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An efficient algorithm for isometry-invariant matching of surfaces
is presented. The key idea is computing the minimum-distortion
mapping between two surfaces. For this purpose, we introduce the
generalized multidimensional scaling, a computationally efficient
continuous optimization algorithm for finding the least distortion
embedding of one surface into another. The generalized multidi-
mensional scaling algorithm allows for both full and partial surface
matching. As an example, it is applied to the problem of expres-
sion-invariant three-dimensional face recognition.

Gromov–Hausdorff distance � isometric embedding � iterative-closest-
point � partial embedding

The problem of comparison between deformable surfaces
has recently gained a lot of interest in pattern recognition,

especially in the fields of three-dimensional (3D) data analysis
and synthesis. It arises, for example, in medical imaging and 3D
face recognition (1). The fundamental question is how to
efficiently yet accurately quantify the similarity between a
given reference surface (“model”) and some other surface
(“probe”), usually a bent version of the model. We would like
to capture the distinction of the model and the probe intrinsic
properties associated with the metric structure of the surface,
while ignoring the extrinsic properties that describe the way the
surface is immersed into the ambient space and that often
change while the surface bends. A deformation that preserves
the intrinsic structure of the surface is called an ‘‘isometry.’’
Our goal is thus to define a computable isometry-invariant
measure of similarity between surfaces. Often, the problem is
even more complicated, when having the probe only partially
available (see Fig. 1). We refer to the latter setting as ‘‘partial
surface matching’’ and to the case where the whole probe is
available as ‘‘full surface matching.’’

One of the earliest attempts of isometry-invariant surface
matching is the classical ‘‘iterative closest point’’ (ICP) algorithm
(2). It addresses a particular case of the partial matching problem
where only rigid (Euclidean) isometries are allowed. An efficient
method for the construction of near-isometry-invariant repre-
sentations of surfaces [called ‘‘canonical forms’’ (CFs)] based on
Euclidean embeddings was presented in ref. 3, as a generaliza-
tion of ref. 4. This approach used a multidimensional scaling
(MDS) algorithm (5). MDS is closely related to dimensionality
reduction (6, 7) and can be performed in a computationally
efficient manner. Euclidean embeddings are used in theoretical
computer science for representing metric spaces usually arising
from geometry of graphs (8).

Recently, Mémoli and Sapiro (9) used a discrete probabilistic
approximation of the Gromov–Hausdorff (GH) distance (10) to
compare surfaces up to isometries. Their method is based on
evaluating all of the permutations between two sets of surface
samples, which is computationally expensive. Moreover, the GH
distance is inappropriate for partial matching.

One of the main contributions of this work is the ‘‘partial
embedding (PE) distance,’’ motivated by Gromov’s theory. For
its efficient computation, we introduce an extension of MDS,
which we call generalized MDS (GMDS). The key idea is to
measure the minimum possible distortion when trying to iso-

metrically embed one surface into another. By using GMDS, we
can handle full as well as partial surface matching; this ability is
one advantage over a straightforward use of the GH distance.

The paper includes six sections. Theoretical Foundations re-
views the theoretical background of isometry-invariant surface
matching. We define our PE distance and show its relation to the
GH distance. The next section, GMDS, introduces the GMDS
and addresses implementation and optimization considerations.
The following section focuses on partial matching of surfaces. In
Results, we show some experimental results. Finally, in Conclu-
sions, we summarize the main results.

Theoretical Foundations
Let S be a smooth connected and compact Riemannian surface
(2-manifold) with minimal geodesics C*S(s, s�) between every two
points s, s� on S. We define the geodesic distance function dS: S �
S 3 �� as dS(s, s�) � length{C*S(s, s�)}. For simplicity, we say
‘‘surface S,’’ implying the underlying metric space (S, dS) induced
by the Riemannian geometry of S. In our context, surfaces are
perceived from a point of view of metric rather than Riemannian
geometry; in other words, we do not consider the Riemannian
metric tensor, but the geodesic distances that it induces.

In practice, we work with sampled surfaces represented by
finite metric spaces. We use the following definitions: a subset
Sr � S is called an ‘‘r-covering’’ (or ‘‘r-net’’) of S if S � �s�SrBS(s,
r), where BS(s0, r) � {s � S : dS(s, s0) � r} is a ball of radius r
around s0 in S. A finite r-covering of S consisting of N points is
denoted by SN

r . The metric on SN
r is assumed to be the restricted

metric dS�SN
r (s, s�) � dS(s, s�) for all s, s� in SN

r . We refer to r as
the ‘‘sampling radius.’’ An arbitrary finite sampling of S con-
sisting of N points is denoted by SN, where S is called ‘‘contin-
uous’’ surface and SN a ‘‘discrete’’ one.
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Fig. 1. Illustration of the deformable surface matching problem.
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Given two surfaces S and Q , a transformation � : Q3 S is said
to have ‘‘distortion’’ � if

dis � � sup
q,q��Q

�dQ�q , q�� � dS���q� , ��q��� � � � . [1]

If in addition � is ‘‘�-surjective’’ (i.e., dS(s, �(Q )) � � for all s �
S), it is called an ‘‘�-isometry,’’ and S and Q are called ‘‘�-
isometric.’’ A transformation � : Q 3 S with dis� � 0 is called
an ‘‘isometry,’’ and S and Q admitting such a transformation are
called ‘‘isometric.’’

Desiderata. Let � denote the set of all compact surfaces, and �̃
denote the space of the equivalence classes of all isometries in
�, i.e., a space in which a point represents all of the isometries
of a compact surface. The similarity between two surfaces can be
measured by a nonnegative function d : � � � 3 ��. Slightly
abusing common terminology, we call d a ‘‘distance,’’ even if it
is not a metric (often, the terms distance and metric are used as
synonyms). Ideally, d should have the following properties:
Desideratum 1: Metric properties. d should be a metric on �̃, i.e.,
satisfy the following conditions: (i) d(S, Q ) � 0; (ii) d(S, Q ) �
0 if and only if S and Q are isometric; (iii) d(S, Q ) � d(Q , S); and
(iv) d(R , Q ) � d(R , S) � d(S, Q ).
Desideratum 2: Good similarity measure. (i) If d(S, Q ) � �, then S and
Q are c�-isometric, where c � 0; (ii) if S and Q are �-isometric,
then d(S, Q ) � c�. Note that this property is an extension of the
second metric axiom to �-isometries.
Desideratum 3: Partial matching. Given S� a patch of S, d(S, S�) � 0.
Desideratum 4: Sampling consistency. Given Sr a finite r-covering of
S, limr30 d(Sr, Q ) � d(S, Q ).
Desideratum 5: Efficiency. d should be efficiently computable, or at
least efficiently approximated. Practically, given SN and QN�,
d(SN, QN�) should be computable in polynomial time of
max{N, N�}.

Unfortunately, Desiderata 1–3 cannot be satisfied simulta-
neously. In practical applications, it appears that the ability to
perform partial matching (Desideratum 3) is the most important.
In the following, we show a distance that satisfies Desiderata 3–5
and partially satisfies Desiderata 1 and 2.

It is also important to note the following potential danger of
partial matching. Consider an extreme case of S� a smooth curve
on S. Obviously, if Desideratum 3 holds, then d(S, S�) � 0, but
because a curve can be isometrically embedded into any surface,
we are liable to obtain d(Q , S�) � 0 for an arbitrary Q which is
not necessarily an isometry of S. In other words, when the patch
S� is too small, partial matching can be meaningless.

GH Distance. Our starting point is the GH distance introduced by
Gromov (10). For two surfaces S and Q , it is defined by

dGH�S, Q � � inf
Z,�,�

dH
Z ���S� , ��Q �� , [2]

where � : S 3 Z and � : Q 3 Z are isometric embeddings into
the metric space Z, and dH

Z (A, B) 	 max{supa�A dZ(a, B),
supb�B dZ(b, A)} is the Hausdorff distance between two subsets
A and B of Z. For bounded metric spaces S and Q, the GH
distance can be defined alternatively (11) as

dGH�S, Q � �
1
2

inf
�:S3Q
�:Q3S

max
dis � , dis � , dis�� , ��� , [3]

where dis(�, �) 	 sups�S,q�Q�dS(s, �(q)) � dQ(q, �(s))�.

Proposition 1. (i) dGH is a finite metric on �̃; (iia) if dGH(S, Q ) �
�, then S and Q are 2�-isometric; (iib) if S and Q are �-isometric,
then dGH(S, Q ) � 2�; (iii) �dGH(Sr, Q ) � dGH(S, Q )� � r.

For proof, see ref. 11. The GH distance is a good candidate for

our ‘‘ideal’’ similarity measure between surfaces; from Proposi-
tion 1, it follows that it satisfies Desiderata 1, 2, and 4. However,
there are two main disadvantages. First, the definition in Eq. 2
is hard to compute (Desideratum 5). Secondly, dGH does not
allow partial matching between surfaces (Desideratum 3). Given
a surface S and a patch S� � S such that diam(S{ S�) � R (i.e.,
S� is an R-covering of S), we can have dGH(S, S�) � R, although
we would have liked the distance between the surface and its
patch to be zero.

PE Distance. Our assumption was that we have a model surface S
and a probe surface Q , which can be an isometrically bent patch
of S. We have shown the disadvantage of the GH distance in such
a setup. To allow for partial matching, we define the PE distance

dPE�S, Q � � 1
2

inf
�:Q3S

dis � .

Intuitively, dPE measures the metric distortion obtained trying to
embed Q into S in the ‘‘most isometric’’ way. It can be considered
as only part of the GH distance, hence the name ‘‘partial
embedding.’’

Proposition 2. Given compact surfaces S, Q , and R , dPE satisfies the
following: (i) dPE(S, Q ) � 0; (ii) dPE(S, Q ) � 0 if and only if Q is
isometrically embeddable into S; and (iii) dPE(S, Q ) � dPE(S, R ) �
dPE(R , Q ).

The proof closely follows the proof of theorem 7.3.30 in ref.
11. Still, dPE is not symmetric, and furthermore, not a metric on
�̃. Yet, it satisfies some important metric properties, namely:
isometry invariance (ii) and a nonsymmetric version of the
triangle inequality (iii). Moreover, because dPE(S, Q ) � dGH(S,
Q ), it trivially follows that if S and Q are �-isometric, then dPE(S,
Q ) � 2�. The converse appears to be true under some more
restrictive assumptions.

Given Qr� an r�-covering of Q and Sr an r-covering of S, the
distance dPE satisfies the following important properties.

Proposition 3. (i) dPE(S, Q ) � r� � dPE(S, Qr�) � dPE(S, Q ); (ii)
dPE(S, Q ) � dPE(Sr, Q ) � dPE(S, Q ) � r.

Note that a particular case of Proposition 3i is dPE(Q , Qr�) � 0.
By virtue of this property [unlike the corresponding property
dGH(Q , Qr�) � r of the GH distance] dPE can be used for partial
matching. From Proposition 3 it also follows that dPE is consistent
with sampling, namely, given SN

r and QN�
r� , two finite coverings of S

and Q, respectively, dPE(S, Q) � r� � dPE(SN
r , QN�

r� ) � dPE(S, Q) �
r. In other words, if we have a sufficiently dense finite sampling of
S and Q, dPE(SN

r , QN�
r� ) is a sufficiently good approximation of the

continuous dPE(S, Q).

GMDS
We now address a practical question of computing the PE
distance dPE, starting from the CF approach (3). As an input, we
assume to be given two sampled surfaces SN and QN� (repre-
senting the continuous surfaces S and Q ) and the geodesic
distances between the samples {si}i�1

N and {qi}i�1
N� , represented by

an N � N matrix DSN
� (dSN

(si, sj)) and an N� � N� matrix DQN�
,

respectively.

CF and MDS. In ref. 3, a three-stage algorithm for near-isometry-
invariant surface matching was proposed. First, each of the
sampled surfaces is mapped into an m-dimensional Euclidean
space by a near-isometric embedding (‘‘f lattening’’), obtained by
minimization of the stress function

��X; DSN
� �

1
N �

i�j

�d�m�xi, xj� � dS�s i, s j��
2, [4]
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with respect to X. Here X denotes an N � m matrix of
coordinates in �m and d�m denotes the Euclidean metric. The
stress can be thought of as an L2 measure of the distance
distortion caused by such an embedding. Algorithms minimizing
the stress � are known as MDS (5). XSN

� argminX�(X; DSN
) was

called the CF of S and minX�(X; DSN
) the ‘‘embedding error.’’

Note that both CFs XSN
and XSN�

are defined up to a Euclidean
isometry (translation, rotation, and reflection). The second
stage of the CF algorithm is an alignment of the CFs in �m. It
is obtained by diagonalizing the matrix of the second-order
moments of each CF and reordering the axes such that the
diagonal values are decreasing. At the third stage, a distance
based on high-dimensional moments (12) is used to compare
between XSN

and XSN�
after alignment. We denote the distance

computed as rigid matching between the CFs of S and Q by
dCF(S, Q ).

Strictly speaking, the CF algorithm satisfies only Desideratum
5: it is very efficient computationally. Unlike alternative com-
binatorial optimization, MDS is a continuous optimization prob-
lem that can be solved by using standard optimization methods.
Recently, a very fast multigrid implementation of the CF algo-
rithm was presented (13). However, the CF algorithm lacks true
isometry invariance, because, in general, a surface cannot be
isometrically embedded into �m (8). Therefore, this ‘‘f lattening’’
introduces a distortion. Partial matching is also complicated
using this method.

GMDS. The choice of a Euclidean embedding space was followed
by other choices, like spherical (14, 15) and hyperbolic (16)
spaces, which proved to be advantageous for certain types of
surfaces. The leitmotif of these approaches was choosing an
embedding space in which geodesic distances can be expressed
analytically. In practice, this possibility exists only in very few
spaces.

So far, we have a good distance dPE, which satisfies our
Desiderata on one hand and an efficient MDS framework for
computing Euclidean embeddings on the other. Next, we unite
theory and practice. We consider a generalization of the CF
algorithm, where surface Q is embedded into another surface S.
We call this procedure GMDS.

Similarly to the Euclidean case, we define the ‘‘generalized
stress’’ as

�p�U; DQN�
, dS, W�

� � 1� j�iwij
�
j�i

�wij�dS�ui, uj� � dQ�qi, qj���
p�

1
p
, [5]

for 1 � p � 
, and

�
�U; DQN�
, dS, W� � max

i, j�1, . . . N�

wij�dS�ui, uj� � dQ�qi, qj� � ,

[6]

for p � 
, where the matrix U represents the positions of N�
points on S in some local or global parametric coordinates ui, and
W � (wij) is a symmetric matrix of nonnegative weights. Note two
major differences between the generalized stress and the stress
defined in Eq. 4. First, the metric in the embedding space is not
given analytically and is approximated numerically. Second, we
replaced the L2 norm with a general Lp norm. Furthermore, the
embedding space is 2D, whereas in the CF algorithm the
embedding space is usually at least 3D.

Choosing p � 
 and W � 1N��N� we easily obtain

dPE�S, Q N�� �
1
2

min
U

�
�U; DQ N�
, dS, 1N��N�� . [7]

In other words, minimization of the generalized stress allows
computing dPE. We discuss numerical optimization algorithms in
the next section. Moreover, it is possible to use a similar
procedure to compute dGH (A.M.B., M.M.B., and R.K., unpub-
lished results). In practice, it may appear that using other norms
(e.g., p � 1 or 2) is advantageous. In Results, it is demonstrated
that we can use �p instead of �
. We denote the distances
computed in this way by dPE

p .
An important issue is the choice of the parametric coordinate

system. For objects acquired by a range sensor, a global param-
eterization U3 S (e.g., U � [0, 1]2), is usually readily available.
Global parameterization for objects with simple topology (e.g.,
homeomorphic to a disk or a sphere) is also very natural and can
be computed from a general mesh by a variety of efficient
algorithms (17). For general triangulated meshes with more
sophisticated topology, a single global coordinate system may
not suffice. In this case, we propose to resort to a local coordinate
system, in which each point on the polyhedral surface is repre-
sented by an index of the triangle to which it belongs and a vector
in barycentric coordinates of that triangle.

Computational Aspects. For 1 � p � 
, the generalized stress (5)
is minimized by iterative gradient-type optimization methods.
Here, for simplicity, we show the projected gradient descent
algorithm for a global parameterization U3 S; in practice, more
efficient optimization methods such as conjugate gradients or
quasi-Newton can be used (18). Note that because the problem
is nonconvex, such methods do not necessarily converge to the
global minimum. Local convergence is a common property of
MDS algorithms in general (5). There are standard techniques
to overcome this problem, one of which is multiscale or multigrid
optimization (13, 19).

For globally parameterized surfaces, the basic projected gra-
dient descent step has the form

U�k�1� � PU� U�k� � 	 �k��U�p�U�k��� , [8]

where k is the iteration number. 	(k) is the step size on iteration
k; it is computed by using line search (18). PU is a projection
operator onto the parameterization domain U. �U�p denotes the
gradient of �p with respect to U; its computation involves the
distance function dS and its derivatives. When local parameter-
ization is used, the optimization algorithm becomes more elab-
orate because it requires unfolding of triangular faces of the
mesh and transformations from barycentric coordinate systems
of adjacent triangles to compute the stress along a polylinear
path.

For p � 
, we rewrite the problem as constrained optimization
with 2N� � 1 variables, a linear objective, and N�(N� � 1)
nonlinear inequality constraints using an artificial variable 
,

min

�0


 s.t. �wij�dS�ui, uj� � dQ�qi, qj�� � � 
 , [9]

for all j � i. The new problem can be solved by using standard
constrained optimization methods, e.g., penalty-barrier or aug-
mented Lagrangian (18).

A crucial part of the GMDS problem is the computation of
geodesic distances. We use the ‘‘fast marching method’’ (FMM),
which computes geodesic distances on surfaces by solving the
eikonal equation on general triangulated meshes (20). For
surfaces with global parameterization, an efficient parametric
version of FMM can be used (21).

The geodesic distances dQ(qi, qj) between the fixed sample
points of Q can be precomputed by using FMM. However, the ui
coordinates representing �(qi) on S change during the iterations
of the numerical minimization algorithm. Thus, the distances
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dS(ui, uj) have to be reevaluated at every iteration. This com-
putation is critical for the GMDS. For that goal, we developed
a numerical procedure we termed ‘‘three-point geodesic distance
approximation’’ (detailed in A.M.B., M.M.B., and R.K., unpub-
lished results). The idea is to produce a C1-approximation for
dS(ui, uj) and its derivatives, interpolating their values from the
matrix DS.

Partial Matching of Surfaces
Let Q� be a patch of the probe surface Q and Q �N� be a finite
sampling of Q�. We consider the distance dPE(S, Q �N�). By our
assumption, the metric on Q �N� is given by restricting dQ to Q �N�,
i.e., dQ�N�

� dQ�Q�N�
. However, dQ�N�

is computed numerically on
Q �N� and can be inconsistent with dQ�Q�N�

. Specifically, geodesics
C*Q(qi�, qj�) that pass through points not in Q� give rise to
inconsistent distances, for which dQ�N�

(qi�, qj�) � dQ(qi�, qj�) (see
Fig. 2 Left). In pathological cases, the inconsistency can be
arbitrarily large, such that the partial matching makes little sense
(see example in Fig. 2 Right). To overcome this problem, the
inconsistent distances dQ�N�

(qi�, qj�) are excluded defining the
corresponding weights wi�j� � 0 in the generalized stress (5).

A practical problem is how to locate the inconsistent distances.
Here, we address two possible scenarios: (i) the original surface
Q or its sampled version is available, and (ii) only the patch Q�N�

is available. The first scenario occurs when one intentionally
wishes to exclude parts of S. In this case, the FMM is used first
to compute the distances dQ(qi, qj) on Q and then to compute the
distances dQ�N�

(qi, qj) on Q�. The weights are defined by

wij � �1 �dQ�qi, qj� � dQ�N�
�qi, qj�� � �

0 �dQ�qi, qj� � dQ�N�
�qi, qj�� � �

, [10]

for all i, j � 1, . . . N�, where � stands for the FMM accuracy.

The second scenario is more general, yet, also a more chal-
lenging one. When the original surface Q is not given, we need
to rely on the geodesics of Q� [in practice, the geodesics are found
by backtracking (22)]. By using the above argument, we define
the weights by

wij � �0 C*Q��qi, qj� � 
Q� � �
1 else , [11]

for all i, j � 1, . . . N�, i.e., excluding the geodesics that touch the
boundary 
Q�.

Results
Embedding of Spherical Surfaces. In the first experiment, we
measured the distance between a unit 2D sphere sampled at
3,200 points, and spheres with radii in the range 0.5 � 2.5
sampled at a smaller number of points according to the ‘‘farthest
point sampling’’ strategy (23) with random seed. Ten random
samplings were used for each radius. Two distance measures
were compared as follows: dPE

2 (obtained by the minimization of
�2) with 100 points and dCF with 100, 250, and 500 points. dPE

2 was
computed by using local representation of points in barycentric
coordinates.

Fig. 3 presents the normalized distances as a function of the
sphere radius. The PE distance appears to be extremely sensitive
to the geometry of the surfaces. A change as small as 0.1% in the
spherical patch radius (from 1.000 to 0.999) increases dPE

2 by a
value exceeding the variance due to sampling. Similar results are
achieved by using dPE

1 and slightly inferior with dPE. For com-
parison, with the same number of points (100), dCF is unable to
discern between spheres differing in radius by �10%. Increasing
the number of points to 500 makes dCF sensitive to radius
differences of �2.64%, which is still one order of magnitude
below the sensitivity of dPE

2 .

Face Recognition Experiment. In ref. 1, we argued that human facial
expressions can be approximated as isometric deformations of
the face. According to this model, an isometry-invariant surface
matching results in nearly expression-invariant face recognition.

In the second experiment, we applied our GMDS approach to
a toy 3D face recognition problem of 20 faces taken from the
Notre Dame database (24, 25). This experiment is a proof of
concept rather than a real face recognition system, in which
tune-up plays a crucial role. As models, four different faces were
used. Each model contained �4,000 points and was represented
using global parameterization. As probes, faces of the same
subjects with different facial expressions were used (four probes
per subject). The probes were cropped by using geodesic mask
(1) (leaving the nose and the forehead region) and subsampled
by using farthest point sampling to 53 points. The distances were
weighted as described in Partial Matching of Surfaces. All dis-

Fig. 2. Partial matching of a planar patch with a plane. (Left) Correct use of
weights (shown in solid red is an inconsistent distance that must be excluded
from the stress computation and in dashed blue is the corresponding correct
distance). (Right) The embedding result when inconsistent distances are not
excluded.

Fig. 3. Normalized distance between a densely sampled unit sphere and spheres of different radii measured using dPE
2 (top heavy line) and dCF (three bottom

lines). The numbers on the plots stand for the number of samples in the embedded surface.
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tances were computed numerically by a version of parametric
FMM (21). We tested two PE distances: dPE and dPE

2 . The
generalized stress function �p and its gradient were implemented
in C. For 53 points, the computation time of �p and ��p is �20
msec on a Pentium IV PC.

Fig. 4 presents the similarity matrix using dPE (second row) and
dPE

2 (third row). Note that in both cases a perfect separation
between different subjects is possible; the recognition error
(measured as ‘‘equal error rate,’’ or EER; see ref. 26 for
definition) in this experiment is zero. It is worthwhile noting the
small number of points used in our approach, compared with the
thousands of points required in the CF algorithm (1, 3) for
similar matching accuracy.

An example of embedding probe surfaces of two different

subjects into a model surface are shown in Fig. 5. The figure
depicts the ‘‘local stress’’ value �
(k) � maxi�dS(uk, ui) � dQ(qk, qi)�
at each point k, i.e., the contribution of the kth point to �
. We
observe that the stress is significantly higher when a probe of a
different subject is embedded into the model surface.

Conclusions
We introduced a previously undescribed framework for isome-
try-invariant surface matching. The core of our computational
framework is GMDS, a generalization of standard MDS algo-
rithms. We exemplified the use of GMDS on the problem of
expression-invariant 3D face recognition.

Our approach favorably compares with previous attempts to
perform isometry-invariant surface matching. First, our PE
distance naturally allows for isometry-invariant matching of
partially missing surfaces. Secondly, the properties of our dis-
tance and its computation are completely deterministic. Thirdly,
GMDS used for the PE distance computation is a continuous
optimization problem and can be solved very efficiently by using
standard optimization methods. In light of recent results (13), we
expect a significant performance boosting by using multigrid
methods.

Finally, we note that the same numerical framework can be
applied for computing the exact GH distance between surfaces
(A.M.B., M.M.B., and R.K., unpublished results).
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reading of the manuscript, Facundo Mémoli and Vladimir Lin for fruitful
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Fig. 4. Toy face recognition experiment. (Top) Model facial surfaces. (Middle
and Bottom) Similarity matrices obtained using dPE (Middle) and dPE

2 (Bottom),
respectively. All values are shown in logarithmic scale.

Fig. 5. Local stress map shown on the facial surface and in the parameter-
ization domain in logarithmic scale. (Left) Embedding of probe 1.4 (subject 1,
probe 4) into model 1. (Right) Embedding of probe 2.4 into model 1.
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