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ABSTRACT 
 

Simulating the structure and evolution of complex networks is an area that has recently received 
considerable attention. Most of this research has grown out of the physical sciences, but there is 
growing interest in their application to the social sciences, especially regional science and 
transportation. This paper presents a network structure simulation experiment utilizing a gravity model 
to identify interactions embodied in socio-economic processes. In our empirical case, we consider 
home-to-work commuting patterns among 439 German labour market districts. Specifically, the paper 
examines first the connectivity distribution of the German commuting network. The paper next 
develops a spatial interaction model to estimate the structure and flows in the network concerned. The 
focus of this paper is to examine how well the spatial interaction model replicates the structure of the 
German commuting network as compared to complex network models. Finally, the structure of the 
physical German road network is compared to the spatial flows of commuters across it for a tentative 
supply-demand comparison. 
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1 INTRODUCTION 
 
The separation of residential and job decisions has led to complex commuting patterns which have 
extended in geographical scale over the past decades. As a consequence, home-to-home trips have 
adopted multi-regional network configurations and have thus led to complex interactive networks. 
Commuting has become an important field of study in geography, transportation science and regional 
science (see Rouwendal and Nijkamp, 2004). Commuting has long been studied mostly in terms of 
forecasting and approximating flows (see, for example, Fotheringham, 1983; White, 1977, 1986). 
Recent works include the application of models such as the one developed at STASA (Haag et al., 
2001). However, less efforts have been done in studying the structure and connectivity properties of 
commuting networks. A certain amount of literature is available, which studies commuting in a spatial 
framework. In a recent paper, Cörvers and Hensen (2003) used regional modelling in order to study 
functional relationships between regions. This approach was carried out in order to improve 
understanding of commuting behaviour. In particular, the authors’ objective was to overcome the 
limitations of administrative regions in defining new areas that would maximize internal commuting. 
 
A number of works have also been touching on the incorporation of the spatial configuration of 
commuting destinations, in particular with the works by Fotheringham (see mainly Fotheringham, 
1983), who introduced competing destinations models. The competing destinations approach allowed 
to introduce in the Spatial Interaction Models (SIMs) an element representing the effects of the 
clustering of destinations, by means of particular accessibility measures. The judgement on this 
methodology is, however, not uniform. Network approaches to commuting have also been proposed, 
both at urban level (see, for example, Sheffi, 1985), and at zonal level (Thorsen et al., 1999). A graph 
theory approach has instead been proposed by Binder et al. (2003). 
 
The above approaches, though, mainly revolve around the analysis of the effects of the road network on 
commuting. One further level of analysis is therefore necessary, which looks at the behaviour shown in 
terms of connections between the nodes of the commuting network. Several questions, in fact, need to 
be answered about the network. Is it highly centralised or decentralised? What are the efficiency and 
reliability implications of this and other of its connectivity properties? Complex network theory – if 
applied to commuting networks – can help answering these questions. A wide literature bloomed in 
recent years, studying the structural and performance implications – on transportation networks – of 
hypothetical natural disasters or terrorist attacks. The centralization or clustering levels of networks are 
therefore critical in such discussion. 
 
In this paper, we intend to analyse the network properties of observed home-to-work commuting in 
Germany. These findings of this analysis are ultimately compared to the ones found by carrying out 
two simulation models: the first model is an unconstrained SIM, while the second model proposed is 
modelled according to the scale-free network theories recently made popular by the works of Barabasi 
and Albert (BA) (Barabasi, 2001; Barabasi and Albert, 1999), showing that networks with preferential 
attachment-based growth tend to be highly efficient and centralised. In addition to the above analysis, 
we also propose an analysis of the main German road network, by means of a shortest-path algorithm, 
and subsequently compare the structural properties found – for the road network – to the ones found for 
the real data and the simulation models. 
 
The paper is therefore structured as follows: the next section briefly reviews complex network theories 
and their main implications to our discussion. Section 3 presents a some issues associated with SIMs, 
and introduces the model carried out for our experiments. Subsequently, Section 4 will first present the 
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results of our empirical application. First, the data used for our analysis are presented, then the findings 
of the comparison between the properties of the observed commuting network and the simulation 
models are shown. Finally, a discussion of these findings in respect of the ones obtained by an analysis 
of the physical German road network is presented. Lastly, conclusions and future research directions 
are drafted in Section 5. 
 
 
2 COMPLEX NETWORK THEORY: A BRIEF REVIEW 
 
This section briefly reviews the main issues related to complex network theories, and in particular their 
implication for transportation networks. Contrary to the attention complex networks have been 
receiving in recent years, the study of such networks is not particularly new. Before Albert and 
Barabasi’s groundbreaking discoveries, original research had in fact been carried out some forty years 
ago by Erdös and Renyi (ER) (1960), whose major assumption was an underlying random network 
structure. However, because of lacking computational power and suitable data, for the majority of the 
20th century these theories were not adequately challenged and represented the basis for the most 
common methods of network simulation (Barabasi, 2001). 
 
Finally, Albert and Barabasi (2002) found, in more recent times, that (large) complex networks were 
actually behaving according to three main characteristics: 
 

1 Short average path length 
2 High level of clustering 
3 Power law and exponential degree distributions 

 
In detail, short average path length indicates that any two nodes on the network can be reached with a 
limited number of hops. High clustering, instead, occurs because of nodes locating topologically close 
to each other in cliques that are well connected to each other. This property had been formalised by 
Watts and Strogatz (1998). Finally, the frequency distributions of node density (or, more generally, 
number of connections) are called degrees and can follow power law distributions. This third property 
implies connections that cut across the graph, directly linking different clusters of vertices. These direct 
links between clusters bring an increased level of efficiency – in terms of number of hops – to the 
network. This result shows the limits of the ER models, in which the exponential decay of the degree 
distribution did not imply a higher number of connections available to the most important nodes. 
 
The novelty in the AB approach was in fact incorporating an additional component: network growth. 
Consequently, not only the number of nodes in the network can increase, but new nodes are found to 
have a higher probability of connecting to other nodes that are already well-connected. Formally, the 
mechanisms that govern network growth towards a power law degree distribution are (Chen et al., 
2001): 
 

a. Incremental growth – As observed above, the number of nodes in the AB models is allowed to 
grow and add nodes. 

b. Preferential connectivity – Preferential connectivity expresses the frequently encountered 
phenomenon that new nodes have a higher probability to connect (or reconnect) to an existing 
node that already has a large number of connections (i.e. high vertex degree). 
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c. Re-wiring – Re-wiring can be considered as a consequence of the previous principle, as some 
links can be removed and re-connected in the network, though pointing at new nodes, on the 
base of preferential connectivity. 

 
Still, after the recent developments described, there is a debate on how complex networks should be 
classified. Different ideas, for example, are proposed by Albert and Barabasi (2002) and Amaral et al. 
(2000) (see Schintler et al., 2005). Generally, the cause-and-effect relationships underlying large 
complex networks are still not exactly clear. Furthermore, the measures according to which networks 
should be measured are also in discussion. For example, Li et al. (2004, p. 11) suggest that – in the case 
of engineered networks – robustness should be “defined in terms of network performance” and be 
“consistent with the various economic and technological constraints at work.” Remarkably, Li et al. 
employ a gravity model in generating their network’s maximum throughput. 
 
A certain amount of literature is now available on the analysis of transportation networks in terms of 
complex theory. Because of their short average path length, airline networks have been considered by 
Amaral et al. (2000) as a small-world network, referring to the model presented by Watts and Strogatz 
1998). On the other hand, the same authors note that structural limitation of airline networks, such as 
limited space available in the airports, may hinder the emergence of scale-free properties. Other authors 
found similar results. Latora and Marchiori (2002) analysed the Boston subway network, while 
Schintler and Kulkarni (2000) observed congested road networks. Both articles found small-world 
network properties in the analysed networks. 
 
Generally, one might argue that transportation networks are less prone to evolve into a scale-free 
structure over time given the fact that they tend to be planar. In fact, in planar networks, the maximum 
number of connections for a single node can be limited by the physical space available to connect it to 
other nodes, and it is this fact that makes the large number of connections needed for finding a power 
law distribution more difficult to obtain. Further, it may be observed that highly centralized 
transportation networks can be subject to threats to viability, in case of destruction of large hubs (Kwan 
et al., 2003). Scale free networks have many implications, but a far-reaching consequence of their 
unique hub structure is that they are very fault tolerant, while also susceptible to attack (Albert et al., 
2000). Specifically, a scale-free network model remains connected when up to the 80% of nodes are 
randomly removed from the network, but when the most connected nodes are removed, the average 
path length of the network increases rapidly, doubling its original value when the top 5% of nodes are 
removed (Albert et al., 2000). In short, targeting the most connected nodes can cause significant 
damage to a scale-free network, making it highly susceptible to a coordinated and targeted attack. 
Further, these numbers and findings were highly similar to the ones found when real world networks 
were tested, including the Internet at the autonomous system level, and the WWW. When the most 
connected networks and web pages were attacked, the network rapidly failed. Albert et al.’s work was 
complimented by the analysis of Callaway et al. (2000), modeling network robustness and fragility as a 
percolation, and by Cohen et al. (2001), who used related methodologies. Preliminary analyses of these 
models on spatial network data have shown similar results when cities are the nodes and fiber 
connections between them are the links. Utilizing a model of node connectivity and path availability, 
Grubesic et al. (2003) found that the disconnection of a major hub cities can cause the disconnection of 
peripheral cities from the network. Spatial analysis of network failure has also been done for airline 
networks, finding similar results for the Indian airline network (Cliff et al., 1979). 
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Starting from these considerations, the next section will present the SIM that was modelled as an 
approximation of preferential attachment, in order to be compared to a scale-free model inspired by the 
theories described above. 
 
 
3 SPATIAL INTERACTION MODELS: AN APPROXIMATION TOOL FOR 

PREFERENTIAL ATTACHMENT 
 
3.1 Spatial Interaction Models for identifying Commuter Flows in the German Labour 

Market Network 
 
Spatial interaction models are arguably one of the most common methods employed and studied for 
estimating commuting flows (see, recently, Johansson et al., 2003; Jörnsten et al., 2004; Thorsen and 
Gitlesen, 1998). Generally, SIMs have long been a popular technique for describing and explaining 
behavioural, demographic and economic phenomena in space (see Sen and Smith, 1995, for an 
extensive presentation of the family of methods). The main reason for the widespread utilization of 
SIMs is their simple mathematical form, in addition to the intuitive assumptions underlying the 
approach. It should be remembered that the most common specification of SIM had its origins in a 
resemblance to Isaac Newton’s law of universal gravitation. The idea of utilizing models derived from 
this theory had already been introduced, in the 19th century, in the field of social sciences by Carey 
(1858) and Ravenstein (1885), and subsequently mathematically formalised by Stewart (1941). 
Remarkably, SIMs have been shown to have theoretical justification in the entropy theory and in utility 
maximization/cost minimisation (see, for example, Nijkamp, 1975; Nijkamp and Reggiani, 1992). 
While Isard (1960) first suggested the use of SIMs in regional science, the entropy root of SIMs 
introduced by Wilson (1967; 1970), and subsequently the micro-economic derivation introduced by 
McFadden (1974; 1979) contributed to make SIMs more suitable to interpret spatial-economic 
phenomena. 
 
The common form of a SIM (here presented as double-constrained) is as follows: 
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Tij measures the flow of interaction between the origin i and the destination j, depending on the stock 
variables Oi and Dj, as well as on the deterrence function f (–βcij), and on the balancing factors Ai and Bj 
(see Reggiani, 2004). Generally, Fotheringham and O’Kelly (1989, p. 10) formulate a SIM in the 
general framework of the Alonso model (1978) as follows: 
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where vi and wj are measures of the “propulsiveness” and the “attractiveness” of i and j, respectively. 
Parameters μ, α and β link the above variables to the flows Tij. 
 
The deterrence function in (1) is depending on the deterrence factor β and the interaction costs cij. cij 
might also be considered as generalised costs. In our experiment, distances were used as a proxy of the 
interaction costs, since the analysis was carried out at the German district level (kreise). The functional 
form of the deterrence function is also a relevant issue. While in its first formulations the distance 
deterrence function was shaped as a power law function – as used in the Newtonian formula – Kulldorf 
(1955) showed that an exponential deterrence function seemed to better fit migration phenomena. 
Subsequently, the exponential deterrence form emerged mathematically from the entropy maximisation 
approach developed by Wilson (1967). The power form outlines a larger amount of flows – with 
respect to the exponential form – in the presence of long distances or travel times. In our analysis, the 
power law specification was used, as it showed to fit the data better. In addition to the shape of the 
deterrence function, the value of the β deterrence factor was researched. In the experiments conducted 
here, a value of 1.5 was chosen for the β deterrence factor, on the basis of a calibration procedure 
carried out on the available data expressed in the form of an unconstrained SIM. In particular, the 
unconstrained SIM used in our experiments is specified as follows: 
 
  (5) β−= ijjiij dEKET
 
In model (5), the flows Tij are the employees commuting from the origin district i to the destination 
district j. They are a function of the number of persons Ei and Ej employed in the two districts, as well 
as of the distance dij between the two, in addition to a scaling factor K. The model that we propose is of 
course overly simple. However, what is relevant for our experiments is not the correct estimation of the 
German commuting flows, but instead the connectivity and structure of the commuting network (see 
Section 3.2). 
 
When employing a SIM for estimating inter-urban commuting flows, additional issues should be cited. 
One of them is the treatment of internal commuting. In particular, the distance between the working 
and living areas is, by definition, null (although travel time or costs would not necessarily be). This 
issue is at times solved by assigning an arbitrary value to the distance for internal commuting. 
Alternatively, the flows assigned to internal commuting can be omitted in the analyses. A number of 
additional ways to treat internal commuting are available in the literature. The method suggested by 
Thorsen and Gitlesen (1998) starts from the consideration that intra-commuting might imply different 
transportation means, such as biking or walking. Thorsen and Gitlesen suggest an additional 
component to be added to the deterrence function exponent. This component would represent – 
depending on the case – either a start-up (generalized) cost for commuting between different zones, or 
a premium, interpreting the benefit of intra-commuting. An example model with these characteristics, 
reminiscent of the Champernowne deterrence function (see, for example, Sen and Smith, 1995), is 
presented by Thorsen and Gitlesen (1998, p. 279) for a double-constrained specification. Alternatively, 
the authors suggest that labour market characteristics might be used to influence the elements on the 
diagonal of the O/D matrix. 
 
In our case, the elements of the diagonal are omitted from the analysis. This choice was taken mainly 
due to the network approach to commuting identified in the paper. As we analyse the connectivity and 
structural properties of the German commuting network, the measure of the number of commuters 
within a certain district would not add additional information about the network, apart from the 
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“socio/economic weight” of a certain node. On the other hand, the number of fulltime employees in 
each district already grasps this aspect. 
 
3.2 Interpretation of Spatial Interaction Behaviour as Preferential Attachment 
 
The usual practice in the use of SIMs, when dealing with commuting flows, is to employ the models in 
forecasting future flows, given certain conditions. In our experiments, we propose the utilization of the 
simple SIM shown in Equation (5) as a tool for approximating the connectivity and structural 
properties of a commuting network. In particular, we want to verify if a SIM can allow for preferential 
attachment behaviour. As seen in Section 2, in the models introduced by Barabasi and Albert, nodes 
have a higher probability of connecting to other nodes that are already well-connected. The hypothesis 
that we will test in the next section is that commuting networks follow a similar preferential 
attachment-based behaviour in terms of connectivity and structure. They would not be the first 
transportation network to be referred to in this terms. In fact, hub-n-spoke networks operated by 
airlines are, as seen in Section 2, a well-known example of preferential attachment behaviour (see, for 
example, Bowen, 2002, and most importantly Wojahn, 2001). 
 
An additional reason for the consideration of commuting networks in such a framework can be found if 
we think of preferential attachment as a maximization of utility levels. The idea is that utility is 
maximized by connecting to the most connected nodes of the network, as they give access to other 
points in the network by a minimal number of hops (therefore minimizing generalized costs). If so, this 
hypothesis would be consistent with the theoretical basis of utility maximization that justifies the use of 
SIMs. In particular, the hub-n-spoke network might – conceptually – be interpreted as a network tree 
consistent with a nested logit/hierarchical SIM structure (for the compatibility between nested logit and 
double constrained SIM, see Nijkamp and Reggiani, 1992). 
 
The next section will first describe the data available for the experiment (see Section 4.1). We will then 
test the hypothesis of a SIM as an approximation of preferential attachment, by comparing the network 
properties observed for our naïve SIM, for a scale-free network, and for the real commuting network 
(Section 4.2). Subsequently, in Section 4.3 we will present the results of a structural analysis of the 
German road network (the physical network on which commuting is actually performed), and compare 
the properties found with the results previously obtained. 
 
 
4 THE EMPIRICAL ANALYSIS 
 
4.1 The Data Available 
 
As shown in Section 3.1, the SIM estimated for our experiment formally employs two types of data: 
 

a. The number of employees working in each German district. These are fulltime employees, for 
which the data were collected – as part of a yearly survey – in the year 2002. 

b. The distance between each couple of origins and destinations. This is expressed in Kilometres, 
and acts as a proxy for more effective measurements, such as cost, or travel time. 

 
Moreover, additional data are available for our experiment. In order to calibrate our SIM shown in 
model (5) (see Section 3.1), information on the German commuting flows has been used. The data 
consists, for each origin-destination couple (i,j), of the number of employees living in district i, and 
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working in district j. These are therefore home-to-work data, which are available for the year 2002. The 
distribution of the number of commuters for each origin-destination couple, ranked in descendent order, 
is shown in Figure 1. 
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Figure 1 – The distribution of commuters flows over the couples of origins and destinations 

 
Figure 1, which is adapted to a log-log scale, shows the decrease in the number of commuters for the 
(descendent) rank of origin-destination couples. The curve seems to better fit a power law distribution 
rather than an exponential one. However, the highest values in the data – which are the first values in 
the descending order rank – do not reach the levels expected for a power law fitting. This could 
reasonably be due to physical constraints given by city size and congestion issues. Nevertheless, the 
distribution shown in Figure 1 does not tell about the intrinsic properties of the network. The next 
section will therefore analyze the connectivity properties of the observed commuting network, and of 
the ones developed by the models presented in our exercise. 
 
4.2 Analysis of Network Structure and Connectivity Properties in Germany 
 
The goal for this experiment is to discover how well a spatial interaction model can be used to 
accurately model preferential attachment and the resulting structure of the German commuting network. 
The use of the BA model as structural model for network connectivity has received considerable 
attention, critique and extension. This section of the paper strives to refine the BA model for 
application to spatial economic networks, specifically the patterns of connectivity found in German 
commuting to work. The focus of the analysis is how well the spatial interaction model builds the 
topology on the real world network and not just its connectivity distribution. Li et al. (2004) have found 
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that the power law distributions created by many network generation models can result in a wide range 
of actual topologies. 
 
The first step of the analysis was to specify an accurate SIM for the German commuting network. 
Many economic and social forces shape the contours of commuting patterns. A simple supply and 
demand model based on employment and distance was used in this initial case. The SIM was 
formalised in Section 3.1, model (5). Once the spatial interaction for all possible pairs of German 
labour markets is calculated, a threshold for connectivity is determined. In this case, a threshold of 100 
commuters was determined as the cut off for what would be considered an adequate economic flow for 
there to be a connection in the network between two (labour) districts. The resulting edge list of 
pairwise connections between districts was then used for comparison to the BA model and real world 
data. The BA model created for comparison was based on a 439-node network with a 0.3 connectivity 
probability, an alpha parameter of 0.3, and an initial three districts to connect to. Once both networks 
are modelled, they are compared to each other and the real commuting network structure. The resulting 
network topologies can be seen in Figure 2. 
 

 
Figure 2 – Network Visualization of the Network BA Model, Spatial Interaction Network Model, 

and German Commuting Network 
 
From a visual inspection of the three network visualizations, the spatial interaction network model 
comes closest to replicating the German commuting network, although it lacks the same level of 
interconnectivity seen in the real data. The BA model illustrates even less interconnectivity that the 
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spatial interaction model, with most connections going directly to the hubs, with little of the 
connectivity between spokes seen in the real commuting data.  
 
In order to provide the next level of analysis the connectivity distribution of each network is calculated 
as a log-log plot. The results of all three network connectivity distributions are plotted in Figure 3. The 
number of connections for each district is ranked in descendent order. 
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Figure 3 – The resulting connectivity distributions of the BA network model, spatial interaction 

network model, and the German commuting network 
 
Interestingly, neither of the models recreated the power law connectivity distributions seen in the real 
data. They have instead exponential distributions of connectivity. The two models also have much 
steeper slopes, each with an exponent over one while the real data is just over 0.5. Of the two, the SIM 
is modestly closer in slope and distribution to the real data, but not enough to be of consequence. 
Overall, the three distributions are highly similar despite the slight numeric differences, while the 
topology visualizations seen in Figure 2 are vastly different. This is most prominent in the SIM and the 
BA model, which have very similar connectivity distribution, but entirely different topology 
visualizations. To examine these topologic differences, a variety of structural indicators are calculated. 
 
For each network, a series of indicators is calculated, which provide a comparison of the structure of 
each network generated (see Table 1). The first indicator presented in Table 1 is the clustering 
coefficient, which provides the first insight into what delineates the structural differences in the three 
networks. The lack of clustering seen visually in the BA model is found in the statistics, with a far 
lower coefficient than that of the SIM or of the real world data. The SIM overestimates the level of 
clustering seen in the real data, but is considerably closer than the BA model. The diameter parameter 
calculates the longest shortest-path in the network, and provides a measure of the efficiency of the 
structure. All three networks have relatively small diameters, and the real world commuting network is 
the most efficient. Again, the diameter of the SIM is closer than the one of the BA model, off by only 
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one. The subsequent set of statistics deals with the number of connections nodes in the network have. 
These are the statistics that are more of local connectivity indicators, and not global structural 
indicators of the networks. From a connectivity standpoint, the SIM does a nice job of accurately 
capturing the average, maximum, and minimum of the degree connectivity seen in the real commuting 
data. It falls short in capturing the standard deviation of average connectivity, where the BA model is 
closer, but the average connectivity is still six degrees off of the real data. The centralization parameter 
measures the amount of core connectivity in the network. The SIM overestimates the amount of 
centralization, while the BA model underestimates it. However, the SIM is closer to the real data values. 
Lastly, a measure of betweenness is offered for each network. Betweenness is a measure of routing 
frequency, where all shortest paths across a network, and then the number of times each node is used in 
all paths, are calculated. This provides a convenient measure of the global structure of the network, 
since the indicator samples paths across all segments of the network. The average and standard 
deviation of betweenness for the SIM and the real data are very close. This confirms what was seen 
previously in the network visualization, which illustrated a similar topological structure between the 
two networks. The significant differences between the real network and the BA model, according to 
betweenness measures, confirm the distinct differences between the two also seen in the visualization. 
 
Table 1 – Network properties of the BA network model, spatial interaction network model, and 
the German commuting network 
 Real Data BA Model SIM 
Clustering Coeff. 0.659 0.29 0.803 
Diameter 4 6 5 
Average Degree 18.21 12.469 18.462 
Std. Dev. Degree 19.268 19.174 26.805 
Max Degree 213 154 235 
Min Degree 5 0 1 
Centralization 44.68% 32.46% 50.36% 
Betweeness Mean 313.125 251.866 297.083
Betweeness Std. Dev. 1929.005 935.554 1997.69
 
 
4.3 A Structural Analysis of the Physical Commuting Network by Means of Shortest Path 

Algorithm 
 
In addition to studying the flows of commuters between cities, it is also possible to study the structure 
of the infrastructure they utilize. The economic flows of commuters and the physical links of 
infrastructure are intrinsically connected, but belong to two very different network structures. 
Commuting flows are belong to logical networks, which are non-planar in nature, since the fact that 
two links intersect does not mean a node actually exists at their intersection. A flow in the commuter 
network could therefore be between Frankfurt and Munich with only two nodes and one link, even 
though the physical path goes through Stuttgart. The physical network, on the other hand, is planar; the 
intersection of two links creates a navigable intersection. In order to travel from Munich to Frankfurt, 
several intermediate nodes have to be traversed. Commuting data represent the flows across the 
physical network, but the two networks are quite different in nature and structure.  
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To begin to address the relationship and differences of these networks, the physical road network of 
Germany is analysed. Unlike the commuting flow network, it is straightforward to visualize what the 
road network looks like with a simple map. Figure 4 provides a map of the German road network. 
 

 
Figure 4 – The German road network 

 
In Figure 4, the white lines are major roads in Germany, while the dots represent major cities connected 
by the roads. While the map does illustrate the layout of the road network, it does not give much insight 
into its structural properties. In order to gain some perspective on the structure of the road network, a 
routing frequency analysis was performed. The road network was first partitioned into nodes and links, 
then shortest-paths were calculated to and from all nodes in the networks. Links were then assigned a 
frequency count, based on the number of times the link was utilized in all possible link combinations. 
This provided a structural analysis of which links, in the German road network, are most critical and 
heavily utilized in all possible travel combinations. To visualize these results Figure 5 was built. 
 
In Figure 5, the height and colour (lighter to darker) of the peaks is determined by the number of routes 
that use a particular link in the road network. The higher the frequency of routes, the higher the peak. 
The routes that connect through the middle of the country are particularly well utilized, especially the 
routes connecting Berlin to Frankfurt and Stuttgart. The routes connecting Berlin to Munich and 
Hamburg are also prevalent. In general, routes in Western Germany have a higher frequency than 
Eastern Germany routes. It should be noted that this analysis is simply based on shortest-path 
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frequency and does not account at all for socio-economic dimensions like population or employment as 
with the previous gravity model.  
 

 
Figure 5 – German road network routing frequency analysis 

 
4.4 Concluding Remarks 
 
The present analysis does provide preliminary insights into the German infrastructure network, which 
underpins the economic commuter network flowing on top of it. The intuitive next direction is to 
combine the two networks and examine their interdependencies. It would be useful to investigate the 
relationship between the economic flows of commuters and the physical network structure of the roads 
they use. Are the highest flows of commuters also utilizing the highest-frequented structural links? 
How well does the physical structure of the network match the economic flows across it? If there is 
failure in the physical network, how will it impact the economic flow of commuters or, more 
importantly, logistics and supply chain networks? Unfortunately, it was not possible, at this stage, to 
obtain a geo-referenced map of the German districts to map the commuter flows on top of the physical 
routing frequency. Such a possibility would at least provide a first-cut comparison of commuting links 
in a labour district to the number of routing paths. These are all possible future directions for the 
research. 
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5 CONCLUSIONS 
 
The aim of this paper was to provide a comparative analysis among different approaches on the theme 
of commuting from a network perspective. In particular, we were interested in studying the structure 
and properties of the German commuting network. In order to better understand this real-world 
commuting network, we needed to compare it to different network models that could approximate it. 
Two models (a SIM and a scale-free model) were developed, based on widely different assumptions. 
However, both models aimed at simulating a “preferential connectivity” behaviour, according to which, 
well-connected nodes in the network have a higher probability of attracting connections from other 
nodes over the network. 
 
A comparison of the real (network) commuting data with the ones generated by our two models was 
carried out in two ways: a) a visual comparison of the network structures; b) a comparison of the 
network properties calculated for the three networks. The visual comparison showed that the SIM 
seemed to better approximate the decentralized configuration of the commuting network. The scale-
free network showed instead a highly centralized structure. These observations were then reinforced by 
the comparison of the network properties parameters. Although showing similar values for some 
network parameters, the SIM, rather than the scale-free model, provided values that were more 
consistent with the ones calculated for the real data. 
 
An additional analysis was subsequently carried out, examining the German physical road network. 
This analysis on the road infrastructure visually showed which points, according to a shortest-path 
routing algorithm, are (theoretical) critical points in the German road network, as they are central to the 
routes calculated over the network. 
 
Summarizing, our experiments made a first attempt at interpreting commuting networks from a 
complex network perspective. More detailed experiments might be carried out, by developing more 
refined SIMs (like double-constrained SIMs) and scale-free models, which should include parameters 
that better suit the type of network that is being approximated. A further experiment might be to weigh 
the number of connections – in a scale-free approach – with the volume of commuters. Also, a set of 
new experiments could be carried out, by integrating commuting flows (and maybe other economic 
factors) with the physical road network, as suggested in Section 4.4. For example, it could be 
interesting to observe how changes in the physical road network would influence the results of a SIM, 
where the distance deterrence factor is not expected to vary (Jörnsten et al., 2004). Also, the use of 
double-constrained SIMs is necessary, in order to account for spatial characteristics. General 
equilibrium models, employing variables such as wages or migration might be used for comparison 
sake. 
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