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Abstract

Middleware-based database replication protocols require few or no changes in the database

engine. As a consequence, they are more portable and flexible than kernel-based protocols,

but have coarser-grain information about transaction access data, resulting in reduced con-

currency and increased aborts. This paper proposes conflict-aware load-balancing techniques

to increase the concurrency and reduce the abort rate of middleware-based replication proto-

cols. Our algorithms strive to assign transactions to replicas so that the number of conflicting

transactions executing on distinct servers is reduced and the load over the servers is equi-

tably distributed. A performance evaluation using a prototype of our system running the

TPC-C benchmark shows that aborts can be reduced with no penalty in response time.



1 Introduction

Database replication protocols can be classified as kernel- or middleware-based, according to

whether changes in the database engine are required or not. Kernel-based protocols take ad-

vantage of internal components of the database to increase performance in terms of throughput,

scalability, and response time. For the sake of portability and heterogeneity, however, replica-

tion protocols should be independent of the underlying database management system. Even

if the database internals are accessible, modifying them is usually a complex operation. As a

consequence, middleware-based database replication has received a considerable amount of at-

tention in the last years [4, 6, 11, 13, 19, 20, 26]. Such solutions can be maintained independently

of the database engine, and can potentially be used in heterogeneous settings. The downside

of the approach is that middleware-based database replication protocols usually have limited

information about the data accessed by the transactions, and result in reduced concurrency or

increased abort rate or both.

This paper focuses on load-balancing techniques for certification-based replication protocols

placed at the middleware layer. In such protocols, each transaction is first executed locally on

some server. During the execution there is no synchronization between servers. At commit

time, update transactions are broadcast to all replicas for certification. The certification test

is deterministic and executed by each server. If the transaction passes certification, its updates

are applied to the server’s database. If two conflicting transactions execute concurrently on

distinct servers, one of them may be aborted during certification to ensure strong consistency

(e.g., one-copy serializability). Our load-balancing techniques build on two simple observations:

(a) If conflicting transactions are submitted to the same server, the server’s local scheduler seri-

alizes the conflicting operations appropriately, reducing aborts. (b) In the absence of conflicts,

however, performance is improved if transactions execute concurrently on different replicas.

Designing load-balancing techniques that exploit observations (a) and (b) efficiently is not

trivial. Concentrating conflicting transactions on a few replicas will reduce the abort rate,

but may leave many replicas idle and overload the others. Ideally, we would like to both

minimize the number of conflicting transactions executing on distinct replicas and maximize the

parallelism between transactions. But these are opposite requirements. We address the problem

by introducing two conflict-aware load-balancing algorithms: Minimizing Conflicts First (MCF)

and Maximizing Parallelism First (MPF). MCF and MPF strive to address the two requirements

above, but each one prioritizes a different one. Both algorithms are independent of the nature

of the load balancer used in the system, static or dynamic.

To demonstrate the applicability of MCF and MPF we introduce the Multiversion Database

State Machine (vDBSM). The vDBSM is a middleware extension of the DBSM [18], a kernel-
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based optimistic replication protocol. We compare MCF and MPF experimentally using the

vDBSM running the TPC-C benchmark. The results show that while scheduling transactions

with the sole goal of maximizing parallelism (i.e., “pure” MPF) is only slightly better than ran-

domly assigning transactions to replicas, scheduling transactions in order to minimize conflicts

only (i.e., “pure” MCF) can reduce aborts due to lack of synchronization from ≈ 20% to ≈ 3%.

The improvements are obtained at the expense of an increase in the response time since the

load balancing is unfair. A hybrid approach, combining MCF and MPF, reduces aborts and

increases transaction throughput with no penalty in response time.

The paper’s main contribution is to introduce and evaluate conflict-aware load-balancing

techniques for middleware-based database replication protocols. Our techniques allow database

administrators to trade even load distribution for low transaction aborts in order to increase

throughput with no degradation in response time. A secondary contribution of the paper is the

vDBSM, a novel middleware-based replication protocol.

2 Background

2.1 Database model

We consider a distributed system composed of database clients, c1, c2, ..., cm, and servers,

S1, S2, ..., Sn. Each server has a full copy of the database. Servers are assumed to be fail-

stop: a server halts in response to a failure and its halted state can be detected by operational

servers. Failed servers may resume normal execution after recovering from the failure.

Database servers execute transactions according to strict two-phase locking (2PL)[15]. Trans-

actions are sequences of read and write operations followed by a commit or an abort operation.

A transaction is called read-only if it does not contain any write operation; otherwise it is called

an update transaction.

The database workload is composed of a set of transactions T = {T1, T2, ...}. To account

for the computational resources needed to execute different transactions, the database admin-

istrator can assign to each transaction Ti in the workload a weight wi. For example, simple

transactions could have less weight than complex transactions.

2.2 Database state-machine replication

The state-machine approach is a non-centralized replication technique [21]. Its key concept is

that all replicas receive and process the same sequence of requests in the same order. Consistency

is guaranteed if replicas behave deterministically, that is, when provided with the same input

(e.g., a request) each replica will produce the same output (e.g., state change). Servers interact
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by means of a total-order broadcast, a group communication abstraction built on top of a

lower-level message passing communication system. Total-order broadcast is defined by the

primitives broadcast(m) and deliver(m), and guarantees that (a) if a server delivers a message

m then every server delivers m; (b) no two servers deliver any two messages in different orders;

and (c) if a server broadcasts message m and does not fail, then every server eventually delivers

m.

The Database State Machine (DBSM) [18] uses the state-machine approach to implement

deferred update replication. Each transaction is executed locally on some server, and during

the execution there is no interaction between replicas. Read-only transactions are committed

locally. Update transactions are broadcast to all replicas for certification. If the transaction

passes certification, it is committed; otherwise it is aborted. Certification ensures that the

execution is one-copy serializable (1SR), that is, every concurrent execution is equivalent to

some serial execution of the same transactions using a single copy of the database.

At certification, the transaction’s readsets, writesets, and updates are broadcast to all repli-

cas. The readsets and the writesets identify the data items read and written by the transactions;

they do not contain the values read and written. The transaction’s updates can be its redo logs

or the rows it modified and created. All servers deliver the same transactions in the same or-

der and certify the transactions deterministically. Notice that the DBSM does not require the

execution of transactions to be deterministic; only the certification test and the application of

the transaction updates to the database are implemented as a state machine.

3 Multiversion Database State Machine

In this section, we introduce the Multiversion Database State Machine (vDBSM), a middleware

extension to the DBSM. A correctness proof can be found in the Appendix.

The vDBSM assumes pre-defined, parameterized transactions. Each transaction is identified

by its type and the parameters provided by the application program when the transaction is

instantiated. From its type and parameters, the transaction’s readset and writeset can be

estimated, even if conservatively, before the transaction is executed. Pre-defined transactions

are common in many database applications (e.g., application server environments).

Hereafter, we denote the replica where Ti executes, its readset, and its writeset by server(Ti),

readset(Ti), and writeset(Ti), respectively. The vDBSM protocol works as follows:

1. We assign to each data item in the database a version number. Thus, besides storing a

full copy of the database, each replica Sk also has a vector Vk of version numbers. The

current version of data item dx at Sk is denoted by Vk[x].
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2. Both read-only and update transactions can execute at any replica.

During the execution, the versions of the data items read by an update transaction are

collected. We denote by V (Ti)[x] the version of each data item dx read by Ti. The versions

of the data items read by Ti are broadcast to all replicas together with its readset, writeset,

and updates at commit time.

3. Upon delivery, update transactions are certified. Transaction Ti passes certification if all

data items it read during its execution are still up-to-date at certification time. More

formally, Ti passes certification on replica Sk if the following condition holds:

∀dx ∈ readset(Ti) : Vk[x] = V (Ti)[x]

4. If Ti passes certification, its updates are applied to the database, and the version numbers

of the data items it wrote are incremented. All replicas must ensure that transactions that

pass certification are committed in the same order. How this is ensured is implementation

specific and discussed in Section 6.

We say that two transactions Ti and Tj conflict, denoted Ti ∼ Tj , if they access some common

data item, and one transaction reads the item and the other writes it. If Ti and Tj conflict and

are executed concurrently on different servers, certification may abort one of them. If they

execute on the same replica, however, the replica’s scheduler will order Ti and Tj appropriately,

and thus, both can commit.

Therefore, if transactions with similar access patterns execute on the same server, the local

replica’s scheduler will serialize conflicting transactions and decrease the number of aborts.

Based on the transaction types, their parameters and the conflict relation, we assign transactions

to preferred servers.

The vDBSM ensures consistency (i.e., one-copy serializability) regardless of the server chosen

for the execution of a transaction. However, executing update transactions on their preferred

servers can reduce the number of certification aborts. In the next section we explain how this

is done.

4 Conflict-aware load balancing

Assigning transactions to preferred servers is an optimization problem. It consists in distribut-

ing the transactions over the replicas S1, S2, ..., Sn. When assigning transactions to database

servers, we aim to (a) minimize the number of conflicting transactions in distinct replicas, and

(b) maximize the parallelism between transactions. These are opposite requirements. While
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the first can be satisfied by concentrating transactions on few database servers, the second is

fulfilled by spreading transactions on multiple replicas. In Sections 4.1 and 4.2, we present two

greedy algorithms that assign transactions to preferred servers. Each one prioritizes a different

requirement.

Our load-balancing algorithms can be executed statically, before transactions are submitted

to the system, or dynamically, during transaction processing, for each transaction when it

is submitted. Static load balancing requires knowledge of the transaction types, the conflict

relation, and the weight of transactions. Dynamic load balancing further requires information

about which transactions are in execution on the servers. In Sections 4.3 and 4.4 we discuss our

load-balancing algorithms in each context, and in Section 4.5 we contrast them.

4.1 Minimizing Conflicts First (MCF)

MCF attempts to minimize the number of conflicting transactions assigned to different replicas.

The algorithm initially tries to assign each transaction Ti in the workload to the replica con-

taining conflicting transactions with Ti. If more than one option exists, the algorithm strives

to distribute the load among the replicas equitably, maximizing parallelism.

1. Consider replicas S1, S2, ..., Sn. With an abuse of notation, we say that transaction Ti

belongs to St
k at time t, Ti ∈ St

k, if Ti is assigned at time t or before to be executed on

server Sk.

2. For each transaction Ti in the workload, to assign Ti to some server at time t execute

steps 3–5.

3. Let C(Ti, t) be the set of replicas containing transactions conflicting with Ti at time t,

defined as C(Ti, t) = {Sk | ∃Tj ∈ St
k such that Ti ∼ Tj}.

4. If |C(Ti, t)| = 0 then assign Ti to the replica Sk with the lowest aggregated weight w(Sk, t)

at time t, where w(Sk, t) =
∑

Tj∈St
k
wj .

5. If |C(Ti, t)|≥1, then assign Ti to the replica in C(Ti, t) with the highest aggregated weight

of transactions conflicting with Ti; if several replicas in C(Ti, t) satisfy this condition,

assign Ti to any one of these.

More formally, let CTi(S
t
k) be the subset of St

k containing conflicting transactions with Ti

only: CTi(S
t
k) = {Tj | Tj ∈ St

k ∧ Tj ∼ Ti}. Assign Ti to the replica Sk in C(Ti, t) with the

greatest aggregated weight w(CTi(S
t
k)) =

∑
Tj∈CTi

(St
k) wj .
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4.2 Maximizing Parallelism First (MPF)

MPF prioritizes parallelism between transactions. Consequently, it initially tries to assign

transactions in order to keep the servers’ load even. If more than one option exists, the algorithm

attempts to minimize conflicts. The load of a server is given by the aggregated weight of the

transactions assigned to it at some given time. To compare the load of two servers, we use factor

f, 0 < f ≤ 1. We denote MPF with a factor f as MPF f . Servers Si and Sj have similar load at

time t if the following condition holds: f ≤ w(Si, t)/w(Sj , t) ≤ 1 or f ≤ w(Sj , t)/w(Si, t) ≤ 1.

1. Consider replicas S1, S2, ..., Sn. To assign each transaction Ti in the workload to some

server at time t execute steps 2–4.

2. Let W (t) = {Sk | w(Sk, t) ∗ f ≤ minl∈1..n w(Sl, t)} be the set of replicas with minimal

load at time t, where w(Sl, t) has been defined in step 4 in Section 4.1.

3. If |W (t)| = 1 then assign Ti to the replica in W (t).

4. If |W (t)| > 1 then let CW (Ti, t) be the set of replicas containing conflicting transactions

with Ti in W (t): CW (Ti, t) = {Sk | Sk ∈ W (t) and ∃Tj ∈ Sk such that Ti ∼ Tj}.

(a) If |CW (Ti, t)| = 0, assign Ti to the Sk in W (t) with the lowest aggregated weight

w(Sk, t).

(b) If |CW (Ti, t)| = 1, assign Ti to the replica in CW (Ti, t).

(c) If |CW (Ti, t)|>1, assign Ti to the Sk in CW (Ti, t) with the highest aggregated weight

w(Sk, t); if several replicas in CW (Ti, t) satisfy this condition, assign Ti to any one of

these.

4.3 Static load balancing

A static load balancer executes MCF and MPF offline, considering each transaction in the

workload at a time in some order—for example, transactions can be considered in decreasing

order of weight, or according to some time distribution, if available. Since the assignments are

pre-computed, during the execution there is no need for the replicas to send feedback information

to the load balancer. The main drawback of this approach is that it can potentially make poor

assignment decisions.

We now illustrate static load balancing of MCF and MPF. Consider a workload with 10

transactions, T1, T2, ..., T10, running in a system with 4 replicas. Transactions with odd index

conflict with transactions with odd index; transactions with even index conflict with transactions

with even index. Each transaction Ti has weight w(Ti) = i.
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By considering transactions in decreasing order of weight, MCF will assign transactions

T10, T8, T6, T4, and T2 to S1; T9, T7, T5, T3, and T1 to S2; and no transactions to S3 and S4.

MPF 1 will assign T10, T3, and T2 to S1; T9, T4, and T1 to S2; T8 and T5 to S3; and T7 and T6

to S4. MPF 0.8 will assign T10, T4, and T2 to S1; T9 and T3 to S2; T8 and T6 to S3; and T7, T5,

and T1 to S4.

MPF 1 creates a balanced assignment of transactions. The resulting scheme is such that

w(S1) = 15, w(S2) = 14, w(S3) = 13, and w(S4) = 13. Conflicting transactions are assigned to

all servers however. MCF completely concentrates conflicting transactions on distinct servers,

S1 and S2, but the aggregated weight distribution is poor: w(S1) = 30, w(S2) = 25, w(S3) = 0,

and w(S4) = 0, that is, two replicas would be idle. MPF 0.8 is a compromise between the

previous schemes. Even transactions are assigned to S1 and S3, and odd transactions to S2

and S4. The aggregated weight is fairly balanced: w(S1) = 16, w(S2) = 12, w(S3) = 14, and

w(S4) = 13.

4.4 Dynamic load balancing

Dynamic load balancing can potentially outperform static load balancing by taking into account

information about the execution of transactions when making assignment choices. Moreover,

the approach does not require any pre-processing since transactions are assigned to replicas

on-the-fly, as they are submitted. As a disadvantage, a dynamic scheme requires feedback from

the replicas with information about the execution of transactions. Receiving and analyzing this

information may introduce overheads.

MCF and MPF can be implemented in a dynamic load balancer as follows: The load bal-

ancer keeps a local data structure S[1..n] with information about the current assignment of

transactions to each server. Each transaction in the workload is considered at a time, when it

is submitted by the client, and assigned to a server according to MCF or MPF. When a replica

Sk finishes the execution of a transaction Ti, committing or aborting it, Sk notifies the load

balancer. Upon receiving the notification of termination from Sk, the load balancer removes Ti

from S[k].

4.5 Static vs. dynamic load balancing

A key difference between static and dynamic load balancing is that the former will only be

effective if transactions are pre-processed in a way that resembles the real execution. For exam-

ple, assume that a static assignment considers that all transactions are uniformly distributed

over a period of time, but in reality some transaction types only occur in the first half of the

period and the other types in the second half. Obviously, this is not an issue with dynamic load
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balancing.

Another aspect that distinguishes static and dynamic load balancing is membership changes,

that is, a new replica joins the system or an existent one leaves the system (e.g., due to a crash).

Membership changes invalidate the assignments of transactions to servers. Until MCF and MPF

are updated with the current membership, no transaction will be assigned to a new replica join-

ing the system, for example. Therefore, with static load balancing, the assignment of preferred

servers has to be recalculated whenever the membership changes. Notice that adapting to a

new membership is done for performance, and not consistency since the certification test of the

vDBSM does not rely on transaction assignment information to ensure one-copy serializabil-

ity; the consistency of the system is always guaranteed, even though out of date transaction

assignment information is used.

Adjusting MCF and MPF to a new system membership using a dynamic load balancer is

straightforward: as soon as the the new membership is known by the load balancer, it can update

the number of replicas in either MCF or MPF and start assigning transactions correctly. With

static load balancing, a new membership requires executing MCF or MPF again for the complete

workload, which may take some time. To speed up the calculation, transaction assignments for

configurations with different number of “virtual replicas” can be done offline. Therefore, if one

replica fails, the system switches to a pre-calculated assignment with one replica less. Only the

mapping between virtual replicas to real ones has to be done online.

5 Analysis of the TPC-C benchmark

5.1 Overview of the TPC-C benchmark

TPC-C is an industry standard benchmark for online transaction processing (OLTP) [24]. It

represents a generic wholesale supplier workload. The benchmark’s database consists of a num-

ber of warehouses, each one composed of ten districts and maintaining a stock of 100000 items;

each district serves 3000 customers. All the data is stored in a set of 9 relations: Warehouse,

District, Customer, Item, Stock, Orders, Order Line, New Order, and History.

TPC-C defines five transaction types: New Order, Payment, Delivery, Order Status and

Stock Level. Order Status and Stock Level are read-only transactions; the others are update

transactions. Since only update transactions require assignment to preferred servers—read-only

transactions can execute on any replica—there are only three transaction types to consider:

Delivery (D), Payment (P ), and New Order (NO). In the following we define the workload of

update transactions as:

T = {Di, Pijkm, NOijn | i, k, n ∈ 1..#WH; j, m ∈ 1..10}
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where #WH is the number of warehouses considered. Di stands for a Delivery transaction

accessing districts in warehouse i. Pijkm relates to a Payment transaction which reflects the

payment and sales statistics on the district j and warehouse i and updates the customer’s

balance. In 15% of the cases, the customer is chosen from a remote warehouse k and district

m. Thus, for 85% of transactions of type Pijkm: (k = i) ∧ (m = j). NOijn is a New Order

transaction referring to a customer assigned to warehouse i and district j. For an order to

complete, some items must be chosen: 90% of the time the item chosen is from the home

warehouse i and 10% of the time from a remote warehouse n. Thus, 90% of transactions of type

NOijn satisfy n = i.

To assign a particular transaction to a replica, we have to analyze the conflicts between

transaction types. Our analysis is based on the warehouse and district numbers only. For

example, New Order and Payment transactions might conflict if they operate on the same

warehouse. We define the conflict relation ∼ between transaction types as follows:

∼ = {(Di, Dx) | (x = i)} ∪
{(Di, Pxykm) | (k = i)} ∪
{(Di, NOxyn) | (x = i) ∨ (n = i)} ∪
{(Pijkm, Pxyzq) |
(x = i) ∨ ((z = k) ∧ (q = m))} ∪
{(NOijn, NOxyz) |
((x = i) ∧ (y = j)) ∨ (z = n)} ∪
{(NOijn, Pxyzq) | (x = i) ∨ ((z = i) ∧ (q = j))}

For example, two Delivery transactions conflict if they access the same warehouse.

Notice that we do not have to consider every transaction that may happen in the workload

in order to define the conflict relation between transactions. Only the transaction types and

how they relate to each other should be taken into account. To keep our characterization simple,

we will assume that the weights associated with the workload represent the frequency in which

transactions of some type may occur in a run of the benchmark.

5.2 Statically scheduling TPC-C

We are interested in the system’s load distribution and the number of conflicting transactions

executing on different replicas. To measure the load, we use the aggregated weight of all update

transactions assigned to each replica. To measure the conflicts, we use the overlapping ratio

OR(Si, Sj) between database servers Si and Sj , defined as the ratio between the aggregated

weight of update transactions assigned to Si that conflict with update transactions assigned to

Sj , and the aggregated weight of all update transactions assigned to Si. For example, consider

that T1, T2, and T3 are assigned to Si, and T4, T5, T6, and T7 are assigned to Sj . T1 conflicts
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with T4, and T2 conflicts with T6. Then the overlapping ratio for these replicas is calculated as

OR(Si, Sj) = w(T1)+w(T2)
w(T1)+w(T2)+w(T3) and OR(Sj , Si) = w(T4)+w(T6)

w(T4)+w(T5)+w(T6)+w(T7) . Notice that since our

analysis here is static, the overlapping ratio gives a measure of ”potential aborts”; real aborts will

only happen if conflicting transactions are executed concurrently on different servers. Clearly,

a high risk of abort translates into more real aborts during the execution.
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10

20

30

40

50

60

70

80

90

100

U
p

d
a
te

 t
ra

n
s
a
c
ti

o
n

s
 (

%
)

Figure 1: Load distribution over 8 replicas

We have considered 4 warehouses (i.e., #WH = 4) and 8 database replicas in our static

analysis. We compared the results of MCF, MPF 1 and MPF 0.1 with a random assignment of

transactions to replicas.

Random results in a fair load distribution (see Figure 1), but has very high overlapping ratio

(see Figure 2). MPF 1 (not shown in the graphs) behaves similarly to Random: it distributes

the load equitably over the replicas, but has high overlapping ratio.

MCF minimizes significantly the number of conflicts, but transactions are distributed over

4 replicas only. This is a consequence of TPC-C and the 4 warehouses considered. Even if more

replicas were available, MCF would still strive to minimize the overlapping ratio, assigning

transactions to only 4 replicas.

A compromise between maximizing parallelism and minimizing conflicts can be achieved by

varying the f factor of the MPF algorithm. With f = 0.1 the overlap ratio is much lower than

Random (and MPF 1). Finally, notice that Figure 1 shows the load of update transactions only;

by carefully scheduling read-only transactions to underloaded replicas the overall load can be

better balanced.

6 Prototype overview

We have implemented a prototype of the vDBSM in Java v.1.5.0 using both static and dynamic

load balancing. Client applications interact with the replicated compound by submitting SQL
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Figure 2: Overlapping ratio, (a) Random (b) MCF (c) MPF 0.1

statements through a customized JDBC-like interface. Application requests are sent directly to a

database server, in case of static load balancing, or first to the load balancer and then re-directed

to a server. A replication module in each server is responsible for executing transactions against

the local database, and certifying and applying them in case of commit. Every transaction

received by the replication module is submitted to the database through the standard JDBC

interface. The communication between clients, replicas and the load balancer uses Unix sockets.

Update transactions are broadcast to all replicas using a communication library implementing

the Paxos algorithm [10].

On delivery the transaction is enqueued for certification. While transactions execute con-

currently in the database, their certification and possible commitment are sequential. The

current versions of the data items are kept in main memory to speed up the certification pro-

cess; however, for persistency, every row in the database is extended with a version number. If

a transaction passes the certification test, its updates are applied to the database and the ver-

sions of the data items written are incremented both in the database, as part of the committing

transaction, and in main memory.

To ensure that all replicas commit transactions in the same order, before applying Ti’s

updates, the server aborts every locally executing conflicting transaction Tj . To see why this

is done, assume that Ti and Tj write the same data item dx, each one executes on a different

server, Ti is delivered first, and both pass certification test. Tj already has a lock on dx at

server(Tj), but Ti should update dx first. We ensure correct commit order by aborting Tj on

server(Tj) and re-executing its updates later. If Tj keeps a read lock on dx, it is a doomed

transaction, and in any case it would be aborted by the certification test later.

In the case of static load balancing, the assignment of transactions to replicas is done by
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the replication modules and sent to the customized JDBC interface upon the first application

connect. Therefore when the application submits a transaction, it sends it directly to the

replica responsible for that transaction type. The dynamic load balancer is interposed between

the client applications and the replication modules. The assignment of submitted transactions is

computed on-the-fly based on currently executing transactions. The load balancer keeps track

of each transaction’s execution and completion status at the replicas. Since all application

requests are routed through the load balancer, no additional information exchange is needed

between replication modules and the load balancer. The load balancer does not need to know

when a transaction commits at each replica, but only at the replica where the transaction was

executed.

7 Performance results

7.1 Experimental setup

The experiments were run in a cluster of Apple Xservers equipped with a dual 2.3 GHz PowerPC

G5 (64-bit) processor, 1GB DDR SDRAM, and an 80GB 7200 rpm disk drive. Each server runs

Mac OS X Server v.10.4.4. The servers are connected through a switched 1Gbps Ethernet LAN.

We used MySQL v.5.0.16 with InnoDB storage engine as our database server. InnoDB is a

transactional database engine embedded inside MySQL. It provides MySQL with transaction-

safe (ACID–compliant) tables. Connections to the database were handled by MySQL Connec-

tor/J v.3.1.12 interface. The isolation level was set to serializable throughout all experiments.

We evaluated the algorithms varying the number of servers from 2 to 8. Each server stores

a TPC-C database, populated with data for 4 warehouses (≈ 400MB database). The workload

is created by a full-fledged implementation of TPC-C. According to TPC-C, each warehouse

must support 10 emulated clients, thus throughout the experiments the workload is submitted

by 40 concurrent clients. TPC-C specifies that between transactions, each client should have a

mean think time between 5 and 12 seconds.

Experiments have two phases: the warm-up phase when the load is injected but no mea-

surements are taken, and the measurement phase when the data is collected.

7.2 Static vs. dynamic load balancing

Figure 3 shows the number of update transactions assigned to each server during executions

of the benchmark with a static load balancer and different scheduling techniques. MCF and

MPF 0.1 implemented with a static load balancer suffer from poor load distribution over the

replicas. MCF distributes transactions over four replicas only, even when more replicas are
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available. MPF 0.1 achieves better load balancing than MCF with 6 and 8 replicas. Random

and MPF 1 result in a fair load distribution.
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Figure 3: Real load distribution (static)

Figure 4 shows the achieved throughput of committed transactions versus the response time

for both static and dynamic load balancers. For each curve in both static and dynamic schemes

the increased throughput is obtained by adding replicas to the system. From both graphs,

scheduling transactions based mainly on replica load, MPF 1, results in slightly better through-

put than Random, while keeping the response time constant. Prioritizing conflicts has a more

noticeable effect on load balancing. With static and dynamic load balancing, MCF, which

primarily takes conflicts into consideration, achieves higher throughput, but at the expense of

increased response times. A hybrid load-balancing technique, such as MPF 0.1, which con-

siders both conflicts between transactions and the load over the replicas, improves transaction

throughput and only slightly increases response times with respect to Random and MPF 1.

Since in static load balancing MCF uses the same transaction assignment for 4, 6 and 8

replicas (see Figure 3), the throughput does not increase by adding replicas, and that is why

MCF in Figure 4 (a) only contains two points, one for 2 replicas (2R) and another one for

4, 6 and 8 replicas (4R, 6R, 8R). Static MCF strives to minimize conflicts between replicas

and assigns transactions to the same 4 servers. In this case, dynamic load balancing clearly

outperforms the static one, since all available replicas are used. Finally, the results also show

that except for dynamic MPF 0.1, the system is overloaded with 2 servers.

7.3 Abort rate breakdown

In this section we consider the abort rate breakdown for both dynamic and static load bal-

ancing (see Figure 5). There are three main reasons for a transaction to abort: (i) it fails the

certification test, (ii) it holds locks that conflict with a committing transaction (see Section 6),

and (iii) it times out after waiting for too long. Notice that aborts due to conflicts are similar
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Figure 4: Throughput vs. response time (a) static load balancing (b) dynamic load balancing

in nature to certification aborts, in that they both happen due to the lack of synchronization

between transactions during the execution. Thus, a transaction will never be involved in aborts

of type (i) or (ii) due to another transaction executing on the same replica. In both static
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Figure 5: Abort rates (a) static load balancing (b) dynamic load balancing

and dynamic strategies with more than 2 replicas, Random and MPF 1 result in more aborts

than MCF and MPF 0.1. Random and MPF 1 lead to aborts due to conflicts and certification,

whereas aborts in MCF and MPF 0.1 are primarily caused by timeouts. MCF reduces certifica-

tion aborts from ≈ 20% to ≈ 3%. However, MCF, especially with a static load balancer, results

in many timeouts caused by conflicting transactions waiting for execution. MPF 0.1 with a

static load balancer suffers mostly from unfair load distribution over the servers, while with a

dynamic load balancing MPF 0.1 is between MPF 1 and MCF: reduced certification aborts, if

compared to the former, and reduced timeouts, if compared to the latter. In the end, MCF and

MPF 0.1 win because local aborts introduce lower overhead in the system than certification
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aborts.

7.4 The impact of failures and reconfigurations

We now consider the impact of membership changes due to failures in the dynamic load-

balancing scheme. The scenario is that of a system with 4 replicas and one of them fails.

Until the failure is detected, the load balancer continues to schedule transactions (using MPF 1

in this case) to all replicas, including the failed one. After 20 seconds, the time that it takes for

the load balancer to detect the failure, only the operational three replicas receive transactions.
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Figure 6: Algorithm reconfiguration

Figure 6 shows the replica’s failure impact on committed transactions throughput with MPF

1. The solid horizontal line represents the average throughput when 4 replicas are processing

transactions before the failure, during the failure, and after the failure is detected. The horizon-

tal dashed line shows the average number of committed transactions per one-minute intervals.

The throughput decreases significantly during the failure, but after the failure is detected, the

load-balancing algorithm adapts to the system reconfiguration and the throughput improves.

However, only 3 replicas continue functioning, so the throughput is lower than the one with 4

replicas. Our detection time of 20 seconds has been chosen to highlight the effects of failures.

In practice smaller timeout values would be more adequate.

8 Related Work

In contrast to replication based on distributed locking and atomic commit protocols, group-

communication-based protocols minimize the interaction between replicas and the resulting syn-

chronization overhead. Proposed protocols differ mainly in the execution mode—transactions

can be executed conservatively [9, 13] or optimistically [3, 18], and in the database correctness
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criteria they provide—one-copy serializability [1, 13, 14, 16, 17, 18, 20] or snapshot isolation

[11, 19, 26].

The original DBSM has been previously extended in several directions. Sousa et al. inves-

tigate the use of partial replication in the DBSM [23]. In [8] the authors relax the consistency

criteria of the DBSM with Epsilon Serializability. The work in [25] discusses readsets-free cer-

tification. The basic idea of the DBSM remains the same: transactions are executed locally

according to strict 2PL. In contrast to the original DBSM, when an update transaction re-

quests a commit, only its updates and writesets are broadcast to other sites. Certification

checks whether the writesets of concurrent transactions intersect; if they do, the transaction is

aborted. However, since such a certification test does not ensure one-copy serializability, conflict

materialization techniques are adopted in the DBSM.

A number of works have compared the performance of group-communication-based database

replication. In [5] Holliday et al. use simulation to evaluate a set of four abstract replication

protocols based on atomic broadcast. The authors conclude that single-broadcast transaction

protocols allow better performance by avoiding duplicated execution and blocking. These pro-

tocols abstract the DBSM. Another recent work evaluates the original DBSM approach, where

a real implementation of DBSM’s certification test and communication protocols is used [22].

In [7] the authors evaluate the suitability of the DBSM and other protocols for replication of

OLTP applications in clusters of servers and over wide-area networks. All the results confirm

the usefulness of the approach.

In [13] and [14] the authors present three protocols (Discor, Nodo and Reordering)

which use conflict classes for concurrency control of update transactions. A conflict class, as

a transaction type in our load-balancing algorithms, represents a partition of the data. Unlike

the vDBSM, conflict classes are used for transaction synchronization. The vDBSM does not

use any partitioning information within the replication algorithm. Load-balancing techniques

use transaction types to increase the performance of the vDBSM (by reducing the abort rate),

and not for correctness, as in [13] and [14].

Little research has considered workload analysis to increase the performance of a replicated

system. In [12] the authors introduce a two-level dynamic adaptation for replicated databases:

at the local level the algorithms strive to maximize performance of a local replica by taking into

account the load and the replica’s throughput to find the optimum number of transactions that

are allowed to run concurrently within a database system; at the global level the system tries to

distribute the load over all the replicas considering the number of active transactions and their

execution times.

In [2] the authors use transaction scheduling to design a lazy replication technique that guar-
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antees one-copy serializability. Instead of resolving conflicts by aborting conflicting transactions,

they augment the scheduler with a sequence numbering scheme to provide strong consistency.

Furthermore the scheduler is extended to include conflict awareness in the sense that a conflict-

ing read operation that needs to happen after some write operation is sent to the replica where

the write has already completed.

9 Final remarks

To keep low abort rate despite the coarse granularity of middleware-based replication protocols,

we introduced conflict-aware load-balancing techniques that minimize the number of conflict-

ing transactions executing on distinct database servers and maximize the parallelism between

replicas. Our techniques can be used with both static and dynamic load-balancing strategies.

Current work is investigating variations of MCF and MPL applied to databases with consistency

criterion different than serializability.
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A Appendix: Proof

Theorem 1 The vDBSM ensures one-copy serializability.

Proof: We show next that if a transaction Ti commits in the vDBSM, then it also commits in

the DBSM. Since the DBSM guarantees one-copy serializability, a fact proved in [18], it follows

that the vDBSM is also one-copy serializable.

To commit on site Sk in the vDBSM, Ti must pass the certification test. Therefore, it

follows that for every dx read by Ti, Vi[x] = V (Ti)[x]. We have to show that if Vi[x] = V (Ti)[x]

holds for each data item dx read by Ti then for every transaction Tj committed at site(Ti),

either Ti started after Tj committed, or Tj does not update any data items read by Ti, that

is, writeset(Tj) ∩ readset(Ti) 6= ∅. For a contradiction assume Vi[x] = V (Ti)[x] for all dx read

by Ti and there is a transaction Tk such that Ti starts before Tk commits and writeset(Tk) ∩

readset(Ti) 6= ∅. Let dx ∈ writeset(Tk) ∩ readset(Ti). Before Ti starts, the current version of

dx, V [x] is collected and stored in V (Ti)[x]. When Tk commits, Vi[x] is incremented. Since Tk

commits before Ti is certified, it cannot be that Vi[x] 6= V (Ti)[x], a contradiction that concludes

the proof.
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