Nonlinear spectral clustering with C++ GraphBLAS

Dimosthenis Pasadakis & Olaf Schenk & Verner Vlacic & Albert-Jan Yzelman

Abstract—Nonlinear reformulations of the spectral clustering
method have gained a lot of recent attention due to their increased
numerical benefits and their solid mathematical background.
However, the estimation of the multiple nonlinear eigenvectors is
associated with an increased computational cost. We present an
implementation of a direct multiway spectral clustering algorithm
in the p-norm, for p € (1, 2], using a novel C++ GraphBLAS APL
The key operations are expressed in linear algebraic terms and
are executed over the resulting sparse matrices and dense vectors,
parameterized in the algebra pertinent to the computation. We
demonstrate the effectiveness and accuracy of our shared-memory
algorithm on several artificial test cases. Our numerical examples
and comparative results against competitive methods indicate
that the proposed implementation attains high quality clusters
in terms of the balanced graph cut metric. The strong scaling
capabilities of our algorithm are showcased on a range of datasets
with up to 8 million nodes and 48 million edges.

Index Terms—Algebraic programming, C++ GraphBLAS,
graph p-Laplacian, spectral clustering

I. INTRODUCTION

Spectral clustering is a popular community detection method
that can be applied to any kind of data with a suitable similarity
metric between them forming a graphical structure. At its core
lies the computation of the mutually orthogonal eigenvectors
of the graph Laplacian, a symmetric and positive semi-definite
matrix, which are treated as the spectral coordinates of the
graph, and are subsequently discretized using distance based
algorithms [1]. This eigenspectrum computation offers ample
room for parallelization, with both shared and distributed
memory implementations widely used [2]. Nonlinear variants
of the method in the p-norm, for p € (1,2], that have
been proposed lead to a minimization of balanced graph cut
metrics, and an increase in the accuracy of the final clustering
assignment [3]. Recently in [4], p-spectral clustering was cast
as a nonlinear unconstrained optimization problem on the
Grassmann manifold [5], by approximating the constraint for
p-orthogonality with an analogous one for 2-orthogonality. This
approach is not applicable to large-scale data, due to the large
number of multiplications of the graph adjacency matrix with
the computed eigenvectors that are required for convergence,
especially as the value of p tends to 1.

GraphBLAS is a standard [6] for expressing graph compu-
tations in the language of linear algebra. Its core concepts are
(i) algebraic containers, which correspond to sparse matrices
and vectors, (ii) algebraic operators, describing sparse matrix-
vector (SpMV) multiplications, and (iii) algebraic relations,

Dimosthenis Pasadakis, and Olaf Schenk are with the Advanced
Computing Laboratory at the Institute of Computing, Universita della
Svizzera italiana (USI), Lugano, Switzerland. email: {dimosthenis.pasadakis,
olaf.schenk } @usi.ch. Verner Vlacic, and Albert-Jan Yzelman are with the
Computing Systems Lab, Huawei Zurich Research Center, Switzerland. email:
{verner.vlacic, albertjan.yzelman}@huawei.com.

an example of which is a generalized semiring under which
an SpMV multiplication takes place. The recently introduced
C++11 implementation of GraphBLAS [7] has showcased
impressive results on the speed-up of algorithms based on
SpMVs [8]. We express the key operations of the method
introduced in [4] as well as the k-means discretization of
the resulting eigenvectors in this C++ GraphBLAS API. This
allows us to leverage its auto-parallelisation capabilities, and
furnish the first, according to our best knowledge, p-norm
spectral clustering algorithm applicable to large-scale data for
shared-memory machines.

II. A C++ GRAPHBLAS p-SPECTRAL CLUSTERING
ALGORITHM
For an undirected weighted graph G(V, E, W) where V is
the set of n nodes, E' the set of edges, and W the weighted
adjacency matrix, estimating a set of k p-eigenvectors on the
Grassmann manifold Qz can be expressed as

F wz]|u E‘p (1 2]])

minimize E E » pel, 2.

UeGri(k,n) C2ufE (
=11,5=1

Let £ = 1,2,...,k denote the eigenvector indices, and, at

the minimizer, the columns of U = (uy, ..., u;) approximate
the eigenvectors associated with the smallest k£ eigenvalues
of the p-Laplacian operator A,. For ¢ € V' the p-Laplacian
operator is defined as (Apu); =3,y widp (u; — u;) , with
¢p : R — R being ¢, () = |x|7’ lsign(x), and the p-norm is
lull, = ¢/> i, |u;P, for u € R.

We use the Riemannian optimization software package
ROPTLIB [9] to minimize for progressively smaller values
of p using Newton’s method on the Grassmann manifold,
where the solution of the linearized Newton subproblems
is handled by a truncated conjugate gradient scheme. The
description of the optimization problem is accomplished
in ROPTLIB by specifying the function EucGrad which
computes the gradient of F,(U) as well as the function
EucHessianEta which computes n — #n = (#‘n")k_,
for arbitrary n € Rk*" where the collection of matrices
FL, ... 3% € R™*" corresponds to the Hessian of F),(U). For
illustration, we include our C++ GraphBLAS implementation
of EucHessianEta in Algorithm |1} Here the subroutines
ROPTLIBtoGRB and GRBtoROPTLIB serve for I/O from and
to the ROPTLIB data structures. The C++ GraphBLAS API
leverages the algebraic structure of the ring of real numbers to
parallelize the SpMV operation (the grb::vxm primitive).

III. NUMERICAL RESULTS

In order to demonstrate the effectiveness of the C++
GraphBLAS API for implementing the p-spectral clustering

Algorithm 1 The function EucHessianEta.

7, a k X n matrix

Input: (D[€))k_,, where each D[(] = diag(#¢*)
(H[€])k_,, where each H[(] = diag(#¢*) — #¢*
Output: r, the result of n — #n

1: grb::Semiring <grb::operators::add<double>,
grb::operators::mul<double>,
grb::identities::zero, grb::identities::one> reals_ring;
std::vector<grb::Vector<double>> grb_eta, grb_res;
grb::Vector<double> v, w;
ROPTLIBtoGRB(n, grb_eta);
for {=1to k do
grb::set(v, 0);
grb::vxm(v, grb_eta[¢], H[{], reals_ring);
grb::eWiseApply(w, grb_eta[/]),D[/],
grb::operators::mul<double>());
9: grb::eWiseApply(grb_res[/], w, Vv,
grb::operators::subtract<double>());
10: GRBtoROPTLIB(grb_res, r);
11: return r

AN R ol

Method | Del. 16 | Del. 17 | Del. 18 | Del. 19
Spec 0.129 0.089 0.062 0.045

pMulti —6.21% —-3.11% —2.21% —2.45%
GrB-pGrass | —8.12% | —6.43% | —4.56% | —4.19%

TABLE 1. Results in terms of the balanced graph cut metric RCut. We report
the baseline (Spec) RCut, and in percentage the reduction of the cut that the
methods pMulti and GrB-pGrass (ours) achieved.

method, in Section [[II-A] we report on the quality of the graph
cuts obtained, and in Section [[II-B| we present its parallel
performance. For our experiments we select 8 matrices from the
SuiteSparse matrix collection [10] with an increasing number
of nodes n = 2" and edges m ~ 6 % 2", for r = 16, ..., 23,
corresponding to Delaunay triangulations in a unit square.

A. Quality of graph cuts

We identify four clusters C;, ¢ = 1,2,3,4, and
compute the value of the balanced graph cut metric
RCut(C1, Cs,C3,Cy) = Z?:l % The results for the
mid-scale cases with r = {16,17,18,19} are summarized
in Table I We compare our method (GrB-pGrass) against
traditional spectral clustering (Spec) [[1] and against the first full
eigenvector analysis of p-Laplacian leading to direct multiway
clustering (pMulti) [3].

B. Parallel performance

The strong scaling results of the developed algorithm are
illustrated in Figure In both plots, the dashed red line
indicates the ideal scalability. We utilize up to 32 threads
for the mid-scale cases (Figure [Ia), and up to 88 threads
for the large-scale Delaunay graphs with » = {20, 21, 22,23}
(Figure [Ib). On average, the parallel execution of the algorithm
is 5.5 x faster than its sequential variant for the mid-scale tests,
and 6.4 x faster for the large-scale cases. The run-time of the

100 10“ N
o
N
N ®.
2 N N 2 NN
E E N ~\"
= S N = N **__
= AN g AN o S
-, N
E N “Q——l E 107! N
= N = N
2 10t| — — ideal N g — — ideal N
5 —#—Del. 16 5 Del. 20 S
Z —»— Del. 17 N Z =¢@--Del. 21
Del. 18 N —<+ Del. 22
—6--Del. 19 —p- Del. 23
N 10 2 A
1 2 4 8 16 32 12 4 8 16 32 6488

Number of threads Number of threads

(a) (b)

Fig. 1: Strong scaling of the C++ GraphBLAS components of the algorithm
for the Delaunay graphs. a) Results for the mid-scale cases of node size
n € [216,219], b) Results for the large-scale cases of node size n € [229,223].
The runtime is normalized versus single-thread execution.

smallest case (r = 16) was ~ 300 sec, and that of the largest
one (r = 23) ~ 20 hours. A breakdown of the runtime shows
that only the GraphBLAS components of the algorithm exhibit
excellent weak scalability for the large-scale graphs.

IV. CONCLUSION & OUTLOOK

In this work, we have expressed they key operations
of a multiway p-spectral clustering algorithm in the C++
GraphBLAS API. This enabled accurate parallel clustering
of large-scale graphs on a shared-memory machine. We intend
to further explore the potential gains of expressing graph
partitioning and clustering algorithms in linear algebraic terms.

ACKNOWLEDGMENT

D.P. and O.S. acknowledge the support of the joint DFG -
470857344 and SNSF - 204817 project.

REFERENCES

[1] U. Luxburg, “A tutorial on spectral clustering,” Statistics and Computing,
vol. 17, no. 4, p. 395-416, Dec. 2007.

[2] S. T. Wierzchon and M. A. Ktlopotek, Spectral Clustering.
Springer International Publishing, 2018, pp. 181-259.

[3] D. Luo, H. Huang, C. Ding, and F. Nie, “On the eigenvectors of p-
Laplacian,” Machine Learning, vol. 81, no. 1, pp. 37-51, 2010.

[4] D. Pasadakis, C. L. Alappat, O. Schenk, and G. Wellein, “Multiway
p-spectral graph cuts on Grassmann manifolds,” Machine Learning, vol.
111, no. 2, pp. 791-829, Feb 2022.

[5] A. Edelman, T. A. Arias, and S. T. Smith, “The geometry of algorithms
with orthogonality constraints,” STAM J. Matrix Anal. Appl., vol. 20,
no. 2, p. 303-353, Apr. 1999.

[6] J. Kepner, D. Bade, A. Buluc, J. Gilbert, T. Mattson, and H. Meyer-
henke, “Graphs, matrices, and the GraphBLAS: Seven good reasons,”
Procedia Computer Science, vol. 51, pp. 2453-2462, 2015.

[71 A. N. Yzelman, D. Di Nardo, J. M. Nash, and W. J. Suijlen, “A
C++ GraphBLAS: specification, implementation, parallelisation, and
evaluation,” 2020, preprint. [Online]. Available: http://albert-jan.yzelman
net/PDFs/yzelman20.pdf

[8] A. Scolari and A. N. Yzelman, “Effective implementation of the High
Performance Conjugate Gradient benchmark on GraphBLAS,” 2023,
accepted for publication.

[91 W. Huang, P.-A. Absil, K. A. Gallivan, and P. Hand, “Roptlib: An object-

oriented C++ library for optimization on Riemannian manifolds,” ACM

Trans. Math. Softw., vol. 44, no. 4, Jul. 2018.

T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,”

ACM Trans. Math. Softw., vol. 38, no. 1, dec 2011.

Cham:

[10]

http://albert-jan.yzelman.net/PDFs/yzelman20.pdf
http://albert-jan.yzelman.net/PDFs/yzelman20.pdf

	Introduction
	A C++ GraphBLAS p-spectral clustering algorithm
	Numerical Results
	Quality of graph cuts
	Parallel performance

	Conclusion & Outlook
	References

