
Structural coverage of feasible code

Mauro Baluda† Pietro Braione§ Giovanni Denaro§ Mauro Pezzè†§

†University of Lugano
via Buffi 13, 6900

Lugano, Switzerland
mauro.baluda@unisi.ch

§University of Milano-Bicocca
Viale Sarca 336, 20126

Milano, Italy
{braione|denaro|pezze}@disco.unimib.it

ABSTRACT
Infeasible execution paths reduce the precision of structural
testing coverage and limit the industrial applicability of struc-
tural testing criteria. In this paper, we propose a technique
that combines static and dynamic analysis approaches to
identify infeasible program elements that can be eliminated
from the computation of structural coverage to obtain ac-
curate coverage data. The main novelty of the approach
stems from its ability to identify a relevant number of in-
feasible elements, that is, elements that belong statically to
the code, but cannot be executed under any input condition.
The technique can also generate new test cases that execute
uncovered elements, thus increasing the structural coverage
of the program. The experimental results obtained on a
prototype implementation for computing accurate branch
coverage and reported in this paper indicate that the tech-
nique can effectively improve structural coverage measure-
ments and can thus increase the industrial applicability of
complex structural coverage criteria.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms

Keywords
Structural testing, concolic execution, automatic test gener-
ation

1. INTRODUCTION
Structural testing coverage has been widely studied as a

means for assessing the adequacy of test suites with respect
to the code. Structural coverage measures the adequacy of
test suites as the amount of code elements of a given type
executed by the test cases with respect to the total amount

of those elements in the program. For example, statement
and branch coverage measure the portion of executed state-
ments and branches, respectively [18]. Quality managers use
structural coverage criteria to evaluate test suites, determine
when to terminate testing, and identify portions of the code
that require additional testing [13].

Despite the definition of many structural coverage crite-
ria, only few find common industrial application. Mature
practical processes refer mostly to statement coverage, the
simplest structural coverage criterion, and refer to more so-
phisticated coverage criteria only when required by domain
regulations. For example safety-critical avionic applications
use the modified condition decision coverage, as required by
the standard DO-178B [16].

The limited industrial success of most structural coverage
criteria depends on the difficulty of both identifying inputs
that execute uncovered elements and computing accurate
coverage values. The first problem amounts to finding the
inputs that exercise a specific statement, branch or other
element. The second problem stems from the difficulty of
identifying infeasible elements, that is, elements that cannot
be executed under any input condition, and therefore should
not be counted. Both problems are undecidable in general,
and hard to solve in practice.

Finding test cases to increase structural testing coverage
is being recently tackled by approaches that generate test
cases using symbolic and concolic (that is, interwoven con-
crete and symbolic) execution [17, 9, 14]. These approaches
drive the exploration of the executable paths of a program,
typically in depth-first order, and generate test cases ac-
cordingly. Since most programs have infinitely many paths,
a depth-first search is in general ill-suited for the goal of cov-
ering a finite domain: It leads to a fine-grained exploration
of only small portions of the program state space, easily di-
verges, and often finds many test cases that do not increase
the coverage of the structure of the program. Other search
strategies select paths that lead to uncovered elements in
the control-flow graph. These strategies rely on heuristics
to direct the search towards the most promising paths [10,
2]. Heuristics can increase coverage, but do not prevent the
search to be stuck in exploring an infinite set of infeasible
pahts.

Current tools for computing structural coverage sidestep
the infeasibility problem, and compute the structural cover-
age as the ratio between the elements executed during test-
ing and the elements that belong statically to the code. This
produces inaccurate results due to infeasible elements. The
inaccuracy produced by a relatively small portion of infea-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AST ’10, May 3-4, 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-970-1/10/05 ...$10.00.

59

sible elements can be tolerated by defining relaxed coverage
thresholds. For example, if 100% statement coverage cannot
be achieved due to infeasible elements, a 90% statement cov-
erage can provide enough confidence in the test suites, and
thus partially satisfy quality managers. However, the por-
tion of infeasible elements grows with the complexity of the
coverage criterion, and becomes a big obstacle to practical
applicability of sophisticated criteria.

The goal of our research is to define a new generation of
structural testing techniques to compute accurate structural
coverage measurements also for sophisticated testing crite-
ria by both automatically generating test suites with high
structural coverage, and correctly accounting for a relevant
number of infeasible elements. To this end, we combine
dynamic analysis, concolic execution and abstraction refine-
ment to overcome the limitations of traditional approaches.
Dynamic analysis monitors test execution to identify the
covered elements and the feasible execution paths in the
program state space. Concolic execution computes the path
conditions that indicate how to execute unexplored paths
to exercise uncovered elements, and solves these path con-
ditions to identify new test cases. Abstraction refinement
prunes the infeasible elements that are identified by unsatis-
fiable path conditions. An element is identified as infeasible
when all the execution paths that lead to that element are
infeasible. Our technique is rooted in an existing procedure
for deciding the reachability of program statements [11, 1],
which we adapt and extend to the problem of structural
coverage of feasible code.

This paper contributes to scientific knowledge in several
ways:

• It combines automatic test case generation based on
concolic execution with dynamic analysis and abstrac-
tion refinement to compute accurate structural cov-
erage measurements. The approach works for arbi-
trary structural adequacy criteria, and can produce
test suites that cover most feasible program elements,
while identifying many infeasible elements.

• It extends abstraction refinement by introducing an
algorithm based on abstraction refinement and coars-
ening. Coarsening boosts the scalability of abstraction
refinement and allows its application to the demanding
problem of generating test suites with high structural
coverage.

• It introduces Star, a prototype implementation of the
proposed technique that we used for experimental val-
idation. Star automatically generates test suites for
C programs pursuing full branch coverage.

• It presents a set of experimental results collected by
applying Star to sample C programs. These data pro-
vide initial empirical evidence of the advantages of our
technique with respect to both random testing and di-
rected testing based on either concolic or symbolic ex-
ecution.

The paper is organized as follows. Section 2 exemplifies
the impact of infeasible elements on structural testing cov-
erage by discussing the branch coverage of a sample pro-
gram that we use in the experimental validation. Section 3
provides background on the existing work that inspired our

technique, and motivates its evolution to the abstraction re-
finement and coarsening technique. Section 4 presents our
approach, discusses the principles on which it is based, and
defines the analysis algorithm in detail. Section 5 briefly
illustrates the prototype implementation of our technique.
Section 6 presents the preliminary empirical results obtained
by applying the prototype on some sample programs. Sec-
tion 7 surveys the related work. Section 8 summarizes the re-
sults of this paper, and outlines our current research agenda.

2. THE INFEASIBILITY PROBLEM
Infeasible program elements reduce the precision of struc-

tural coverage criteria that are defined as the ratio between
the executed and the total amount of elements in a pro-
gram [13]. For simple criteria, like statement coverage, the
amount of infeasible elements is not particularly high, and
practitioners can take advantage of structural testing cov-
erage by either referring to an approximate satisfiability
threshold, or by manually justifying the infeasible elements.
However, even for slightly more demanding criteria, the im-
pact of infeasible elements on structural coverage can be
high, not even allowing the satisfaction of partial thresholds,
while manual justification can be unacceptably complex. In
this section, we discuss the infeasibility problem by showing
through a simple but representative example that infeasible
elements can have a relevant impact even on simple coverage
criteria.

Figure 1 shows the C function calc week that we ex-
cerpted from the code of the MySQL database management
system. Function calc week takes a date (the first param-
eter l time formatted after line 7), and returns the corre-
sponding week of the year (an integer value between 0 and
53). The second parameter week behavior sets the week
counting options. This parameter is interpreted as bit se-
quence: The three less significant bits indicate the day that
starts the week (either Sunday or Monday) the baseline to
count weeks (either 0 or 1), and reference standard for the
date representation (ISO standard 8601:1988 or not), respec-
tively. The constant masks at lines 2–4 are used to extract
the values of the the three less significant bits from the pa-
rameter week behavior (lines 31–34).

The parameter week behavior increases the reusability of
function calc week across applications that address differ-
ent user contexts. In the context of a specific application,
calc week is usually specialized by passing a fixed constant
value of week behavior to all calls. In our example, we
consider a program P that uses the function calc week in
a context where the weeks start on Sunday, are computed
in the range between 0 and 53, and does not use the ISO
8601:1988 standard.

We computed the branch coverage of function calc week

tested in the context of program P with our tool Star,
and we manually investigated the feasibility of the uncov-
ered branches. The function calc week has 50 control flow
branches1, many of which are infeasible in the context of P
that specialize the use of the library function. For example,
the condition weekday >= 4 at line 41 is never executed,
because the value of variable first weekday is true for all
the test cases valid in P . Similarly, the code within the last
outermost if statement (line 54) is never executed, because
the value of variable week year is always false in P . In total,

1Section 6 gives more details on the static branch count.

60

1 /* Flags for calc_week () function. */
2 #define WEEK_MONDAY_FIRST 1
3 #define WEEK_YEAR 2
4 #define WEEK_FIRST_WEEKDAY 4
5

6 typedef struct
7 TIME{uint year; uint month; uint day;} TIME;
8

9 /* Calc days since year 0 (from 1615) */
10 long calc_daynr(uint year , uint month , uint day);
11

12 /* Calc weekday from daynr: 0 for mon , 1 for tue ... */
13 int calc_weekday(long daynr ,
14 bool sunday_first_day_of_week);
15

16 /* Calc days in a year. works with 0 <= year <= 99 */
17 uint calc_days_in_year(uint year);
18

19 /* Meaning of the bits in week_behaviour :
20 WEEK_MONDAY_FIRST (0): set ==> Mon , else Sun
21 WEEK_YEAR (1): set ==> Week in range 1-53, else 0-53
22 WEEK_FIRST_WEEKDAY (2): not set ==> ISO 8601:1988
23 */
24 uint calc_week(TIME *l_time ,
25 uint week_behaviour , uint *year){
26 uint days;
27 ulong daynr =
28 calc_daynr(l_time ->year , l_time ->month , l_time ->day);
29 ulong first_daynr = calc_daynr(l_time ->year , 1, 1);
30 bool monday_first =
31 week_behaviour & WEEK_MONDAY_FIRST;
32 bool week_year = week_behaviour & WEEK_YEAR;
33 bool first_weekday =
34 week_behaviour & WEEK_FIRST_WEEKDAY;
35

36 uint weekday=calc_weekday(first_daynr , !monday_first);
37 *year=l_time ->year;
38

39 if (l_time ->month == 1 && l_time ->day <= 7-weekday){
40 if (! week_year && (first_weekday && weekday != 0 ||
41 !first_weekday && weekday >= 4))
42 return 0;
43 week_year= 1;
44 (*year)--;
45 first_daynr -= (days= calc_days_in_year (* year));
46 weekday= (weekday + 53*7- days) % 7;
47 }
48

49 if ((first_weekday && weekday != 0) ||
50 (! first_weekday && weekday >= 4))
51 days= daynr - (first_daynr+ (7-weekday));
52 else days= daynr - (first_daynr - weekday);
53

54 if (week_year && days >= 52*7){
55 weekday= (weekday + calc_days_in_year (* year)) % 7;
56 if (! first_weekday && weekday < 4 ||
57 first_weekday && weekday == 0){
58 (*year)++;
59 return 1;
60 }
61 }
62 return days /7+1;
63 }

Figure 1: The calc week function of MySQL

only 37 out of 50 control flow branches of function calc week

are indeed feasible in the context of program P . As a result,
a classic coverage tool used to compute the branch coverage
of a test suite that covers all feasible branches of calc week

within program P would return 74% coverage, giving an er-
roneous indication about the completeness of the test suite
with respect to the chosen criterion.

This example illustrates how testing a software module in
a context that does not elicit all its possible behaviors yields
many infeasible elements. This happens in general when

reusable libraries are integrated in systems that use only
subsets of their functionalities. Additionally, we notice that,
the application of more demanding structural testing crite-
ria, such as data flow coverage criteria [7], further empha-
sizes the problem. As a matter of fact, a more demanding
criterion requires to exercise the program more thoroughly,
and thus results in increased numbers of statically identified
elements, and increased probability that a statically identi-
fied element is dynamically infeasible.

3. COVERAGE REFINEMENT
This paper proposes abstraction refinement and coarsen-

ing (ARC), as an approach for improving structural testing
coverage by accounting for infeasible code elements. Such
approach extends over an algorithm introduced by Beck-
man et al. for computing the reachability of program state-
ments [1]. This section briefly overviews the characteristics
of the referred algorithm, as required to understand our pro-
posal, and pinpoints the key challenges that we faced while
adapting it to the structural test generation problem. We
then present the details of ARC in Section 4.

3.1 Background: Static-dynamic reachability
In previous work, Beckman et al. introduced DASH, an al-

gorithm to compute the reachability of (faulty) statements of
programs. DASH tries to either prove that the faulty state-
ment is not reachable, or produce a test case that executes
the statement. The two activities proceed incrementally,
and interplay with each other.

DASH looks for a test case that executes the faulty state-
ment by exploring program paths that are increasingly closer
to the statement, adapting the approach of concolic exe-
cution [9, 14, 15]. It tries to prove that the faulty state-
ment is not reachable by progressively refining a finite ab-
stract model that conservatively overapproximates all possi-
ble transitions between program states, until the model con-
tains no abstract trace that includes the faulty statement.

DASH stores a history of the abstract states covered by
the test cases, and uses such information to coordinate test
case construction with model refinement, progressing one of
the two activities at each iteration, as follows:

1. Execute the set of test cases, and identify the abstract
states covered by the concrete states reached by the
tests. If a test case executes the faulty statement, then
terminate and return it.

2. Search the model for traces that reach the faulty state-
ment (error traces). If the model contains no error
trace, then terminate, and confirm that the faulty state-
ment is not reachable.

3. Identify a frontier transition in the model, i.e., a tran-
sition that belongs to an error trace, and connects an
abstract state s1 covered by at least a test case t, to
an abstract state s2 not covered by any test case.

4. Execute the program symbolically along the test case t
up to state s1, change the path condition to reach state
s2, and check for the satisfiability of the computed
path condition using an automatic solver.

5. If the solver finds a solution, add it to the set of test
cases, and proceed to step 1.

61

6. If the solver does not find a solution, conservatively
refine the model by eliminating the infeasible transi-
tion between states s1 and s2 (see details below), and
proceed to step 2.

Figure 2 illustrates how DASH refines the model conser-
vatively. Given a frontier transition from a state s1 to a
state s2, DASH splits s1 into two new states annotated with
complementary refinement predicates, namely the weakest
precondition of s2 through the frontier transition (wp) and
its negation (!wp)2. All test cases that reach s1 reach also
[!wp]s1, while state s2 may be reachable from [wp]s1, but
not from [!wp]s1. Neither [wp]s1 nor s2 is reached by any
test case, by construction.

The refinement sets the frontier one step backwards: The
reachability of s2 is reduced to the reachability of [wp]s1.
If the frontier reaches the entry state of the model, DASH
can safely conclude that such a frontier is infeasible, and can
remove the corresponding transition from the model.

s1

s2

From sx

t
[!wp]s1

s2

t
[wp]s1

From sx From sx

To sy To sy To sy

(a) (b)

Figure 2: Refinement of an infeasible transition

The DASH implementation referred by Beckman et al.
in [1] has not publicly released yet. We implemented the al-
gorithm on top of the open-source Crest concolic execution
engine [2]. In this paper we refer to our implementation of
the DASH algorithm as DASH.

3.2 From reachability to structural coverage
To satisfy a structural coverage criterion, we must extend

test suites with test cases that execute elements not covered
yet. To measure coverage precisely, we must identify and
ignore infeasible elements. Both problems can be restated
in terms of DASH-style reachability problems, one for each
target code element3. However, straightforward applications
of DASH do not scale. In this subsection, we report the
results of our study about the scalability of straightforward
applications of DASH, before presenting our approach in the
next section.

We can use DASH to solve the coverage problems in two
ways, which we refer to as external DASH (eDASH) and in-
cremental DASH (iDASH), respectively. The näıve eDASH
approach consists of calling a different instance of a DASH
implementation for each target element. The less näıve
iDASH approach operates on a single abstract model, and
shares the set of identified test inputs, thus avoiding repeat-

2A slightly more sophisticated condition than the raw weak-
est precondition is required in presence of aliases [1]. Here
we assumes no aliases for the sake of simplicity.
3This implicitly assumes that the target code elements can
be expressed as code locations, possibly after a suitable in-
strumentation of the code. This is generally true for common
structural coverage criteria.

ing the same refinements, and re-identifying the same test
inputs across different targets.

Both approaches mark the code elements executed by any
test case reported by DASH as covered, and the code ele-
ments that DASH proves to be unreachable as infeasible.
Once executed for all target code elements, both approaches
return the sets of covered and infeasible elements, and com-
pute the obtained coverage cov as

cov =
|covered|

|target| − |infeasible| (1)

that yields a coverage indicator improved by the identi-
fied infeasible code elements. The readers should notice that
both approaches can still yield partial coverage since DASH
may not be able to decide on the reachability of some ele-
ment.

Our experiments indicate that both approaches do not
scale. For eDASH, the predominant penalizing factor is the
large amount of abstract traces that are re-analyzed at any
new invocation of DASH. This entails many redundant re-
computations of the same concolic executions, calls to the
solver and refinements of the model. For programs with
many paths and code elements, the burden of this redun-
dancy determines dramatic loss in performance, and several
invocations of DASH do not to terminate within reason-
able time. iDASH experiences less disastrous performance
albeit at the cost of eager memory request that causes the
procedure to run out-of-memory even for simple programs,
as the calc week procedure exemplified in Section 2. In fact
as shown in Figure 2, every refinement adds a new state and
two refinement predicates to the model, thus progressively
leading to a heavy memory occupation.

Moreover, both procedures generate increasingly complex
predicates, with large amounts of conjunctions and disjunc-
tions that quickly become hard if not impossible to solve au-
tomatically. The approaches generate predicates with many
conjunctions and disjunctions when a model state is refined
against multiple abstract traces that intersect in it, as illus-
trated in Figure 3. In Figure 3(a) the states s0, s1 and s2
are already covered by a concrete execution, while state s3
is not yet covered; s1→ s3 and s2→ s3 are frontier transi-
tions since they can lead from covered states to an uncovered
target. The figure shows how DASH incrementally refines
the model when s3 is infeasible. At each iteration, DASH
splits a state and adds two refinement predicates that are
propagated backwards in disjunctive form, as illustrated by
the annotations of the white states in the figure. In this re-
finement process, state s1 is refined twice, against the traces
〈s1, s2, s3〉 and 〈s1, s3〉, since these two traces share s1. The
last refinement generates the predicate c3 ∧ (!c1∨!c2) that
identifies an abstract state yet to be covered, and contains
both conjunctive and disjunctive operators.

The amount of atomic clauses grows quickly with the size
of the program. Our preliminary experiments led already
to predicates with more than 300, 000 atomic clauses and a
consequent explosion of solving time.

4. REFINEMENT AND COARSENING
In this section, we explain abstraction refinement and coars-

ening (ARC), a new approach that automatically generates
test suites with high coverage, and optimizes the coverage in-
formation by detecting infeasible code elements. ARC over-

62

[!c1]s2

s3

(d)

[c1 c2]
s1

[c1]s2

[c3 �
(!c1 !c2)]

s1

[!c1]s2 [

((!c1(((] !c2)]]
s1

s0

[!c1]s2

s3

(c)

[c1 c2]
s1

[c1]s2

[!c1 !c2]
s1

[!c1]s2 [

s1

s0

[!c3 �
(c1 c2)]

s1

[c3c3c3

s2

s3

(a)

s1

[!c1]s2

s3

(b)

s1

[c1]s2

s0 s0

c1?

c2? c3?

c1?

c2? c3?

c1?

c2? c3? c2? c2? c2? c3?

Legend: All the transitions are associated to conditional state-
ments with conditions c2 (s1 → s2), c1 (s2 → s3), and c3
(s1 → s3). Dotted lines indicate frontier transitions along which
refinements are performed.

Figure 3: A sample sequence of refinements

comes the scalability issues observed in the previous section.
ARC integrates data from concrete executions of the pro-
gram with the results of statically analyzing an overapprox-
imate, finite model of the program state space. It incremen-
tally guides the construction of new test cases that increase
code coverage, and discovers infeasible code elements that
can be therefore excluded from the coverage count. ARC
extends an initial test suite with new test cases that in-
crease the code coverage, and at the same time computes a
set of infeasible code elements to refine the coverage mea-
surement. The approach is independent from the coverage
criterion. Our prototype implementation, described in detail
in Section 5, refers to branch coverage.

ARC shares the model and the test cases across multi-
ple targets similarly to iDASH. Our original contribution is
a process that introduces coarsening steps into iDASH. In
other words, the process partially re-aggregates the states
generated by the refinement process as the analysis of the
program progresses. The rationale elaborates on the ob-
servation that every refinement in DASH aims to decide the
reachability of an abstract state. When ARC meets the goal,
coarsening drops the refinements generated for the decision
process.

Figure 4 shows the ARC pseudocode. ARC inputs a pro-
gram P, a set of target elements T and a nonempty set I of
program inputs. The target elements T are the elements to
be covered, and the set of program inputs I is the initial test
suite. It returns both a test suite that extends I and a set
U ⊆ T of unreachable targets.

ARC works on a model M of the program P. The model
is a labelled rooted graph where nodes represent abstract
states, and are annotated with predicates over the program
variables, while edges are annotated with the corresponding
statements. An abstract state corresponds to a program lo-
cation, and represents a set of concrete states that reach the
location. Predicates on states identify subsets of concrete
states. We say that a concrete state covers a node when
it corresponds to the location represented by the node and
satisfies the associated predicate.

ARC derives the initial model M0 from the program P ac-
cording to the coverage criterion to be satisfied, as the most

1 ARC(P, T, I):
2 //P is the program under test
3 //T is a set of target nodes to be covered
4 //I is a set of inputs for P (the initial test suite)
5

6 // nodes(M) is the set of nodes of the model M
7 // edges(M) is the set of edges of M
8 // paths(M) is the set of paths in M
9 // root(M) is the initial node of M

10

11 M := M0 //M is the model (initially extracted from CFG)
12 U := {} //U is the set of the unreachable targets
13 C := {} //C us the set of the covered targets
14 split_for[nodes(M)] := {}
15 loop
16 C := all n ∈ nodes(M) s.t. n covered by run(P, I)
17 coarsen(M, C, split_for)
18 T := T - C - U

19 choose p ∈ paths(M), e = npre
stmt−−→npost ∈ edges(p) s.t.

20 p[0] = root(M) ∧ p[end] ∈ T ∧ npre ∈ C ∧ npost /∈ C
21 if no such p, e exists
22 return I, U // test suite , unreachable nodes
23 〈i,RP〉 := extend_frontier(P, I, e)
24 if i = ε // the chosen frontier cannot be extended

25 n′
pre := refine(M, e, RP)

26 if n′
pre = ε

27 N := all n ∈ nodes(M) s.t.
28 n unreachable from root(M)
29 coarsen(M, N, split_for)
30 remove from M all nodes in N
31 U := T - nodes(M)
32 else
33 split_for[npost] := split_for[npost] ∪
34 {〈npre,stmt ,RP〉}
35 else
36 I := I ∪ {i}
37 forever
38

39 coarsen(M, N, split_for):
40 // companions (n) is the companions set of a node n
41 // predicate (n) is the predicate which annotates n
42

43 for all npost ∈ N
44 for all 〈npre,stmt ,RP〉 ∈ split_for[npost]

45 for all n′
pre ∈ companions(npre)

46 remove RP (or ¬ RP) from predicate(n′
pre)

47 edges(M) := edges(M) ∪ {n′
pre

stmt−−→npost}

48 for all n′
pre ∈ companions(npre)

49 if exists n′′
pre �= n′

pre ∈ companions(npre) s.t.

50 predicate(n′′
pre) =⇒ predicate(n′

pre)

51 remove from M the node n′
pre

52 split_for[npost] := {}

Figure 4: ARC pseudocode

conservative model that can be statically derived from P.
When referring to control flow coverage criteria, as in the ex-
periments reported in this paper, ARC initializes the model
to the control flow graph of the program P. It annotates
edges with the corresponding program statements and sets
all predicates to true.

ARC iteratively executes the current test suite, and com-
putes the set C of the nodes covered by at least one test
case (line 16). Then, it coarsens the model by invoking the
coarsen procedure described below (line 17) in the case of
newly covered nodes, and updates the set of target elements
(line 18). As defined in DASH, it tries to cover a not-yet-
covered transition with a new test case. Otherwise, it re-
fines the model, and searches all the unreachable nodes in
it. Then, it coarsens the model (line 29) and removes the
unreachable nodes from it.

63

In more details, ARC adapts the DASH step that gen-
erates new test cases and extends the model as follows. It
looks for a frontier transition within an abstract trace from
the root to an uncovered target (lines 19–20). If there are
no traces from the root to an uncovered target, all target
elements have been either covered or excluded, and ARC
terminates (lines 21–22). Otherwise, ARC calls the func-
tion extend frontier (line 23) to cover the newly identified
frontier transition. The function returns either a new test
input i that covers the transition or a refinement predicate
RP to refine the frontier. ARC either refines the model with
RP (call to function refine at line 25) or adds the new test
input i to I (line 36) before iterating (line 37). Function
extend frontier exploits concolic execution to build a test
input and weakest precondition calculation to compute RP.
For a precise description of functions extend frontier and
refine, the readers can refer to [1].

To assist the coarsening step described below, ARC tracks
the associations between the nodes and the refinements done
to investigate their reachability. When the invocation of
function refine splits a pre-frontier node npre according to
a predicate RP, ARC updates the map split for to add the
triple 〈npre,stmt,RP〉 to the set of triples associated to the
post-frontier node npost.

Here we introduce the core ARC contribution, the coars-
ening step, by discussing function coarsen (lines 39–52). In
a nutshell, ARC coarsens nodes when, after either covering a
node or proving the node to be unreachable, it realizes that
the refinements that originated that node are not required
anymore. Function coarsen works with the map split for,
the model M and the set N of nodes to be coarsened, and re-
verts the refinements originated from the nodes in N as fol-
lows. For each node npost in N, it gets the originating refine-
ments 〈npre, stmt, RP〉 from split for(npost), and for each
pair identifies the companion set of npre, companions(npre)
(line 45), i.e., the set of nodes that correspond to the same
program location of n and that have been annotated with RP

or its negation. All nodes in a companion set derive from a
common ancestor in the initial model. Then, for companion
set companions(npre), it simplifies the refinement predicates
of all the nodes in companions(npre) by removing RP or its
negation from the predicate associated to each node (line 46)
and puts back the edge to npost removed during the refine-
ment (line 47). Finally, ARC conservatively removes from
the model all redundant nodes in each companion set (lines
48–51). An abstract state n is redundant if its associated
predicate logically implies the disjunction of the predicates
of its companions, signifying that all the concrete program
states in n are also in its companions. Refinement and coars-
ening ensure that either two abstract states are disjoint, or
one contains the other. Thanks to this fact, ARC detects
redundancy of n by checking whether predicate(n) is a logi-
cal consequence of at least one of its companions’ predicates
(lines 49–50). This check can be done without the overhead
of a decision procedure invocation, by syntactically compar-
ing the clauses that compose the refinement predicates of
the states.

Coarsening eliminates useless predicates and nodes. In
this way, we can alleviate the scalability problems that de-
rive from memory consumption and from the size and com-
plexity of the predicates, and thus computation complex-
ity. Our hypothesis is that the additional computational
effort introduced by coarsening computation, and by the re-

computation of some refinements that may be lost by coars-
ening, is counterbalanced by the reduced solver time because
of shorter predicates. The empirical results reported in Sec-
tion 6 indicate major improvements in computation time
and scalability with respect to both eDASH and iDASH,
that failed to scale when analyzing the programs of the ex-
periments.

5. PROTOTYPE
We have implemented a prototype tool for branch cov-

erage, Star (Software Testing by Abstraction Refinement),
built on top of Crest 4, an automatic test generation tool
for C, based on concolic execution. Crest in turns relies on
Cil5 for the instrumentation and static analysis of C code,
and on the Yices6 SMT solver.

Star refines an abstract model that represents the branches
of the program and the flow relations between them. The
initial model is extracted from the static control flow graph.
Star implements the iterative refinement and coarsening al-
gorithm presented in Section 4 to determine the feasibility of
the branches in the model, and exploits the concolic execu-
tion of Crest to investigate the feasibility of frontier tran-
sitions. Star selects frontier transitions with a heuristics
that tries to minimize the size of the refinement predicates.

Star traces the coverage information against the model
by running the program within the Gdb7 debugger. This
allows Star to dynamically intercept the execution of each
statement, determine the last executed branch and evaluate
the corresponding predicates.

6. PRELIMINARY EVALUATION
We used the Star prototype to validate the technique

proposed in this paper in terms of the ability of generating
test suites to cover branches not yet covered and to identify
infeasible branches.

Table 1 lists the 12 subject programs that we experi-
mented with: linsearch and binsearch implement the lin-
ear and binary search of an integer datum in an array, re-
spectively; tcas is the implementation of a component of
an aircraft traffic control and collision avoidance system, as
available from the Software-artifact Infrastructure Reposi-
tory [6]; week0..7 are programs that call function calc week

(from MySQL) that we described in Section 2 in differ-
ent customized ways; week is a program that call function
calc week with no specific customization. The column size
reports the program sizes in lines of code counted by the
Gnu utility wc. Column br reports the number of static
branches of each program counted by Star 8.

We used Star to maximize the branch coverage of each
subject program starting from a randomly generated input
test case. Table 1 reports the numbers of test cases that

4http://code.google.com/p/crest/
5http://sourceforge.net/projects/cil
6http://yices.csl.sri.com
7http://www.gnu.org/software/gdb
8Star counts the static branches after the Cil pre-
compilation pass that unrolls decisions with multiple condi-
tions as an equivalent cascade of single condition decisions,
and performs simple code optimizations based on constant
propagation. For calc week, the constant propagation de-
termines slightly different counts of static branches across
the different specializations of the program.

64

Star
subject size br tc cbr ibr cov1 cov2

linsearch 23 6 3 6 0 100 100
binsearch 39 12 6 12 0 100 100
tcas 180 106 22 99 7 93 100
week0 154 48 15 46 0 96 96
week1 154 48 17 46 0 96 96
week2 154 46 9 44 0 96 96
week3 154 46 13 44 0 96 96
week4 154 50 14 37 12 74 97
week5 154 50 15 47 1 94 96
week6 154 52 15 45 7 87 100
week7 154 52 16 45 7 87 100
week 154 72 32 72 0 100 100

TOTAL 1628 588 177 543 34 - -

size: size in LOC
br: number of branches computed statically (after

unrolling decisions with multiple conditions in
equivalent cascade of single condition decisions)

tc: number of generated test cases
cbr: number of covered branches
ibr: number of identified infeasible branches

cov1: cbr / br [as percentage]
cov2: cbr / (br - ibr) [as percentage]

Table 1: Results of Star

Star generated for each program (column tc), the numbers
of covered branches (column cbr), the number of branches
that Star identified as infeasible (column ibr), and the cov-
erage computed with respect to the set of branches identified
statically both before (column cov1) and after pruning the
ones identified as infeasible (column cov2).

Star generated a total of 177 test cases that cover 543 out
of 588 branches, and identified 34 infeasible branches, failing
only for 11 branches. All runs completed within minutes on
a common laptop. Star produces test suites of manageable
size that cover most feasible branches (100% in many cases
and 96% in the worst cases). The table shows also that Star
improves the measurement of branch coverage (column cov2)
wrt to coverage measurements computed without accounting
for infeasible branches (column cov1). The improvement is
evident for tcas (from 93% to 100%), week6 and week7 (from
87% to 100%), week5 (from 94% to 96%), and week4 (from
76% to 97%) where the improvement is maximum (+21%)

We compared the effectiveness of ARC against plain ran-
dom testing, directed random testing and automatic gen-
eration of test suites for branch coverage, as implemented
by two test case generation tools, Crest and Klee. Crest
generates test cases either randomly or based on concolic ex-
ecution, and in this latter case can be configured for either
depth-first search or control-flow graph guided path explo-
ration [2]. Hereafter we refer to these three modes of the tool
as Crestrand, Crestdfs and Crestcfg, respectively. Klee
tries to maximize branch coverage by means of a more tra-
ditional approach based on static, depth-first symbolic exe-
cution [3].

Table 2 reports the branch coverage obtained, respec-
tively, with Crestrand, Crestdfs, Crestcfg and Klee on
the same subject programs of Table 1. As in the case of
Star, we allocated a maximum of 60 minutes for each tool

to complete the analysis of each program. We executed
Klee with the option that searches and eliminates stati-
cally identifiable dead code at the beginning of the analysis.
In standard mode results were horribly poor.

Reported coverage (%)
subject Crestrand Crestdfs Crestcfg Klee

linsearch 33 83 100= 50
binsearch 17 83 100= 36
tcas 4 93 93 97

week0 87 83 85 97+

week1 83 83 83 97+

week2 54 85 85 97+

week3 91 85 89 93
week4 46 50 52 94
week5 80 78 68 94
week6 85 77 81 97
week7 83 77 77 97
week 12 69 69 91

= +: equals to or greater than cov2 from Table 1

Table 2: Result of Crest and Klee

Table 2 marks the few cases where a tool performs as well
or better than Star. Crest reaches a much lower coverage
than Star, except for two cases, where both tools cover all
branches (linsearch and binsearch). Klee reaches a coverage
comparable to Star: it outperforms Star by 1% in three
cases (week0..2) and produces much lower coverage only for
linsearch and binsearch. For the sake of precision, we remark
that the counts of the static branches differs for Klee and
Star. Klee counts the number of branches based on the
raw number of decisions in the program, while Star unrolls
the decisions with multiple conditionals. Thus the data of
Klee and Star are not completely comparable, and Star
approximate finer condition coverage metrics, like MC/DC
(Modified Condition Decision Coverage [13]), better than
Klee. We also observe that Klee does never produce 100%
coverage, which suggests that the combined static-dynamic
analysis of Star works better than the static dead code
analysis of Klee, to identify infeasible code.

7. RELATED WORK
The research in the field of automated structural testing

attracted considerable industrial as well as academic inter-
est in the last decade. Most proposals rely on symbolic
techniques to evaluate a program along a set of paths, and
generate structural test cases by solving the resulting path
constraints. The most successful tools and research proto-
types exploit either symbolic execution (for instance Exe [4]
and Klee [3]), or concolic (concrete-symbolic) execution
(Dart [9], Cute [14], Pex [15], Crest [2] and Sage [10]).
Most tools explore the executable program paths in some
depth-first order. As a consequence, when executed for fi-
nite time against programs with infinitely many paths, they
generate massive test suites but cover only small regions of
the program state space.

Our approach exploits concolic execution to generate test
cases, and maintains an abstract model of the frontier be-
tween covered and uncovered regions of the program state
space, as relevant for the coverage criterion that is being
addressed. Such abstract model steers the generation of

65

test cases towards yet uncovered elements, and is refined
over non-executable transitions up to revealing infeasible el-
ements. Identifying infeasible elements prevents the tool
to infinitely try to cover infeasible code, and improves the
coverage measurements. We are aware of some other ap-
proaches that monitor the coverage against the program
control-flow graph to overcome the limitations of a full path
exploration [2] and [10], but to the best of our knowledge
our approach is first to integrate test case generation and
proof of infeasibility.

A more recent research line recasts the problem as a model
checking one by abstracting the program under test to a
model, expressing the target coverage criterion in tempo-
ral logic formulas, and then returning the counter examples
produced by the model checker as test cases [5, 12, 8]. As
other software model checkers, these techniques experience
problems to automatically build tractable but sufficiently
detailed abstractions of the system under test.

8. CONCLUSIONS
This paper combines dynamic (concolic execution) and

static (abstraction refinement) techniques to generate test
suites with high structural coverage and precise coverage
measurements. Addressing multiple code targets challenges
automatic test case generators with demanding scalability
requirements. To this end this paper introduces a new ab-
straction refinement and coarsening procedure that builds
and improves over abstraction refinement. The preliminary
experimental results are encouraging. Refinement and coars-
ening can analyze programs that are not handled by refine-
ment alone, achieving in most cases higher coverage with
smaller test suites than popular state-of-the-research test
case generation tools.

Our research agenda is busy: We are working towards
improving the abstraction refinement and coarsening pro-
cedure, gathering additional experimental evidence, investi-
gating other coverage criteria as dataflow ones, better cop-
ing with solver incompleteness [9]. We are currently clean-
ing the preliminary prototype implementation to be able to
experiment with industry-size software systems, assess the
scalability of the approach, and distribute the tool as open
source to gather results from independent users.

9. REFERENCES
[1] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J.

Simmons. Proofs from tests. In Proceedings of the
2008 International Symposium on Software Testing
and Analysis (ISSTA 2008), pages 3–14, 2008.

[2] J. Burnim and K. Sen. Heuristics for scalable dynamic
test generation. In Proceedings of the 23rd IEEE/ACM
International Conference on Automated Software
Engineering (ASE 2008), pages 443–446, 2008.

[3] C. Cadar, D. Dunbar, and D. Engler. KLEE:
Unassisted and automatic generation of high-coverage
tests for complex systems programs. In Proceedings of
the 8th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2008), 2008.

[4] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and
D. R. Engler. EXE: automatically generating inputs of
death. In Proceedings of the 13th ACM Conference on
Computer and Communications Security (CCS ’06),
pages 322–335, New York, NY, USA, 2006. ACM.

[5] J. Callahan, F. Schneider, and S. Easterbrook.
Automated software testing using model-checking. In
Proceedings of the 1996 SPIN Workshop (SPIN 1996).
Also WVU Technical Report NASA-IVV-96-022.,
1996.

[6] H. Do, S. G. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques:
An infrastructure and its potential impact. Empirical
Software Engineering: An International Journal,
10(4):405–435, 2005.

[7] P. G. Frankl and E. J. Weyuker. An applicable family
of data flow testing criteria. IEEE Transactions on
Software Engineering, 14(10):1483–1498, 1988.

[8] G. Fraser, F. Wotawa, and P. E. Ammann. Testing
with model checkers: a survey. Software Testing,
Verification and Reliability, 19(3):215–261, Sept. 2009.

[9] P. Godefroid, N. Klarlund, and K. Sen. DART:
directed automated random testing. In Proceedings of
the ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation (PLDI 2005),
pages 213–223, 2005.

[10] P. Godefroid, M. Y. Levin, and D. Molnar. Automated
whitebox fuzz testing, 2007.

[11] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V.
Nori, and S. K. Rajamani. Synergy: A new algorithm
for property checking. In Proceedings of the 14th ACM
SIGSOFT symposium on Foundations of Software
Engineering (FSE-14), pages 117–127, 2006.

[12] H. S. Hong and I. Lee. Automatic test generation from
specifications for control-flow and data-flow coverage
criteria. In Proceedings of the Monterey Workshop,
Monterey, Calif.: Naval Postgraduate School, pages
230–246, 2001.

[13] M. Pezzè and M. Young. Software Testing and
Analysis: Process, Principles and Techniques. Wiley,
April 2007.

[14] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for C. In Proceedings of the 10th
European software engineering conference held jointly
with 13th ACM SIGSOFT international symposium on
Foundations of software engineering (ESEC/FSE-13),
pages 263–272, 2005.

[15] N. Tillmann and J. de Halleux. Pex — white box test
generation for .net. In Proceedings of the 2nd
International Conference on Tests and Proofs (TAP
2008), pages 134–153, 2008.

[16] United States. RTCA, Inc., Document
RTCA/DO-178B. U.S. Department of Transportation,
Federal Aviation Administration, Washington, D.C.,
1993.

[17] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test
input generation with Java PathFinder. In Proceedings
of the 2004 ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2004),
pages 97–107, 2004.

[18] E. J. Weyuker. The evaluation of program-based
software test data adequacy criteria. Communications
of the ACM, 31(6):668–675, 1988.

66

