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Abstract

We study the fifo and causal multicast problem, two group-communication ab-
stractions that deliver messages in an order consistent with their context. With fifo
multicast, the context of a message m at a process p is all messages that were previ-
ously multicast by m’s sender and addressed to p. Causal multicast extends the notion
of context to all messages that are causally linked to m by a chain of multicast and
delivery events.

We propose multicast algorithms for systems composed of a set of disjoint groups
of processes: server racks or data centers. These algorithms offer several desirable
properties: (i) the protocols are latency-optimal, (ii) to deliver a message m only m’s
sender and addressees communicate, (iii) messages can be addressed to any subset of
groups, and (iv) these algorithms are highly resilient: an arbitrary number of process
failures is tolerated and we only require the network to be quasi-reliable, i.e., a mes-
sage m is guaranteed to be received only if the sender and receiver of m are always
up. To the best of our knowledge, these are the first multicast protocols to offer all of
these properties at the same time.



1 Introduction

Developing dependable distributed applications is not easy. The complexity stems from the
asynchrony and unreliability of typical distributed systems: processes execute at different
speeds and may abruptly stop executing their code (i.e., crash). Moreover, messages may be
arbitrarily delayed, received out-of-order, and even lost, if the sender or receiver is faulty.
To ease the development of distributed systems, several group-communication abstractions
have been proposed [4, 8]. Two common abstractions are atomic broadcast and atomic
multicast. While in the former messages are addressed to all system members, in the latter
messages are addressed to subsets of the system members (i.e, groups).

Broadcast and multicast abstractions ensure similar reliability guarantees—agreement
on the set of messages delivered—but offer various message ordering properties. Two of
these properties, fifo and causal order, are of special interest: they ensure that a message m
is not delivered at a process p that does not know m’s context, where the notion of context
is defined differently for each order property. With fifo order, the context of m at p is
the messages that were previously broadcast (or multicast) by m’s sender and addressed
to p. Causal order extends the notion of context to all messages that causally precede m,
i.e., messages that are causally linked to m through a chain of broadcast (or multicast) and
delivery events. Fifo and causal order help the programming of distributed applications in
various domains such as global snapshot construction [2] and fair resource allocation [10].
Causal multicast may also serve as a building block to implement atomic multicast [16].

Fifo and causal broadcast protocols have been largely studied in the literature. In this
paper, we propose fifo and causal multicast protocols for systems composed of a set of
disjoint groups (e.g., server racks or data centers), each containing several processes. In
particular, we show that mechanisms devised for fifo and causal broadcast protocols are
not applicable to multicast protocols. As our main contribution, we propose fifo and causal
multicast algorithms that offer several desirable properties. To the best of our knowledge,
these algorithms are the first to be simultaneously fast, genuine, flexible, and highly resilient,
in a precise sense, as we now explain.

First, they are fast: messages can be delivered in two communication steps; and we
further show that this is optimal. Second, these protocols are genuine [7]: (i) to deliver a
message m only the sender and the addressees of m participate in the protocol. Third, the
algorithms are flexible in the sense that a process p may multicast messages to groups p
does not belong to, that is, groups are “open”. Finally, our algorithms are highly resilient:
they tolerate an arbitrary number of process failures, and can cope with guasi-reliable links
which guarantee that if both the sender and receiver of a message m are correct, i.e., they
do not crash, then m is eventually received.

This is in contrast to several multicast protocols [12, 13, 14, 15, 9], which rely on
reliable links—message delivery is guaranteed as long as the receiver is correct, regardless
of the correctness of the sender. Reliable links are not a realistic assumption: to send a
message m, the machine M, hosting process p typically inserts m into one (or more) local
buffer before m is sent over the wire. Hence, even though p thinks that m was successfully
sent, m may still be lost in case M, crashes before m hits the wire.

As discussed in [3], devising open group multicast protocols that tolerate quasi-reliable
links introduce difficulties as we explain next. Figure 1 illustrates the scenario. Consider
some process p that multicasts a message m; to some group go. Later, p multicasts a



message my to groups g; and gs and crashes. Message my is received by processes in g1,
and since my is the first message multicast from p to g1, mo is delivered by processes in
g1. On the contrary, all messages sent from p to members of gy are lost. Note that this can
happen because p crashes and links are quasi-reliable.
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Figure 1: The message delivery order violation problem.

From the reliability guarantees of multicast, correct processes in go must eventually
deliver mgy. However, if they do so, the ordering guarantees of fifo and causal multicast will
be violated: members of go cannot deliver m before my since m; was lost. If messages
were broadcast, then m; would also be addressed to g;, and thus, g; could help g2 by
forwarding m; to go. With multicast however, g; does not even know about the existence
of my, since m; was not addressed to g;. In this paper, we propose a mechanism to cope
with this problem despite an arbitrary number of process failures and, in contrast to [3], the
resulting fifo and causal multicast algorithms are latency-optimal and as latency-efficient as
their broadcast counterparts.

The rest of the paper is structured as follows. In Section 2 we discuss the related work.
Section 3 presents the system model and some definitions. Sections 4 and 5 respectively
provide fifo and causal multicast algorithms; Section 6 shows their latency-optimality. We
conclude the paper in Section 7. The correctness proofs of the algorithms can be found
in [17].

2 Related Work

Fifo and causal broadcast were originally specified as part of the Isis system [4]. In [8], fifo
broadcast is implemented by reliably broadcasting messages along with a sequence number
and by delivering messages in the sequence number order.

The first implementation of causal broadcast uses a simple strategy [4]: the causal his-
tory of delivered messages is piggybacked on each message to be broadcast. The amount
of information contained in messages is thus unbounded. In [14], causal order is ensured
differently: messages carry control information in the form of a matrix of counters, where
each entry (p, ¢) denotes the number of messages that were multicast from process p to ¢ in
the causal history. This control information is used to know when messages can be safely
delivered. This algorithm does not tolerate process failures. A fault-tolerant algorithm that
ensures causal order using a similar technique appears in [8]. Although [8] specifies both
causal broadcast and multicast, the algorithm given considers the broadcast case only.

In [5], processes may belong to several groups at the same time but messages sent from
a process p cannot be multicast to groups p is not a member of. Using the terminology
of [6], the protocol in [5] is closed-group. In this algorithm, each message carries a vector



Algorithm | order type speed flexibility resilience
latency open/closed processes requires
group reliable

network?
[8] fifo broadcast 2 - crash-stop no
Afifo fifo multicast 2 open crash-stop no
[12] causal unicast 1 - no failures yes
[8] causal | broadcast 2 - crash-stop no
[13] causal | multicast 1 closed no failures yes
[14] causal | multicast 1 open no failures yes
[15] causal | multicast | topology open no failures yes

dependent

91" causal | multicast 1 open crash-stop yes
[4] causal | multicast 2 closed crash-stop no
[5] causal | multicast 2 closed crash-stop no
[3] causal | multicast 4 open crash-stop no
A causal causal | multicast 2 open crash-stop no

Table 1: Comparison of the fifo and causal multicast algorithms.

of counters, and this for every group in the system. Messages may be large if the number
of groups is high. In contrast, [13] only requires processes to append a vector of counters
to messages, where the size of the vector is equal to the number of groups. However,
this protocol is not fault-tolerant. In [15], causal separators are used to reduce the amount
of control information needed in systems that span several network domains. In [3], the
authors propose a more general approach that is topology-oblivious.

The necessary conditions on how much information should be stored at processes and
appended to messages to ensure causal order are presented in [9]. This paper also provides
an information-optimal algorithm that does not need any a priori knowledge of the com-
munication network. The algorithm in [12] does not append any information on messages
but only considers the unicast case and postpones the sending of messages until after all the
previous messages sent were acknowledged.

In this paper, we present fault-tolerant and latency-optimal fifo and causal multicast
protocols, respectively denoted as Agy, and A qysq;. To the best of our knowledge, these
are the first algorithms that are at the same time open group, latency-optimal, and tolerate
quasi-reliable networks.

Table 1 provides a comparison of the algorithms. The last four columns respectively
indicate: the best-case latency of the algorithms, measured in the number of communication
delays; whether an algorithm .4 allows messages to be multicast from a process p to groups
p does not belong to, in which case we say that .4 is an open group algorithm, or not, in
which case we say that A is a closed-group algorithm; and the process as well as network
failure resilience.

3 System Model and Definitions
3.1 Process groups and Communication

We consider a system IT = {py, ..., p, } of processes which communicate through message
passing. We assume the benign crash-stop failure model: processes may fail by crashing,
but do not behave maliciously. A process that never crashes is correct; otherwise it is faulty.
The maximum number f of processes that may crash is not bounded, i.e., f < n.
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The system is asynchronous, i.e., messages may experience arbitrarily large (but finite)
delays and there is no bound on relative process speeds. Furthermore, the communication
links do not corrupt nor duplicate messages and are quasi-reliable, more precisely: (i) uni-
form integrity: For any process p and message m, p receives m at most once, and only if m
was previously sent to p, (ii) quasi-reliability: For any two correct processes p and ¢, and
any message m, if p sends m to ¢, then g eventually receives m.

Processes have access to the © failure detector that gives possibly inaccurate informa-
tion about process failures [1]. More precisely, at each process, this oracle outputs a list of
processes that are trusted to be alive such that: (i) completeness: There is a time after which
processes do not trust any process that crashes, (ii) accuracy: If some process never crashes
then, at every time, every process trusts at least one correct process.

We define I' = {g1, ..., gm} as the set of process groups in the system. Groups are
disjoint, non-empty and satisfy | ger 9 = I1. For each process p € II, group(p) identifies
the group p belongs to. For any group g, we denote by ©, the failure detector © whose
output is restricted to g’s members.

3.2 Fault-tolerant Multicast Specifications

For each message m, m.sender and m.dst respectively denote the process that multicasts
m and the groups to which the message is reliably multicast. Let p be a process. By abuse
of notation, we write p € m.dst insteadof 3g € I' : ¢ € m.dst A p € g.

Fifo Multicast Fifo multicast ensures that the delivery order of messages multicast from
some process ¢ follows the order in which these messages were multicast. More precisely,
uniform fifo multicast is defined by primitives F-MCast(m) and F-Deliver(m), and satisfies
the following properties [8]: (i) uniform integrity: For any process p and any message m, p
F-Delivers m at most once, and only if p € m.dst and m was previously F-MCast, (ii) va-
lidity: If a correct process p F-MCasts a message m, then eventually all correct processes
q € m.dst F-Deliver m, (iii) uniform agreement: If a process p F-Delivers a message m,
then eventually all correct processes ¢ € m.dst F-Deliver m, (iv) uniform fifo order: 1f
a process p F-MCasts a message m before F-MCasting a message m/, then no process in
m.dst N'm'.dst F-Delivers m/ unless it has previously F-Delivered m.

Causal Multicast Causal multicast ensures that messages are delivered in an order consis-
tent with causality. Causality between multicast messages is defined by means of Lamport’s
transitive happened before relation on events [10]. Here, events can be of two types: the
causal multicast of some message m, C-MCast(m), or its delivery, C-Deliver(m). The re-
lation is defined as follows: e; — ey < e, ey are two events on the same process and
e1 happens before ey or e; = C-MCast(m) and eo = C-Deliver(m) for some message m.
Uniform causal multicast satisfies the uniform integrity, validity, and uniform agreement
property of fifo multicast as well as [8]: uniform causal order: For any messages m and
m/, if C-MCast(m) — C-MCast(m’), then no process p € m.dst N 'm’.dst C-Delivers m’
unless it has previously C-Delivered m.

I'The algorithm in [9] tolerates process crashes and has a latency of 1 message delay. This does not contradict
the lower bound of two message delays we show in this paper. Indeed, two message delays is minimal for
algorithms that tolerate quasi-reliable links. However, the algorithm in [9] requires reliable links.



Let A be an algorithm solving fifo/causal multicast. We define R(.A) as the set of all
admissible runs of A. We require fifo/causal multicast algorithms to be genuine [7]: An
algorithm A solving fifo/causal multicast is said to be genuine iff for any run R € R(A)
and for any process p, if p sends or receives a message then some message m is F-MCast/C-
MCast and either p is the process that F-MCasts/C-MCasts m or p € m.dst.

4 Fifo Multicast

In this section, we present a genuine fifo multicast algorithm that tolerates an arbitrary
number of failures. This protocol is latency-optimal, as Section 6 shows.

In Algorithm Agy,, every message m is tagged with a sequence number, denoted as
m.seq. Messages multicast by some process g are F-Delivered in the sequence number
order. To do so, every process p keeps track of the next message F-MCast by ¢ to be F-
Delivered by p. This information is stored in a variable denoted as neztFDellg|,. So far,
this is like the fifo broadcast algorithm in [8]. We now explain how Ay, differs from [8].
First, since messages may be addressed to a subset of the system’s groups, messages do not
carry a single sequence number, as in [8], but an array of sequence numbers, one for each
group (see Algorithm Ajgy,, lines 5-9).

Algorithm Agy,

Genuine Fifo Multicast - Code of process p

1: Initialization

2:  nbCast[g] < 0, for each group g

3:  nextFDel[q] « 1, for each process q
4 msgSet «— 0

5: To F-MCast message m {Task 1}
6:  foreach g € m.dst do

7 nbCast[g] — nbCast[g] + 1

8
9

m.seq «— nbCast
send(m) to m.dst

10: When receive(m) or receive(m, OK)
11:  if m & msgSet then

12: if m.seq[group(p)] = nextFDel[m.sender] then
13: send(m, OK) to m.dst

14: else

15: send(m) to m.dst

16: msgSet «— msgSet U {m}

17: When 3Im € msgSet:
Vg € m.dst : received (m, OK) from all processes in O

A m.seq[group(p)] = nextFDel[m.sender]
18:  F-Deliver(m)
19:  nextFDel[m.sender] < nextFDel[m.sender| + 1
20:  if 3m’ € msgSet :

m/.seq[group(p)] = nextFDel[m'.sender] then
21: send(m/, OK) to m/.dst

Second, recall the aforementioned problematic scenario specific to multicast: some pro-
cess p F-MCasts a message m; to some group go; later, p F-MCasts a message ms to groups
g1 and g2 and crashes. Message msg is received by processes in g1, and since msg is the first
message multicast from p to g1, my is delivered by processes in g;. On the contrary, all mes-



sages sent from p to members of go are lost. Note that this can happen because p crashes
and links are quasi-reliable. From the uniform agreement property of fifo multicast, correct
processes in gz must eventually deliver ma. However, if they deliver ms, the fifo order
property of fifo multicast will be violated: members of go cannot deliver m; before mo
since mj was lost.

To solve this problem, before F-Delivering a message m, a process p € m.dst an-
nounces the addressees of m that it F-Delivered all messages m.sender F-MCast before
m by sending them an OK message (lines 13 or 21). Message m is then F-Delivered by p
when p received an OK message from at least one correct process of every correct destina-
tion group of m. This is implemented by relying on failure detector ©.

To ensure that p received an OK message from at least one correct process of every
correct destination group g of m, for every such group g, p waits to receive an OK message
from all processes trusted by Oy, i.e., the failure detector © whose output is restricted to
members of g (line 17).

This mechanism is also used to ensure uniform agreement: if there exists a correct
addressee of m, when p received an OK message from all processes trusted by ©,, and
this for every group g in m.dst, process p knows m was received by at least one correct
addressee of m. Hence, all correct processes in m.dst will eventually receive m.

5 Causal Multicast

We now present the first open-group causal multicast algorithm that tolerates quasi-reliable
communication links. This algorithm tolerates an arbitrary number of failures and is latency-
optimal (c.f. Section 6).

The causal multicast algorithm A .44 relies on fifo multicast and is blocking, that is,
to ensure causal order, processes may delay the delivery of a message m for a later time
even though all the protocol messages to deliver m have been received.

In Algorithm A ,ys41, €very process p keeps track of how many messages, multicast by
some process ¢, it has C-Delivered. This bookkeeping is done for every process ¢ of the
system. At p, this information is stored in a vector denoted as nbDel,, indexed by process
id. This is like in the causal broadcast algorithm in [8]. In this algorithm, to broadcast a
message m, p F-BCasts m along with nbDel,,. Upon F-Delivering m, p inserts m in a list
of messages msgLst, and C-Delivers m as soon as it is the first message in msgLst, such
that nbDel,, > m.nbDel.? It is not hard to see why this algorithm works: since m.nbDel[q]
denotes the number of messages originating from ¢ that causally precede the multicast of
m, C-Delivering m when it is the first message in msgLstp such that nbDel, > m.nbDel,
ensures that causal order will not be violated.

In the multicast case, however, this algorithm does not work. Consider the following
causal relation between two messages m and m’, C-MCast(m) — C-MCast(m'), both ad-
dressed to some group g, that we denote as blind for g. Figure 2 illustrates the scenario.
Messages m and m/ are such that the causal chain linking the events C-MCast(m) and C-
MCast(m’) does not contain any events of type C-Deliver of some message addressed to
g, and let m’ be C-MCast by a process different from m.sender. Intuitively, this causal
relation is problematic because processes in g may C-Deliver m and m/ in different orders.

“Given any two vectors v; and ve, we write v1 > v2 instead of Vg € I : v[g] > v2[q] for simplicity.
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Figure 2: A causal relation between m and m’ that is blind for g.

Indeed, since the causal chain linking the events C-MCast(m) and C-MCast(m’) does not
contain any events of type C-Deliver of some message addressed to g, it is impossible to
distinguish m from m/ by only comparing the number of messages addressed to g that were
C-Delivered in the causal history of events C-MCast(m) and C-MCast(m’ ).3

To be able to distinguish messages m and m’ in the example above, processes keep
track of the number of messages C-MCast in the causal history instead of the number of
C-Delivered messages. This accounting is done on a group basis.

Algorithm A .,,s.

Genuine Causal Multicast - Code of process p

1: Initialization

2:  nbCast[g][g] < 0, for each group g and process q
nbDel[q] < 0, for each process g

msgLst «— €

To C-MCast message m { Task 1 }
foreach g € m.dst do
nbCast[g][p] < nbCast[g][p] + 1
m.nbCast «— nbCast
F-MCast (m) to m.dst

R A

10: Function IsDeliverable(m)
11:  return Vg € II\ {m.sender} :
m.nbCast[group(p)](q] < nbDel[q]

12: When F-Deliver(m)

13: msgLst < msgLst ® m > add m at the tail of msgLst
14:  while 3m’ € msgLst : IsDeliverable(m’)
15: Let m/ be the first message in msgLst
s.t. IsDeliverable(m’)
16: C-Deliver(m’)
17: nbDel[m'.sender] «— m'.nbCast[group(p)][m’.sender]
18: foreach g € I" do
*max applied per vector entry*
19: nbCast[g] — max(m’.nbCast[g], nbCast[g])
20: msgLst «— msgLst © m/

Hence, in addition to maintaining vector nbDel, each process p keeps track of the num-
ber of messages addressed to any group g, originating from any process ¢, that were C-
MCast in its causal history, denoted as nbCast[g][¢],. This variable is piggybacked on every
C-MCast message m. Message m is then C-Delivered at p as soon as it is the first message in

3An event e is in the causal history of an event €’ iff e — €’



msgLst,, such that for all processes ¢ different from m.sender, m.nbCast[group(p)][q] <
nbDellq], i.e., p C-Delivered all messages addressed to group(p) that were C-MCast in the
causal history of event C-MCast(m). The delivery condition does not involve m.sender
since fifo multicast ensures that messages multicast by the same process will be delivered
in the order they were multicast.

We now present the causal multicast algorithm A .54 in detail. To C-MCast a message
m, for any group g € m.dst, p increments nbCast[g][p], and F-MCasts m along with
the nbCast variable (lines 6-9). As soon as some process q F-Delivers this message, ¢
adds m at the end of msgLst (line 13) and checks whether a message can be C-Delivered
(line 14). If it is the case, the first C-Deliverable message of msgLst,,, m/, is C-Delivered.
Before removing m’ from msgLst, nbDel[m’.sender] is updated and for all group g and
processes ¢ of the system, nbCast[g][q] is set to the maximum between m’.nbCast[g][q]
and nbCast[g][q] so that nbCast[g][q] represents the number of messages originating from
q and addressed to g that were C-MCast in the causal history of C-MCast(m’) (line 19).

6 Latency Optimality

We show that for any message m there exists no uniform reliable multicast algorithm A
that tolerates quasi-reliable links and delivers m in one message delay, whatever the desti-
nation groups of m are.* This result is independent of the genuineness of .4 and shows the
optimality of our uniform fifo and causal multicast algorithms. Indeed, if these algorithms
were not optimal, we could get a more efficient uniform reliable multicast algorithm by
reducing it to causal or fifo multicast, a contradiction. Moreover, this result also applies
to uniform reliable broadcast. To see why, suppose there would exist a uniform reliable
broadcast algorithm A, that could deliver messages in one message delay. We could then
devise a non-genuine uniform reliable multicast algorithm that could deliver messages in
one message delay by relying on A, a contradiction.

We show this result in the synchronous round-based model which we briefly recall now
(see Chapter 2 in [11] for a formal description). Processes may fail by crashing and up to
J of them may be faulty. Furthermore, each process p has a buffer, buffer,,, that represents
the set of messages that have been sent to p but not yet received; p receives the message
when it removes it from its buffer. In any run of an algorithm, until it crashes, each process
p repeatedly performs the following two steps, which define one round:

-In the first step, p generates the (possibly null) messages to be sent to each process based
on its current state, and puts these messages in the appropriate process buffers. If p crashes
in round r, only a subset of the messages created in r by p are put in the buffers.

-In the second step, p determines its new state based on its current state and on the messages
received, and removes all messages from its buffer.

Proposition 6.1 In any system withn > 3, f > 2, and quasi-reliable links, for any uniform
reliable multicast algorithm A and any message m addressed to at least two processes,
there does not exist a run R of A in which m is R-MCast in some round r and R-Delivered
by some process q at the end of .

Proof: Assume to the contrary that such an algorithm A and run R of A exist. In some
round 7 of run R, some process p R-MCasts m and ¢ R-Delivers m at the end of round

*Uniform reliable multicast satisfies all the properties of uniform fifo multicast except uniform fifo order.



r. We build a run R’ that is indistinguishable from R to ¢ up to and including round r. In
R’, p crashes in r and m is only received by ¢q. Moreover, ¢ crashes just after R-Delivering
m. Hence, in run R, no correct process in m.dst R-Delivers m, violating the uniform
agreement property of A. O

7 Conclusion

In this paper, we proposed fifo and causal multicast algorithms that are open-group. These
protocols tolerate an arbitrary number of process failures, tolerate quasi-reliable networks,
and we showed that they are latency-optimal.

As future work, we intend to study the minimum message complexity of these two
problems and characterize how the amount of information about process failures affects
this complexity.
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A Proofs of Correctness

In the proofs below, we denote the value of a variable V' on a process p at time ¢ as th.
Furthermore, for events of the type C-MCast and C-Deliver, we sometimes add a subscript
to denote on which process this event occurred.

A.1 The Proof of Algorithm Az,

Proposition A.1 (Uniform Integrity) For any process p and any message m, (a) p F-
Delivers m at most once, and (b) only if p € m.dst and (c) m was previously F-MCast.

Proof:

e (a) After p F-Delivers m, p increments nextFDel[m.sender]. Thus, the condition of
line 17 can never evaluate to true for m anymore.

e (b) Follows directly from the uniform integrity property of links and the algorithm.

e (c) Process p F-Delivers m only if p received m. From the uniform integrity property
of links, m was sent by some process. Consequently, m was F-MCast. O

Proposition A.2 Uniform Fifo Order If a process p F-MCasts a message m before F-
MCasting a message m’, then no process in m.dst N m’.dst F-Delivers m' unless it has
previously F-Delivered m.

Proof: Let g be any process in m.dst M m’.dst that F-Delivers m’, we show that ¢ F-
Delivers m before. If ¢ F-Delivers m/, then there is a time ¢ before g F-Delivers m’ at which

nextFDel[m.sender], = m'.seq[group(q)]. From the definition of m,
m.seq|group(q)] < m’.seq[group(q)]. From lines 17-19, ¢ must have F-Delivered m be-
fore t, and thus before g F-Delivers m/’. [l

Definition A.1 We define the binary relation pred on messages as follows,
m1 pred my iff:

1. my.sender = my.sender,

2. my.sender F-MCasts m1 before ms, and

3. There exists at least one correct process in my.dst N mo.dst
Moreover, let Gp,pe(im) = (V, E) be a finite DAG constructed as follows:

1. add vertexm toV

2. whiledmqy € V : dmg € V : moy pred my do:
add mo to V and add directed edge ma — my to E

For any message m/ in Gpred(m), we say that m’ is at distance k of m iff the longest path
from m’ to m is of length k. We let My, be the subset of messages in Gpred(m) that are at
distance k of m.
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Lemma A.1 For any message m, if for all messages m' in Gpred(m) all correct processes
in m'.dst receive m/, then all correct processes p € m.dst eventually F-Deliver m.

Proof: Assume that for all messages m’ in Gpred(m) all correct processes in m/.dst receive
m’. We prove that, for any & > 0, all messages in M}, are eventually F-Delivered by all
their correct addressees. Since My = {m}, this shows the claim. Let x be the largest
integer such that M, # (). We proceed by induction on k, starting from k = z.

e Base step (k = x): Let m, be any message in M, and g be any correct process
in my.dst. From the definition of z, (*) there exists no message m,41 such that
mg1 pred my. Since for all messages m’ in Gpred(m)- all correct processes in m'.dst
eventually receive m/, g eventually receives m,. By (*), m, is the first message
F-MCast by m.sender such that ¢ € m,.dst, and hence, m,.seq[group(q)] = 1.
Therefore, all correct processes in m,.dst eventually send(m,, OK) and by the reli-
ability property of links, ¢ eventually receives these messages. By the completeness
property of O, there exists a time after which ¢ does not trust any process that crashes.
Hence, by the condition of line 17, g eventually F-Delivers m.

e Induction step: Suppose the claim holds for k£ (0 < k£ < z), we show it holds for
k — 1. Let my_1 be any message in Mj,_1, g be any correct group in my_1.dst, and
q be any correct process in g. We first show that (*) there exists a time ¢ at which
nextFDel[m.sender], = my_1.seq[group(q)]. Either (a) my_ is the first message
F-MCast to g or (b) not.

— In case (a), my_1.seq[g] = 1. Since nextFDel[m.sender] is initialized to 1,
(*) holds.

— In case (b), there exists a message my in My (x > k' > k — 1) such that
my pred mg_1, g € mys.dst Nmy_1.dst, and my.seq[g] = my_1.seq[g] — 1.
By the induction hypothesis, ¢ F-Delivers my/. Therefore, (*) holds.

From the algorithm, since for all messages m’ in Gpred(m)» all correct processes in
m’.dst eventually receive m/, all correct processes r in my,_1.dst eventually receive
my_1. Consequently, from (¥), all r send (my_1, OK), either at line 13 or at line 21.
By the quasi-reliability property of links, ¢ eventually receive these messages. By the
completeness property of ©, there exists a time after which ¢ does not trust any pro-
cess that crashes. Consequently, by the condition of line 17, ¢ eventually F-Delivers
mpg_—1. O

Lemma A.2 For any message m and any process p, if p sends (m, OK ), then p F-Delivered
all messages m’ such that p € m'.dst and m.sender F-MCast m' before m.

Proof: If m is the first message m.sender F-MCasts to group(p), the claim holds trivially.
Otherwise, let m,, be the message such that p € m,.dst and m.sender F-MCasts m, just
before m. Since p sends (m, OK), there exists a time ¢ at which nextFDel[m.sender]], =
m.seq|group(p)]. From lines 17-19, p must have F-Delivered m, before t. By apply-
ing Proposition A.2 multiple times, before ¢, p also F-Delivered all messages addressed to
group(p) that m.sender F-MCast before m,. O
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Proposition A.3 (Uniform Agreement) If a process p F-Delivers a message m, then all
correct processes q € m.dst eventually F-Deliver m.

Proof: Let My, be the subset of messages in Gycq(m) that are at distance k of m. We first
show that, for any & > 0 and any message m’ in M}, such that My, £ (): (1) m’ is received
by all correct processes in m’.dst and (2) for each correct group g € m/.dst, there is a
correct process ¢ in g that sends (m’, OK). We proceed by simultaneous induction on (1)
and (2).

e Base step (k = 0):

— (1) Since p F-Delivers m, from the condition of line 17, p received an (m, OK)
message from all processes trusted by ©,, and this for every group g € m.dst.
If there are no correct processes in m.dst, then the base step of (1) holds triv-
ially. Otherwise, by the accuracy property of O, p received an (m, OK) mes-
sage from a correct addressee g of m. Since q is correct, by the quasi-reliability
property of links, every correct process in m.dst eventually receives m from q.

— (2) Since p F-Delivers m, from the condition of line 17, for every group g in
m.dst, p received a message (m, OK) from all processes trusted by ©,. By the
accuracy property of ©, for all correct group g € m.dst, p received message
(m, OK) from a correct process q in g. Hence, by the uniform integrity property
of links, ¢ sent (m, OK).

e Induction step: Suppose that (1) and (2) hold for £ — 1 (£ > 0), we show that (1) and
(2) also hold for k. Let my_1 be any message in Mj_; and let my be any message
in M, such that my, pred mg_1.

— (1) Because k£ > 0, from the definition of mj and the definition of the pred
relation, myg.sender F-MCasts my, before mj_1 and there exists a correct pro-
cess in my.dst N mg_1.dst. By the induction hypothesis, for each group
g in mj_1 containing at least one correct process, there exists a correct pro-
cess ¢ in g that sends (my_1, OK). Hence, there exists a correct process ¢ in
myg_1.dst N myg.dst such that ¢ sends (myp_1, OK). By Lemma A.2, q F-
Delivered my,. If there are no correct processes in myg.dst, then the induction
step of (1) holds trivially. Otherwise, from the condition of line 17, g received an
(my, OK) message from all processes trusted by ©, and this for every group
g € mg.dst. Hence, from the accuracy property of ©, ¢ received (my, OK)
from a correct process r € my.dst. Therefore, by the quasi-reliability property
of links, every correct process in my.dst eventually receives my, from r.

— (2) From the definition of my, and the definition of the pred relation, my.sender
F-MCasts my, before my_1 and there exists a correct process in myg.dst N my_1.dst.
By the induction hypothesis, there exists a correct process r € my.dst N my_1.dst
such that r sends (mx_1, OK). By Lemma A.2, r F-Delivered my. From the
condition of line 17, r received an (my, OK) message from all processes trusted
by Oy, and this for every group g € my.dst. Hence, by the accuracy property
of ©, for all correct group g € myg.dst, r received (my, OK) from a correct
process g in g. Therefore, By the uniform integrity property of links, ¢ sent
(mg, OK).
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Hence, from (1), all messages m' € Gpred(m) are received by all correct processes in
m’.dst. Therefore, by Lemma A.1, all correct processes in m.dst F-Deliver m. O

Proposition A.4 (Validity) If a correct process p F-MCasts a message m, then eventually
all correct processes q € m.dst F-Deliver m.

Proof: Since p is correct, by the quasi-reliability property of links, for all messages m' €
Gpred(m)» all correct processes in m’.dst receive m. By Lemma A.1, all correct processes
q € m.dst eventually F-Deliver m. O

A.2 The Proof of Algorithm A,

Proposition A.5 (Uniform Integrity) For any process p and any message m, (a) p C-
Delivers m at most once, and (b) only if p € m.dst and (¢) m was previously C-MCast.

Proof:

e (a) Follows directly from the uniform integrity property of fifo multicast and from the
fact that a message is removed from msgLst,, after it is C-Delivered.

e (b) Follows directly from the algorithm.

e (c) Process p C-Delivers m only if p F-Delivered m. From the uniform integrity
property of fifo multicast, m was F-MCast. Consequently, m was C-MCast. (]

Lemma A.3 For any message m such that m.nbDel is defined, any group g, and any
integer k,m.nbCast[g][m.sender] = k iff m is the k-th message m.sender C-MCasts to

g.

Proof:

e (=): From the algorithm, m.sender increments nbCast[g][m.sender],, sender at
line 7 only (m.sender does not update nbCast[g][m.sender], sender at line 19).
Moreover, m.sender does so before every message C-MCast to g. Therefore, since
nbCast[g][m.sender] is initialized to 0, m is the k-th message m.sender C-MCasts
to g.

e (<): The same argument as in (=) is used to show that
m.nbCast[g][m.sender] = k. O

Lemma A.4 For any two messages m and m’ such that m.nbCast and m’' .nbCast are de-
fined, and any group g, if C-MCast(m) — C-MCast(m’), then m.nbCast[g] < m/.nbCast|g].

Proof: From the definition of the causal precedence relation, it is easy to see that there exist
processes p1, pa, .., pr and messages m1, ma, .., my = m’ (k > 2) such that:

e p1 = m.sender
e p; C-MCasts m; forall1 <i <k

e cither (a) m = my or (b) p; C-MCasts m before m; and
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e p; C-Delivers m;_1 before it C-MCasts m;, forall2 < < k

e In case (a), we show that for any 1 < i < k, m;.nbCast[g] < m;t1.nbCast[g]. Pro-
cess p;+1 C-Delivers m; before C-MCasting m;1. Thus, from line 19 and because
for any process ¢ nbCast[g][q] is monotonically increasing with time,
m;.nbCast|[g] < m;y1.nbCast|g].

Pi+1

e In case (b), since for any process ¢ nbCast[g][q],, is monotonically increasing with
time, m.nbCast[g][q] < m1.nbCast[g][g]. To conclude the proof, the same argument
as in (a) is used to show that for any 1 < i < k, m;.nbCast[g] < m;t1.nbCast|g].

Lemma A.5 For any processes p and q, any integer k, and any time t at which p evaluates
the condition of line 11, anel[group(p)][q]; = k iff before t, p C-Delivered the first k
messages q C-MCasts to group(p).

Proof:
e (=) : We proceed by induction on k.

- Base step (k = 0): Since nbDel[group(p)][q], is initialized to zero and mono-
tonically increasing with time, if at the time ¢ at which p evaluates line 11,
nbDel[group(p)][q]l, = 0 then p did not C-Deliver any message C-MCast from
q before t.

— Induction step: Suppose that the claim holds for any [ such that 0 < < k — 1,
we show that it also holds for k. Process p sets nbDel[group(p)][g], to k just af-
ter C-Delivering a message my originating from ¢ such that
m.nbCast[group(p)]lg] = k. From Lemma A.3, my, is the k-th message ¢
C-MCasts to group(p). Let ¢’ be the latest time before ¢ at which p evaluates
line 11 such that anel[group(p)][q]g # nbDel[group(p)][q],,. We show that

(*) nbDel[group(p)][qly =k — 1.
Suppose, by way of contradiction, that nbDel[group(p)] [q]g # k—1.Letk' be

the value of nbDel[group (p)][q]g Either (a) k¥ <k —1lor(b) k' >k —1. We
show that both (a) and (b) lead to a contradiction.

* In case (a), from the induction hypothesis, before ¢’ p C-Delivered the first
k" messages C-MCast from q. Since k¥’ < k — 1, either (a-i), p does not
C-Deliver the k-1-th message my_; C-MCast from ¢ or (a-ii) p C-Delivers
my,_q after my,.

- In case (a-1), since p C-Delivers my, from the uniform fifo order prop-
erty of fifo multicast, p F-Delivers and inserts my_; before m; in
msgLst,,. From Lemma A4,
mg_1.nbCast[group(p)|[q] < my.nbCast[group(p)][q]. From the con-
dition of line 11 and since nbDel[group(p)][q], is monotonically in-
creasing with time, p must have C-Delivered my_; before my, a con-
tradiction to the fact that p does not C-Deliver my_.

- In case (a-ii), the same argument as in (a-i) is used to obtain a contra-
diction.
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o (=)

Proof: Let
Delivered m before. Either (a) m.sender = m’.sender or (b) not.

* In case (b), since ¥ # kand ¥ > k — 1, ¥ > k. Process p sets
nbDel[group(p)][q], to k" just after C-Delivering a message my originat-
ing from ¢ such that m.nbCast[group(p)]lg] = k'. From Lemma A.3,
my is the k’-th message ¢ C-MCasts to group(p). Since t' < t, (**) p C-
Delivers my before my. Since k < k’, from the uniform fifo order property
of fifo multicast, p F-Delivers and inserts my, before my in msgLst,,. From
Lemma A 4,
my.nbCast[group(p)][q] < my.nbCast[group(p)][q]. From the condition
of line 11 and since nbDel[group(p)|[g], is monotonically increasing with
time, p C-Delivers my before my, a contradiction to (¥*).

From (*), nbDel|group(p)] [q]g = k — 1. From the induction hypothesis, before
t' p C-Delivered the first & — 1 messages C-MCast from g. Therefore, before ¢,
p C-Delivered the first £ messages C-MCast from gq.

Either (a) kK = 0 or (b) £ > 0.

In case (a), if p did not C-Deliver any message C-MCast from ¢, since
nbDel[group(p)][q]p is initialized to zero, then nbDel[group(p)][q]}, = 0.

In case (b), let my be the k-th message C-MCast from ¢ that p C-Delivers.
We show that (*) the last message C-MCast from ¢ that p C-Delivers before ¢
is my. Suppose, by way of contradiction, that the last message m C-MCast
from ¢ that p C-Delivers before ¢ is not myg. If before ¢, p C-Delivers the first
k messages C-MCast from ¢, then m) is the k’-th message C-MCast from
q to group(p) such that ¥’ < k. From the uniform fifo order property of
fifo multicast, p F-Delivers and inserts mys before my in msgLst,. From
Lemma A.4, my.nbCast[group(p)]lq] < my.nbCast[group(p)|[q]. Since p
C-Delivers mg, from the condition of line 11 and since
nbDel[group(p)]lg], is monotonically increasing with time, p
C-Delivers mys before my. Since p C-Delivers my before t, mys is not the
last message C-MCast from ¢ that p C-Delivers before ¢, a contradiction.

From Lemma A.3, my, is such that my.nbCast[group(p)][q] = k. Therefore,
from (*) and line 17, nbDel[group(p)]lq]}, = k. O

Proposition A.6 Uniform Causal Order For any messages m and m/, if C-MCast(m) —
C-MCast(m/’), then no process p € m.dst N\ m'.dst C-Delivers m' unless it has previously
C-Delivered m.

q be any process in m.dst N m'.dst that C-Delivers m/, we show that ¢ C-

e In case (a), since ¢ C-Delivers m’, ¢ F-Delivers m’. From the uniform fifo order
property of fifo multicast, (*) ¢ F-Delivers m before F-Delivering m’. Either (a-i)
there exists a time at which m and m/ are in msgLstq or (a-ii) not.

In case (a-i), from (*) m can only appear before m’ in msgLst q- From Lemma A 4,
m.nbCast[group(q)] < m/.nbCast[group(q)]. Since at line 15, processes C-
Deliver the first message in msgLst such that the condition of line 11 is satisfied,

q C-Delivers m before m/.
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- In case (a-ii), from (*) m is inserted in msgLst, before m’. Since processes
remove messages from msgLst, only after C-Delivering them (line 20), ¢ C-
Delivers m before m/.

e In case (b), from Lemma A.4, m.nbCast[group(q)] < m'.nbCast[group(q)]. From
the condition of line 11, there exists a time ¢ before ¢ C-Delivers m’ at which ¢ evalu-
ates line 11 such that for any process r % m’.sender
nbDel[r]l > m'.nbCast[group(q)][r]. Hence, since m.sender # m'.sender,
nbDel[m.sender]’, > m.nbCast[group(q)][m.sender]. ~ Let ki and ky be
nbDel[m.sender]!, and m.nbCast[group(q)][m.sender] respectively. From Lemma
A3, m/ is the ko-th message m.sender C-MCasts to group(q). From Lemma A.5,
before ¢, ¢ C-Delivers the first k1 messages m.sender C-MCasts to group(q). There-
fore, since ki > ko, ¢ C-Delivers m before m’. O

Definition A.2 Let m be a message, we define the finite DAG Gpyred(m) = (V, E) as follows:
1. add vertexm toV

2. while Imy,my s.t. my € VA C-MCast(mgy) — C-MCast(my) A my.dstNmy.dst #
0 do:
add mo to V and add directed edge mas — mj to E

For any message m' in Gpred(m), we say that m’ is at distance k of m iff the longest path
from m’ to m is of length k. We let My, be the subset of messages in Gpred(m) that are at
distance k of m.

Lemma A.6 For any message m, if for all messages m' € Gpred(m) all correct processes
in m'.dst F-Deliver m/, then all correct processes in m.dst eventually C-Deliver m.

Proof: Assume that for all messages m/’ in Gpred(m) all correct processes in m’.dst F-Deliver
m’. We prove that, for any k > 0, all messages in My, are eventually C-Delivered by their
correct addressees. Since M = {m}, this shows the claim. Let = be the largest integer
such that M, # (). We proceed by induction on k, starting from k& = x.

e Base step (k = x): Let m, be any message in M, and ¢ be any correct process
in my.dst. From the definition of m,, (*) there exists no message m’ such that C-
MCast(m') — C-MCast(m,) and m’.dst N m,.dst # (. Let g be any group in
my.dst and let r be any process different from m,.sender. From (*), m,.sender
never updated nbCast[g][7]m, sender at line 19. Therefore, m.nbCast[g][r] = 0.
From the algorithm, nbDel[g][r], is monotonically increasing with time and hence
nbDel[g][r]q > m.nbCast|g][r] is always true. Since all correct processes in m,,.dst
eventually F-Deliver m,, from the condition of line 11, all correct processes in
my.dst eventually C-Deliver m..

e Induction step: Suppose that for any [ such that x > [ > k > 0 the claim holds,
we show the claim holds for k. Let m; be any message in M}, and ¢ be any correct
process in my.dst (if there exists no correct process in mg.dst, then the claim holds
trivially). We show that (*) for any process r different from my.sender there exists a
time ¢ at which nbDel[group(q)][r]l > my.nbCast[group(q)][r].
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If my.nbCast[group(q)][r] = 0, then (*) holds trivially. Otherwise, from line 19,
there exists a message m, such that m,.sender = r, group(q) € m,.dst,
C-MCast(m,) —  C-MCast(my), and  m,.nbCast[group(q)|[r] =
my.nbCast[group(q)][r]. From the induction hypothesis, ¢ eventually C-Delivers m,.
and sets nbDel[group(q)][rl; to  my.nbCast[group(q)][r]. Since
my..nbCast[group(q)][r] = my.nbCast[group(q)][r], (*) holds.

Since all correct processes in my.dst eventually F-Deliver my, from (*) and since
nbDel[group(q)][r], is monotonically increasing with time, from the condition of
line 11, all correct processes in my.dst eventually C-Deliver my. (]

Proposition A.7 (Uniform Agreement) If a process p C-Delivers a message m, then all
correct processes q € m.dst eventually C-Deliver m.

Proof: Let My be the subset of messages in Gy,.cq(m) that are at distance k of m. We
first show that (*) for any k, all messages in M, are eventually F-Delivered by all of their
correct addressees.

e Base step (k = 0): Since p C-Delivers m, p F-Delivers m. From the uniform agree-
ment property of fifo multicast, all correct processes in m.dst eventually F-Deliver
m.

e Induction step: Suppose the claim holds for any [ such that & > [ > 0, we show
that the claims holds for £ + 1. Let mg; be any message in My and g be any
correct group in my.1.dst. Furthermore, let k' be the largest integer smaller than
k + 1 such that there exists a message my in My, g € mys.dst N my1.dst, and
C-MCast(mgy1) — C-MCast(my). Either (a) myi1.sender = mys.sender or (b)
not.

— In case (a), by the induction hypothesis, all correct processes in g eventually F-
Deliver mys. Therefore, from the uniform fifo order property of fifo multicast,
all correct processes in g F-Deliver my1 before my;.

— In case (b), since C-MCast(mg41) —  C-MCast(my) and
Mp1.5ender # my.sender, from the definition of my/, my.sender C-Delivers
my+1 before C-MCasting my. Hence, from the algorithm, my.sender F-
Delivers my1. Therefore, from the uniform agreement property of fifo multi-
cast, all correct processes in g eventually F-Deliver my 1.

By (*) and Lemma A.6, all correct processes ¢ € m.dst eventually C-Deliver m. [l

Proposition A.8 (Validity) If a correct process p C-MCasts a message m, then eventually
all correct processes q € m.dst C-Deliver m.

Proof: Let M, be the subset of messages in G,,..q(m) that are at distance k of m. We show
that (*) for any k, all messages in M}, are eventually F-Delivered by all of their correct
addressees.

e Base step (k = 0): From the algorithm, p F-MCasts m. Since p is correct, from the
validity property of fifo multicast, all correct processes in m.dst eventually F-Deliver
m.
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e Induction step: Suppose the claim holds for any [ such that £ > [ > 0, we show that
the claims holds for £ + 1. The same argument as in the induction step of Proposi-
tion A.7 is used.

By (*) and Lemma A.6, all correct processes ¢ € m.dst eventually C-Deliver m. [
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