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Abstract

In the last few years the embedded systems design
discipline required new design methodologies and new
specification languages to support system engineers in
developing heterogeneous systems where hardware and
software are combined. One of the emerging model-
ing languages for system designers is the UML-based
language called Systems Modeling Language (SysML).
One of the most important tasks to be addressed early
in the system design phase is the Design Space Explo-
ration (DSE). DSE helps designers in discovering the
optimal solutions among all possible combinations af-
ter mapping functional to architectural specifications.
This paper describes an approach on how to use SysML
for a DSE analysis within a system design phase.

1 Introduction

Advanced applications in the emerging areas like au-
tomotive systems or ambient intelligence require more
and more sophisticated design methodologies and de-
scription languages. One of them is an emerging model-
ing language for system modeling called Systems Mod-
eling Language (SysML) [Sys]. SysML is an extension
of UML2.0 [Uml] to allow the modeling from a system
engineering point of view and it is a joint initiative
of the Object Management Group (OMG) [Omg] and
the International Council on Systems Engineering (IN-
COSE) [Inc]. The SysML diagram taxonomy, which is
described in details in [OMGO06], reuses, extends and
adds to UML diagram types as follows:

e UML diagrams that are reused, but are not ex-
tended: Use Case diagram, Sequence diagram, and
State Machine diagram.

e UML diagrams that are reused and extended: Ac-
tivity diagram (extends UML Activity diagram),
Block Definition diagram (extends UML Class di-
agram), Internal Block diagram (extends UML
Composite Structure diagram), and Package di-
agram (extends UML Package diagram).

e New diagram types: Parametric Constraint dia-
gram, Allocation diagram/Allocation Traceability
and Requirements diagram.

Thus SysML can be used in a very profitable way
also for embedded systems design especially in early
design phase where designers usually don’t take into
account hardware/software partitioning [VDO5].

After the early design phase and once the system has
been designed, the next step would be to map func-
tionality of the system to architectural components.
Once the mapping is done, a Design Space Exploration
(DSE) can be performed to discover the optimal com-
binations between functional and architectural speci-
fications, in relation with parameters like power con-
sumption, performance, cost and size.

The goal of this paper is to show an approach which
combines embedded systems modeling by means of
SysML and DSE to help designers in evaluating the
hardware/software partitioning solutions. In particu-
lar it shows how to use SysML in order to include in-
formation useful for the DSE phase.

The paper is organized as follows: Section 2 describes
the state-of-the-art and related works in the area of
UML combined with the DSE activity. Section 3 de-
scribes our approach on how to add information, useful
for a DSE activity, into SysML diagrams. It also shows
how to model systems for DSE by means of a math-
ematical structure. Section 4 illustrates our approach
with a case study. In section 5 we conclude the pa-
per and we briefly talk about future works. The last
section is dedicated to the references.

2 State-of-the-art and related

works

In this section we would like to describe the sate-of-
the-art and the related works that combine UML with
DSE. Herewith we show some of the approaches for
performance analysis and DSE done with UML.

A design methodology that uses a UML Platform pro-
file to model both application and platform was pro-
posed in [CSM™02]. In this methodology, the analysis
and synthesis tools available in the Metropolis frame-
work [Lee04] were used to support a DSE. This work
relies on simulation to obtain performance estimations.
In [PWO03] an approach for performance analysis using
the UML-SPT profile [Gro02] is presented. In this ap-
proach, desired values for performance measures, such
as response time, are added to the model. From this in-
formation, a performance model is derived, from which
the performance analysis is computed, either by sim-
ulation or by analytical techniques. In this approach,
all performance parameters should be annotated in the
UML diagrams. The performance model answers ques-
tions about performance, like relationships between
performance parameters. Natale et al. [NS03] also use
the UML profile for real-time software. However, they
address the schedulability analysis, which is fundamen-



tal for checking the correctness of hard real-time appli-
cations. This work discusses the use of fixed and dy-
namic priority scheduling mechanisms in designs that
are developed using the UML-SPT profile.

The Real-Time UML profile [Sel00] defines a unified
framework to express the time, scheduling and perfor-
mance aspects of a system. It is based on a set of no-
tations that can be used by designers to build models
of real-time systems annotated with relevant QoS pa-
rameters. The profile standardizes an extended UML
notation to support the interoperability of modeling
and analysis tools but touches little on platform repre-
sentation.

UML-RT [SR98] is a profile that extends UML with
stereotyped active objects, called capsules, to represent
system components. The internal behavior of a capsule
is defined using statecharts; its interaction with other
capsules takes place by means of protocols that de-
fine the sequence of signals exchanged through stereo-
typed objects called ports. The UML-RT profile de-
fines a model with precise execution semantics, hence
it is suitable to capture system behavior and support
simulation or synthesis tools (e.g. Rose RT).

HASoC [GE02] is a design methodology based on
UML-RT notation. The design flow begins with a de-
scription of the system functionality initially given in
use case diagrams and then in a UML-RT version prop-
erly extended to include annotations with mapping in-
formation.

In [EDG105] the authors discuss on annotations for
quantitive analysis techniques used for the verification
and validation of temporal characteristics of real-time
embedded systems.

While in [GMTBO04] the focus is on the concurrency is-
sue and the authors describe how in the context of the
UML parallelism should be modeled in a high level of
abstraction.

In [PGLO3] the discussion is on scheduling validation
for UML-modeled real-time systems.

3 Owur Approach

This section describes our approach which fits within
a system engineering process. The work-flow used in
our approach is described in Figure 1 and it starts
with a requirements specification phase which includes
a requirements analysis producing the refined require-
ments. The refined requirements are used as input for
the system-level design phase where the designer has
to describe the system by means of SysML diagrams
like Internal Block, Requirements, Activity and Allo-
cation diagrams. Details about how to use the SysML
diagrams for a DSE phase will be discussed later in this
section. Once the system design phase has been com-
pleted and all diagrams are available, the workflow con-
tinues with the generation of an XMI (XML Metadata
Interchange) file from where the designer will extract
the relevant data for the DSE phase. At this moment
we need to build the design space by computing all the

design points consisting of an allocation (selection of
components), a binding (assignment of tasks to selected
components) and a scheduling (execution order for the
tasks). At this moment the designer has to compute
the optimal Pareto-Points [BS80] that indicate which
are the optimal solutions that are not comparable to
each other, but the designer has to choose the most ap-
propriate one according to his experience. Our effective
contribution within this work-flow is indicated by the
three dotted rectangles shown in Figure 1 called 'STEP
1’, 'STEP 2’ and ’STEP 3’. Because of the limited
space, in this paper we will focus on ’STEP 1’ which is
based on [VDO05] where the authors describe a possible
usage of the SysML Assembly, Requirements, Activity
and Allocation diagrams within a system design phase
according to [SP05] which was the old SysML specifi-
cation V0.9 DRAFT released in January 2005. In our
paper we will show a similar usage of SysML, but ac-
cording to [OMGO6], namely the OMG final adopted
SysML specification released in May 2006.

The idea of our approach is to propose how to repre-
sent DSE data within SysML diagrams, so that data
can be extracted and reused by a DSE tool. Essen-
tially we have to figure out how to represent allocation
and binding by means of SysML diagrams, in particular
using Requirement, Internal Block, Activity and Allo-
cation diagrams. The scheduling could be represented
by means of Sequence diagrams which we won’t show
in this paper due to a lack of space and because the
related representation would be quite trivial.

3.1 Modeling Systems for DSE

This section deals with the formalization of the DSE
with a six tuple structure M and mapping of the
structure to SysML diagrams. The DSFE structure M
is defined as follows:

M ={H,T,S,C,Cy, B}
where:

e H is the set of available hardware components.

e Tis the set of tasks that the system have to per-
form.

e SC (H x T) is a specification relation where for
each hardware component h € H there is at least a
task t € T such that S(h,t). This relation describes
the possible combinations of allocation and bind-
ing.

e ('is the set of virtual components where |C'\ Cp|
= |T]. The virtual components are necessary in
order to describe the allocation relation by means
of SysML diagrams. See also point 5 later in this
section.

e (y C (C'is the set of communication busses used
by ¢ € C to exchange data.

e BC (C\ Cp) x Tis a binding relation that must
be total, that is, for every virtual component ¢ €
C there is a task ¢ € T such that B(c,t).
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Figure 1: Work-flow used in our approach

The DSE structure M is then described by means of system has to perform. The tasks are identified by ¢;

SysML diagrams. The steps to be performed are as
follows:

1. Describe T by means of an Activity diagram.

2. Describe C'and Cjy by means of an Internal Block
diagram.

3. Describe H by means of a Requirement diagram.
The Requirement diagram is used with the scope
to describe the technical specifications of H by
means of parameters like e.g. Fxecution Time and
Cost.

4. Describe B by means of an Allocation diagram.

5. Describe S by means of an Internal Block diagram
where each h € H is linked to a virtual component
¢ € Caccording to the binding relation B.

The five steps described above are represented below
in order to explicitly show how M = {H, T, S, C, Cy,
B} should be modeled. Assume that:

H={hy,....h}
is the set of hardware components available to the
designer.

T= {tlv 7tn}
is the set of tasks to be performed by the system.
S = {(hi,t;)}

is the specification relation H x T.

Then

C= {Cl, --~7Cn+1}
is the set of virtual components where Cy = {c,41}

B={(ci;t;)}
is the binding relation where (¢;,t;) € (C\ Cp) x T
such that =j with i,j € {1, ... , n}.

The related SysML diagrams according to the
above five steps will be expressed as explained in the
following five sub-sections.

Activity diagram Figure 2 describes a possible
task-chain by means of an Activity diagram that the

€ Twhere i € {1, ... ,n}.
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Figure 2: Activity diagram describing a possible task-
chain

Internal Block diagram Figure 3 describes the vir-
tual components by means of an Internal Block dia-
gram. The virtual components are identified by ¢; € C
where i € {1, ... ,n+1} and ¢,,11 € Cp C C. As you can
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Figure 3: Internal Block diagram describing the virtual
components of the System

see the virtual component ¢, 41 has the functionality to
be the communication bus used by virtual components
¢; where ¢ € {1, ... , n}.

Requirement diagram Figure 4 describes the avail-
able hardware components by means of a Requirement
diagram. The requirements are identified by h; € H
where ¢ € {1, ... , n}.

Allocation diagram Figure 5 describes the binding
relation by means of an Allocation diagram where each
task t; € T'is allocated to a virtual component ¢; € C
such that j = 1.



Figure 4: Requirement diagram describing the avail-
able hardware components
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Figure 5: Allocation diagram describing the binding
between tasks and virtual components
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Final Internal Block diagram Figure 6 describes
the specification relation by means of an Internal Block
diagram where each hardware component h; € H is
binded to a virtual component ¢; € C according to
the Allocation diagram described in Figure 5 and the
specification relation S.
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Figure 6: Final Internal Block diagram describing the
allocation and binding between hardware- and virtual
components

In Figure 6 we assume that

S: {(hl,Cl), (hl,CQ), ooy (hk,cn)}.

In this section we described a possible solution on how
to represent allocation and binding by means of SysML
diagrams. In order to represent scheduling we propose
to use a set of Sequence diagrams with aim to express

all the possible allocation and binding combinations.
Because of a lack of space in this paper we won’t show
the Sequence diagrams.
In order to better explain our approach, we will show
how to implement it in a simple case study explained
in the following section.

4 Case Study

This section discusses a case study with the aim to de-
scribe a system by means of SysML diagrams following
the formalism explained in the previous section.
Consider the task chain shown in Figure 7. It depicts
a system specification with a set of tasks ¢; € T that
can be executed by different hardware components h;
€ H. The various components to execute the tasks to-
gether with the costs and the execution times are given
in Figure 8. The only constraint that we impose on the
system is that every hardware component executes the
tasks sequentially. Also, at any given time a compo-
nent can execute at most one task.

Figure 7: Task-chain of a system specification

Component | Number Cost Erccution iinie -
tl 2 3 4 5

hi: MIPS 1 150 3 ms S ms - 4 ms

h2: DSP 1 100 - 12 ms 8 ms 6 ms

h3: FPGA 1 200 10 ms 7 ms 20 ms

h4: ASIC 1 350 - 2 ms

Figure 8: Available hardware components with costs
and execution times for tasks

4.1 Implementation of our approach

Taking into account the constraints and the require-
ments of the system shown in Figures 7 and 8, we
will now apply our approach by following the five
steps described in Section 3.1 to perform DSE. To
accomplish DSE, we start with the construction of the
DSE structure M, which is given by

M= {H,T,S,O,CQ,B}
In the following subsections the possible values that
each of the element in the DSFE structure M can take is

given. The following steps follow the 5 steps described
in section 3.1.



Description of T The set of tasks is defined as
follows:

T = {t1,ta,t3,t4,15}

and the related Activity diagram is shown in Figure 9.
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Figure 9: Activity diagram describing the task-chain

Description of C The set of virtual components is
defined as follows:

C= {61762763704765,66}
where

OO = {CG}

and the related Internal Block diagram is shown in Fig-
ure 10.
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Figure 10: Internal Block diagram describing the vir-
tual components

Description of H The set of hardware components
is defined as follows:

H = {h1,ha, hs, ha}

and the related Requirement diagram is shown in Fig-
ure 11.
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Hw Comp = (MIPS} Hw Comp = (DSP} Hw Comp = {FPGA} Hw Comp = {ASIC}
Tasks = {t1, t2, t5} Tasks = {13, 14, t5} Tasks = {t1, 13, t4} Tasks = {t4}
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Figure 11: Requirement diagram describing the hard-
ware specifications

Description of B The binding relation B C (C'\
Cp) x T is defined as follows:

B = {(Clvtl)’ (CQ’tQ)v (C3at3)7 (647t4)7 (C5vt5)}
and the related Allocation diagram is shown in Fig-
ure 12.
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Figure 12: Allocation diagram describing the activities
allocations

Description of § The requirement specification re-
lation S C (H x T), according to Figure 8, is expressed
as follows:

S = {(hlatl)» (h17t2)7 (hlat5)’ (h27t3)7 (h2at4)’ (h27t5)7
(h3t1), (h3,ts), (hsta), (hata)}

and the related Internal Block diagram is shown in Fig-
ure 13.
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Figure 13: Final Internal Block diagram describing the
specification relation



5 Conclusions and Future

Works

In this paper we presented an approach to describe sys-
tems by means of SysML diagrams to address the DSE
phase. The SysML diagrams are expressed according
to the final adopted OMG specifications as described
in [OMGO06]. Our contribution is towards the system-
level design using SysML to encourage designers of em-
bedded systems to develop systems in an efficient way
by performing DSE in the early stage of the design.
Our approach aims to propose a way in order to have
in one set of SysML diagrams all the possible combi-
nations of the system configurations.

Since formal specifications provide a way to express
problems without ambuiguity, we specified information
relevant to DSE using a mathematical structure. This
structure was then mapped on to the SysML diagrams.
The main advantage of our approach is to have both
DSE information and the system model in one reposi-
tory.

In this paper we provided an approach to model DSE
using SysML which corresponds to 'STEP 1’ of Fig-
ure 1. As part of the future works we would like to au-
tomate the extraction of DSE information that means
implementing ’STEP 2’. Having the design space mod-
eled by means of a SysML Internal Block diagram as
in Figure 13, the optimal configuration can be identi-
fied by extracting the information from the XMI file,
which can be generated for example by the I-Logix
UML/SysML tool [Ilo]. At this point 'STEP 2’ could
be performed and the designer would be able to com-
pute the optimal Pareto-Points.

'STEP 3’ would then be performed once the system ar-
chitecture is chosen among the optimal solutions indi-
cated by the computed Pareto Points. At that moment
the designer would produce the corresponding SysML
diagrams based on the Final Internal Block diagram
shown in Figure 13.

In our work we used the UML/SysML tool named
Rhapsody V6.1 from I-Logix [Ilo].
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