〉

Action CollisionDetection(i , a) specifies the action acceptor a must take when it detects
a collision on the values proposed by a coordinator quorum or on the values accepted by
an acceptor quorum for round i . In such a case, acceptor a sends a phase1b message for
round i + 1.

CollisionDetection(i , a) ∆=
∧ rnd [a] � i
∧ ∨ ∃Q ∈ CoordQuorum(i) : collision in a multicoordinated round

∃m1, m2 ∈ MsgsFromCoordQuorum(Q , i , “phase2a”) :
∧m1.coord 6= m2.coord
∧ ¬AreCompatible(m1.val , m2.val)

∨ ∃Q ∈ Quorum(i) : collision in a fast round

∃m1, m2 ∈ MsgsFrom(Q , i , “phase2b”) :
∧m1.acc 6= m2.acc
∧ ¬AreCompatible(m1.val , m2.val)

∧ rnd ′ = [rnd except ![a] = i]
∧ Send([type 7→ “phase1b”, rnd 7→ NextRound(i), vrnd 7→ vrnd [a],

vval 7→ vval [a], acc 7→ a])
∧ unchanged 〈cVars, oVars, vrnd , vval〉

Action UncoordinatedRecovery(i , a, v) specifies our variation of uncoordinated recovery.
With this action, acceptor a attempts to recover from a collision in round i by sending a
phase 2b message for round NextRound(i) with value v .

UncoordinatedRecovery(i , a, v) ∆=
let j ∆= NextRound(i)
in ∧ j ∈ FastNum

91

∧ rnd [a] � i
∧ ∃Q ∈ Quorum(j) :
∧ ∀ b ∈ Q : ∃m ∈ NextRoundP1b(Q , i) : m.acc = b
∧ IsPickableVal(Q , j , NextRoundP1b(Q , i), v)

∧ rnd ′ = [rnd except ![a] = j]
∧ vrnd ′ = [vrnd except ![a] = j]
∧ vval ′ = [vval except ![a] = v]
∧ Send([type 7→ “phase2b”, rnd 7→ j , val 7→ v , acc 7→ a])
∧ unchanged 〈cVars, oVars〉

accLastMsg(a) is defined to be the last message sent by acceptor a, if rnd [a] � 〈0, 0〉

accLastMsg(a) ∆=
if vrnd [a] ≺ rnd [a]

then [type 7→ “phase1b”, rnd 7→ rnd [a], vrnd 7→ vrnd [a],
vval 7→ vval [a], acc 7→ a]

else [type 7→ “phase2b”, rnd 7→ rnd [a], val 7→ vval [a],
acc 7→ a]

In action AcceptorRetransmit(a) acceptor a retransmits the last message it sent.

AcceptorRetransmit(a) ∆=
∧ rnd [a] ∈ RNum
∧ Send(accLastMsg(a))
∧ unchanged 〈aVars, cVars, amLeader , proposed , learned , goodSet〉

AcceptorNext(a) is the next-state action of acceptor a that is, the disjunct of the
next-state action that represents actions of that acceptor.

AcceptorNext(a) ∆=
∨ ∃ i ∈ RNum : ∨ Phase1b(i , a)

∨ ∃ v ∈ CStruct : ∨ Phase2b(i , a, v)
∨UncoordinatedRecovery(i , a, v)

∨ CollisionDetection(i , a)
∨AcceptorRetransmit(a)

Other Actions

Action Propose(v) represents the proposal of a value v by some proposer.

Propose(v) ∆=
∧ proposed ′ = proposed ∪ {v}
∧ unchanged 〈aVars, cVars, amLeader , sentMsg , learned , goodSet〉

Action Learn(l , v) represents the learning of a value v by learner l .

Learn(l , v) ∆=
∧ ∃ i ∈ RNum :

92

∃Q ∈ Quorum(i) :
∀ a ∈ Q :
∃m ∈ sentMsg : ∧m.type = “phase2b”

∧m.rnd = i
∧m.acc = a
∧ v v m.val

∧ learned ′ = [learned except ![l] = @ t {v}]
∧ unchanged 〈aVars, cVars, amLeader , sentMsg , proposed , goodSet〉

Action LeaderSelection allows an arbitrary change to the values of amLeader [c], for all
coordinators c. Since this action may be performed at any time, the specifiction makes
no assumption about the outcome of leader selection. (However, progress is guaranteed
only under an assumption about the values of amLeader [c].)

LeaderSelection ∆=
∧ amLeader ′ ∈ [Coord → boolean]
∧ unchanged 〈aVars, cVars, sentMsg , proposed , learned , goodSet〉

Action Fail(a) specifies the failure of agent a.

Fail(a) ∆=
∧ a ∈ goodSet
∧ goodSet ′ = goodSet \ {a}
∧ unchanged 〈aVars, cVars, amLeader , sentMsg , proposed , learned〉

Repair(a) specifies the recovery of agent a. For simplicity, we model the loss of state in
crnd [a], cval [a], or rnd [a] during recovery.

Repair(a) ∆=
∧ a /∈ goodSet
∧ goodSet ′ = goodSet ∪ {a}
∧ if a ∈ Coord

then ∧ crnd ′ = [crnd except ![a][1] = @ + 1, ![a][2] = 0]
∧ cval ′ = [cval except ![a] = none]

else unchanged cVars
∧ if a ∈ Acceptor

then ∧ rnd ′ = [rnd except ![a][1] = @ + 1, ![a][2] = 1]
else unchanged rnd

∧ unchanged 〈vrnd , vval , amLeader , sentMsg , proposed , learned〉

Action FailOrRepair allows the failure or recovery of an agent a. Since this action may
be performed at any time, the specification makes no assumption about which agents are
good. (However, progress is guaranteed only under an assumption about the value of
goodSet .)

FailOrRepair ∆= ∃ a ∈ (Coord ∪Acceptor) :
∨ Fail(a)
∨ Repair(a)

93

Action LoseMsg(m) removes message m from sentMsg . It is always enabled unless m is the
last message sent by an acceptor or coordinator in goodSet . Hence, the only assumption
the specification makes about message loss is that the last message sent by an agent in
goodSet is not lost. Because sentMsg includes messages in an agent’s output buffer, this
effectively means that a non-failed process always has the last message it sent in its output
buffer, ready to be retransmitted.

LoseMsg(m) ∆=
∧ ¬ ∨ ∧m.type = “phase1a”

∧ ∃ c ∈ union CoordQuorum(m.rnd) :
∧m = coordLastMsg(c)
∧ c ∈ goodSet

∨ ∧m.type = “phase2a”
∧m = coordLastMsg(m.coord)
∧m.coord ∈ goodSet

∨ ∧m.type ∈ {“phase1b”, “phase2b”}
∧m = accLastMsg(m.acc)
∧m.acc ∈ goodSet

∧ sentMsg ′ = sentMsg \ {m}
∧ unchanged 〈aVars, cVars, amLeader , proposed , learned , goodSet〉

Action OtherAction is the disjunction of all actions other than ones peformed by acceptors
or coordinators, plus the LeaderSelection action (which represents leader-selection actions
performed by the coordinators).

OtherAction ∆=
∨ ∃ v ∈ Cmd : Propose(v)
∨ ∃ v ∈ CStruct , l ∈ Learner : Learn(l , v)
∨ LeaderSelection
∨ FailOrRepair
∨ ∃m ∈ sentMsg : LoseMsg(m)

Next is the algorithm’s complete next-state action.

Next ∆=
∨ ∃ c ∈ Coord : CoordNext(c)
∨ ∃ a ∈ Acceptor : AcceptorNext(a)
∨ OtherAction

Formula Spec is the complete specification of the Multi-coordinated Paxos algorithm with-
out fairness.

Spec ∆= Init ∧2[Next]vars

The following are the safety properties of Generalized Consensus.

Nontriviality ∆= ∀ l ∈ Learner :
2(learned [l] ∈ Str(proposed))

Stability ∆= ∀ l ∈ Learner , v ∈ CStruct :
2((learned [l] = v)⇒ 2(v v learned [l]))

94

Consistency ∆= ∀ l1, l2 ∈ Learner :
2AreCompatible(learned [l1], learned [l2])

The following theorem asserts the correctness of the algorithm.

theorem Spec ⇒ 2(TypeOK) ∧Nontriviality ∧ Stability ∧ Consistency

95

	Introduction
	Paxos: Classic, Fast, and Generalized
	Classic Paxos
	The Problem
	The Solution

	Fast Paxos
	Generalized Paxos
	C-Struct Sets
	Generalized Consensus
	The Generalized Paxos Algorithm

	Multicoordinated Paxos
	A Consensus Implementation
	The Generalized Algorithm
	A Generic Broadcast Implementation
	A Simple Command History Representation
	Selecting val in Phase2a

	Practical Issues
	Use of multiple coordinators
	Collisions
	Liveness
	Reducing disk writes
	Setting rounds and quorums

	Conclusion
	Proof of Correctness
	Preliminaries
	Abstract Multicoordinated Paxos
	Distributed Abstract Multicoordinated Paxos
	Multicoordinated Paxos
	Collision Recovery
	Liveness

	TLA+ Specifications
	Helper Specifications
	Order Relations
	Command Structs
	Paxos Constants

	Abstract Multicoordinated Paxos
	Distributed Abstract Multicoordinated Paxos
	Basic Multicoordinated Paxos
	Complete Multicoordinated Paxos

