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Abstract

The Adaptive Multiple Importance Sampling (AMIS) algorithm is aimed at an
optimal recycling of past simulations in an iterated importance sampling scheme. The
difference with earlier adaptive importance sampling implementations like Population
Monte Carlo is that the importance weights of all simulated values, past as well as
present, are recomputed at each iteration, following the technique of the determinis-
tic multiple mixture estimator of Owen and Zhou (2000). Although the convergence
properties of the algorithm cannot be investigated, we demonstrate through a chal-
lenging banana shape target distribution and a population genetics example that the
improvement brought by this technique is substantial.
Keywords: adaptive importance sampling, banana shape target, deterministic mix-
ture weights, particle filters, population genetics, population Monte Carlo, sequential
Monte Carlo.

1 Introduction

Importance sampling (see for instance Ripley (1987)) is a well-established method used to
overcome the difficulties connected with the complexity of simulating from a target distri-
bution Π. Its shortcomings are also well-documented, first and foremost the degradation
of its performances against the dimensionality of the problem. Given an importance dis-
tribution Q, such that Π is absolutely continuous with respect to Q, importance sampling
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is based on samples yi ∼ Q. The corresponding importance weights ωi = π(yi)/q(yi) are
defined in terms of π(·) and q(·), the densities of, respectively, the target and the impor-
tance distributions with respect to the same dominating measure ν. The distribution of
those weights customarily deteriorates as the dimension of yi increases (yi takes values in
Rp). Since, in practical settings, the fine tuning of the importance distribution against the
target is difficult, alternative Markov chain Monte Carlo approaches have often been ad-
vocated as being more appropriate for large dimensional problems (see Robert and Casella
(2004)) but recent attempts have been made to construct importance functions that au-
tomatically adapt to the target distribution based on earlier importance samples (see, e.g.
Ortiz and Kaelbling, 2000, Liu et al., 2001, Pennanen and Koivu, 2004, Rubinstein and
Kroese, 2004). Those methods are called adaptive importance sampling but they also
relate to particle filters (Gordon et al., 1993, Doucet et al., 2001) and sequential Monte
Carlo methods (Doucet et al., 2000, Chopin, 2002, Del Moral et al., 2006).

There are many different strategies or devising adaptive importance sampling algo-
rithms. For instance, the generic Population Monte Carlo (PMC) scheme of Cappé et al.
(2004) can be implemented as the D-kernel (Douc et al., 2007a,b) algorithm, whose goal
is to fit a mixture of D given kernels to the target in terms of either minimum variance
or minimum Kullback-Leibler divergence. While this algorithm is shown to converge to
the optimal solution (meaning either minimum variance or minimum Kullback-Leibler di-
vergence) within the class of D-kernels, it is restrictive to a specific type of importance
distributions that may fail to properly represent the target.

In this paper, we propose a novel perspective to pool together importance samples from
different importance sampling distributions. Those various importance samples yt

i ∼ Qt

(0 ≤ t ≤ T , 1 ≤ i ≤ Nt) are associated with importance weights

ωt
i = π(yt

i)/qt(y
t
i) , (1)

where qt and π are proper densities. While those T samples can be crudely merged by
keeping these original importance weights (Robert and Casella, 2004, Chapter 14), there
exists a more refined and stabilising alternative called deterministic multiple mixture due
to Veach and Guibas (1995) and popularised by Owen and Zhou (2000).

This alternative solution is similar to the defensive sampling approach of Hesterberg
(1995) in that it modifies the denominator of the importance weight ωt

i from the density
value in yt

i, qt(y
t
i), to a mixture of all the densities that produced the T different samples,

namely

1∑T
j=0Nj

T∑
l=0

Nlql(y
t
i) , (2)

resulting in the (so-called deterministic) mixture weight

ωt
i = π(yt

i)

/
1∑T

j=0Nj

T∑
l=0

Nlql(y
t
i) . (3)
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This idea has originally been proposed by Veach and Guibas (1995) and is validating by
the unbiasedness property

E

[
1∑T

j=0 Nj

T∑
t=0

Nt∑
i=1

ωt
ih(y

t
i)

]
=

T∑
t=0

Nt

∫
h(y)

π(y)∑T
l=0 Nlql(y)

qt(y)ν(dy) =

∫
h(y)π(y)ν(dy) = EΠ [h(y)] .

(4)

The name deterministic mixture weights stems from the fact that the weights of the
mixture (2) are neither estimated nor varying over time (which is coherent given that the
algorithm is not sequential). This is a major difference with the PMC schemes of Douc
et al. (2007a,b) where the weights of the proposals are optimised against an efficiency
criterion like the Kullback–Leibler divergence. Deterministic mixture is thus misses this
adaptive feature and our proposal‘ called AMIS (for Adaptive Multiple Importance Sam-
pling) aims at bridging this gap.

When compared with the previous works on multiple mixtures, the novelty in AMIS is
that the family (Qt) of importance sampling distributions is constructed sequentially and
adaptively. This means that the importance sampling distribution used at each iteration
t (1 ≤ t ≤ T ) is derived from the past t− 1 importance weighted samples. More precisely,
at each step t,

i. the importance weights of all (present and past) simulated variables yl
i (1 ≤ l ≤

t , 1 ≤ i ≤ Nt) are modified, based on the current collection of proposals (importance
sampling distributions) (Ql)0≤l≤t, and

ii. the entire collection of importance samples partakes to the construction of the next
importance function, Qt+1+.

Note that, while (ii) is a classical feature of Population Monte Carlo algorithms, most
implementations that derive Qt from past iterations (Douc et al., 2007b, Cappé et al.,
2008) restricted to use only samples produced at the previous generation, t− 1. However,
using the entire past of the simulation process provides a natural stabilisation that speeds
up convergence but require a much more involved mathematical machinery. A similar
type of methodology has been independently studied by Raftery and Bao (2010).

In most practical settings where importance sampling is implemented, primarily in
Bayesian estimation, a self-normalized estimator is used instead, because the density π
of the target is known only up to a normalizing constant. In such cases, the importance
weights can be evaluated only up to this normalizing constant and thus need to reweighted
by the sum of the weights. By construction, the self-normalized estimator does not depend
on this constant. In the forecoming examples, we therefore always use the self-normalized
AMIS estimator, even for the benchmark banana shape target considered in §6.

The plan of the paper is as follow: we detail the reasons for promoting multiple
mixture importance sampling in §2 and analyse some associated algorithms in §3, while
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discussing their theoretical properties in §5. The performances of the AMIS algorithm are
tested in §6 over a challenging banana shape target distribution and in §7 over a realistic
population genetic application. We stress that the latter has motivated the development
of the proposed methodology. Indeed, the likelihood of a genetic model most often is not
tractable and regardless of the approximation method used, its derivation involves a non-
negligible cost. We point out that Sirén et al. (2010) have resorted to our AMIS algorithm
to handle complex population genetics models, avoiding the dramatic consequences of a
poor first proposal.

2 Multiple mixtures

The modification in the importance weights from the original ratios (1) to the mixture
ratios (3) may sound surprising or even paradoxical in that the simulated values (and
therefore the distributions used to simulate those) have not changed. We thus detail
in this section the motivations for using multiple mixtures. There exists a fundamental
methodological difficulty in using several importance functions at once. Indeed, if Π is the
target density and Q0, . . . , QT are T different importance functions, samples y0

1, . . . ,y
0
N0

,

. . ., yT
1 , . . . ,y

T
NT

that are simulated from these importance functions, with associated stan-
dard importance weights ωt

i = π(yt
i)/qt(y

t
i), can be merged together in that the empirical

distribution function ∑
t,i

ωt
iδyt

i
(y)

/∑
t,i

ωt
i

produces in the marginal sense an output approximatively distributed from the target π.
Unfortunately, this property is not sufficient to ensure that the resulting sample performs
satisfactorily. For instance, if one of the importance functions qt is associated with an
infinite variance in the weights ωt

i , i.e. if E[(wt
i)

2] = +∞ for one 0 ≤ t ≤ T , the potentialy
very large weights resulting from this importance experiment will remain very large in the
cumulated sample, no matter how efficient the other importance functions are. Therefore,
the poorly performing sample will overwhelmingly dominate the other samples in the final
approximation and thus ruin the overall performances of the method. The conclusion of
this point is that the raw mixing of importance samples and of their importance weights,
when using different proposals, can be quite harmful, when compared with using a single
sample, even when most proposals are efficient.

As discussed at large in Owen and Zhou (2000), using a deterministic mixture as
a representation of the production of the simulated sample has the potential to exploit
the most efficient proposals in the sequence Q0, . . . , QT without rejecting any simulated
value nor sample, while reducing the variance of the corresponding estimators. The poorly
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performing importance functions are simply eliminated through the erosion of their weights

π(yt
i)

/
1∑T

j=0Nj

T∑
l=0

Nlql(y
t
i)

as T increases. Indeed, for all Ni ≥ 1 not necessarily equals, if q0 is the poorly performing
proposal, while the ql’s (l > 1) are good approximations of π, for a value y0

i such that
π(y0

i )/q0(y0
i ) is large, because q0(y0

i ) is small, π(y0
i )
/
{N0q0(y0

i ) + . . . + NT qT (y0
i )} will

behave like π(y0
i )
/
{N1q1(y0

i ) + . . .+NT qT (y0
i )} and decrease to zero as T increases.

3 The AMIS algorithm

As explained in the introduction, the idea at the core of the AMIS algorithm is that, for
each time-step t, we should update not only the weights ωt

i of the Nt current particles, yt
i,

but also the weights ωl
i of all past particles yl

i, 0 ≤ l ≤ t− 1. Our algorithm can thus be
interpreted as a Rao-Blackwell type of importance sampling where the whole sample of∑T

j=0Nj points can be envisioned of as being homogeneously sampled from a deterministic
mixture made of the overall sum of proposals. (Once again, the term deterministic mixture
is a misnomer in that the overall sample is not the outcome of a mixture simulation.)

The major difference with various PMC versions (Cappé et al., 2004, Douc et al.,
2007a,b, Cappé et al., 2008) is that every single simulated value is recycled and reweighted
at every step of our iterative algorithm by virtue of selecting the appropriate deterministic
mixture. Indeed, at each iteration t of the algorithm, a new adaptive importance sampling
distribution is constructed by using, not only the particles corresponding to the current
iteration, but all the weighted particles, based on a well-chosen efficiency criterion as in
earlier PMC versions (Cappé et al., 2008). In the most standard case when the proposal Qt

is parameterised, i.e. when Qt is of the form Q(θt) within a parametric family of distribu-
tions {Q(θ),θ ∈ Θ}, the adaptivity consists in estimating θt by θ̂t at each iteration, using
all the weighted samples accumulated so far; this estimation is obtained by using specific
criterion like moment matching, variance minimization or Kullback-Leibler minimization.

A pseudo-code representation of the generic AMIS algorithm is given as follows:

Algorithm 1. Generic AMIS

At iteration t = 0,

1) Independently generate N0 particles y0
i (1 ≤ i ≤ N0) from Q0.

2) For 1 ≤ i ≤ N0, compute

δ0
i = N0q0(y

0
i ) and ω0

i = π(y0
i )

/
q0(y

0
i ) .
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3) Compute the importance sampling parameter estimate θ̂
0
of the parametric family {Q(θ),θ ∈ Θ}

using the weighted particles ({
y0

1, ω
0
1

}
, . . . ,

{
y0
N0
, ω0

N0

})
and a well-chosen estimation criterion.

At iteration t = 1, . . . , T

1) Independently generate Nt particles yt
i (1 ≤ i ≤ Nt) as x

t
i ∼ Q

(
θ̂
t−1
)
.

2) For 1 ≤ i ≤ Nt, compute the multiple mixture at xit

δti = N0q0(y
t
i) +

t∑
l=1

Nlq
(
yt
i ; θ̂

l−1
)

and derive the importance weight of particle yt
i ,

ωt
i = π

(
yt
i

)/[
δti

/ t∑
j=0

Nj

]
.

3) For 0 ≤ l ≤ t− 1 and 1 ≤ i ≤ Nl, update the past importance weights as

δli ←− δli +Nlq
(
yl
i; θ̂

t−1
)

and ωl
i ←− π

(
yl
i

)/[
δli

/ t∑
j=0

Nj

]
.

4) Compute the parameter estimate θ̂
t
using all the weighted particles({

y0
1, ω

0
1

}
, . . . ,

{
y0
N0
, ω0

N0

}
, . . . ,

{
yt

1, ω
t
1

}
, . . . ,

{
yt
Nt
, ωt

Nt

})
and the same estimation criterion.

After T iterations of the AMIS algorithm, for any Π-integrable function h, the self-
normalized AMIS estimator of EΠ(h(y)) =

∫
h(y)π(y)ν(dx) is:

̂EΠ(h(y)) =
1∑T

t=0

∑Nt
i=1 ω

t
i

T∑
t=0

Nt∑
i=1

ωt
ih(yt

i) . (5)

Since the above algorithm is set in generic terms, we describe a first special case that
applies to many settings and can be seen as a vanilla AMIS algorithm. As in the most
recent PMC algorithm of Cappé et al. (2008), the proposal distribution Q is a Student’s t
proposal, T3(µ,Σ) whose mean µ and covariance Σ parameters are updated by estimating
both first moments of the target distribution Π using self-normalized AMIS estimators:
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θ̂
t

=
(
µt,Σt

)
and

µ̂t =

∑t
l=0

∑Nl
i=1 ω

l
iy

l
i∑t

l=0

∑Nl
i=1 ω

l
i

and Σ̂t =

∑t
l=0

∑Nl
i=1 ω

l
i(y

l
i − µ̂t)(yl

i − µ̂t)T∑t
l=0

∑Nl
i=1 ω

l
i

. (6)

Note that the degrees of freedom of the t distribution are always set to 3 as the lowest
value allowing for finite first moments but they could also be estimated at each iteration.
Moreover, instead of using the previous “moments matching” criterion, we can also used
the Kullback-Leibler divergence between Π and Q in order to choose the parameter θ =
(µ,Σ),

div(Π, Q(θ)) =

∫
log

π(y)

q(x;θ)
π(y) ν(dy) .

Here, the best choice for the parameter θ is the maximum likelihood estimate of θ where
the observations are weighted by their corresponding importance weight. These two dif-
ferent strategies give essentially the same results.

Quite obviously and as illustrated by the next section, more elaborate proposals are
possible, depending on the information available on Π. For instance, if the potential for
multimodality of the target Π is high enough, a mixture of Student’s t distributions as in
Cappé et al. (2008) would be more appropriate. When dealing with a Bayesian hierarchical
model, creating classes (or blocks) of components of the parameter in agreement with the
hierarchical levels (as in Gibbs sampling) and designing the Student’s t proposals block
by block should also be more efficient.

Similarly, matching the expectation and the covariance structure of the Student’s pro-
posal distribution with both first moments of the target distribution is only one among
many efficiency criteria that can be used to calibrate the parameters of the proposal dis-
tribution at each step of the algorithm. For instance, as done in the next section, we
can alternatively minimise the Kullback-Leibler divergence between the target and the
proposal distribution following the approach of Cappé et al. (2008).

Although we do not elaborate on this possible improvement, note also that, once the
weighted sample based on

∑T
t=0Nt simulations is obtained, it is possible to apply a final

clustering (standard) algorithm on this sample, based on a Gaussian mixture representa-
tion. Those clusters can be used to estimate local covariance and mean structures and then
simulate a final and global sample based on the cluster representation but using Student’s
t distributions. Because all weights are controlled, we can then merge this final sample
with the sequence of earlier samples without losing the deterministic representation.

A special version of interest of the AMIS algorithm is based on the used of mixtures
of multivariate Gaussian densities. That is

q(y;θ) =

k∑
i=1

ρiϕ(y;µi,Σi) ,

k∑
i=1

ρi = 1 ,

7



where ϕ(·;µ,Σ) denotes a multivariate Gaussian density with mean µ and covariance
matrix Σ, as in the D-kernel approach to PMC algorithms of Cappé et al. (2008). We also
use the Kullback-Leibler divergence between Π and Q in order to choose the parameter
θ = (ρ1, . . . , ρk, µ1, . . . , µk,Σ1, . . . ,Σk),

div(Π, Q(θ)) =

∫
log

π(y)

q(y;θ)
π(y) ν(dy) .

As already mentioned, the best choice for the parameter θ is then the maximum likelihood
estimate of θ. In the AMIS setting, the observations are weighted by their corresponding
importance weight: at iteration t the whole sequence of samples yl

i (0 ≤ l ≤ t) with
their updated weights ωl

i is used inside a weighted EM algorithm, which is solved using
the mixmod software (Biernacki et al., 2006). The number k of components used for the
mixture can be either set in advance or, more realistically, estimated at iteration t = 0
by the ICL criterion of Biernacki et al. (2000) and a substantial number N0 of iterations.
We do not reproduce the earlier pseudo-codes for this special case since the differences are
minimal. Note that the extension to a mixture of t densities is equally feasible since there
exists a corresponding EM algorithm (Peel and McLachlan, 2000).

4 Initialization

A primary difficulty with adaptive importance algorithms is that the starting distribution
has a major impact on the resulting performances of those algorithms. Due to the “what-
you-get-is-what-you-see” nature of such algorithms, it is quite difficult to recover from a
poor starting sample, the adaptivity focussing only on the visited parts of the simulation
space. Therefore, we strongly require that a significant part of the computing effort be
spent on the initialization stage.

In order to calibrate this computing effort, we use the effective sample size (ESS).
For a sample of size N0 based on the importance distribution Q0, the ESS is defined by

N0

1 + VQ0 [π(y)/q0(y)]
(Hesterberg, 1995, Liu, 2001) and it corresponds to the size of an

equivalent iid sample simulated from Π. This measure of efficiency does not depend on h
and, in practice,

VQ0 [π(y)/q0(y)] =

∫
{π(y)/q0(y)− EQ0 [π(y)/q0(y)]}2 q0(y)ν(dy)

can be estimated using the coefficient of variation of the importance weights.
The initialization solution we propose proceeds through two steps:

1. Independently generate N0 uniform samples on the p-dimensional hyper-cube,
U1, · · · , UN0 ;
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2. Use an inverse logistic transformation, with scale parameter s, to map these points
on Rp, independently for each coordinate ;

3. Maximize the ESS of the points with respect to the scale parameter of the logistic
distribution and obtain s∗ ;

4. Use as starting cohort of particles F−1(Ui; s
∗), i = 1, · · · , N0 where

F−1(u; s) = s log(u/(1− u)) (vectorized expression u ∈ Rp).

Note that to maximize the ESS is equivalent to minimize the variance of the importance
weights. Moreover, in order to maximize the ESS, we only need simulate a single logistic
sample since we can adapt the scale of this sample by mere multiplication. Obviously,
this solution is far from fool-proof and we favour an informed alternative implementation
provided items of information on the target distribution are available. Those items may
obviously be provided by multiple pilot runs.

Nelder and Mead’s (1965) algorithm is used to maximize the ESS. This simplex method
depends on the comparison of the ESS values at the p + 1 vertices of a general simplex,
followed by the replacement of the vertex with the smallest value by another point. The
simplex keeps adapting to the local landscape and converges to the global maximum.

5 Convergence issues and tuning

While establishing unbiasedness and convergence of the deterministic mixture estimator
of Owen and Zhou (2000) is relatively straightforward, the introduction of an adaptive
mechanism in the construction of the sequence of proposals highly complicates handling
both properties. First, the estimator is no longer unbiased and its convergence (in T for
a fixed values of Nt) cannot be established without imposing compactness restrictions on
the simulation space or upper bounds on the target density.

In order to detail convergence difficulties, we concentrate on the Student’s t version
of the AMIS algorithm. Furthermore, we only consider the extreme case Nt = 1, mean-
ing that each iteration of the algorithm only processes a single new simulated value: the
proposal is then updated after each new iteration. We also simplify the update of the pa-
rameters of the Student’s t proposal by restricting learning to the mean µ̂t, the covariance
matrix being set to an arbitrary value. This clearly is a formalised setting that we do not
advocate in practice.

The density of the Student’s t distribution with 3 degrees of freedom and mean mu is
denoted t3(y;µ). The update of µ after iteration t is then

µ̂t = ut+1(y0:t) =

t∑
k=0

π(yk)yk

q0(yk) +
∑t

i=1 t3(yk;ui(y0:i−1))
,

where u1(y0) = π(y0)y0

/
q0(y0) = µ̂0.

9



First, the unbiasedness of the estimator µ̂t for every t > 1 does not follow from the
arguments found in the original version of Owen and Zhou (2000) because of the depen-
dence of the importance weight of yt on subsequent yj ’s (j > t). Indeed, for t ≥ 1, we
have

E[µ̂t] =
t∑

k=0

E

[
π(yk)yk

q0(yk) +
∑t

i=1 t3(yk;ui(y0:i−1))

]

=

t∑
k=0

∫
π(yk)yk

q0(yk) +
∑t

i=1 t3(yk;ui(y0:i−1))
t3(yk;uk(y0:k−1)) dyk

× gk(y0:k−1) dy0:k−1hk(yk+1:t|y0:k) dyk+1:t

where gk(y0:k−1) is the joint distribution of the past simulations and hk(yk+1:t|y0:k) is
the conditional distribution of the future simulations given the current and past ones.
Due to this latter term, the full conditional distribution of yk given the past and future
simulations y0:k−1 and yk+1:t is no longer t3(yk;uk(y0:k−1)) and this modification implies
that µ̂t is biased. Furthermore, the dependence of this bias on t is so intricate that we
cannot manage the asymptotic bias. A similar impossibility occurs when studying the
variance, hence preventing a theoretical conclusion about the convergence properties of
the AMIS algorithm. Moreover, the standard convergence results on triangular arrays
(Douc and Moulines, 2008) do not apply here, contrariwise to the PMC algorithm (Douc
et al., 2007a). Note that a simple if artificial modification of the AMIS algorithm brings
a straightwforward solution to the bias difficulty: when using an additional simulation
thread for the calibration of the proposal distributions, the arguments of Owen and Zhou
(2000) apply by first conditioning upon this second series.

Using exactly the same results as in Douc et al. (2007a), notably Theorem A.1 on
the convergence of triangular arrays, under very weak conditions, we obtain the following
lemma for the AMIS algorithm:

Lemma 1. When T and N0, . . . , NT−1 are fixed, the estimator ̂EΠ(h(y)) is converging in
probability to EΠ(h(y)) when NT goes to infinity.

Indeed, the fact that all sample sizes Nt but the last one NT are set to a given value
means that the weights of the terms yt

i (0 ≤ t ≤ T − 1) converge to 0, while the bias in
the weights of the yT

i asymptotically vanishes, conditionally on the past samples. The
weak conditions are related to the tail behaviour of the importance densities with respect
to the target.

However, this setting is not the one in which AMIS should be used. The number of
iterations T and the numbers of simulations Nt (t = 1, . . . , T ) should be related to the
dimension p of the target distribution. We recommend to use Nt in the range 25 − 500:
from 25 when p is small (typically d = 1 or d = 2) to 500 when p is large (typically p = 20).
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We tested this strategy for the AMIS algorithm on various target distributions. Note we
used the default calibration N1 = N2 = . . . = NT . However, it should be more efficient
to increase the numbers of simulations with the accuracy of the proposal distributions,
N1 < N2 < . . . < NT , provided an automated scheme on the choice of the Nt can be
found.

For instance, in the area of population genetics, Sirén et al. (2010) proposed an orig-
inal Bayesian method for inferring population histories from unlinked single-nucleotide
polymorphism. It is used on an approximation to the neutral Wright-Fisher diffusion that
models random fluctuations in allele frequencies. Inference about the tree topology im-
ply that the posterior distribution be marginalized over a drift parameter, which, for K
populations, is a positive vector of dimension 2K − 2. Sirén et al. (2010) circumvented
this difficulty by resorting to the AMIS algorithm. They used a product of independent
Beta distributions as the initial importance distribution (Q0), then the following impor-
tance distributions (qt, t = 1, . . . , T ) were defined as multivariate Student’s distributions
whose parameters are adapted at fixed interval. In their tests, they chose N0 =

∑T
t=0Nt/2

and T = 10− 200 depending on
∑T

t=0Nt. Typically, for simulated datasets where K = 5,
they used T = 200 and Nt = 50 and, for an analysis of human data where K = 7, they
computed the posterior probability of two topologies with

∑T
t=0Nt = 30, 000.

In connection with the dependence of the simulation numbers Nt on the dimension
p of the target distribution, we note that the AMIS algorithm caters to highly different
goals:

• To compute a numerical approximation of the expectation of a fixed function h,
I =

∫
h(x)Π(dx) ;

• To obtain an approximation of the marginal of a joint distribution;

• To provide a global approximation of a sample from the target distribution Π.

Depending on the purpose for which the AMIS algorithm is used, the requested minimal
value for the ESS will vary. For instance, if we want to approximate I for a specific
function h, then the minimal value for the ESS depends on

∫
(h(x) − π(h))2Π(dx). If,

instead, the goal is to approximate the target distribution Π, the minimal value for the
ESS could be derived from the L2 non-parametric estimation error, that is,

∫
(π̂−π)µ(dx)

where π̂ is a kernel density approximation of π. As a stopping rule, we propose to iterate
the AMIS algorithm, i.e. to increase T , until the desired ESS is achieved.

The goal of the next Section is to illustrate the fact that the AMIS algorithm can
outperform a standard adaptive importance sampling solution on a benchmark target
distributions. That is, with the same adaptive scheme, this algorith manages to get a
significant improvement by pooling together all the simulated points in the sequential
multiple mixture. Given that standard importance sampling algorithms perform well only
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when T is small and when Nt is large, we also implemented the AMIS algorithm in this
setup and chose N0 = 100, 000, T = 10 and N1 = . . . = N10 = 10, 000.

In Section 7, we instead consider a realistic population genetics example where the
AMIS algorithm is implemented with N0 = 200, 000, T = 2 and N1 = N2 = 200, 000. The
initial importance sampling distribution Q0 is then the prior distribution. No optimiza-
tion procedure related with the ESS is required in this case. Indeed, for such a target
distribution, the region of relevance within the parameter space is easily reached and we
do not need many adaptation steps. However, the calculation of the target density is quite
expensive and an involved recycling of the whole set of simulations is then relevant.

6 A banana shape target example

This evaluation of the performances of AMIS resorts to the benchmark target density of
Haario et al. (1999, 2001), which can be calibrated as to become extremely challenging.
The target density is based on a centered p-multivariate Gaussian, y ∼ Np(0p,Σ) with
covariance matrix Σ = diag(σ2, 1, . . . , 1) which is twisted by a change of variable in the
second coordinate from y2 to y2 − b(y2

1 − σ2). Other coordinates remain unchanged. This
change of variable leads to a twisted (or banana shaped) distribution that has expectation
equal to 0 and uncorrelated components. Since the Jacobian of the twisting transformation
is equal to 11, the target density is

π(y) = fN (0p,Σ)

(
y1, y2 + b(y2

1 − σ2), y3, . . . , yp
)
,

where fN (0p,Σ)(·) denotes the density of the centered p-multivariate Gaussian distribution
with covariance Σ. One of the appeals of this benchmark is to allow for various degrees
of heavy tails through the choice of the parameter b.

In this example, we only consider a mild banana shape density, with σ2 = 100 and
b = 0.03. More twisted distributions, i.e. ones with fatter tails, can be obtained by calling
for higher values of b and/or σ2. In this case, the target distribution satisfies E(yi) = 0
for all i = 1, . . . , p, V(y1) = 100, V(y2) = 19, and V(yi) = 1 for all i = 3, . . . , p.

For this target, we compare an iterative importance sampling algorithm that uses
the classical mixture version (as opposed to the deterministic mixture version) with the
Gaussian mixture version of the AMIS algorithm. This reference algorithm, called AIS (for
Adaptive Importance Sampling), thus also relies on past simulations for creating a new
Gaussian mixture proposal, but it relies on usual importance weights. Given the recent
work on PMC algorithms (Cappé et al., 2008), this can be considered as a state-of-the-art
methodology for the comparison.

For both schemes, an initial sample of N0 = 105 particles is simulated from a stan-
dard logistic distribution and rescaled component-wise to ensure a maximal ESS. In the
following, T = 10 iterations and Nt = 10, 000 particles (1 ≤ t ≤ T ) are used.
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Target function p AMIS AIS

5 0.00430 (0.00319) 0.00473 (0.00664)
E(y1) = 0 10 0.00408 (0.00469) 0.01221 (0.01224)

20 0.00840 (0.00875) 0.03208 (0.03208)

5 0.01044 (0.01486) 0.01342 (0.01275)
E(y2) = 0 10 0.04589 (0.04419) 0.05088 (0.03632)

20 0.06409 (0.02552) 0.08461 (0.05381)∑5
l=3 E(yi) = 0 5 0.00002 (0.00003) 0.00009 (0.00008)∑10
l=3 E(yi) = 0 10 0.00009 (0.00014) 0.00044 (0.00074)∑20
l=3 E(yi) = 0 20 0.00028 (0.00053) 0.00177 (0.00343)

5 6.795002 (6.72701) 15.41744 (14.34075)
V(y1) = 100 10 49.94052 (34.21143) 56.08176 (38.46109)

20 67.24332 (47.74095) 94.42488 (58.44744)

5 4.43871 (4.11778) 8.76941 (6.90886)
V(y2) = 19 10 14.18724 (6.54468) 25.85457 (12.67837)

20 23.56200 (12.61588) 35.76413 (15.90980)∑5
l=3 V(yi) = 3 5 0.00004 (0.00003) 0.00014 (0.00019)∑10
l=3 V(yi) = 8 10 0.00019 (0.00034) 0.00069 (0.00104)∑20
l=3 V(yi) = 18 20 0.00212 (0.00245) 0.00413 (0.00613)

Table 1: Mean square errors calculated over 10 replications of the AMIS and AIS schemes
for different target functions for different values of p and in parenthesis the corresponding
standard errors.

The clustering step fitting a mixture to the weighted samples is solved via the mixmod
software (Biernacki et al., 2006), with the number of components in the mixture being
calibrated via the ICL criterion (Biernacki et al., 2000) during the first iteration. It sug-
gested resorting to a mixture of 4 components to correctly fit the banana shape target in
two dimensions. Both schemes under comparison take approximatively the same comput-
ing time (depending of course on the dimension p of the problem) and produce 2 × 105

weighted particles. Note that, for p = 20, to maximize the ESS using the Nelder and Mead
algorithm in the initialization step takes almost the same amount of time than T = 10
iterations of the AMIS algorithm with 10, 000 particles per iteration.

The results of this experiment are reported in Table 1 and on Figures 1 and 2. These
results all are consistent with a domination of the AMIS scheme. The gain in ESS is quite
spectacular, but resulting from the strong stabilisation brought by the AMIS averaging.
The improvement in root mean square error shown in Table 1 typically varies with the
target function as well as with the overall dimension p, but may go as far as a threefold
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Figure 1: Banana shape example: boxplots of the 10 replicate ESS’s for the AMIS scheme
(left) and the AIS scheme (right) for p = 5, 10, 20. The total number of particles is equal
to 200, 000.

reduction. The boxplots of the absolute errors convey the same message of a uniform
domination by AMIS in this setting.

7 An example from population genetics

Another illustration of the potential advantage in using the AMIS algorithm is now dis-
cussed. It addresses a realistic population genetics problem that essentially amounts to
estimate parameters of an evolutionary scenario in which two populations have diverged
from a common and unknown ancestral population. Data consists in the genotypes at a
single microsatellite locus of 50 diploid individuals sampled from each population. This
locus is assumed to evolve according to the strict Stepwise Mutation model (SMM), i.e.,
when a mutation occurs, the number of repeats of the mutated gene increases or decreases
by one unit with equal probability. After divergence, we also assume that populations
do not exchange genes (no migration). The four parameters to estimate are the three
effective population sizes (n1, n2, nAnc) and the time of divergence (tdiv), all scaled by the
mutation rate (µ) of the locus : θ1 (=4n1µ), θ2 (=4n2µ), θA (=4nAncµ) and τ (=tdivµ).
The likelihood of this model is costly to obtain, which is why we selected this benchmark
example. In a Bayesian framework, uniform priors U [0.1, 100] and U [0.005, 5] were cho-
sen for the parameters θ and τ , respectively. Our target is the posterior distribution of
(θ1, θ2, θA, τ).

Five data files have been simulated with the software DIYABC (Cornuet et al., 2008),
with the following parameter values: n1 = nAnc = 10, 000, n2 = 2, 000, tdiv = 1, 000,
and µ = 0.0005, leading to θ1 = θA = 20, θ2 = 4, and τ = 0.5. Each dataset has been
processed twice.
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Figure 2: Banana shape example: boxplots of the 10 replicate absolute errors associated
to the estimations of E(y1) (first line) and V(y1) (second line) obtained by the AMIS and
AIS schemes for p = 5, 10, 20.

The first analysis, used as a control, is based on an MCMC run in which the gene tree
of the sampled genes is updated together with the four demographic parameters. This has
been performed with the software IM (Hey and Nielsen, 2004).

The second analysis combines the AMIS algorithm and an estimation of the likelihood
based on importance sampling (IS) for gene genealogies in the same way as Beaumont
(2003) embedded an IS computation of the likelihood in a MCMC exploration of the
parameter space. We note that the likelihood of a set of demographic parameters is com-
puted by averaging importance weights of gene trees simulated event by event according to
proposal distributions and parameter values. Each gene tree is built in three steps looking
backward in time: i) between present time and time of divergence, lineages are coalesced or
mutated following Stephens and Donnelly’s algorithm (2000), monitoring times of events
as in Beaumont (2003), ii) at time of divergence, remaining lineages of both populations
are merged and iii) after divergence, the gene tree is completed according to the SDPAC
algorithm of Cornuet and Beaumont (2007).

To assess the stability of the approximations provided by both methods, each analysis
was repeated four times (i.e., with four different groups of random seeds for each dataset).
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Each MCMC (IM ) was run as a single chain of 107 updates after a burn-in period of 106

updates. The IS-AMIS algorithm was run with N0 = 200, 000, T = 2, and N0 = N1 =
200, 000. No optimisation based on the ESS was required towards the calibration of the
initial importance function: the prior distribution was deemed satisfactory. Indeed, the
prior distribution is then sufficiently concentrated that there is no difficulty in finding the
relevant region in the parameter space.

Both methods provided similar outputs as shown on Figure 3, thus validating the IS-
AMIS approach. However the major conclusion of this study is that, whereas each MCMC
run lasted about 2 hours, the IS-AMIS executation lasted only approximately 20 min with
a slightly better repeatability in that MCMC outputs were often more variable. We stress
that the calculation of the likelihood function of those models has a non-negligible cost.
We used here an importance sampling approximation as in Stephens and Donnelly (2000)
and the cost of this approximation increases considerably with the number of simulated
gene trees. This type of models is then adequate for the adoption and the development
of the AMIS algorithm: all particles simulated during the process are recycled, which
minimizes the number of calls to the likelihood function. Due to this recycling process,
the AMIS algorithm cannot be easily compared with other adaptive importance sampling
schemes since those do not naturally involve any recycling step and since the natural
mixture of importance samples is fraught with dangers, as explained at the beginning of
this paper.

8 Conclusion

We have investigated in this paper an adaptive importance sampling method that extends
the scope of the original deterministic multiple mixture approach of Owen and Zhou
(2000) in that the sequence of importance proposals sequentially builds on the samples
produced so far. The generality of the AMIS algorithm is that it offers a super-efficiency
compared with other adaptive importance sampling techniques by allowing for an integral
recycling of the past simulations. It thus provides a scope for processing those hetero-
geneous simulations as a whole and for treating the computing cost

∑T
t=0Nt as a single

entity. The challenging issue of the theoretical convergence of the AMIS algorithm has
not been solved in this paper and the most promising direction in this respect is to derive
acceptable growth rates for the sizes Nt when t goes to infinity.
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Figure 3: Population genetics example: posterior distributions of the four parameters
(θ1, θ2, θA, τ) for 5 simulated datasets obtained through IS-AMIS (continuous line) and
MCMC (dashed line). Each analysis has been repeated four times to evaluate the impact
of repeatability.
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