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Omniscient debuggers promise to greatly simplify debugging. They allow developers Published
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resent time, allowing developers to see and compare multiple program states, and to
visually follow the flow of information throughout a program execution.

In this paper we study the most obvious such visualization, which we call “space-
time view”. Space-time views are tables where columns represent space—the various
memory locations of the program—and rows represent time—the various operations
performed throughout the execution. Our goal is not to present a particular imple-
mentation of space-time views, but to provide the foundations for many different such
visualizations. The key problem with space-time views is their extreme size for real-
istic executions. Any useful space-time view has to deal with this size. Based on a set
of realistic execution histories, we automatically generate space-time views, and we
study their size and their internal structure. Our observational study helps visualiza-
tion developers to understand the most important scaling problems with space-time
views, and to develop effective visualization techniques that are meaningful in prac-
tice.
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1 Introduction

Zeller [1] states “[In debugging,] understanding how the failure came to be[...] requires by far the most time”,
and Bracha [2] points out that omniscient debugging approaches providing that understanding are “worth
more than a boatload of language features”. Indeed, omniscient debuggers [3, 4, 5] promise to drastically
simplify the debugging problem by providing developers access to the complete execution history of a pro-
gram. This allows developers to navigate back in time, answering questions such as “Why is this reference
null?” or “Where did this value come from?”

In this paper, we are interested in visualizations that allow a programmer to track the flow of values
throughout a program execution. This is particularly relevant when tracing backwards along the infection
chain, from a program failure back to its cause. An infection chain may involve operations that are far apart
in time (e.g., a statement during program initialization, and a statement in an entirely different method
executing when handling some request), and memory locations that are far apart in space (e.g., a field in a
heap object, and a local variable in an activation record of some method).

Textbooks explaining execution histories often represent an execution in a tabular form [1, 6], similar
to Figure 1, with columns representing different memory locations, and rows representing execution steps.
We call these tables “space-time views”. Those simple and intuitive visualizations are used for illustrat-
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Figure 1: Space-Time View

ive purposes, for execution histories that can be shown in tables with around a dozen rows and columns.
Moreover, such examples often use only a subset of modern programming language features, avoiding com-
plexities such as heap allocation, polymorphism, or recursion. This is of course intentional, given that those
visualizations do not serve as real debugging aids, but as ways to explain the principles behind techniques
such as dependency analysis or slicing.

Histories of realistic executions are much larger, and they involve the entirety of features of modern
languages. While there is an intuitive understanding that realistic histories will lead to very large space-
time views, it is not clear how large they actually would get, how they would be structured, and to what
degree their size could be reduced with appropriate techniques. In this paper we study these questions
based on histories of a large number of real-world Java unit test executions, from which we automatically
generate space-time views which we then characterize. We study two independent techniques to reduce
the size of space-time views: “operation abstraction”, which combines multiple rows, and “history slicing”,
which filters irrelevant columns and rows.

The remainder of this paper is structured as follows: Section 2 provides a brief introduction of space-
time views. Section 3 shows that the intricacies of real-world programming languages require space-time
views with a low level of abstraction. Section 4 precisely defines space-time views for Java bytecode exe-
cution histories, and Section 5 characterizes such views based on a set of unit test executions. Section 6
presents “‘operation abstraction” and “history slicing”, two techniques to reduce the size of space-time
views. Section 7 discusses related work, Section 8 discusses limitations, and Section 9 concludes.

2 Space-Time Views

Figure 1 shows a sketch of a space-time view. Columns represent the space dimension, consisting of all
memory locations, while rows represent the time dimension, consisting of all execution steps. The last row
shown in the figure represents a failing execution step. The purpose of debugging is to find the cause of
that failure. For this reason, developers usually navigate backwards along the infection chain to determine
where the values used by the failing instruction came from.

2.1 Space

The space dimension consists of a set of columns. Each individual column represents a single memory
location L,, which holds a single scalar value (i.e., a value of a primitive type, or a reference to some ob-
ject). One complete row in the table represents a snapshot of the program state. It corresponds to a flat
representation of all the information a traditional debugger could possibly show at a given point in time.
In Java, like in most modern programming languages, space has a certain structure. Figure 2 structures
the space with a hierarchy of column headers: At the top of the hierarchy we distinguish between different
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Figure 2: Structure along space and time dimensions

memory regions, usually the stack(s), the heap, and the space for global variables. Each of these regions
can be further subdivided.

o Stack. In a single-threaded program, there is only one stack, while in multi-threaded programs, we
have one stack per thread. Each thread’s stack is further subdivided into activation records (or stack
frames). Each stack frame holds the local variables and parameters of a method invocation.

e Heap. In a typed language like Java, we can group heap objects by their types. Heap objects can be
either regular objects, consisting of a set of fields, or they can be arrays, consisting of a sequence of
array elements (and a read-only length field).

¢ Global. In Java-like languages, global variables are (static) members of classes, and thus they can be
grouped by their class.

2.2 Time

The time dimension consists of a sequence of rows. Each row corresponds to one execution step S, of
the program. Depending on the abstraction level, an execution step could correspond to the execution of
a bytecode instruction, the evaluation of a subexpression, the execution of a program statement, or the
execution of a line of source code. We will discuss the different abstraction levels in Sections 3 and 6.1. As
Figure 2 shows, the time dimension can be structured by using the row headers to represent a thread’s call
tree (with one node for each method invocation). For multi-threaded programs, the steps from different
threads will be interleaved, and multiple call trees (one for each thread) will need to be presented.

2.3 Cells

Each cell in the table holds the value of a memory location (column) at the time of a given execution step
(row). A particular implementation of a space-time view could show the value before that step and/or the
value after that step. Moreover, if a step accesses a memory location, the cell can indicate whether there
was a read access, a write access, or a read/write access.

Figure 3 presents an example: S; writes L; and Lg. While usually a single step only writes to a single
memory location, there are cases (e.g., at higher abstraction levels) where one step writes to multiple loc-
ations. S; does not read from any memory location. While most steps will read from at least one location,
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Figure 3: Steps S, accessing memory locations L,

there are cases (e.g., when initializing a variable with a constant value) when a step only writes but does
not read. S, represents a more common situation: it reads a value from one location (Lg), then potentially
computes something based on that value, and then stores the result in a different location (L3). S, reads
from more than one location. This is quite common. Sg only reads, but does not write. This is quite rare. S;
reads and writes the same memory location. This can happen for example when incrementing a variable
(i++). Note also that in general a memory location can be written more than once (e.g., Lg is written twice,
and L; is written three times).

2.4 Infection Chain: Information Flow

While debugging, a developer usually starts at the failing execution step (for example at S; in Figure 3).
Each step may read multiple memory locations (S; only reads one location, L3). The failing step must have
failed for a reason, and the developer tries to find that reason by navigating back along all information
flows reaching the failing step. For each memory location read by the failing step (in S; this means for L),
the developer can look when that location had last been written by scanning upwards (back in time) until
he finds the most recent write in the memory location’s column (L; was most recently written in S,;). The
developer can repeat this search transitively (e.g., S, reads Ls and Lg, L5 is written by S, Lg is written by
S;), until he finds the root cause of the failure. This chain, from the failure to the root cause, is called the
infection chain.

2.5 A Notion of Place

The advantage of using a space-time view for this kind of debugging process is that the information is
presented in an overall context: every memory location and every execution step has its fixed place in a
two-dimensional plane. Adjacent rows represent execution steps adjacent in time, and most of the adja-
cent columns represent memory locations that belong to the same object or array. The disadvantage is that
both the space and the time dimension can grow large, much larger than what can be shown on a screen
or on a sheet of paper. It is the goal of this paper to quantify how large space-time views can grow, and to
investigate techniques to reduce their size, while keeping their positive properties.

3 The complexity of statements

When developing a space-time view visualization, one has to decide what constitutes an execution step.
As stated previously, this could be a source code line, a statement, or something else. We now discuss why
source code lines and statements can be problematic. Many modern debuggers are integrated with an IDE,
and their primary visualization is the source code of the program. Such a debugger visualizes a point in
the program execution by highlighting the source code line with the currently executing statement. When
single-stepping, the debugger executes the statement, and stops at the next one.

Statements, however, are a relatively weak abstraction for debugging. A single statement may interact
with the program state in many different ways. Below is an illustrative example of a single statement with a
large, intricate set of interactions with the program state:



int a=b ? c(d=1, e&&f()) : new G(h++).i(—j);

This statement involves several intricate language features:

o Assignment in an expression context (d=...) and pre/post increment/decrement operators (h++, --3j)
mean that this assignment statement does not just set the value of variable a, but also of variables d,
h, and j.

o Conditional operators (2:) and short-circuit evaluation (&&) lead to conditional control flow inside
expressions, which means that not all effects of the statement take place unconditionally. Thus the
statement cannot be considered a simple atomic unit of execution.

e Method calls in expressions mean that parts of the statement execute before the method is called,
and parts execute after the method returns. In the example, the statement contains multiple method
calls, parameters of one method call are computed with other method calls, and return values of one
method call are used as target objects for a second method call.

A traditional debugger deals with this complexity by highlighting the same statement multiple times
(e.g., before and after each method call it involves), without any indication about which stage of the execu-
tion that statement is in. This can be highly confusing already for a traditional debugger, and it is equally
problematic when using statements as execution steps in a space-time view.

4 Bytecode-Level Space-Time Views

Based on the discussion in Section 3, we first study the most fundamental, finest granularity execution
steps describing a Java program execution: bytecode instructions. Most application developers will not be
familiar with bytecode instructions, and thus this low level of abstraction seems to be excessive. However,
as Section 3 has shown, the two higher level abstractions familiar to developers, statements and source code
lines, are broken. For this reason we first define our model on the lowlevel, and in Section 6.1 we then show
how to abstract to a higher level that is close to source code statements.

4.1 Local Variables

We first focus on simple expressions that use operators, literal values, and local variables. The evaluation
of an expression with more than one operator produces intermediate values. As described in the previous
section, intermediate values in an expression can escape to various memory locations and intermediate
steps within a statement can affect control flow. Thus, a visualization that is supposed to help developers to
precisely understand when and where variables were written—in arbitrary programs written in real-world
languages—needs to explicitly represent such intermediate values as well as the intermediate execution
steps that lead to those values.

Bytecode-level space-time views explicitly represent these intermediate values and steps. This makes
the visualization much larger, but it shows the complete picture and serves as the baseline for discussing
various visual optimizations. We show intermediate values by explicitly visualizing the operand stack loca-
tions as they are modeled on the level of a language runtime environment (such as the JVM). We show the
intermediate steps by showing instructions (in our case, JVM bytecode instructions) instead of statements
in the rows of the table.

Table 1 shows the space-time view corresponding to the execution of the statement x = 3*x+a, as-
suming that at the beginning x was 4 and awas 5. The view shows a total of five memory locations, and how
their values change over time: two local variables, x and g, and three operand stack slots.

Each row represents the execution of an instruction. iconst 3 stores the value 3 in operand stack slot
#1. iload x loads the current value (4) from local variable x and stores it in stack slot #2, and iload a
works similarly for a.

The body cells of the table show the current value of each memory location. In case the value is read by
the current instruction, the cell also contains an ‘R’. In case the value is written, the cell contains a ‘W’. In
cases where the location is read and written by the same instruction, the cell shows ‘R’, the old (read) value,
‘W’, and the new (written) value. We see such a read/write access for imul, which reads the value 4 from
slot #2 and the value 5 from #3, multiplies them, and stores the intermediate result, 20, back into #2. The
next instruction, iadd, works similary. Finally, istore x stores the result into local variable x.



Table 1: Space-time view for accessing local variables

Stack
Activation record

Operand stack Local variables

#1| #2 ] #3 X | a
// initial state

[ T [ 4] 5]
X = 3*x+a;
iconst 3 W3 4 5
iload x 3 W4 R4 5
iload a 3 4 | W5 4 R5
imul 3 R4 | R5 4 5
W20
iadd R3 R 20 4 5
W23

istore x R23 W23 5

We treat operand stack slot locations slightly differently from other memory locations: operand stack
slot reads are destructive, that is, the value disappears after a read. This is in line with JVM semantics,
where a read from the operand stack essentially corresponds to a “pop”. Our treatment does not affect the
characterization reported in the next section, because it does not affect reads and writes in any way (it only
clears cells after a read and makes the table slightly more readable). Note that for other memory locations,
reads are not destructive, that is, there can be multiple reads of the same value.

As the header rows of the table indicate, all five memory locations are part of an activation record (a
stack frame), corresponding to the temporary data needed throughout a single invocation of a method.
The visualization will include a separate activation record (and thus a separate set of memory locations or
table columns) for each and every method invocation.

In this paper we annotate the space-time views with comments and source code statements in bold
font. While these annotations are invaluable for the understanding of this low-level code, they are not part
of the bytecode-level space-time views we characterize in the next section. This means that they are not
included in the metrics we report. We discuss how to build space-time views with execution steps that are
similar to source code statements in Section 6.1.

4.2 Heap Accesses

The Java heap contains two kinds of data: objects (instances of Java classes) and arrays. An object consists
of a set of fields. The space-time view contains one column for each field. An array consists of a length field
and a number of elements. The contents of the length field determines how many elements it contains.
The space-time view contains a column for the length field, and one column for each element.

Java provides bytecode instructions for reading and writing heap data: getfield reads and putfield
writes afield of an object, *aloadreads an element and *astore writes an array element, and arraylength
reads the (read-only) length field of an array.

Sprite pacman, ghost; Sprite[] sprites;

pacman.x = ghost.x;
sprites[0] = sprites[sprites.length—1];

The above snippet shows example code accessing the heap, and Table 2 shows the space-time view of an
execution of this code. Some cells in this table contain references (pointers to heap objects). We represent
those references by using a unique ID for each object. In this example, s; and s, are the IDs of the two Sprite
objects, and ss; is the ID of the Sprite[]. An object’s ID is also shown in the table header, in the heap region,
to group the columns that represent the fields of that object.

The first row of Table 2 shows the initial state of the system, before the first of the two statements starts
executing. We see three local variables: pacman and ghost point to Sprite objects, and sprites points



Table 2: Space-time view for heap accesses

Stack Heap
Activation record Sprite Spritef]
Operand stack 1] Local variables S1 11 S5 581

#1 [ #2 ] #3 ] #4 | #5 |[ pacman [ ghost [ sprites x [ vl xJy length T o] T TI]

// initial state
1 | [ T s s snl T[22 3[4l 2] s[ =
pacman.x = ghost.x;
aload pacman W s, Rs; S5 $§1 1 2 3 4 2 S1 S5
aload ghost S Ws, ) Rs, 58 1 2 3 4 2 $ Sy
getfield Sprite.x S Rs, S S5 RO 1 2 R3 4 2 S1 Sy
W3
putfield Sprite.x R s R3 S1 S5 $§1 w3 2 3 4 2 R S5
sprites[0] = sprites[sprites.length-1];
aload sprites W ss; S S5 Rss; 3 2 3 4 2 S1 Sy
iconst 0 58 WO S S5 58 3 2 3 4 2 S1 Sy
aload sprites s8] 0 W ss; ) S5 Rss; 3 2 3 4 2 $ Sy
aload sprites RO 0 $8 W ss; §1 S5 Rss; 3 2 3 4 2 1 S5
arraylength RO 0 $§1 Rss; S S5 $§1 3 2 3 4 R2 R S5
w2
iconst 1 $8 0 58 2 W1 5 Sy $8 3 2 3 4 2 § S
isub RO 0 $81 R2 R1 S S5 RO 3 2 3 4 2 1 S5
W1
aaload $81 0 Rss R1 8 S $81 3 2 3 4 2 S Rs,
W s,

aastore Rss RO Rs, S Sy 58 3 2 3 4 2 W, S

to an array of sprites. The Sprite objects are initialized so their x and y fields are set to (1, 2) and (3, 4).
The Sprite array has length 2 and contains two references, one to each sprite.

4.3 Global Accesses

Java’s static fields are a form of global variables. They exist outside the heap. Java provides the getstatic
and putstatic instructions for reading and writing static fields. A space-time view contains one column
for each static field. These columns are grouped by class, and they are placed under the “Globals” header.
The following code snippet shows a read access of the static field Calc.PI.

class Calc { public static double PI; }

double pi = Calc.PI;

Table 3 shows the corresponding space-time view, with a column for memory location Calc.PI, and
arow for the getstatic bytecode instruction reading that value from that field (and another row storing
the value in local variable pi).

Table 3: Space-time view for reading a global variable

Stack Globals
Activation record Calc
Operand stack || Local variables
#1 pi PI
// initial state
| || [ 314]
pi = Calc.PI;
getstatic Calc.PI Ww3.14 R3.14
dstore pi R3.14 W3.14 3.14

4.4 Method Calls

On the bytecode level, method calls are represented by invoke* instructions. Those instructions allocate
an activation record for the callee, copy all parameter values (and, for non-static calls, the call target object
reference) from the caller’s operand stack to the callee’s activation record, trigger the execution of the callee,
and when the callee returns, copy the return value (if any) from the callee’s activation record to the caller’s
operand stack.




Table 4: Space-time view for method call

Stack Heap
Activation record for A.m(B b); Activation record for B.n(A a,int 1); A B
Operand stack 11 Local variables Operand stack ] Local variables [| Ret. a, by
#1 ] #2 [ #3 |[ this | b ] T #1 || this | a | i]
// initial state
T T T al hl T T T T T -T-]
int r = b.n(this, 3);
aload b W b, a R b,
aload this b, W a, Ra b,
iconst 3 b, a; w3 a; by
invokevirtual_arg by a, R3 a; by w3
invokevirtual_arg by Ra, a, by W a, 3
invokevirtual_arg R b a; by W by a; 3
return 1;
[CiconstT 1 T [ al &l T 7 N N | O
[ireturn T T T al bl T b a | Wi .| .|
intr = b.n(this, 3);
[ invokevirtual_ret [[ W1 | [ [ a ] b ] I I [ [ M RIJ . ] ]
[Cistorer TR T a ] b [Wi]| T T 1 1]
class A {
void m(B b) { int r = b.n(this, 3); }
}
class B {
int n(A a, int i) { return 1; }
}

The above code snippet shows an example method call, where method A.m() calls method B.n().
Table 4 shows the corresponding space-time view, with the sequence of executed instructions. Execution
starts with some instructions in method A.m(), is followed by the code of B.n(), and ends with the re-
mainder of A.m().

To make the information flows through parameters and return value explicit, we break each invokex*
instruction into multiple execution steps: one invoke*_arg instruction for each argument to be passed,
and one invoke*_ret instruction for passing the return value. Note that we introduce a “return value”
memory location to activation records of methods with non-void return types. This location allows the
callee’s *return instruction to pass information to the caller’s invoke*_ret.

4.5 Allocations

In Java, objects and arrays are allocated on the heap with new and *newarray bytecode instructions, re-
spectively.

class Sprite {

int x, y;

Sprite () { super(); y = 5; }
}

Sprite s = new Sprite ();
int[] isl = new int[2];

The above code snippet illustrates object and array allocation. Table 5 shows the corresponding space-
time view. We see the new instruction allocating a Sprite object. This instruction initializes all fields of
the object to their default values. Then invokespecial calls the constructor of the Sprite class. That
constructor invokes the super class (Object) constructor. We do not trace the Java library, and thus we do
not see what happens inside the Object constructor. Next, the Sprite constructor sets the y field to 5. The
time between the start of the constructor and the execution of y=5 is somewhat dangerous because code
may see a not completely initialized object. The space-time view with its explicit representation of state
over time can be helpful in debugging problems related to this behavior.

The array allocation simply consists of the newarray instruction, which initializes all elements of the
array to their default values and the length field of the array to 2. The new and newarray instructions can
write to an arbitrary number of memory locations: they essentially “zero out” the heap space used for new
heap objects.



Table 5: Space-time view for allocations

Stack Heap
Activation record Activation record for Sprite.Sprite(); Sprite int[]
Operand stack [[ Local variables Operand stack [[  Local variables S1 is
#1 ] #2 ] s | is #1 ] #2 ] this X | y length T o] T 1]
// initial state
I I I I I I Il I Il I I |

Sprite s = new Sprite();

new W s, wWo wo

dup Rs W s, 0 0

invokespecial_arg 51 R s W sy 0 0

// entered Sprite.Sprite() constructor

super();
[ aload this [ s [l I [ Ws [ [l Rs | 0[] off I I |
| invokespecial_arg || si | Il | [ Rsi | Il s || o] of | | |

// entered Object.Object() constructor

// Object.Object() constructor is not traced

// returned from Object.Object() constructor

y=5;

aload this R W s, R s 0 0

iconst 5 $1 S W5 8 0 0

putfield Sprite.y S R s R5 S 0 | W5

return S S 0 5

// returned from Sprite.Sprite() constructor

Sprite s = new Sprite();
[astores [ R [ [ Wa] I I 0] 57 I

int[] is = new int[2];

iconst 2 W3 S 0 5

newarray int R3 S 0 5

Wis s W2 WO Wo

int[] is = new int[2];

[ astoreis [ Risi | I si | Wisg ] I 1 0 ] 5 ] 2 ] 0 | 0 |
NS
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Figure 4: (a) Size (columns and rows) and (b) density of space-time views, and (c) percentage of rows containing
pseudo-instructions for parameter passing

5 Characteristics of Bytecode-Level Space-Time Views

We expect space-time views as defined in the previous section to grow large, making it difficult to create
effective visualization tools. To understand exactly how large these views really become, we pick a realistic
debugging scenario. We chose EJML!, an open source Java library that comes with an extensive suite of
unit tests. During development, unit tests often fail, and when they fail, developers have to find the root
cause of that failure. Unlike complete production runs of an application, such unit test runs are scenarios
for which a complete execution history can be collected without requiring terabytes of traces. Moreover, it
is a scenario in which developers could benefit from effective space-time view visualization tools.

We run each unit test method separately, and we trace all EJML code. We do not trace the Java runtime
library. Figure 4 shows the key characteristics of the resulting space-time views. It consists of three plots.
Each plot represents the cumulative distribution (over all traces) of a certain metric. The first plot shows the
width and height of the view: the median number of columns (memory locations) is 1472, and the median
number of rows (instructions) is 4807. A Full HD screen with its 1920 by 1080 pixels would provide 1.3 pixels
per column and 0.2 pixels per row of such a median space-time view. To be able to read the cells, only about
1% of the rows and columns could be visible on the screen. Thus, the views are large, but not as large as we
expected.

lhttps://code.google.com/efficient- java-matrix-library/
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On average, 48% of the columns are used for the operand stack and return values, another 48% for local
variables, 3.5% are used for arrays, and only 0.85% for objects. This small percentage of heap locations is
surprising. We believe this is due to the fact that EJML, a matrix library, is computation-heavy. With 0.02%,
almost no static fields are used, which is not surprising for well-designed Java code.

The second plot shows the density of the view, the percentage of cells that contain memory accesses
(reads, writes, or read/writes). In the median, only 0.15% of space-time view cells represent accesses,
99.85% can be ignored. For a significant number of traces, the density is even smaller. This large number
of untouched cells is the cost of having visual stability: the x and y axes have a fixed, well-defined meaning.
It also means that interaction techniques such as folding can help to greatly reduce the size of the visualiz-
ation.

Section 4.4 has shown that method calls lead to multiple pseudo-instructions (one for each parameter
and return value). The third plot shows the fraction of rows that correspond to such pseudo-instructions.
The median over all traces is 11%. This could be reduced with a more compact representation of method
invocations, at the cost of giving up the ability to keep flows of parameters separate from each other.

6 Optimizations

We now discuss “operation abstraction” and “history slicing”, two optimizations that help in drastically re-
ducing the size of space-time views.

6.1 Operation Abstraction

Section 5 has shown that almost half the columns correspond to operand stack locations. These locations
are not intuitive to application programmers because they are not represented in source code. We thus
would like to eliminate them. However, based on the discussion in Section 3, we do not want to use state-
ments as execution steps. We thus use “operations”, an abstraction somewhere between bytecode instruc-
tions and language statements.

To perform “operation abstraction”, we simply group all instructions that directly communicate through
the operand stack. This combines instructions that compute expressions such as a [b+c] +o . x into a single
group. Each such group is an operation, which requires a single row. For each group, we remove all its
reads and writes to the operand stack. The writes of the operation then correspond to the union of all
remaining writes of its constituent instructions. The same applies to its reads. We end up with a set of
high-level operations, each with zero or more reads, writes, and read/writes. Those operations are roughly
equivalent to statement expressions and subexpressions computing actual arguments of method calls in
the Java language. Finally, given that we deleted all reads and writes to the operand stack, we can also
eliminate all operand stack columns.

Consider the following example:

class Sprite {

int y = 5;

public int getY() { return y; }
}

int y = s.getY();

Assume s is a Sprite. The last statement calls the method getY () on this object and assigns the re-
turned value to the local variable y. Table 6 shows the space-time view for this statement after operation
abstraction. The first column shows the Java statement containing the abstract operation. In the state-
ment, we highlight the abstract operation in bold. The first and the third rows show an example where the
statement consists of more than one operation. While our implementation of operation abstraction pro-
duces tables like this, we do not automatically generate the labels in the first column. The generation of
such labels would require access to the source code, and the development of a source code compiler that
unambiguously maps bytecode instructions to AST nodes (instead of just to source file lines).

6.2 History Slicing

The idea of “history slicing”, our second optimization, is quite simple: instead of visualizing all execution
steps and memory locations, we only visualize those steps and locations that are part of the infection chain
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Table 6: Space-time view after operation abstraction

Stack Heap
Activation Record Sprite.getY() Sprite
Local vars. Local vars. | Ret. S
s | y this y
// initial state:

[ 5] I [ 5]
inty=s.getY(); || Rs; W s 5
returny; 8 Rs | W5 R5
inty=s.getY(); § W5 R5 5

(i.e., in Figure 1, steps with shaded cells, locations with thick vertical arrows). This makes perfect sense,
given that these are exactly the execution steps and memory locations the programmer will need to look at
when traversing the infection chain.

To determine a history slice, we need to pick an execution step from which to navigate backwards. This
step is called the “slicing criterion”. When debugging, the slicing criterion usually is the failing execution
step. In this study, the criterion is an assert statement (where a unit test would fail).

A history slice is similar to a program slice (more concretely, a dynamic backward slice). The concepts
are not the same, though: while a program slice represents a set of source code locations, a history slice
represents a set of execution steps. Moreover, unlike in program slicing, we do not consider control de-
pendencies when slicing, as we will discuss in Section 8.

6.3 Benefits of Optimization

Figure 5 shows how the two optimizations affect the size of space-time views. Operation abstraction re-
duces the rows by about 75% and the columns by about 30%. This is a significant improvement, and it
comes with a notion of execution step that is more familiar to developers. However, it also causes some
loss of precision, because each row may now read from multiple locations and write to multiple locations,
and the internal information flow inside the abstract operation will be hidden. History slicing is even more
effective, shrinking rows and columns by about two orders of magnitude. Many of the resulting space-time
views will now fit on a single screen, making debugging practical even without powerful navigational aids.
However, slicing removes a lot of contextual information that may be relevant for understanding. Thus, in
a space-time view visualization tool, slicing probably should be a feature the user can switch on and off.
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Figure 5: How optimizations reduce space-time view size

Figure 6 shows that both optimizations improve density and thus reduce the amount of white space.
This leads to more compact visualizations.

Figure 7 shows the benefit of slicing in terms of the visual distance between a read and the correspond-
ing write of a memory location (see Figure 3 for a visualization of this distance). History slicing reduces
the median number of rows the user has to scan through (from the execution step that reads a value from
a memory location to the execution step that wrote that value) from 295 down to 2 for bytecode-level his-
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Figure 6: How optimizations affect space-time view density

tories. When combined with operation abstraction, the median number of rows drops from 25 for the full
history to 1 for the sliced history.

100

80
]
o 60
©
=
k]

40
X

—— Original
20 —— Operation Abstraction
— —— History Slicing

History Slicing + Operation Abstraction

1 100 10000

Average Def-Use Distance

Figure 7: Distance from memory location reads to their corresponding writes

7 Related Work

Space-time views integrate space, time, dependencies, and slicing for omniscient debugging.

Space. The data display debugger (DDD) [7] provides a visualization of program state, allowing de-
velopers to gradually unfold and explore data structures of a running program. Memory Graphs [8] auto-
matically visualize such structures, without requiring the manual unfolding by the developer. By compar-
ing multiple memory graphs representing specific program states, memory graphs can be used for isolating
cause-effect chains [9]. Memory graphs could provide an intuitive two-dimensional visualization of a se-
lected row in a space-time view, or of the difference between two rows.

Time. A rich body of work exists that visualizes program executions in various ways, but that does
not provide all the details needed for understanding information flow. Jinsight [10] is a tool for under-
standing program executions. Its visualizations include call trees (which could be useful as row header
of a space-time view), heap structures (to understand references between heap objects), and it provides
ways to collapse repetitive behavior into higher-level patterns. Jive [11] visualizes program executions us-
ing UML sequence and object diagrams. These diagrams focus on method invocations: they show which
object invoked which method on which other object, and which object points to which other object. Code-
Bubbles [12] allows developers to incrementally compose a visual representation of the important code,
data, and notes throughout a debugging session. EvoSpaces [13] visualizes execution histories as a movie.
Such time-based animated visualizations make it hard to juxtapose two related points in the program exe-
cution (such as the setting of a variable value and the use of that value) that are far apart in time.
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Dependencies and slicing. Prior work focused on visualizing the dependencies in programs, or on
using dependencies to produce more effective visualizations. SeeSlice [14] is a tool to visualize program
slices. While the actual slicing operations used by the tool require the detailed information contained in a
space-time view, the SeeSlice visualizations omit data flow information and only focus on code (source files,
functions, and statements). Moreover, program slices are sets of source code statements, while space-time
views show execution steps. The Whyline [15] aims at the same goal as space-time views: helping to find
the causes of program failures. However, the WhyLine does not provide a global view of the execution, it
shows a timeline of dependent execution events. The Whyline study found that users were reluctant of fol-
lowing data dependencies. We believe that making data (not just the dependencies) explicit—as columns
of space-time views—will make the navigation of data dependencies more natural.

Omniscient debugger GUIs. ODB [3] is an omniscient debugger for Java with a GUI similar to a tradi-
tional debugger: it presents the state of the system at a given point in time. Its “method trace” serves as a
visual history, but it only shows method calls and returns. TOD [5] is similar to ODB. TOD’s “control flow
view” extends the method trace with information about executed statements. Its “event murals” provide a
high-level overview of behavior. Both ODB and TOD provide ways to navigate dependencies and to inspect
the state at a selected point of execution, but they do not integrate space and time into a single visualization.

Amber [16] is a back-in-time debugger for native applications. It presents a “timeline” showing the sub-
set of execution steps that are the result of a query over the execution history. The GUI focuses on the time
dimension but does not explicitly represent the space dimension. However, like ODB and TOD, it allows
users to select a specific execution step and to investigate the state at that point.

Unstuck [17] is a back-in-time debugger for Smalltalk Squeak. In addition to a “method trace”, it also
provides an “object history” that shows the subset of events in which a specific object was involved. Lien-
hard et al. [4] implemented another back-in-time debugger in Squeak. They argue that most subtle bugs
are caused by aspects observable in explicit information flow, and thus, like us, they don’t represent impli-
cit information flow via control-flow dependencies. Compass [18], a related debugger in Squeak, provides
a “navigation history”. This is not an execution history, but a history of the points in the execution history
the developers looked at. The use of a navigation history is similar in spirit to CodeBubbles, the Whyline,
and also to Jikes RDB [19], a debugger used to inspect the internal state of virtual machines. Developers can
navigate their exploration history like a user can navigate their web browser history (using a backward but-
ton), and they have the ability to bookmark points they looked at. The Compass debugger also provides a
graph-based visualization of the method trace. That visualization omits most details: it just represents each
method invocation as a node in a big call tree. This is similar to a high-level abstraction over the y-axis of a
space-time view: instead of showing each and every instruction inside each and ever method invocation;
one could collapse all rows representing a method invocations into a single row, and would then end up
with the same kind of tree structure.

8 Limitations

We now discuss the limitations of this work.

Only unit tests. While we traced test runs with 47449928 executed bytecode instructions overall, we
did not study histories of complete production runs. We believe that due to their overhead, omniscient
debuggers will first be used for debugging unit test failures, thus that is what we focused on.

Only one test suite. Our study focuses on one test suite. While that suite is reasonably large (we ana-
lyzed 611 different unit test methods), it would be interesting to generalize our results by using a number
of different test suites.

No implicit information flow. We focus on explicit information flow. Using our bytecode-level space-
time views, it is possible to determine where exactly a certain value came from. However, the space-time
views described in this paper do not take control-flow into consideration. This means they do not allow the
tracking of implicit information flow. To track implicit information flow, the space-time views would have
to be extended. They would need one additional row and column for each control flow instruction (i.e.,
branch instruction). The column would represent a pseudo memory location representing the implicit
information flow from the branch to all instructions dominated by that branch.

No tool. While we specify the meaning of space-time views, we do not provide a specificimplementation
of a visualization tool. The goal of this paper is to provide the foundations and inspiration for developers
of such tools. The large size of the views shows that a tool needs to be highly interactive and that it has
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to integrate techniques such as folding and unfolding of the hierarchically structured time or space, and
slicing to automatically fold irrelevant regions of time and space.

9 Conclusions

While space-time views are used in programming and program analysis textbooks, to the best of our know-
ledge, we are the first to define the precise meaning of space-time views for a real-world language like Java.
We characterize the space-time views we automatically generated from a set of real-world unit test exe-
cution traces. We propose two approaches to reduce the amount of information: “operation abstraction”
and “history slicing”, and we study their effectiveness. We hope that our results will help visualization de-
velopers to design more effective tools for visualizing and navigating program executions captured by the
omniscient debuggers that are now at the forefront of program analysis research.
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