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Abstract

Content-based networking is a message-oriented communication service in which a message is delivered to
all destinations that have declared a selection predicate matching the content of that message. Analogous to
that of a traditional address-based network, a routing scheme in a content-based network defines the router-local
matching, forwarding, and header functions that collectively realize the delivery function. Several such routing
schemes have been proposed in the literature, but they have been evaluated only qualitatively or in simulation. In
this paper we abstract from those previous results in an effort to place them in a general theoretical framework.
This framework allows us to rigorously define notions of correctness, minimality, and complexity. In particular,
we prove the correctness and characterize the complexity of two existing content-based routing schemes, propose
a new latency-minimal scheme, and provide the results of a Monte Carlo simulation that serves as the basis for
estimating the space requirements of any given scheme.
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1 Introduction
Consider a network service in which receivers advertise predicates instead of traditional numeric addresses, and
in which a message is delivered to all interested receivers whose predicates match the content of the message.
This is the service provided by the so-called content-based network [6]. It can be seen as a generalized multicast
communication service that does not rely on the existence or maintenance of group address spaces, but instead
on the advertisement and propagation of message selection predicates. The term content-based routing refers to
the distributed algorithm that is responsible for delivering messages from senders to interested receivers. This
paper focuses on the structure of the routing state and the corresponding forwarding functions used to realize the
algorithm within a particular routing scheme.

Several routing schemes have been proposed in the study of distributed publish/subscribe systems and on the
specific subject of content-based networking [2, 3, 4, 5, 12, 18]. These schemes have been evaluated through
simulations and through qualitative analyses. This paper abstracts from those previous results to place them in a
general theoretical framework. In addition to gaining a better understanding of specific schemes, our goal is to
characterize the general problem of content-based routing.

For traditional address-based networks, a series of ever-improving theoretical results have been obtained in the
tradeoff between space and time of routing (so-called “compact” routing schemes [1, 9, 16, 19]). Space is generally
measured in terms of packet headers in messages and routing state at processors, while time is given in terms of the
computation required to select next-hop processors and the length (or cost) of network paths between senders and
receivers. Because content-based networking involves concepts such as predicates and message content, rather
than simple addresses, these results do not apply. Nevertheless, they give a basic structure in which to reason
about space and time tradeoffs in routing, and we make use of this structure in our own analysis.

We first cast the problem of content-based routing in terms of a standard model of a network and its routing
functions [16]. We then use this model to formulate: (1) a specialized correctness condition for a routing scheme
that reflects the semantics of content-based networking; (2) a notion of minimality that allows us to define an ideal
delivery and, therefore, an ideal content-based routing scheme, which delivers every message using a latency-
minimal and cost-minimal delivery tree; and (3) a characterization of routing-state space complexity that can be
tuned to the specifics of a given selection-predicate language and expected application workload.

2 Model of a Content-Based Network
We model a content-based network as a finite connected undirected graph G = (V,E) where a vertex v ∈ V
represents a processor and an edge e ∈ E represents a reliable bidirectional communication link between two
processors. Without loss of generality, we assume that a processor acts both as a host, producing and consuming
messages, and as a router, forwarding messages on behalf of other processors. We assume that processors are
given numeric identifiers, so hereafter we let n = |V | and V = {1, . . . , n}.

A content-based network is also defined by the set M of allowable messages, and the set P of allowable
selection predicates over M. A predicate p ∈ P is a total Boolean function p : M → {0, 1} that implicitly
defines a set of messagesM(p) = {m|m ∈M∧p(m) = 1}. When there is no risk of ambiguity, we simplify our
notation by using predicates to denote the sets of messages they define. So, we simply write p to denoteM(p).
We also write m ∈ p and say that predicate p matches message m when p(m) = 1.

A message in a concrete implementation of a content-based network would typically consist of a tuple of
attributes. For instance, the message [alert = congestion, severity = 3, location = highway1] may describe an
event related to a highway traffic-control application. A selection predicate is typically modeled as a disjunction of
conjunctions of constraints on attributes. For example, the predicate (alert = congestion∧severity > 2)∨(alert =
accident) would match the message above. In defining a general content-based networking model, we ignore the
concrete structure and representation of messages and predicates.

We define the following common functions: A neighbor function, N : V → P(V ), such that N(v) represents
the neighbors of processor v. (P(X) denotes the power set of X .) A distance function, dist : V × V → R, such
that dist(u, v) represents the length of the shortest path between processors u and v. The degree of a processor v
is denoted by deg(v), and the maximum degree of any processor in the network is denoted by ∆. Each processor
is responsible for collecting the interests of its hosted applications and delivering each matching message to those
applications accordingly. We define a predicate function, pred : V → P that associates each processor v with a
predicate pred(v). The predicate pred(v) represents the interests of the hosted applications of v. Consistently, we
say that a processor v is interested in a message m when m ∈ pred(v).
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2.1 Routing Scheme
We define a content-based routing scheme by adapting the standard model of Peleg and Upfal [16]. We assume that
a processor v can send a packet to one of its neighbors u by invoking a “link-level” communication primitive. We
assume that this primitive requires v to specify only the intended destination u. We also ignore the complexity of
link-level communication primitives since its impact on routing is minimal and well understood. For the purpose
of this paper, a packet c consists of a message msg(c) ∈ M and a header hdr(c) ∈ H, where H is the set of
allowable message headers defined by the routing scheme. A packet header contains information that may be
helpful in delivering the message. (Obviously, other packet types might be used for the purpose of routing. In this
paper we focus exclusively on message packets.)

In addition to H, a content-based routing scheme defines a distributed algorithm in which each processor v
implements the following functions: An initial header function, Initv : M → H that, given a new message m
originating at v, produces an initial header Initv(m). A header function, Hdrv : H → H that, given a header h
produces a new header Hdrv(h). A forwarding function, Fwdv : H×M→ P(N(v)) that, given a header h and
a message m produces a subset Fwdv(h, m) of the set of neighbors N(v) of v.

In the rest of the paper we use the letter v to refer to the source of a message, and the letter u to refer to any
other processor (i.e., router) that forwards m. For a message m originating at v, processor v creates a packet
header h = Initv(m), and sends a packet c = 〈h, m〉 to all the processors in Fwdv(h, m). When forwarding an
incoming packet c, processor u extracts the header h = hdr(c) and the message m = msg(c) from c, computes
the set of next-hop processors Fwdu(h, m), and forwards to all those processors a new packet c′ = 〈Hdru(h),m〉.
This generic process applies to all routing schemes. Each particular routing scheme is defined completely by its
processor-specific header and forwarding functions Init, Hdr, and Fwd.

2.2 Delivery Trees
Given a message m originating at processor v, a routing scheme S induces a directed delivery tree DS

m,v defined
by all the packets transmitted and processed according to S in response to the injection of message m at processor
v. A vertex d in a delivery tree DS

m,v is associated with a packet pkt(d) and a processor proc(d). If S causes
two identical packets to be sent to the same processor, then DS

m,v will contain two distinct vertexes to represent
the two events. Intuitively, DS

m,v is defined by the recursive application of the header and forwarding functions
defined by S. A bit more formally, the root d0 of DS

m,v is associated with packet pkt(d0) = 〈Initv(m),m〉
and processor proc(d0) = v. Then, each vertex dx in DS

m,v associated with packet pkt(dx) = 〈h, m〉 and
processor proc(dx) = u such that Fwdu(h, m) = {w1, w2, . . . , wk} has k children, dx·1, dx·2, . . . , dx·k, asso-
ciated with processors proc(dx·1) = w1, proc(dx·2) = w2, . . . , proc(dx·k) = wk and with packets pkt(dx·1) =
〈Hdrw1(h),m〉, pkt(dx·2) = 〈Hdrw2(h),m〉, . . . , pkt(dx·k) = 〈Hdrwk

(h),m〉, respectively.
Delivery trees serve as a basis to define the correctness and efficiency of a routing scheme S.

2.3 Correctness and Efficiency
Correctness is quite straightforward. S must be such that, for each message m and for each processor v, the
delivery tree DS

m,v contains vertexes representing any and all processors interested in m. Formally, for every
source processor v ∈ V , for every other processor u ∈ V and every message m such that m ∈ pred(u), there
exists a vertex d ∈ DS

m,v such that proc(d) = u.
A good routing scheme should also be efficient. However, given the multicast nature of content-based routing,

efficiency may be interpreted in a number of ways. A plausible goal is to minimize the total communication cost
of each message. Assuming that the number of transmitted packets is a reasonable measure of communication
cost, then a good scheme would minimize |DS

m,v| for each m and v. Another plausible definition of efficiency
is one that interprets edge weights as link latencies, and that focuses on minimizing the delivery latency for each
interested destination processor. Given a message m originating at processor v, a latency-minimal delivery tree
DS

m,v is one that minimizes the length of the delivery path for each processor x interested in m.
We say that a routing scheme is ideal when it minimizes latency and total cost, in this order of priority.

Specifically, for each message m and for each origin v, the delivery tree DS
m,v induced by the scheme is the

smallest among all latency-minimal delivery trees. (Notice that the smallest tree might not be unique.)
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2.4 Memory Requirements
Besides communication costs and latency, we are interested in characterizing the space complexity of content-
based routing. We refer to the memory requirement of every element of a routing scheme with a generic function
M(·) that denotes the number of bits necessary to represent a given data structure. Given a routing scheme S, we
are interested in characterizing the total memory requirement

M(S) =
∑
v∈V

(M(Initv) + M(Hdrv) + M(Fwdv))

A routing scheme would generally require processors to store processor identifiers as well as predicates. A
processor identifier requires Θ(log n) bits of storage. The requirements for predicates are less obvious. In the
most general case, without any specific constraining model for messages and predicates, we should assume that
the representation of a message m ∈ M would require M(m) = Ω(log |M|) bits, and that the representation of
a predicate p, which itself represents a set of messages, would require M(p) = Ω(min{|M|, |p| log |M|}) bits.
However, in practice we should consider the information-theoretic requirements for predicates in the context of
the given structures and distributions of messages and, more importantly, of predicates.

Moreover, predicates are often combined by routing schemes [4, 5], so it is useful to characterize the memory
requirements of disjunctions (i.e., unions) of predicates. To do this, we define the disjunction advantage, under a
given representation model, for two predicates p1 and p2 as α(p1, p2) = M(p1∨p2)

M(p1)+M(p2)
. Intuitively, the disjunction

advantage indicates by how much the memory requirements are reduced when storing the disjunction of two
predicates instead of the two individual predicates. Notice that in practice we can assume that α(p1, p2) ≤ 1. That
is, there is never a penalty for combining predicates. This is because it is always possible to represent a disjunction
p1 ∨ p2 as a sequence {p1, p2}, with M(p1 ∨ p2) = (M(p1) + M(p2)). Then, depending on the structure and
representation of P , it might be possible to achieve effective reductions (i.e., α(p1, p2) < 1). For example, using a
language based on expressions of constraints over message attributes that is common in publish/subscribe systems,
the disjunction of p1 = (severity > 2) and p2 = (severity > 3) can be represented as p1 ∨ p2 = (severity > 2).

We generalize the definition of disjunction advantage to an arbitrary number of predicates. Given a set of
predicates P = {p1, p2, . . . , pn}, we define the advantage

α(P ) =
M(p1 ∨ p2 ∨ . . . ∨ pn)

M(p1) + M(p2) · · ·+ M(pn)

3 Routing Schemes
We start by presenting a novel routing scheme, first in a simple formulation and then in an improved variant. We
then model and analyze two other, existing schemes.

3.1 Per-Source Forwarding
The idea of this scheme, which we call PSF, is to represent a directed shortest-paths spanning tree Tv for each
source processor v (i.e., Tv is the tree computed by Dijkstra’s algorithm). We let childu(v) denote the set of
children of processor u in the tree Tv . We also use the notation Tv/w to refer to the set of processors in the subtree
of Tv rooted at w. That is, Tv/w contains w and all its direct and indirect descendants in Tv . Given a processor
v and an edge (u, w), we denote by Tv/(u, w) the set of descendant processors via edge (u, w) in Tv , which we
define as

Tv/(u, w) =

{
Tv/w, if w ∈ childu(v)
∅, otherwise.

For example, in the network of Figure 1, T1/(6, 7) is the set {4, 7, 8, 11, 12} while T1/(6, 9) is the empty set.
For each source processor v, PSF annotates each edge (u, w) with the disjunction of the predicates of the

processors in Tv/(u, w). The representations of these annotated trees are distributed throughout the network, such
that each processor u stores its local view of Tv for every source processor v. In particular, for each processor
v (including v = u) and for each neighbor processor w ∈ N(u), u associates a predicate with each edge (u, w)
in Tv . The scheme also annotates the packet header with the source v of a message m so that each processor u
receiving a packet containing m can forward it along the branches of Tv .
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Formally, PSF consists of a function Fu : V × N(u) → P that maps a source processor v and a neighbor
processor w to a predicate Fu(v, w) =

∨
x∈Tv/(u,w) pred(x).

1 2 3 4

5 6 7 8

9 10 11 12
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3

3

1 2 3
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1
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1

1

1

1

3 1

1

13

F6: source,next-hop → predicate

. . .

1, 1 7→ ∅

1, 2 7→ p2 ∨ p3

1, 7 7→ p4 ∨ p7 ∨ p8 ∨ p11 ∨ p12

1, 9 7→ ∅

. . .

Figure 1: Forwarding in PSF

Figure 1 shows an example network. Thin lines represent network links, each of which has an associated
distance. Thick dashed arrows represent the edges of the shortest-paths tree T1 rooted at processor 1. The figure
also shows the relevant fragment of a table representing the function F6 of processor 6. (We use an abbreviated
notation for the predicates associated with processors, where p2 means pred(2), p3 means pred(3), etc.)

Header and forwarding functions in PSF are defined as follows. Each processor creates initial headers with
its own identifier and copies headers from input to output packets. So Initx(m) = x and Hdrx(h) = h for every
processor x and for every message m. The forwarding function Fwdu called on header h and message m reads
the source processor v from the header h and outputs the set of next-hop processors Fwdu(v,m) = {w|m ∈
Fu(v, w)}. That is, u forwards a single message m originating at v to all next-hop processors w downstream from
u on Tv such that the (u, w) edge in Tv is associated with a predicate p matching m. Processor u makes this
forwarding decision using its local view of Tv .

PSF is a correct routing scheme. A full proof of correctness is beyond the scope of this paper. However, the
intuition is that PSF forwards a message originating at v within the shortest-paths tree Tv rooted at v, based on
the source identifier carried in the packet header. Within Tv , the message is forwarded only through edges that
reach descendant processors interested in m. We can also show that PSF is an ideal scheme. This is because every
source tree Tv contains only minimal paths by construction.

To analyze the complexity of PSF, we distinguish a set of active receivers R ⊆ V and a set of active senders
S ⊆ V , and we let s = |S| and r = |R|. For simplicity, we assume that all receiver predicates have the same
memory requirement Mp, and that all edges have constant weight.

In PSF, each sender processor v ∈ S must store its identifier, with a total memory requirement of s log n,
and every processor u ∈ V must store its function Fu. Collectively, the Fu functions represent s trees, one for
each sender, where each edge is associated with a disjunction of the predicates of the receivers that are descendant
processors via that edge in that tree. The memory requirement for the tree for source v ∈ S is

∑
u∈V M(Fu(v, ·)),

and therefore the total memory requirement for PSF is M(PSF) = s log n +
∑

v∈S

∑
u∈V M(Fu(v, ·)).

We first analyze the memory requirements for the Fu(v, ·) functions for a source v in the absence of any
disjunction advantage (i.e., with α({pred(x)|x ∈ R}) = 1). The analysis is based on the observation that the
predicate pred(x) of a receiver processor x is associated with all the edges on the path from v to x. Therefore∑

u∈V M(Fu(v, ·)) = Mp

∑
x∈R dist(v, x). The total requirement for PSF is therefore

M(PSF) = s log n + Mp

∑
v∈S

∑
x∈R

dist(v, x)
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Assuming a uniform distribution of senders and receivers, and denoting by d the average distance between any
two processors in the network, we can write the memory requirement in the simpler form

M(PSF) = s log n + srMpd

The average distance d obviously depends on the network topology, and can be as high as O(n). However, it is
very small in many common cases. For example, Chung and Lu showed that in most cases the average distance
d is O(log log n) in power-law random graphs [8] such as the Internet [10] and other networks based on social
connections.

The product of the number of senders and receivers sr, which is O(n2), is a crucial factor in the memory
requirement of PSF. Intuitively, the number of senders s is a factor because the PSF scheme requires that each
processor be able to distinguish every sender. This, in turn, is because each sender may induce a different shortest-
paths tree. The number of receivers r is a factor because every receiver predicate is included in a disjunction
of predicates with one or more edges in a shortest-paths tree, and therefore each receiver predicate contributes
linearly to the overall memory requirement.

In practice, both these assumptions can be relaxed, effectively tightening the memory requirement of PSF. In
the next section we present a variant of PSF based on the idea that processors do not need to distinguish all sources,
thanks to the fact that source-rooted trees might be indistinguishable. Section 4 discusses the disjunction advantage
α, and shows that adding predicates to a disjunction can incur a sublinear increase in memory requirements.

3.2 Improved Per-Source Forwarding
Depending on the network topology, source-rooted trees might partially or completely overlap. For example, for
every edge e ∈ E that is also a “bridge” (i.e., when removing e would partition the network), all the sources on
one side of e should be indistinguishable from the viewpoint of every processor on the other side of e, and vice
versa. This is because all paths from all sources on one side to all receivers on the other side would have to go
through the bridge, and could use exactly the same subtree past the bridge.

This observation suggests an improvement on the basic PSF scheme. The idea is that if two sources v1 and v2

are indistinguishable from the viewpoint of processor u for the purpose of computing their entries in Fu, then u
can collapse their two entries into a single one. As an extreme example, consider a network G consisting of a tree.
In this case, every edge is a bridge and, therefore, from the viewpoint of each processor u all sources reachable
through the same neighbor w ∈ N(u) are indistinguishable. As a result, the domain of Fu for all processors u can
be reduced from V to N(u).

As it turns out, the existence of a bridge is only a sufficient condition, and there is a weaker condition that
makes two sources indistinguishable. As an example, consider the network depicted in Figure 1. Processors 1, 5,
and 9 are indistinguishable from the perspective of processor 6. We now detail an improved scheme that exploits
indistinguishability of sources, and later present a tighter definition of indistinguishability.

The indistinguishability relation is an equivalence relation defined for each processor u. We represent each
equivalence class of indistinguishable sources through one of its elements, and we denote by V u ⊆ V the set
of representative sources. The improved PSF scheme, which we call iPS, uses a function Iu : V → V u that
maps a source processor v to the representative Iu(v) of its equivalence class. iPS also uses a function Fu :
Vu×N(u)→ P that is conceptually identical to Fu in PSF, although with a smaller domain. The Fwdu function
is similar to that of the PSF scheme, except that it uses the Iv function to compress the space of sources. Formally,
Fwdu = {w|m ∈ Fu(Iu(v), w)}.

In some cases, an equivalence class of sources defined for processor u and containing processor v is the same
for all processors w ∈ Tv/u. This happens whenever there is a bridge in the network, but it might also happen
in other cases. For example, in the network of Figure 1, processors 1, 5, and 9 remain indistinguishable from
the perspective of all the processors that are descendants of 6 in the source tree T1 (i.e., processors 2, 3, 4, 7,
8, 11 and 12). In fact, processor 6 is also indistinguishable from the perspective of all its descendants. In such
cases, it makes sense to rewrite the source header in the packet, replacing the original source v with the most-
recently visited processor beyond which sources remain indistinguishable. This is to compress the domain of the
Iu functions in all the descendants. It is for this purpose that the iPS scheme defines a header rewriting function
Ru : Vu → {0, 1} for each processor u. Ru is used in Hdru to decide whether to rewrite the header. Specifically,
Hdru(v) = v if Ru(Iu(v)) = 0, or Hdru(v) = u if Ru(Iu(v)) = 1.

We now define the condition that allows a processor u to combine the two or more sources. Recall that for each
source v, the forwarding function Fu maps a neighbor processor w to a predicate Fu(v, w) that is the disjunction
of the predicates pred(x) of all processors x that are descendants of u in Tv via the (u, w) edge.
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We say that two sources v1 and v2 are indistinguishable from the viewpoint of processor u if the following two
conditions hold. First, childu(v1) = childu(v2), meaning that every child of processor u on Tv1 is also u’s child
on Tv2 , and vice versa. Second, each child processor w has the same set of descendants on Tv1 and Tv2 . Formally,
∀w ∈ childu(v1) : Tv1/w = Tv2/w.

A precise characterization of the memory requirements of iPS would require a complex probabilistic analy-
sis of the indistinguishability relation under various network topologies, and is beyond the scope of this paper.
Regardless of its prevalence and value in the general case, our intuition is that indistinguishability would play an
important role in practice because of the inherently hierarchical structure of communication networks.

Also, we note that the extreme example of a tree network mentioned above admits a fairly simple analysis.
This case is particularly important as many routing schemes are based on tree covers. In this case, for an incoming
packet c, the forwarding function decides exclusively on the basis of which neighbor processor forwarded the
packet. Thus, Vu = N(u), Iu is the identity function, and Ru = 1, so that the source address is always updated
with the current processor u. The memory requirement for both Iu and Ru is zero. The requirement for Fu is
M(Fu) = O(rMpα(r/deg(u))). The total memory requirement for iPS in the case of an tree topology is

M(iPS) = O(nrMpα(
r

∆
))

3.3 Per-Interface Forwarding
We now describe a routing scheme based on per-processor forwarding functions whose domain is limited to node
neighbors. We call this a per-interface forwarding function, and thus we call this scheme PIF. PIF is a variant
of the Combined Broadcast and Content Based (CBCB) scheme [5]. Similar to the PSF routing scheme, PIF is
based on directed shortest-paths spanning trees. Recall that the PSF scheme associates a predicate with each edge
in a spanning tree Tv , where v is the source of a message. Thus, for each source processor v, PSF’s forwarding
function Fu at processor u maps edge (u, w) to the predicate Fu(v, w) representing the disjunction of all the
predicates of the descendant processors in Tv via the (u, w) edge.

The PIF scheme is based on two ideas. The first is to assign to each edge (u, w) a single predicate that
combines the predicates of the descendants via (u, w) in the spanning trees for all sources. Thus, PIF maintains
a function F ∗

u : N(u) → P at each processor u that maps a neighbor w ∈ N(u) to the disjunction over all
sources v of the predicates of the descendants via (u, w) in Tv . Formally, reusing the definition of Fu(v, w) =∨

x∈Tv/(u,w) pred(x) given for PSF, we have

F ∗
u (w) =

∨
v∈V

Fu(v, w)

Figure 2 shows an example network where the PIF scheme is used. The figure shows the forwarding function
F ∗

6 of processor 6 and focuses on F ∗
6 (9). The figure lists the descendants via edge (6, 9) in a number of shortest-

paths trees. For clarity, the figure does not show all shortest-paths trees, although these can be intuitively figured
out with the given edge weights. Notice how the value of F ∗

6 (9) = p5 ∨ p9 ∨ p10 is determined by the union of
descendants T1/(6, 9) ∪ T2/(6, 9) ∪ . . . ∪ T12/(6, 9) = {5, 9, 10}.

The intent of F ∗ is of course to forward messages along links associated with matching predicates. However,
if one were to follow only the content-based forwarding defined by F ∗, messages would most likely end up in
routing loops and they would be duplicated indefinitely. For example, referring again to Figure 2, a message
originating at processor 6 and matching p7 and p10 would match both F ∗

6 (9) and F ∗
6 (7), and therefore it would be

forwarded to 9 and to 7. The copy that reaches 7 would then be forwarded to 10, because it would certainly match
F ∗

7 (10). Similarly, the copy that reaches 10 by way of 9 would be forwarded to 7, etc. The second idea of PIF is
to avoid loops for a message m by forwarding m only within the tree Tv of its originating process v. In order to
do that, PIF must also store all per-source trees. This can be done by explicitly representing the childu function at
each processor u.

With F ∗
u and childu, the header and forwarding functions in PIF are defined as follows. Initx and Hdrx are

identical to those of PSF, with each processor creating initial headers with its own identifier and copying headers
from input to output packets. So Initv(m) = v and Hdru(h) = h for all processors v and u, and for every message
m. The forwarding function Fwdu, which is also similar to the corresponding function in PSF, reads the source
processor v = hdr(c) from the header of the incoming packet, as well as the message m = msg(c), and outputs
the set of next-hop processors Fwdu(v,m) = {w|w ∈ childu(v) ∧m ∈ F ∗

u (w)}. That is, u forwards a message
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F ∗

6 :
next-hop 7→ predicate

1 7→ p1

2 7→ p2 ∨ p3

7 7→ p4 ∨ p7 ∨ p8 ∨ p11 ∨ p12

9 7→ p5 ∨ p9 ∨ p10

T1/(6, 9) = ∅
T2/(6, 9) = {5, 9, 10}
T3/(6, 9) = {5, 9}
. . .
T7/(6, 9) = {5, 9}
T8/(6, 9) = {5, 9}
. . .

Figure 2: Forwarding Function in PIF

m originating at v through all edges (u, w) that are both (1) descendants of u in Tv and (2) associated with a
predicate F ∗

u (w) matching m.
It is easy to see that PIF is correct. In fact, we can prove the correctness of PIF by showing that the delivery

tree DPSF
m,v of PSF, which we proved correct, is always a subtree of the delivery tree DPIF

m,v of PIF. Intuitively,
the reason is that the predicate F ∗

u (w) that PIF associates with edge (u, w) is the combination of all the source-
specific predicates Fu(·, w) that PSF associates with (u, w). Therefore, for each source v and message m, if PSF
forwards m along (u, w) ∈ Tv , then PIF will also do that.

1

2

3

4

3

3

2

1

m

m ∈ p2

m ∈ p4

m 6∈ p3

F ∗

4 :

. . .

3 7→ p2 ∨ p3

. . .

Figure 3: Non-Ideal Delivery Tree in PIF

It is also easy to see that PIF is not an ideal scheme using a counter-example. Figure 3 shows one such
counter-example. Message m originating at processor 1 is correctly delivered to processors 2 and 4, which are
interested in it, but it is also sent to processor 3, which is not interested in it. PIF sends m from 4 to 3 because
edge (4, 3) is on the shortest-paths tree T1, and is associated with predicate F ∗

4 (3) = p2 ∨ p3 that matches m.
F ∗

4 (3) happens to include p2 because processor 2 is a descendant processor via edge (4, 3) on the shortest-paths
of T4 rooted at 4.

The PIF scheme requires that each processor u store the F ∗
u function and the childu function. The requirement

for F ∗
u is M(F ∗

u ) = O(rMpα(r/deg(u))), where r is the number of receivers, Mp is the size of a receiver predicate
(assumed constant for simplicity), and α(r/deg(u)) is the disjunction advantage of r predicates combined into
deg(u) disjunctions. The requirement for the childu function is M(childu) = O(sdeg(u) log n) where s is the
number of senders. The total requirement for PIF is

M(PIF) = O(n(s∆ log n + nrMpα(
r

∆
)))
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3.4 Per-Receiver Forwarding
In this section, we describe a routing scheme that uses only per-receiver forwarding information. This scheme
is a simplification of the Distance-Vector / Dynamic Receiver Partitioning (DV/DRP) protocol [11]. The main
idea of DV/DRP is to compute the set of interested processors for a message m at the originator processor. The
set of destinations is attached as a header to the message, and is used at every hop to forward the message to
all the destinations. Whenever a message needs to be forwarded to two or more next-hop processors, the set
of destination is partitioned according to their respective next-hop. This forwarding process is called dynamic
receiver partitioning, therefore we call this scheme DRP.

The two main ingredients of the DRP scheme, stored at every processor v, are the pred(·) function and the
unicast routing information necessary to reach every other processor in the network. Specifically, every processor
v stores a table representing the pred function plus a table representing a function unicastv : V → V such that
unicastv(w) is v’s neighbor on the shortest path from v to w.

The Initv function takes a message m, computes the set of interested processors W = {w|m ∈ pred(w)}, and
then, if W 6= ∅, computes a partition function HW : N(v) → W that maps each neighbor of v to a subset of W .
HW defines a partition in the sense that

⋃
u∈N(v) HW (u) = W and ∀x, y : x 6= y ⇒ HW (x) ∩ HW (y) = ∅.

The HW function is such that ∀w ∈W : unicast(w) ∈ HW (u). Intuitively, HW partitions the set of receivers W
by grouping them by next hop. The output of the Initv function is a packet 〈HW ,m〉 containing the partition HW

and the message m.
At an intermediate processor u, the Hdru function does almost exactly what Initu would do. The difference

being that Hdru does not compute the destination set using message m and the pred(·) function. Instead, Hdru
extracts the partition function HW ′ from the packet header and uses it to compute the destination set W =
HW ′(u). If W 6= ∅ then Hdru proceeds to compute its partition function HW and to assemble its output packet
exactly as in Initu.

The forwarding function Fwdu computes the set of next-hop destinations the same way that Initu and Hdru
compute the partition HW of the destination set W . In particular, Fwdu extracts the partition function HW from
the header. If HW (u) is undefined, then this means that u is the origin processor, and therefore Fwdu returns the
domain of HW . Otherwise, Fwdu reads W = HW (u) and returns the set {x|∃w ∈W ∧ x = unicast(w)}.

1 2 3 4

5 6 7 8

9 10 11 12

unicast6

dest. next hop

. . . . . .
2 2
3 2
4 7

. . . . . .
8 7

. . . . . .

(HW1
, m)

(HW6
, m)

(HW6
, m)

W1 = {1, 2, 3, 4, 8, 9}
HW1

= {5 → {9}
6 → {2, 3, 4, 8}}

W6 = HW1
(6) = {2, 3, 4, 8}

HW6
= {2 → {2, 3}

7 → {4, 8}}

Figure 4: Dynamic Receiver Partitioning

The example of Figure 4 illustrates the DRP scheme. Processor 6 receives a packet 〈HW1 ,m〉. The Hdr6
function extracts the destination set assigned to processor 6 by the HW1 partition. The result is W6 = HW1(6) =
{2, 3, 4, 8}. The unicast6 function, which is represented as a table associated with processor 6 in Figure 4 maps
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the destinations {2, 3, 4, 8} to next-hop processors 2 and 7. Specifically, destination sets {2, 3} and {4, 8} map
to next-hop processors 2 and 7, respectively. This defines the partition HW6 . Processor 6 assembles a packet
〈HW6 ,m〉 and proceeds to send it to processors 2 and 7. (Notice that an implementation of DRP could save
header space and simplify the processing function by assembling a specific packet for each next-hop processor. In
this example, processor 6 would send a packet 〈{2, 3},m〉 to processor 2 and a packet 〈{4, 8},m〉 to processor 7.)

It is easy to show that DRP is a correct routing scheme, assuming its unicast functions are correct. DRP is also
ideal if and only if shortest paths between any pair of processors are unique. As a counter-example, consider the
network topology of Figure 4. Suppose process 5 sends message m to W = {7, 8, 11}, and that the shortest path
from 5 to 8 goes through 9 while the shortest path from 5 to 11 goes through 1, and they all go through 7. In this
case, processor 7 will see at least two packets of the delivery tree DDRP

m,5 .
The analysis of the memory requirement of DRP is very simple. For each processor u, the unicast function

requires M(unicastu) = O(r log n) bits, while the pred function requires M(pred) = rMp bits at each sender.
The total requirement is

M(DRP) = O(nr log n + srMp)

Notice that the above analysis is based on a realization of the unicast function that guarantees minimal paths.
However, this function is essentially a pluggable module of DRP. Therefore, relaxing the minimality requirement
(i.e., by allowing the unicast function to “stretch” paths by a factor k > 1) one could use any one of the many
proposed unicast schemes with much lower memory requirements.

4 Disjunction Advantage
In this section we provide a probabilistic analysis of the disjunction advantage α, defined in Section 2, as a way
to characterize its expected value and, thereby, characterize its effect on the complexity of routing. Recall that α
depends on the structure and distribution of messages and predicates.

4.1 α in a General Data Model
We begin by characterizing α in the very general case, where messages are simply elements of a universe of
messagesM and predicates are generic subsets ofM. This case is an abstraction of any content-based networking
data model. In fact, it corresponds to the general model defined in Section 2.

For the purpose of this analysis, we assume that M is a finite set. In addition, we make two uniformity
assumptions intended to simplify the characterization of α. First, we limit the analysis to predicates of uniform
size, that is, we consider only predicates p ⊆ M of a fixed cardinality |p| = k. Second, we only compute the
disjunction advantage for an entire set of predicates. In practice, given a set of predicates p1, p2, . . . pk, we are
interested in the disjunction advantage

α =
M(p1 ∪ p2 ∪ . . . ∪ pn)

M(p1) + M(p2) + . . . + M(pn)

where pi ⊆M and |pi| = k.
Let P = p1 ∪ p2 ∪ . . . ∪ pn. Given that a generic predicate p can be represented with M(p) = p log |M| bits,

we have α = |P |
nk , and the expected value of α is

E(α) =
E(|P |)

nk

where E(|P |) is the expected size of the union of n random sets of size k. The probability that a uniform random
message m is not in a predicate p of size |p| = k is Pr[m ← M;m 6∈ p] = 1 − k

|M| . Therefore, the probability
that a message m is in the union of n such predicates is

Pr[m ∈ P ] = 1−
(

1− k

|M|

)n

≈ 1− e−
nk
|M|

which defines the expected size of P and then the expected disjunction advantage

E(α) =
|M|
nk

(
1−

(
1− k

|M|

)n)
≈ |M|

nk

(
1− e−

nk
|M|

)
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This analysis is based on a uniform distribution of predicates, which leads to the highest expected values of α.
Any other distribution would clearly favor one set ofM over others, and therefore it would increase the probability
of collisions between predicates, leading to lower (i.e., better) values of α.
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Figure 5: Disjunction Advantage in the General Data Model

Figure 5 shows a characterization of the disjunction advantage α under a uniform and Zipf probability distribu-
tion for message occurrences in predicates. This characterization was obtained through Monte Carlo simulations
over universes of 104, 105, and 106 messages. Predicates were obtained by selecting messages from a uniform
probability distribution, as well as a Zipf distribution with exponent 1. The first graph in the figure shows α for
both uniform and Zipf distributions over a wide range of the ratio nk/|M|, while the second graph focuses on the
Zipf distribution, zooming in on the range 0 < nk

|M| ≤ 0.1.
The behavior of the Uniform curve is exactly as predicted by the analytical expression of E(α) obtained

above. The most interesting result is that of the Zipf curves, which confirm the intuition that a realistic non-
uniform distribution of predicates would yield a much better reduction even for lower values of the ratio nk

|M| . For
example, combining only five predicates each one selecting one out of one hundred messages would result in a
space reduction of about 50%.

4.2 α in a Specific Data Model
We now analyze the disjunction advantage in a specific and realistic case, where messages and predicates conform
to the structure and semantics defined by a common data description/query language. In this scenario, messages
consist of a set of named attributes, and predicates are defined by disjunctive normal form (DNF) expressions of
Boolean constraints on attribute values [6]. For purposes of the analysis, we use only integer and string attribute
values, and constraints defined by a relational operator and a comparison value. An example of a message and
predicate of this form appears at the beginning of Section 2.

We define the size of a DNF predicate to be the number of constraints it contains; in the example at the
beginning of Section 2, the size of the predicate is 3. It is easy to see that the disjunction of two predicates may
admit a representation smaller than the sum of the sizes of the representations of the individual predicates. For
example, a simple reduction algorithm would remove redundant constraints within conjunctions and redundant
conjunctions within a predicate. In particular, a conjunction of two constraints p = (c1 ∧ c2) can be reduced to
p = (c1) if c1 ⇒ c2. Similarly, a disjunction p = c1 ∨ c2 can be reduced to p = (c1) if c2 ⇒ c1. For instance, the
representation of (x > 10∧ y = 100)∨ (y > 0) could be reduced to (y > 0). Other, more sophisticated reduction
algorithms are of course possible. However, our analysis of α is based on the algorithm outlined above, which is
simple and efficient.1

We compute α through Monte Carlo simulation. In each iteration we generate a set of random predicates.
We then compute the reduced disjunction of the predicates, and divide the number of constraints in the reduced
disjunction by the total number of constraints in all the original predicates.

Generating random DNF expressions of Boolean constraints involves several parameters. To make this anal-
ysis tractable and meaningful in the context of this paper, we make some assumptions on several aspects of the
distribution of predicates, and focus only on a few independent variables. In particular, we generate predicates

1A concrete implementation of this algorithm is available on-line at http://www.cs.colorado.edu/serl/cbn/forwarding/.
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consisting of one conjunction of 1, 2, 3, 4, 5, or 6 constraints, with probability 10%, 40%, 30%, 10%, 5%, and
5%, respectively. The constraints are generated by choosing an attribute name from a set A of names, with prob-
ability distribution D. Each name in A is associated with either string or integer constraints in equal proportions.
Constraints are chosen by selecting a relational operator and a comparison value. Relational operators for strings
are chosen with the following distribution: equality with probability 40%, and prefix, suffix, substring, not-equal
and lexicographical ordering relations less-than and greater than, all with probability 10%. Comparison string
values are selected from a distribution of the 200 most-common meaningful terms extracted from a large corpus
of news reports [13]. Integer constraints are formed with the relational operators equals, less-than, greater-than,
and not-equals, with probabilities 40%, 25%, 25% and 10%, respectively. Integer comparison values are uniform
random variables between −100 and 100.

The free variables we focus on in our analysis are the probability distribution of attribute names D, the total
number of attribute names |A|, and the number of predicates combined in one disjunction. For each number
of predicates, we compute α over several predicate sets. We examine the minimum, 5th percentile, median,
95th percentile, and maximum values of α as a function of the number of predicates.
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Figure 6: Disjunction Advantage Under a Zipf Distribution for Attribute Names

Figure 6 shows the results obtained using a Zipf distribution over a set of 500 and 5000 attributes, respectively.
This scenario is intended to represent an open, wide-area network used by several diverse applications and users. In
this scenario, the vocabulary of predicates, although vast, would conform to a “popularity” power-law distribution
such as Zipf.
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Figure 7: Disjunction Advantage Under a Uniform Distribution for Attribute Names

Figure 7 shows the results obtained using a uniform distribution over a set of 50 and 500 attributes, respectively.
This scenario represent a single (or a few) large-scale applications (e.g., file sharing or network monitoring), where
the vocabulary of constraints would be relatively small, but also more uniform in its distribution.

At a high level, our analysis confirms the intuition that the combination of more and more predicates yields
better and better reductions, with α becoming progressively smaller. Also as expected, non-uniform distributions
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of attribute names over the same total number of attribute names result in better reduction factors. The analysis
additionally shows that the reduction factor is highly variable for small numbers of predicates (a few tens or
hundreds of conjunctions), but then stabilizes for larger sets of predicates. A somewhat negative result is that
the α reduction is not immediately effective, especially for large and/or uniform sets of attribute names. In fact,
none of the given scenarios shows a consistent reduction of α = 0.5 or better for less than 100 predicates, and in
the worst case of 500 uniformly distributed attributes, α goes below 0.5 only when 7000 or more predicates are
combined.

Notice, however, that the base predicates used in this analysis are intentionally small and simple, consisting of
only one conjunction. In a realistic wide-area network scenario, where each processor represents a router for an
entire subnet, the predicate associated with a processor is likely to consist of hundreds of the base predicates used
here.

5 Related Work
Although there has been substantial work on developing concrete solutions to the content-based routing prob-
lem [7, 11, 5, 2, 18, 3], and even some attempt at quantitatively comparing early versions of such schemes [14],
this paper is the first presentation of a comprehensive, analytical characterization of the correctness, minimality,
and complexity of content-based routing schemes. Therefore, there is little work that can be meaningfully related
to ours.

The network and routing models described in this paper are based on the general framework laid out by Peleg
for traditional address-based routing schemes [15]. Although we use that framework, the semantic differences be-
tween the address-based and content-based services lead to notions of correctness, minimality, and complexity that
differ substantially. For example, in traditional address-based routing, it is recognized that storing full forwarding
tables at each processor is inefficient because they would grow linearly with the size of the network. Therefore,
the goal in traditional schemes is to make the forwarding table as compact as possible, while keeping the message
delivery paths bounded to some multiple of the shortest paths; in the literature, this is called the stretch factor. An
optimal solution is one that properly optimizes the trade off between stretch and routing table size. This led to an
investigation of so-called “compact” routing schemes and their associated theoretical properties [1, 9, 16, 19].

In contrast, content-based networking is a multicast service requiring potentially many delivery paths for a
given message, one for each interested receiver. The nature of “stretch” is therefore inherently different and must
account for this multiplicative effect. Moreover, the forwarding-table minimization problem is dominated by the
nature of the predicates and messages, and only to a lesser extent affected by storage of path information. This
led us to introduce the disjunction advantage for content-based routing schemes, a notion that has no direct analog
in address-based schemes. (One could view the simplification of predicates meeting at a particular processor in
the network as a sort of “content-based subnetting”, where processors far from a message destination would likely
apply general predicates and those closer would apply more specific ones. But notice that such subnets would
result from the particular constellation of predicates advertised by receivers, which arises dynamically from the
behavior of applications making use of the network and not through some sort of static configuration of that
network.)

Rajvaidya and Almeroth [17] provide a practical evaluation of multicast routing schemes based on data col-
lected from actual deployments. They characterize the size of the connected hosts in multicast groups and the
stability of the multicast routes across the topology. Their evaluation identifies some problems with multicast
routing and suggests how multicast routing should evolve. The results of the Rajvaidya and Almeroth study do
not provide much insight into content-based routing. While the two services share the idea that a single sender
might communicate with arbitrary numbers of (anonymous) receivers, the similarity ends there. Multicast routing
is based on group address spaces and, thus, largely reduces to a special form of address-based routing. It is a ser-
vice more appropriate for relatively stable definitions of groups and group interests (usually defined by the sender,
rather than the receivers) and for receivers whose membership in groups is also relatively stable.

6 Conclusion
Although there has been a growing body of work in experimental treatments of content-based networking, to
our knowledge this is the first attempt at an analytical characterization of broad classes of content-based routing
schemes. We have provided a theoretical framework in which to model correctness, minimality, and complexity.
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The utility of the framework was demonstrated by capturing the essence of several superficially similar, yet prac-
tically distinct schemes. Building on these first concrete steps, we intend to study additional routing schemes, as
well as to obtain tighter bounds on complexity.
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