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Abstract

In this study new realized volatility measures based on Multi-Scale regression and Discrete
Sine Transform (DST) approaches are presented. We show that Multi-Scales estimators similar
to that recently proposed by Zhang (2004) can be constructed within a simple regression based
approach by exploiting the linear relation existing between the market microstructure bias and
the realized volatilities computed at different frequencies. These regression based estimators
can be further improved and robustified by using the DST approach to prefilter market mi-
crostructure noise. The motivation for the DST approach rests on its ability to diagonalize MA
type of process which arises naturally in discrete time models of tick-by-tick returns with market
microstructure noise. Hence, the DST provides a natural orthonormal basis decomposition of
observed returns which permits to optimally disentangle the volatility signal of the underlying
price process from the market microstructure noise. Robustness of the DST approach with
respect to more general dependent structure of the microstructure noise is also analytically
shown. Then, the combination of such Multi-Scale regression approach with the DST gives us
a Multi-Scales DST realized volatility estimator which is robust against a wide class of noise
contaminations and model misspecifications. Thanks to the DST orthogonalization which also
allows us to analytically derive closed form expressions for the Cramer-Rao bounds of MA(1)
processes, an evaluation of the absolute efficiency of volatility estimators under the i.i.d. noise
assumption becomes available, indicating that the Multi-Scales DST estimator posses a finite
sample variance very close to the optimal Cramer-Rao bounds. Monte Carlo simulations based
on realistic models for price dynamics and market microstructure effects, show the superiority
of DST estimators, compared to alternative volatility proxies for a wide range of noise to signal
ratios and different types of noise contaminations. Empirical analysis based on six years of
tick-by-tick data for S&P 500 index-future, FIB 30, and 30 years U.S. Treasury Bond future,
confirms the accuracy and robustness of DST estimators on different types of real data.
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1 Introduction

Asset returns volatility is a central feature of many prominent financial problems such as asset
allocation, risk management and option pricing. Recently a nonparametric approach to develop
ex-post observable proxies for the daily volatility has been proposed, the so called Realized Volatility
measures.

In its standard form realized volatility is simply the sum of squared high-frequency returns over
a discrete time interval of typically one day, i.e. the second uncentered sample moment of high-
frequency returns. This idea traces back to the seminal work of Merton (1980) who showed that the
integrated variance of a Brownian motion can be approximated to an arbitrary precision using the
sum of intraday squared returns. More recently a series of papers (Andersen, Bollerslev, Diebold
and Labys 2001, 2003 and Barndorff-Nielsen and Shephard 2001, 2002a 2002b, 2005 and Comte
and Renault 1998) has formalized and generalized this intuition by applying the quadratic variation
theory to the broad class of special (finite mean) semimartingales1. In fact, under very general
conditions the sum of intraday squared returns converges, as the sampling frequency increases,
to the notional volatility over the day. Thus, realized volatility provides us, in principle, with a
consistent nonparametric measure of the notional volatility.

In practice, however, empirical data differs in many ways from the frictionless continuous-time
price process assumed in those theoretical studies. Beside the obvious consideration that a con-
tinuous record of prices is not available, the presence of market microstructure effects prevent the
applications of the limit theory necessary to achieve consistency of the realized volatility estima-
tor. The main sources of microstructure effects are the bid-ask bounce and price discreteness2. As
already noted by Roll (1984) and Blume and Stambaugh (1983), bid-ask spreads produce negative
first-order autocovariances in observed price changes. Similarly, if one makes the assumption that
observed prices are obtained by rounding underlying true values, Glottlieb and Kalay (1985) and
Harris (1990) showed that price discreteness induces negative serial covariance in the observed
returns.

Therefore, microstructure noise induces a non-zero autocorrelation in the returns process which
makes no longer true that the variance of the sum is the sum of the variances. Hence, market
microstructure introduces a bias that grows as the sampling frequency increases. Formal studies
of the impact of microstructure noise on realized volatility measure has been made by Bandi and
Russell (2005), Aı̈t-Sahalia, Mykland and Zhang (2005) and Hansen and Lunde (2006).

Earlier attempts to directly correct for the microstructure effects at the tick-by-tick level were
the first order serial covariance correction proposed by French and Roll (1986), Harris (1990) and
Zhou (1996)3 and the exponential moving average (EMA) filtering of Corsi, Zumbach, Müller and

1This class encompasses processes used in standard arbitrage-free asset pricing applications, such as Ito diffusions,

jump processes, and mixed jump diffusions.
2Studies on the bid-ask spread are largely developed within the framework of quote-driven markets. However, the

bid-ask spread is not unique to the dealer markets: Cohen et al. (1981) and Glosten (1994) establish the existence

of the bid-ask spread also in a limit-order market because of transaction costs and asymmetric information.
3More recently, this approach has been revived by Oomen (2005) and Hansen and Lunde (2006).
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Dacorogna (2001) and Zumbach, Corsi and Trapletti (2002). However, the first type of estimator
suffers from the possibility to become negative while the second one is a non-local estimator which
adapts only slowly to changes in the properties of the pricing error component. Moreover, both
estimators correct only for the bias deriving from the first lag of the return autocorrelation function,
while they are very sensitive to non zero higher lag coefficients.

In fact, the presence of significant autocorrelation at lags length greater than one and the
possibility that each trading day may be characterized by different autocorrelation structures
makes the filtering problem rather complex. In theory, this problem could be tackled by a fully
parametric approach where several ARMA models are first estimated every day. Then the best
model is chosen on the basis of some loss criteria and finally an estimate for the daily volatility
could be obtained from the residuals of the selected model. This parametric higher order covariance
correction has been proposed, for instance, by Bollen and Inder (2002) which makes use of a
series of AR models selected on the basis of the Schwarz BIC criteria and by Hansen and Lunde
(2004) which employ MA(q) filters where q changes with the returns frequency so to keep the
time spanned by the autocorrelation window constant. More recently, Barndorff-Nielsen, Hansen,
Lunde and Shephard (2004) proposed a modified kernel-based estimator which is asymptotically
optimal. Such parametric approach, is asset dependent and relies on the estimation of a large
number of autocovariances. Concurrently, Zhang, Mykland and Aı̈t-Sahalia (2005) proposed an
estimator based on overlapping subsampling schemes and an appropriate combinantion of two
realized volatilities computed at two different time scales. Recently, Zhang (2004) has generalized
the Two Scales estimator to a multiple time scales estimator that combine realized volatilities
computed at more than two return frequencies. Our approach will be in the direction of this
Multi-Scales methodology

In this paper new alternative Multi-Scales realized volatility measures based on linear regression
approach and Discrete Sine Transform (DST) are presented. Multi-Scales estimators similar to
that recently proposed by Zhang (2004) can, in fact, be constructed within a simple regression
based approach by exploiting the linear relation existing between the market microstructure bias
and realized volatilities computed at different frequencies. These regression based estimators can
be further improved and robustified by using the DST approach to filtering out most of the market
microstructure noise. The motivation for the employment of the DST approach rests on its ability
to decorrelate signal for data exhibiting MA type of behaviour which, arises naturally in discrete
time models of tick-by-tick returns. In fact, we show that the DST diagonalizes exactly MA(1)
processes and approximately MA(q) ones. Hence, this nonparametric DST approach, turns out
to be very convenient as it provides an orthonormal basis which permits to optimally (in a linear
sense) extract the volatility signal hidden in the noisy tick-by-tick return series. We also show that
this approach produces robust and accurate results also in the presence of not i.i.d. microstructure
noise which leads to more general MA(q) processes for the tick-by-tick returns. It is then robust
against a wide class of noise contaminations and model misspecifications. Moreover, thanks to this
result we derive closed form expression for the Cramer-Rao bounds of the MA(1) process.

The rest of the paper is organized as follows. Section 2 reviews a model for the tick-by-tick
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observed price process and present both the DST and Multi-Scales approaches. It also discusses
absolute efficiency of volatility estimation for MA(1) process deriving the analytical expression of
the Cramer-Rao bounds and analyzes the robustness of the DST estimators with respect to more
general noise contaminations. Section 3 outlines the setup for the Monte Carlo simulations and
compares the performance of DST and Multi-Scales estimators togheter with other alternative
realized volatility estimators. Section 4 reports the results of the application of DST estimators
on empirical data. Section 5 concludes.

2 Definitions and properties of DST volatility estimators

2.1 Price process with microstructure noise

As described in Hasbrouk (1993, 1996), a general way to model the impact of various sources
of microstructure effects is to decompose the observed price into the sum of two unobservable
components: a martingale component representing the informationally efficient price process and
a stationary pricing error component expressing the discrepancy between the efficient price and
the observed one. The dynamics of the true latent price can be modelled as a general Stochastic
Volatility (SV) process4

dp̃(t) = µ(t)dt + σ(t)dW (t) (1)

where p̃(t) is the logarithm of the true instantaneous price, µ(t) is the finite variation process of
the drift, dW (t) is a standard Brownian motion, and σ(t) is the instantaneous volatility. For this
diffusion, the notional or actual variance is equivalent to the integrated variance for the day t which
is the integral of the instantaneous variance of the underling true process σ2(t) over the one day
interval [t− 1; t].

The observed (logarithmic) price, being recorded only at certain sampling times n and conta-
minated by market microstructure effects, is then a discrete time process of the form

pn = p̃n + ηωn (2)

where p̃n is the unobserved true price at time n and ηωn represents the pricing error component
with η the size of the perturbation. Depending on the structure imposed on the pricing error
component, many structural models for microstructure effects could be recovered. Here we take a
more statistical perspective assuming ωn to simply be a zero mean nuisance component independent
of the price process. In this section the assumption of an i.i.d. noise process for ωn is made while
it will be relaxed to allow for more general dependence structure in section 2.7 .

The evolution of the observed price is described in the “intrinsic transaction time” or ”tick
time”5 denoted with the integer index n; so that ∆tn = tn−tn−1 is the “intertrade duration” process

4Alternatively, a pure jump process as the compound Poisson process proposed by Oomen (2006) could be

employed to model the dynamics of the true price process.
5That is, a time scale having the number of trades as its directing process (here we don’t make the distinction

between tick time and transaction time).
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which is also not explicitly modelled here. According to the Mixture of Distribution Hypothesis
originally proposed by Clark (1973) and extended and refined in numerous subsequent works, the
price process observed under the appropriate transaction time should appear as a diffusion with
constant volatility. A Brownian motion in tick time is, in fact, a subordinate stochastic process
which has been shown to properly accommodate for many empirical regularities. In other words, in
tick time even a simple constant volatility process can reproduce stylized facts observed in physical
time such as heteroskedasticity, volatility clustering, fat tails and others. Hence, the hypothesis of
homoskedastic processes in tick time is far less restrictive compared to the same hypothesis made
for processes defined in physical time (where this assumption would be clearly violated by the
empirical data). Moreover, although for the ease of exposition we will describe the model having
the efficient price which follows a Brownian motion in tick time, the actual implementation of
DST approach would only formally require the volatility in tick time to be constant over a small
window of very few ticks (20 or 30), so that the already weak and reasonably realistic assumption
of homoskedasticity in tick time is additionally weakened. Finally, the robustness of the DST
approach against misspecification of the assumption of homoskedasticity in tick time is checked
in the simulation study by explicitly employing an heteroskedastic DGP for the true tick-by-tick
price process.

Computing daily volatility in tick or transaction time also presents several practical advantages
(see Oomen 2006 for a detailed comparation of different sampling schemes). Intuitively, in tick
time all observations are used so that no information is wasted. The interpolation error and noise
arising from the construction of the artificial regular grid is avoided. Moreover, using a tick time
grid the underlying price process tends to be sampled more frequently when the market is more
active, that is, when is needed more because the price moves more.

The observed tick-by-tick return rn at time n can then be decomposed as

rn = σε̃n + η (ωn − ωn−1) (3)

where the unobserved innovation of the efficient price ε̃n and the pricing error ωn, are indepen-
dent IID (0, 1) processes. Hence, the tick-by-tick return process is a MA(1) with E (rn) = 0 and
autocovariance function given by

E [rnrn−h] =





σ2 + 2η2 for h = 0

− η2 for h = 1

0 for h ≥ 2

(4)

where σ2 represents the tick-by-tick variance of the unobserved true price and η2 the extra variance
in the observed returns coming from the market microstructure noise.

2.2 The Discrete Sine Transform

Considering the vector of M tick-by-tick returns

R (M, n) =
[

rn rn−1 · · · rn−M+1

]>
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we develop a Principal Component Analysis6 of the associated covariance matrix Ω(M) = E
(
R (M, n) R (M, n)>

)
,

which is a tridiagonal matrix of the form:

Ω(M) =




σ2 + 2η2 −η2

−η2 σ2 + 2η2 . . .
. . . . . . −η2

−η2 σ2 + 2η2




By solving the eigenvalues equation Ω(M)ϕ
(M)
m = λ

(M)
m ϕ

(M)
m with m = 1, 2, . . . , M , it can be shown

that the eigenvalues of Ω(M) are given by

λ(M)
m = σ2 + 4η2 sin2 πm

2 (M + 1)
(5)

with 0 < λ
(M)
1 < λ

(M)
2 < · · · < λ

(M)
M . Therefore, the eigenvalues of the DST components are

ordered, separated and all non degenerate. The corresponding eigenvectors are

ϕ(M)
m (k) =

√
2

M + 1
sin

πmk

M + 1
k = 1, 2, . . . ,M (6)

The remarkable fact is that, unlike common situations, the eigenvectors (ϕ(M)
m ) of a MA (1) process

are universal and they coincide with the orthonormal basis used in the Discrete Sine Transform
(DST). Given that such nonparametric ortoghonalization represents the optimal solution to a linear
filtering problem, it can be very useful for the analysis of high frequency return data as it provides
an universal basis to optimally decorrelate the price signal from market microstructure noise.

2.3 The Minimal DST estimator

According to the Principal Component Analysis, the simple and computationally fast DST of the
returns

c(M)
m (n) =

M∑

k=1

ϕ(M)
m (k) rn−k+1

acts as a projector of the signal into its principal components. The variance of the DST components
are directly the eigenvalues of the variance-covariance matrix:

E
(
c(M)
m (n) c(M)

m (n)
)

=
(
ϕ(M)

m

)>
Ω(M)ϕ(M)

m = λ(M)
m = σ2 + 4η2 sin2 πm

2 (M + 1)

Since we are interested in the permanent component of volatility the idea is to consider the projec-
tion of the returns on the minimal principal component which is the one less contaminated by the
transient volatility coming from the microstructure noise. Therefore, an asymptotically unbiased
estimator of the average variance per tick σ2 is given by the mean value of the square of the DST

6Also known as Karhunen-Loéve expansion or Hotelling transformation.
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component associated with the minimal eigenvalue of the correlation matrix (c(M)
1 ) in the limit of

a large window M

σ2
M ≡ V ar

[
c
(M)
1

]
= σ2 + 4η2 sin2 π

2 (M + 1)
(7)

since for large M the effect of the price error vanishes as σ2
M ' σ2 + η2 π2

M2
.

This clearly shows how the aggregation on the minimal component decreases the impact of the
pricing error at a much higher speed compared with the standard aggregation of returns. In fact in
this second case the bias is reduced at the rate M while on the minimal DST component the bias
is cut down at rate M2, allowing to substantially increase the “unbiased return frequency” and
then improving the precision of the volatility estimation. It is important to note that throughout
the paper, in order to reduce estimation errors and assure consistency of the estimators, the
computation of any variance estimator at any level of aggregation, is always performed adopting a
full overlapping scheme i.e. (using the terminology introduced by Zhang et al. 2004) by subsampling
and averaging.

Having an estimate of the average volatility of the tick-by-tick returns for a given day, the
corresponding daily volatility is readily obtained by rescaling σ2 with the number of ticks occurred
in that day. We term this volatility measure Minimal DST estimator.

2.4 The Multi-Scales Least Square estimator

Recently Zhang, Mykland and Aı̈t-Sahalia (2004) have introduced the “Two-Scales” estimator
while Zhang (2004) has generalized this approach to a “Multi-Scales” estimator that combine
realized volatilities computed at more than two return frequencies. Here, we present a different
approach to the construction of realized volatility estimators computed with multiple time scales.

Under the assumption of i.i.d. noise the conditional expectation of the daily realized variance
RV (kj) computed with observed returns at frequency kj is7

E
[
RV (kj)

]
= υ2 + 2N (kj) η2 (8)

where E
[∫ t

t−1 σ2(ω)dω
]

= υ2 is the expected notional variance of a given day and N (kj) is the
number of kj-returns in the day. Hence, a consistent and unbiased estimator can be obtained by
computing the realized variance at different frequencies kj and then estimate υ2 and η2 by means
of a simple OLS or GLS linear regression of RV (kj) on N (kj). In practice, the choice of those
frequencies kj could be made by looking at the linear part of the plot (analogous to the volatility
signature plot) of the realized variances υ(kj) against the number of observations N (kj). In this
way the i.i.d. assumption for noise can be relaxed. We will denote this type of estimators as
Multi-Scales Least Square estimators.

It is interesting to note that applying this Multi-Scales Least Square approach to only two
different frequencies k1 and k2, one gets a very simple linear system of two equations in two

7For kj > 1 subsampling and averaging (i.e. a full overlapping scheme) is adopted.
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unknowns (υ2 and η2) which can be directly solved, giving

TS =
αRV (k2) −RV (k1)

α− 1
(9)

where α = N (k1)/N (k2) is the ratio between the number of returns sampled at the “base” frequency
k1 and that obtained by sampling at the lower “auxiliary” frequency k2.

Equation (9) is exactly the expression of the Two-Scales estimator (with the small sample
bias correction) proposed by Zhang et al. (2005). Therefore, this alternative “Jack Knife style”
derivation of the Zhang et al. (2005) estimator shows that the Multi-Scales Least Square approach
can be seen as another natural generalization of the Two-Scales estimator to more than just two
sampling frequencies.

2.5 The Multi-Scales DST estimator

The idea of exploiting linear relations among realized volatility measure computed at different
aggregation frequencies by means of simple linear regressions, could also be extended to the DST
estimators. Hence, regression based Multi-Scales estimators can be further improved and robus-
tified by using the DST approach to prefilter market microstructure noise. The idea is to exploit
the linear relation existing between the realized variance of the minimal principal component c

(M)
1

i.e. the Minimal DST estimator σ2
M and the window length of the PCA M :

σ2
Mj

= σ2 + η2N (Mj)

where N (Mj) = 4 sin2 π
2(Mj+1) . Therefore, a more effective way of employing the DST decompo-

sition, is to evaluate σ2
Mj

for different values of Mj and then perform a simple linear regression.
Then the intercept is an unbiased (not only asymptotically but also in finite sample) and consistent
estimator of the tick-by-tick volatility σ2, while the slope is an estimate of η2. We will call this
measure Multi-Scales DST estimator.

2.6 Exact MA(1) Likelihood, Cramer-Rao bounds and absolute efficiency

Thanks to the previous results on the universality of the eigenvectors, we can obtain a diago-
nalization of the variance-covariance matrix of MA(1) processes which does not depend on the
parameters to be estimated.

Collecting the M eigenvectors of Ω in the MxM characteristic matrix Ψ = [ϕ1ϕ2..., ϕM ], we can
project the return vector onto the orthogonal space of the principal component C=Ψ>R, which is
a Mx1 vector distributed as C ∼ N(0, Λ), where Λ is the MxM diagonal matrix containing the M

eigenvalues of the tridiagonal matrix Ω8. Therefore, the likelihood function of R can be rewritten
in terms of the principal components vector C as

f (C) =
1√

(2π)M detΛ
exp

[
−1

2
CᵀΛ−1C

]
=

1√
(2π)M ∏M

n=1 λn

exp

[
−1

2

M∑

n=1

c2
n

λn

]

8In fact E
�
CC>

�
= E

�
Ψ>RR>Ψ

�
= Ψ>E

�
RR>

�
Ψ = Ψ>ΩΨ = Λ.
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and

ln fθ (C) = −M

2
ln 2π − 1

2

M∑

n=1

ln λn − 1
2

M∑

n=1

c2
n

λn

Then, from the linear equation (5) we readily obtain

∂λn

∂θ
=

(
1

4 sin2 πn
2(M+1)

)
and

∂2λn

∂θi∂θk
= 0 for i, k = 1, 2

and hence, we are now able to analytically derive the equations for the Score and the Hessian

∂ ln fθ (C)
∂θi

=
1
2

M∑

n=1

(
c2
n

λ2
n

− 1
λn

)
∂λn

∂θi
;

∂2 ln fθ (C)
∂θi∂θk

= −
M∑

n=1

(
c2
n

λ3
n

− 1
2λ2

n

)
∂λn

∂θi

∂λn

∂θk

Therefore, thanks to equation (5) and (6) we are able to explicitly compute the Fisher Information
matrix of an MA(1) process, which reads

Iik = −E
(

∂2 ln fθ (C)
∂θi∂θk

)
=

1
2

M∑

n=1

1
λ2

n

∂λn

∂θi

∂λn

∂θk

With each element of the matrix given by9

I11 =
1
2

M∑

n=1

1
λ2

n

, I22 = 8
M∑

n=1

1
λ2

n

sin4

(
πn

2 (M + 1)

)
, I12 = I21 = 2

M∑

n=1

1
λ2

n

sin2

(
πn

2 (M + 1)

)

Then the Cramer-Rao bounds of σ̂2 and η̂2 can now be given in closed form as

var
(
σ̂2

)
> I22

I11I22 − I2
12

and var
(
η̂2

)
> I11

I11I22 − I2
12

These results, which are original to our knowledge, have two important implications. First they
obviously permit to evaluate the absolute efficiency of volatility estimators. Second numerical op-
timization of the exact likelihood is greatly simplified. In fact, given that the principal components
do not depend on the parameter, the orthogonalization of the returns process needs to be done
only once instead at each iteration as it happens using Cholesky factorization (see Hamilton 1994).

From simulations (table 1) it turns out that the Multi-Scales DST estimator for σ2 posses a
variance very close to the Cramer-Rao bounds. Moreover, if desired, this small loss of efficiency
could be easily eliminated by using the Multi-Scales DST estimator as initial value in ML numerical
optimization performed with the Newton-Raphson method. It is well known that in order for the
Newton-Raphson method to be stable and quickly converge, good starting points are required.
The Multi-Scales DST estimator seems the most appropriate starting point as it guarantees the
convergence of the Newton-Raphson algorithm in less than 10 iterations (usually even only 3-4
iterations are enough). Then the combination of the Multi-Scales DST estimator with the Newton-
Raphson algorithm (MS-DST + NR) would quickly lead to the fully efficient ML estimator.

9The analytical solutions of these sums, which for brevity are not reported here, can also be computed and are

available upon request.
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σ2 η2 std(σ2) std(η2)

True values &
Cramer-Rao bounds

1 4 0.0951 0.1698

MS-DST 0.9964 4.0045 0.0957 0.2036

MS-DST + NR 0.9982 4.0001 0.0939 0.1685

Table 1: Evaluation of the absolute efficiency of the Multi-Scales DST estimator and the Multi-Scales DST

estimator + Newton-Raphson algorithm (MS-DST + NR) with true volatility of 1, noise to signal ratio η
σ = 2,

2048 observations per day and 5,000 simulations.

2.7 Stability and robustness

To judge the stability and robustness of the DST filter with respect to more general specification
of the nuisance component, this section relaxes the i.i.d. assumption for the noise structure which
leads to more general MA(q) processes for the observed returns.

It should be noted however, that the presence of dependent noise process could in some cases
be an artificial result of the construction of the equidistant series in physical time. In fact, the
time deformation induced by the transformation from a tick time scale to a physical one, can
transform an MA(1) process into an MA(q) or ARMA one. In other words, the time deformation
induced by the equidistant grid construction could have the effect of spread the mass of the first
autocorrelation lag onto higher order lags10. This possible artificial increase of the autocorrelation
order induced by the regular grid construction is, in fact, an additional important reason to favor,
in the computation of the realized volatility, the use of a tick time scale instead of the commonly
used regular grid in physical time.

In the presence of dependence in the noise process, the observed returns in tick time become
an MA(q) process which can be written as

rn = σε̃n +
q∑

j=1

ηj

(
ω(j)

n − ω
(j)
n−j

)

with ε̃n ∼ IID (0, 1) and ω
(j)
n ∼ IID (0, 1). It can be shown that in this more general case the

variance of the Minimal DST component is given by

σ2
M = E

(
c
(M)
1 (n) c

(M)
1 (n)

)
= σ2 +

q∑

j=1

η2
j F (M, j)

10See Corsi et al. (2001) for an empirical example and Oomen (2006) for a detailed theoretical analysis.
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where F (M, j) = 2
M+1

[
M + 1− (M + 1− j) cos πj

M+1 − cot π
M+1 sin πj

M+1

]
.

Because F (M, j) can be approximated as F (M, j) = π2 j2

M2 − 2π2 j3

M3

(
1 + 3

j − 1
j2

)
+ O

(
j4

M4

)
,

when M/q →∞, we obtain that σ2
M ' σ2+ π2

M2

q∑
j=1

(j ηj)
2 which indicates that also the bias coming

from higher order autocorrelations is cut down at the same rate M2, guaranteeing the robustness
of the DST estimators respect to a wide class of noise contaminations and model misspecifications.

3 Monte Carlo Simulations

The DGP used in the simulations is a combination of the Heston (1993) SV model for the dynamics
of the true price process and the model proposed by Hasbrouck (1999) for the microstructure effects.

In the Heston model the true log price assumes the following continuous time dynamics

dp(t) = (µ− v(t)/2)dt + σ(t)dB(t) (10)

dv(t) = k(α− v(t))dt + γv(t)1/2dW (t) (11)

where v = σ2 and the initial value v(0) is drawn from the unconditional Gamma distribution of
v. The value of the parameters are the same as in Zhang et al. (2005), which in annualized terms
are: µ = 5%, k = 5, α = 0.04 corresponding to an expected annualized volatility of 20%, γ = 0.5
and the correlation coefficient between the two Brownian motions ρ = −0.5. Those parameters,
who are reasonable for stocks, will be held constant throughout the simulations. The continuos
time model of the true price is simulated at the usual Euler clock of one second.

To this SV model for the dynamics of the true price, we add the Hasbrouck bid-ask model for
the observed price. The Hasbrouck model views the discrete bid and ask quotes as arising from
the efficient price plus the quote-exposure costs (information and processing costs). Then the bid
price is the efficient price less the bid cost rounded down to the next tick and the ask quote is the
efficient price plus the ask cost rounded up to the next tick. As in Alizadeh et al. (2002) the model
is simplified by assuming that the bid cost and the ask cost are both equal to the minimum tick
size.

Then, according to the Hasbrouck model the bid and ask prices are respectively

Bn = ∆
⌊
P̃n/∆− 1

⌋
and An = ∆

⌈
P̃n/∆ + 1

⌉
(12)

where ∆ represents the tick size, bxc is the floor function, dxe the ceiling one and the unobserved
efficient price is P̃n = ep̃n .

Hence, the observed price is given by the following bid-ask model

Pn = Bnqn + An (1− qn) (13)

with qn ∼ Bernoulli (1/2). Therefore, the observed logarithmic return can be written

rn = ln
Pn

Pn−1
= ln

dPn/∆ + 1e
dPn−1/∆ + 1e + qn ln

bPn/∆− 1c
dPn/∆ + 1e − qn−1 ln

bPn−1/∆− 1c
dPn−1/∆ + 1e (14)
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which would be an MA(1) process in case the true price followed a Brownian motion. Notice that,
by adopting the Heston model for the dynamics of the true price, the observed prices are not
anymore MA(1) process, which makes the DST approach formally misspecified. We choose this
misspecified simulation setting precisely to show the robustness of the DST approach against more
general heteroskedastic process in tick time as discussed in section 2.

We first follow Hasbrouck and Alizadeh et al. and choose parameter values which imply a
high level of the noise to signal ratio: ∆ = 1/16 and P0 = 45. These values, together with
the average annualized volatility of 20% given by the Heston model for the true price, induce
an average noise to signal ratio of about 3.511. Such high level of noise manifests itself as a
strong price fluctuation between bid and ask quotes, which generates a highly negative first order-
autocorrelation ρ(1) ≈ −48% for the tick-by-tick returns rn.

This noise to signal ratio reflects a microstructure impact on the return process which is re-
markably large and rarely observed on real data. However, such an extreme setting provides a
useful stress test for realized volatility measures and harden the competition versus range-based
estimators which are favourite under these circumstances.

We simulate one-day sample paths of 6.5 hours (the typical opening time for stock markets)
for 25,000 days. The simulation is repeated for two different values of the total number of price
observations per day: M = 390 which corresponds to an average intertrade duration of one minute,
and M = 4, 680 which corresponds to an average tick arrival time of 5 seconds.

The competing estimators are:

• the two DST estimators: the Minimal DST (Min-DST) is computed with a window length
of 30 ticks, while, for the Multi-Scales DST (MS-DST), we construct a series of minimal
eigenvalues using a sequence of DST windows from 2 to 20 ticks and then fit the eigenvalues
in the equation (7).

• three “simple” Multi-Scales estimators: two Two-Scales estimators with frequency ratio α of
5 and 10, denoted respectively TS(5) and TS(10), and the Multi-Scales Least Square (MS-LS)
estimator. The values chosen for the frequency ratio α, are just two representative values
among those who seems to give the best results across the different settings considered in
this analysis;

• the local EMA filter (i.e. calibrated on a single day), which then simply corresponds to a
daily MA(1) filter;

• two standard realized volatility measures both computed with 5 minutes returns but one
sampled with an overlapping scheme and then averaged;

11Following (Oomen 2006) we define the noise to signal ratio as the standard deviation of the noise divided by the

average standard deviation per tick of the true price process. This standardization has been chosen first because it

seems reasonable to normalize both the noise and signal standard deviation respect to the same time interval and

second because doing it at the tick-by-tick level facilitates comparison across different asset and over time, being

such ratio not affected by different market activity.
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Figure 1: Comparison of the pdf of the estimation errors on the annualized percentage volatility (on average

20%) obtained with an average observation frequency of 1 minute (left panel) and 5 seconds (right panel) and

a noise to signal ratio η
σ =3.5.

• the daily range, as proposed by Parkinson (1980) and recently advocated by Alizadeh et al.
(2002) in the contest of SV models estimation.

We first consider the case of having 390 observations per day (corresponding to an average one
minute frequency) and a noise to signal ratio of 3.5. Table 2 reports the mean, standard deviation
and Root Mean Square Error (RMSE) of the estimation errors on the annualized volatility (express
as a percentage). Figure 1 shows the probability density functions of those volatility estimation
errors.

Given the high level of noise and the relatively small number of observations per day, the
estimation of the first order autocorrelation required to calibrate the EMA filter, is very noisy and
does not always satisfy the theoretical bound for MA(1) process | ρ(1) |< 1/2 (in the 30% of the
cases), leading to a complex MA(1) coefficient θ. In such cases, the EMA filter would fail and we are
then forced to impose an artificial floor to ρ(1). But besides its arbitrariness, this procedure induces
unreasonably low volatility estimates (responsible for the left bump presents in the EMA estimator
pdf on the left panel of figure 1). Moreover, under these conditions, the variance of the estimator
is extremely large. For the 5 minutes realized volatility, the fact that the aggregation from 1 to
5 minutes returns is not able to eliminate all the negative autocorrelation, makes this estimator
strongly upward biased. In the case of the Minimal DST estimator instead, the aggregation works
much better but, due to a relatively low window length of 30 ticks, a small upward bias is still
present. Even the daily range suffers of a significant bias but it also have a much larger variance
(both, the bias and the variance, are about two times those of the Minimal DST one). Among the
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VOLATILITIES ESTIMATES WITH η
σ

=3.5

1 min 5 sec

mean std RMSE mean std RMSE

MS-DST -0.0524 3.1033 3.1037 0.0904 0.8910 0.8955
Min-DST 1.1831 3.2068 3.4181 1.2957 1.1135 1.7084
MS-LS 0.0806 4.8183 4.8190 0.0669 0.9095 0.9119
TS(5) -0.5610 5.9293 5.9557 0.1483 1.7775 1.7837
TS(10) -0.3715 3.7116 3.7302 0.0904 1.0410 1.0449
EMA Filter 0.3930 12.4018 12.4080 -0.0181 5.2224 5.2225
daily Range 2.2526 5.9256 6.3393 0.1492 5.9072 5.9091
5 min avg 27.7033 5.3758 28.2201 3.7356 2.3190 4.3969
5 min sparse 27.7525 4.6204 28.1345 3.7242 1.8551 4.1607

Table 2: The table report the mean, standard deviation and RMSE of the estimation errors on the annualized

percentage volatility (on average 20%) obtained with an average observation frequency of 1 minute (left panel)

and 5 seconds (right panel), and a noise to signal ratio η
σ = 3.5.

three simple Multi-Scales estimators the TS(5) and TS(10) have small negative biases while the
MS-LS is virtually unbiased. However, the variance and the RMSE of the TS(10) are lower than
the other two multi-frequency estimators. Under this extreme setting, the only measure which is
still able to be unbiased and sufficiently precise is the MS-DST estimator, which has in fact the
lowest RMSE. Moreover, comparing the realized volatility estimators with the one based on the
range shows that, even in the most unfavorable setting for the realized volatilities, they remain
much more accurate than the range: the best realized volatility estimator, the MS-DST, posses,
in fact, a RMSE 48% smaller than that of the daily range.

Keeping the same level of noise, we repeat the simulation at 5 seconds frequency (which means
4,680 observations per day). With twelve times more data the realized volatility measures are much
more precise: the local EMA filter has less failings (5%) and lower variance, while the 5 minutes
realized volatilities (thanks to the longer aggregation period) have smaller, but still significant,
biases. Although smaller than the 5 minutes realized volatilities, the Minimal DST still shows a
bias with this high level of noise. The Zhang et al. estimators become both unbiased with the
TS(10) having a smaller variance than the TS(5). The MS-DST and the MS-LS estimators are both
unbiased and equally very accurate, remaining the best choices among the estimators considered.

In practice, however, financial time series present a noise to signal ratio at tick-by-tick level
usually comprises between 0.5 and 2. But, even with such a moderate level of noise, a naive
high frequency realized volatility measure would be from one to three times the actual one. We
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then repeat the simulation with a more realistic noise to signal ratio of 1.5 for both observation
frequencies. Table 3 and figure 2 summarize the results.

At the 1 minute frequency the daily range and the local EMA filter are unbiased but quite
inaccurate while the realized volatilities based on 5 minutes have again a large bias. The MS-DST
and the other Multi-Scales estimators are the most accurate with the MS-LS having a slightly
smaller bias and variance than the others.

At the 5 seconds frequency, with a moderate level of noise and a large number of data, the EMA
filter start to have a much lower variance and the 5 minutes measures, much lower biases. Never-
theless, they can still not compete with the MS-DST and the three other Multi-Scales estimators
which become extremely precise and accurate under this setting.

Empirical studies on the autocorrelation of tick-by-tick data often show significative values
not only for the first order but also for higher order lags (though, usually, of much smaller am-
plitude). A possible explanation, and way to model it, is by relaxing the assumption of i.i.d.
microstructure noise by introducing a correlation in the sequence at which bid and ask prices ar-
rive12. Hence, instead of having an “unbiased” Bernoulli(1/2) for the qn process, we construct a
Bernoulli process which produces autocorrelation in qn. This “biased” Bernoulli is obtained by
taking qn = Bernoulli (1/2 + b) if qn−1 = 1 and qn = Bernoulli (1/2− b) if qn−1 = 0. We choose
b = −0.10 which induces a second order autocorrelation of about −6%.

Now, in the presence of not i.i.d. microstructure noise, the local EMA filter, which was unbiased,
becomes highly biased at both frequency (see figure 3). Also the TS and MS-LS estimators are
now showing a positive bias. Among all the realized volatility estimator the DST measures are the
ones with the smaller bias and smaller RMSE, showing a high degree of robustness against more
general microstructure noise contaminations (as analytically described in the previous section).

Summarizing the results of the simulation study, we can draw the following conclusions. The
daily range estimator is always inferior to the realized volatility ones. The realized volatilities with
5 minutes returns are significantly bias and inaccurate. The local EMA filter gives satisfactory
results only in the presence of a high number of observations and a low level of i.i.d. noise. Although
more precise in general, similar considerations can be made for the simple MS estimators (TS and
MS-LS). When the microstructure noise is moderate and i.i.d. the simple MS estimators are almost
as accurate as the MS-DST and hence close to the optimal Cramer-Rao efficiency bound (since, as
shown in section 2.6, the MS-DST is very close to the full efficiency of the Cramer-Rao bounds).
In particular, the MS-LS seems to be particularly efficient in exploiting the information contained
in the data when a relatively small number of observations is available (perhaps due to its ability
to extract information from many frequencies), while the TS(5) and TS(10) are at their best
when the number of observations increases. However, when the microstructure noise increases and
deviations from the i.i.d. structure arises, the discrepancy between the simple MS estimators and
the MS-DST start to increase due to a higher level of robustness of the DST approach. Therefore,

12Hasbrouck and Ho (1987) suggest that positive autocorrelation at lag lengths greater than one may be the result

of traders working an order: “a trader may distribute purchases or sales over time”. However also significantly

negative autocorrelation at lag two are often observed.
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Figure 2: Comparison of the pdf of the estimation errors on the annualized percentage volatility (on average

20%) obtained with an average observation frequency of 1 minute (left panel) and 5 seconds (right panel) and

a noise to signal ratio η
σ = 1.5.
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Figure 3: Comparison of the pdf of the estimation errors on the annualized percentage volatility (on average

20%) obtained with an average observation frequency of 1 minute (left panel) and 5 seconds (right panel), a

noise to signal ratio η
σ = 1.5 and a biased Bernoulli process with bias b = −0.1.
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VOLATILITIES ESTIMATES WITH η
σ

= 1.5

Unbiased Bernoulli

1 min 5 sec

mean std RMSE mean std RMSE

MS-DST -0.2200 2.2131 2.2240 -0.0124 0.6270 0.6271
Min-DST -0.2263 3.0683 3.0767 0.2101 0.8992 0.9234
MS-LS -0.0969 2.0306 2.0329 -0.0287 0.7119 0.7125
TS(5) -0.2077 2.1551 2.1651 -0.0043 0.6128 0.6128
TS(10) -0.2380 2.2127 2.2254 -0.0130 0.6255 0.6257
EMA Filter -0.2969 4.0460 4.0569 -0.0308 1.2683 1.2687
daily Range -0.0096 5.9989 5.9989 -0.4718 5.8244 5.8435
5 min avg 7.1261 2.9711 7.7206 0.7326 1.7042 1.8550
5 min sparse 7.1217 2.5285 7.5572 0.7006 1.3455 1.5170

Biased Bernoulli

1 min 5 sec

MS-DST 0.3894 2.2340 2.2677 0.6751 0.7170 0.9848
Min-DST -0.1534 3.0779 3.0817 0.3293 0.9049 0.9630
MS-LS 1.7224 2.0709 2.6935 0.8317 0.8174 1.1662
TS(5) 1.8883 2.1509 2.8622 2.2000 1.0817 2.4516
TS(10) 0.7261 2.2142 2.3302 1.0239 0.7912 1.2940
EMA Filter 5.4676 3.1365 6.3034 5.8407 1.9792 6.1670
daily Range -0.1283 5.8236 5.8250 -0.4573 5.9265 5.9441
5 min avg 7.1038 2.9780 7.7028 0.7540 1.7418 1.8980
5 min sparse 7.1053 2.5490 7.5487 0.7195 1.3707 1.5480

Table 3: The table reports the mean, standard deviation and RMSE of the estimation errors on the annualized

percentage volatility (on average 20%) obtained with an average observation frequency of 1 minute (left panel)

and 5 seconds (right panel), a noise to signal ratio η
σ = 1.5 and, for the bottom panel, a biased Bernoulli process

with bias b = −0.1.

16



the overall winner that seems to arise from this volatility estimation horse race is the MS-DST
which shows the highest level of precision and robustness across a wide range of microstructure
noise contaminations.

4 Empirical application

To verify the behavior of volatility estimators when the microstructure noise is not an i.i.d. process,
we analyze six years of tick-by-tick data (from January 1998 to October 2003) for the following
three future contracts: the S&P 500 stock index future, the 30 years U.S. Treasury Bond future
and the Italian stock index future FIB 30. In a base asset mapping approach (as the one of
RiskMetrics), those three major future contracts can be seen as the reference liquid base assets
for, respectively, the US stock and bond market and the Italian stock market.

In order to analyse the dependence structure of the microstructure noise in those series, we
investigate the behaviour of the autocorrelation of tick-by-tick returns. This tick-time autocorrela-
tion analysis shows significant departure from the standard i.i.d. assumption for the microstructure
noise. In fact, more complex structure than that of a simple MA(1) expected under the standard
i.i.d. assumption, were found in all the three series. These patterns are independent of the inclu-
sion or censoring of all zero trade-by-trade returns which, in all the three assets, usually represent
only a small percentage of the total number of trade-by-trade returns.

Such autocorrelation pattern of the tick-by-tick returns are instead consistant with more com-
plex ARMA structure for the microstructure noise. In fact, simulating the Hasbrouck model with
those ARMA structures for the noise, leads to exactly the same autocorrelation functions observed
in the data. In particular, those patterns are consistent with a microstructure noise having an
MA(1) structure for the FIB, an MA(2) (at least) for the S&P and a strong oscillatory AR(1) for
the US bond13 (see figure 4).

To overcome the problem of a complex ARMA structure in the autocorrelation of tick-by-tick
returns of the S&P and US bond, we first notice that, in both cases, a simple aggregation of two
ticks returns almost restore the MA(1) autocorrelation pattern typical of the i.i.d. assumption for
the microstructure noise (see figure 5). Therefore, applying the MS-DST estimator to the two-
ticks returns of the S&P and US bond series, we can still obtain a highly precise evaluation of the
realized volatilities of the two assets and closely follow their time series dynamics (see figure 6).

Obviously, in empirical analysis the true volatility is not observable, hence no direct evaluation
criteria of the quality of the volatility estimators exist. However, general indirect criteria can be
employed.

First of all, since the daily squared return is an unbiased estimator of daily variance, the
unconditional mean of daily volatilities obtained with high frequency estimators should not be
significantly different from the unconditional mean volatility obtained with daily returns. We
asses this property for the MS-DST estimator by computing its volatility signature plot. Figure

13The analysis of the market microstructure determinants and specific institutional constraints that would lead to

such empirical evidences is beyond the scope of the present study.
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Figure 4: Sample path of the tick-by-tick price process (dotted line) with a its two ticks moving average (solid

line) for the S&P 500 (top panel) and US Bond (bottom panel) future.
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Figure 5: Sample autocorrelation of S&P (top) and US Bond (middle) for tick-by-tick returns (left) and 2-ticks

returns (right) together with the tick-by-tick autocorrelation of FIB30 (bottom). All autocorrelation functions

are computed over the six year sample, from 1998 to 2003.
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Figure 6: Time series of the annualize realized volatility computed with the MS-DST estimator on the two ticks

returns for the S&P 500 (top panel) and US Bond (bottom panel) futures from 1998 to 2003.

7 shows the volatility signature plot of the standard and MS-DST realized volatility measures for
the three assets, averaged over the whole six years period. Ideally, for estimators which are robust
against microstructure effects and in absence of any residual presence of autocorrelation in the
high frequency returns, the scaling should appear as a flat line in the volatility signature plot.
The top panel of figure 7 refers to the scaling of S&P 500 future showing a moderate but clear
impact of the market microstructure on the standard realized volatility measure and the presence
of a mild lower frequency autocorrelation. The MS-DST estimator correctly discounts market
microstructure effects on volatility while it retains the residual lower frequency autocorrelation
which is responsible for its scaling behavior to be not completely flat. Middle and bottom panel
are respectively the FIB 30 and U.S. Bond future. In both cases market microstructure noise has a
strong impact on the standard measure of realized volatility inducing larger biases as the frequency
increases while the MS-DST estimator, remaining reasonably flat at any frequency, confirms its
ability to properly filtering out market microstructure effects.

Under the hypothesis of an underlying continuous time diffusion process for the logarithm price,
another indirect criterion can be considered to asses the quality of realized volatility measures
in empirical applications. In fact, if the log-price follows a SV diffusion the model for daily
returns could be written as r

(d)
t = σ

(d)
t zt where zt ∼ i.i.d. N(0, 1). Hence, the 1-day return

would be conditionally Gaussian with variance equal to the integrated variance. The normality
of zt is justified by appealing to the Central Limit Theorem for mixing process aggregated over a
reasonable length time (such as daily for highly traded assets). Therefore, if a volatility measure
adequately estimate the integrated volatility, the corresponding standardized returns should be
normally distributed. We test this condition using the Jarque-Bera normality test on returns
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standardized by the 30 minutes14 realized volatility, MS-DST realized volatility and the daily
range15.

Table 4 reports the results. In all three cases, daily raw returns are highly leptocurktic as
expected, while returns standardized by daily ranges become highly thin tailed and remain far
from normal. Returns standardized by 30 minutes realized volatilities become excessively thin
tailed for the S&P and US Bond while remain too fat tailed for the FIB 30, clearly failing the
Jarque-Bera tests in all the three cases. Whereas, for the MS-DST standardized returns, Jarque-
Bera test cannot be rejected for both the stock index future S&P and FIB. However, for the US
Bond future, even though among the three competing estimators the MS-DST standardized returns
remain by far the closest to the standard normal, the Jarque-Bera test is rejected. The rejection is
due to a value of the kurtosis excessively smaller than three, meaning that the MS-DST measure
tends to overestimate the “true” integrated volatility of the Bond future process. But, since the
realized volatility consistently estimates the quadratic variation (which includes the contributions
of jumps) and not the integrated volatility (which only considers the contribution of the continuos
part), such overestimation could be due to the presence of a large jump components in the Bond
future series. The fact that the relative contribution of jumps is higher in bond series compared
to stock indices, has been indeed recently found by Andersen Bollerslev and Diebold (2003) and
is consistent with the empirical evidence of the fixed income market being the most responsive to
macroeconomic news announcements (Andersen, Bollerslev, Diebold and Vega 2003).

In summary, the analysis conducted on the empirical data confirms the ability of the MS-DST
estimators to accurately and reliably estimate daily realized volatility, thus confirming the results
obtained in the Monte Carlo simulation analysis.

5 Conclusions

The autocorrelation induced by microstructure effects represents a challenging problem for realized
volatility measures. It makes the naive realized volatility computed at short time interval highly
biased. While filters based on first order covariance correction are also prone to misspecification,
due to the frequent significance of higher order lags, and suffer from the unpleasant possibility to
become negative.

In this study new realized volatility measures based on Multi-Scale regression and Discrete Sine
Transform (DST) approaches are presented. We show that Multi-Scales estimators similar to that
recently proposed by Zhang (2004) can be constructed within a simple regression based approach

14This choice of a somewhat lower frequency of 30 minutes instead of an higher one, is motivated by the purpose

of having an unbiased estimator of the daily volatility.
15The EMA filter estimator has not been included here because, as shown in the simulations, it is sensitive to

the presence of significant higher order autocorrelation in the tick-by-tick returns which results to be significantly

different from zero in all the three series considered here. While, on this kind of data, the simple MS estimators

give results that under these weak empirical tests are almost indistinguishable from the ones of the MS-DST, thus

confirming the results of the Monte Carlo simulations where the MS-DST and the simple MS estimators were all

very close when the level of noise were moderate and the number of observations relatively high.

22



Std. Dev Kurtosis Skewness Jarque-Bera Probability

S&P 500

Raw returns 19.3959 6.5403 -0.0106 734.8280 0.0000
MS-DST-std. returns 1.0249 2.7642 0.0190 3.3448 0.1878
30 min-std. returns 1.0663 2.4325 -0.0266 19.0443 0.0001
Range-std. returns 0.9223 1.7542 -0.0372 91.3168 0.0000

FIB 30

Raw returns 24.4786 6.8536 -0.2368 829.1147 0.0000
MS-DST-std. returns 1.1069 2.8901 0.1464 5.3702 0.0682
30 min-std. returns 1.5778 4.1715 -0.0365 75.7205 0.0000
Range-std. returns 0.9120 1.7520 0.0493 86.1375 0.0000

US Bond

Raw returns 8.6578 4.1011 -0.4231 113.0565 0.0000
MS-DST-std. returns 0.9664 2.5179 -0.1101 16.4640 0.0003
30 min-std. returns 1.0001 2.2831 -0.0941 32.2116 0.0000
Range-std. returns 0.8877 1.7664 -0.0948 91.3266 0.0000

Table 4: Comparison of sample distribution properties of daily raw and standardized returns of FIB 30, S&P

500 and thirty years Bond futures from 1998 to 2003. Standardized returns are computed using MS-DST, 30

minutes realized volatility and daily range.

by exploiting the linear relation existing between the market microstructure bias and the realized
volatilities computed at different frequencies. These regression based estimators can be further
improved and robustified by using the DST approach to filter market microstructure noise. This
approach is justified by the theoretical result on the ability of the DST to diagonalize exactly an
MA(1) process and approximately an MA(q) one. Hence, we utilize the DST orthonormal basis
decomposition to optimally disentangle the underlying efficient price signal from the time-varying
nuisance component contained in tick-by-tick return series. Robustness of the DST approach with
respect to more general dependent structure of the microstructure noise is also analytically shown.

Then, the combination of such Multi-Scale regression approach with the DST gives us a Multi-
Scales DST realized volatility estimator which is then robust against a wide class of noise conta-
minations and model misspecifications. Thanks to the DST orthogonalization which also allows
us to analytically derive closed form expressions for the Cramer-Rao bounds of MA(1) processes,
an evaluation of the absolute efficiency of volatility estimators under the i.i.d. noise assumption
becomes available, indicating that the Multi-Scales DST estimator posses a finite sample variance
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very close to the optimal Cramer-Rao bounds.
Monte Carlo simulations based on a realistic model for microstructure effects and volatility

dynamics, show the superiority of MS-DST estimators compared to alternative local volatility
proxies such as the TS and MS-LS estimators, the daily range, the EMA filter and 5 minutes
realized volatilities. The MS-DST estimator results to be the most accurate and robust for a wide
range of the noise to signal ratio and types of microstructure noise contaminations. The empirical
analysis based on six years of tick-by-tick data for S&P 500 index-future, FIB 30, and 30 years
U.S. Tresaury Bond future, seems to confirm Monte Carlo results.
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