
Partial similarity of shapes using a statistical
significance measure

Alexander M. Bronstein Michael M. Bronstein
Yair Carmon
Ron Kimmel

{bron@cs,mbron@cs,yairc@tx,ron@cs }.technion.ac.il

January 9, 2009

Abstract

Partial matching of geometric structures is important in computer vi-
sion, pattern recognition and shape analysis applications. The problem con-
sists of matching similar parts of shapes that may be dissimilar as a whole.
Recently, it was proposed to consider partial similarity as a multi-criterion
optimization problem trying to simultaneously maximize the similarity and
the significance of the matching parts. A major challenge in that framework
is providing a quantitative measure of the significance of a part of an object.

Here, we define the significance of a part of a shape by its discriminative
power with respect do a given shape database — that is, the uniqueness of the
part. We define a point-wise significance density using a statistical weight-
ing approach similar to the term frequency-inverse document frequency (tf-
idf) weighting employed in search engines. The significance measure of a
given part is obtained by integrating over this density.

Numerical experiments show that the proposed approach produces intu-
itive significant parts, and demonstrate an improvement in the performance
of partial matching between shapes.
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1 Introduction

Partial matching is associated with shape similarity for which dissimilar shapes
may still consist similar parts. Problems that involve in partial matching often
arise in computer vision, for example, when the acquired data to be matched is
incomplete. Partial matching can be used to determinepartial similarity between
shapes, quantifying how different the shapes are, orpartial correspondencedeter-
mining the relation between the points on the shapes.

Two shapes are partially matching if they have significant similar parts. For
example, a centaur and a horse have a similar part, the horse body, which makes
them partially similar [15]. Thus, partial matching can be theoretically reduced
to the problem of full shape matching by segmenting the shape into significant
parts and trying to match these parts separately [24, 18, 19, 17, 3]. However,
significanceis often considered to be a semantic definition, and thus automatically
finding such parts is not a well-defined. Many heuristic approaches have been
proposed in the literature for shape decomposition (see e.g. [1]).

For two-dimensional shapes represented as curves, it is possible to employ
technique from text matching. The boundary of a shape in polygonal represen-
tation can be thought of as an ordered sequence of characters (string) [11, 20].
Matching two boundaries boils down to matching two strings. Such approaches
can handle partial similarity by finding similar sub-strings, e.g., using dynamic
programming methods. However, string-based shape matching approaches rely
on the fact that one can represent a shape as an ordered set (a string). While this
is true for two-dimensional shapes (whose boundaries can be ordered), such a
representation is impossible for more general, three-dimensional shapes.

Recently, Bronsteinet al. proposed to consider partial similarity as a multi-
criterion optimization problem trying to simultaneously maximize the similarity
and the significance of the matching parts [7]. The solution of such a problem is a
Pareto optimum, that is the set of all similarity-significance pairs for which there
exist no two parts of the objects which are more similar and more significant at
the same time.

The two major components in this framework are quantitative definitions of
similarity and significance. Depending on the nature of the shapes and the class
of transformations they may undergo, different similarity criteria should be em-
ployed. In particular, for partial matching of rigid shapes, a Hausdorff-type dis-
tance and a scheme similar toiterative closest point(ICP) methods [10, 2] can
be used [5, 6]. For non-rigid shapes, one needs a deformation-invariant distance.
Metric approaches considering the shapes as metric spaces with geodesic metrics
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and defining shape similarity as a distance between metric spaces [12, 21, 9, 8]
were used in [7] as criteria for partial similarity of non-rigid shapes.

While one can employ standard and well-researched methods for formulating
similarity criteria, a bigger challenge is finding a quantitative measure for the sig-
nificance of a part of an object. The main problem stems from the fact that unlike
similarity, which in many cases can have a strict definition, significance is rather
a semantic notion and thus much more difficult to quantify. A naive approach
proposed in [7] was to define significance as the area of the part. Intuitively, the
larger the portion of the shape is, the more it is significant. Yet, it appears that
such straightforward definition ignores the quality of the parts and in some cases
tends to prefer multitude disconnected components with large total area over a
single large part, often leading to meaningless results. As a remedy, claiming that
“not only size matters,” Bronstein [5, 6] proposed a regularization approach taking
into consideration the boundary of the parts. The significance, according to this
definition, is a combination of the part’s area and the length of its boundary.

In this paper, we propose to define the significance of a part of the shape by its
discriminative power with respect do a shape database — that is, the uniqueness
of the part. We define point-wisesignificance densityusing a statistical weight-
ing approach similar to the term frequency-inverse document frequency (tf-idf)
weighting employed in search engines. The significance measure of a part is ob-
tained by integrating over this density. This approach generalizes the significance
definition used in [7].

The rest of this paper is organized as follows. In Section2, we present the
generic Paretian formulation of partial matching, and specifically address the
cases of partial matching of rigid and nonrigid shapes. In Section3, we define
the significance distribution based on tf-idf weighting and in Section4 describe
its numerical computation. Section5 is dedicated to implementation details of the
algorithm. Section6 shows experimental results. Finally, Section7 concludes the
paper.

2 Partial similarity

Let X andY be two shapes we would like to compare. We say thatX andY are
partially matchingif there existpartsX ′ ⊆ X andY ′ ⊆ Y which aresimilar and
significant. In the following, for the sake of convenience, we will use the notions
of dissimilarityandinsignificanceinstead.

The degree ofdissimilarity of partsX and Y can be expressed by a non-
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negative functiond : ΣX × ΣY → R+ (hereΣX andΣY denote the collection
of all the parts of the shapesX andY , respectively). In the case of non-rigid
shapes, the similarity criterion must be insensitive to non-rigid deformations that
the shapes can undergo. It was argued in [12, 21, 9, 8] that deformation-invariant
shape matching can be performed using the intrinsic geometric properties of the
shapes. More formally, this approach models a shapeX as ametric space(X, dX),
wheredX(x, x′) is thegeodesic metric, measuring the length of the shortest path
between the pointsx, x′ on X. Comparison of two shapes(X, dX) and(Y, dY )
thus boils down to the comparison of the metricsdX , dY , which can be quantified
as

d(X, Y ) = argmin
ϕ:X→Y

ψ:Y→X

∫

X×X

|dX(x, x′)− dY (ϕ(x), ϕ(x′))|2 dµX × dµX

+

∫

Y×Y

|dY (y, y′)− dX(ψ(y), ψ(y′))|2 dµY × dµY .

This similarity criterion is similar to the stress function used in multidimensional
scaling (MDS) problems [4, 9, 8] and also be related to the Gromov-Hausdorff
distance [14] between metric spaces(X, dX) and(Y, dY ).

As the measure of insignificance, Bronsteinet al. [7] used thepartiality func-
tion

p(X ′) = area(X)− area(X ′)

=

∫

X\X′
dµX . (1)

HereµX denotes the area measure onX. In this formulation, partial matching can
be stated as the problem of simultaneous minimization ofd andp over pairs of all
the possible parts,

min
X′,Y ′

(d(X ′, Y ′), p(X ′) + p(Y ′)). (2)

A solution of the multi-criterion optimization problem (2) is the set of parts(X∗, Y ∗)
achieving an optimal tradeoff between dissimilarity and partiality, in the sense that
there exists no other pair of parts(X ′, Y ′) with bothd(X ′, Y ′) < d(X∗, Y ∗) and
p(X ′) + p(Y ′) < p(X∗) + p(Y ∗). Such a solution is calledPareto optimaland
is not unique; it can be visualized as a curve in the(d, p) plane (referred to as
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the Pareto frontier). The value ofd at the point with partialityp0 on the Pareto
frontier can be computed as

min
X′,Y ′

d(X ′, Y ′) s.t. p(X ′) + p(Y ′) ≤ p0, (3)

or, using a Lagrange multiplierλ,

min
X′,Y ′

d(X ′, Y ′) + λ (p(X ′) + p(Y ′)) . (4)

Problem (3) can be interpreted as fixing some value of area and trying to dis-
tribute this area over parts of the shape in such a way that the dissimilarity is
minimized. While Bronsteinet al. [7] show that in practical cases this approach
produces semantically correct results, there is no guarantee that the parts obtained
by such a matching procedure are always meaningful. In many cases, the solution
of problem (3) manifests a tendency of finding multiple disconnected parts. The
quality of the partX ′ can be measured using someirregularity function r(X ′)
[5, 6]. We are thus looking for the largest, most similar and most regular parts,
giving rise to the following multi-criterion optimization problem,

min
X′,Y ′

(d(X ′, Y ′), p(X ′) + p(Y ′), r(X ′) + r(Y ′)). (5)

The new formulation can be regarded as a regularized version of problem (3), and
the use of the regularity term will give preference to parts with larger regular-
ity even at the cost of smaller area or larger dissimilarity. Alternatively, we can
interpret the aggregatep(X ′) + p(Y ′) + (r(X ′) + r(Y ′)) as a new definition of
significance, taking into consideration not only the size but also the regularity of
the parts and rewrite (6) as

min
X′,Y ′

(d(X ′, Y ′), p(X ′) + p(Y ′) + r(X ′) + r(Y ′)). (6)

2.1 Fuzzy formulation

Though the above formulation allows us to interpret the meaning of partial shape
matching, minimization over all the parts of shapeX is a computationally in-
tractable combinatorial problem. To handle this difficulty, Bronsteinet al. [7]
replaced the subsetX ′ ⊆ X with a membership function(or fuzzy part) u :
X → [0, 1]. This way, acrisp part is equivalent tou−1([θ, 1]) for some threshold
θ ∈ [0, 1]. We denote byMX the set of all membership functions onX which are
ΣX-measurable.
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In our multi-criterion problem, the optimization is now performed over fuzzy
parts

min
u,v

(d̃(u, v), p̃(u) + p̃(v)), (7)

whered̃ : MX ×MY → R+ andp̃ denote the fuzzy versions of dissimilarity and
insignificance, respectively. The fuzzy version of insignificance (8) is obtained
straightforwardly as

p̃(u) =

∫

X

u(x)dµX . (8)

A fuzzy version of the intrinsic dissimilarity is obtained by weighting the stress
by the membership functions,

d̃(u, v) = min
ϕ:X→Y

ψ:Y→X

∫

X×X

|dX(x, x′)− dY (ϕ(x), ϕ(x′))|2 u(x)u(x′)dµX × dµX

+

∫

Y×Y

|dY (y, y′)− dX(ψ(y), ψ(y′))|2 v(y)v(y′)dµY × dµY .

Solution of problem (7) is carried out iteratively, by a two-step alternating
optimization. In Step 1, optimization is performed over correspondencesϕ, ψ

(ϕ∗, ψ∗) = argmin
ϕ:X→Y

ψ:Y→X

∫

X×X

|dX(x, x′)− dY (ϕ(x), ϕ(x′))|2 u∗(x)u∗(x′)dµX × dµX

+

∫

Y×Y

|dY (y, y′)− dX(ψ(y), ψ(y′))|2 v∗(y)v∗(y′)dµY × dµY .

having partsu∗, v∗ fixed. In Step 2, optimization is performed over the fuzzy parts
u, v

(u∗, v∗) = argmin
u,v

∫

X×X

|dX(x, x′)− dY (ϕ∗(x), ϕ∗(x′))|2 u(x)u(x′)dµX × dµX

+

∫

Y×Y

|dY (y, y′)− dX(ψ∗(y), ψ∗(y′))|2 v(y)v(y′)dµY × dµY .

with the correspondencesϕ∗, ψ∗ from Step 1 fixed. The value ofp0 determines
the required significance of the parts.
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3 Statistical significance

Next, we would like to modify the definition of significance based on the relative
importance of different parts. Intuitively, the most significant parts of a shape are
those that distinguish the shape from the rest. In other words, significant parts
discriminate between the shape (or shapes from a similar category) and the rest of
the shapes. Obviously, this definition depends on the rest of the shapes. In a world
dominated by horses, a human will stand out with distinctive parts such as hands,
a head, and legs. While, in a world inhabited by humans, one would have to resort
to more detailed features in order to distinguish between the different residents of
our imaginary world.

This problem has an analogy to the problem of comparison of text documents.
A standard technique used in search engines for detecting the similarity of two
documents is comparing the histograms of the appearance of different words (term
frequency, abbreviated astf) in each document. On one hand, the more a word is
repeated in a document (hightf), the more significant it is in the document. On
the other hand, there are words that appear frequently in all documents – in Eng-
lish language, such words are articles “a” and “the”, prepositions and connection
words. Such words are said to have largedocument frequency, i.e., the appearance
of a word in the entire database of documents.

What one would actually like to compare is the appearance of discriminative
words, which are present in the current document and are absent in the rest of
the documents. Intuitively, the more a word appears in a specific document, the
more relevant it is, and the more it appears in other documents, the less relevant it
becomes. For example, the term “partial” is significant in this document, while the
word “the” is not, even though the latter appears more frequently. However, “the”
appears frequently in many other documents as well, while “partial” probably
not. Quantitatively, this can be measured by a ratio referred to asterm frequency-
inverse document frequency, or tf-idf for short [26]. More formally, givenM
documents and a vocabulary ofT terms, letnij be the number of appearances of
termi in documentj. The frequency of termi in documentj is defined as

tfij =
nij∑T
t=1 ntj

. (9)

The inverse document frequencyof termi in the database is defined as

idfi = log

(
M∑M

m=1 1{nim>0}

)
, (10)

7



where1{nim>0} is an indicator equal to one ifnim > 0 and zero otherwise. An
alternative definition, used in the case of a small database, is

idfi = log

(
1 +

M∑M
m=1 1{nim>0}

)
. (11)

This allows avoiding zero weights to infrequent terms. The significance, or weight,
of termi in documentj is given by

sij = tfijidfi , (12)

known astf-idf weighting, and is widely used and very successful in the field of
information retrieval [27].

3.1 Bags of features

While a document is a collection of words, a shape can be thought of as a collec-
tion of parts.1 Parts are represented by local descriptors, capturing the geometry
of the part and playing the role of words in text document. A descriptor is a
vector associated with a region around a point on the shape. Instead of a human
language vocabulary from which words are drawn in text documents, shapes can
be described in “geometric vocabulary”, a collection of descriptors correspond-
ing to representative parts of which any shape can be composed. For example,
representative parts can be convex and concave patches of different curvature.

Given a shape, one can find how often different parts from the vocabulary
appear in it, and compare two shapes the way search engines compare documents
using tf-idf weighting. This approach is widely used in shape retrieval applications
[22]. More formally, given a set ofM shapes, for each pointx on shapeXj, we can
define a descriptorD(x), as will be described in the next section. The descriptors
are represented in a finite vocabulary consisting ofT elements (representative
descriptors), such that we can represent the descriptorD(x) by an indexi(x) ∈
{1, ..., T}. The equivalent of term frequency can then be defined as

tfij =

∫
Xj

1i(x)=idµXj∫
Xj

dµXj

. (13)

1Unlike text documents which are ordered collections of words, there is no order between
parts on a surface. However, since we are interested in the frequency of words, the order is not
important.
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In a similar manner, the inverse document frequency of descriptori is defined as

idfi = log

(
M∑M

m=1 1{RXm
1i(x)=idµXm>0}

)
. (14)

and the tf-idf weight is given bysij = tfijidfi.

3.2 Significance density

Using the search engine analogy, assume that we would like to determine which
portions of a document are important for its comparison to other documents in the
database. A documentj is an ordered collection of words,(i1, ..., iKj

), wherein ∈
{1, ..., T}. We could use the tf-idf weight in order to determine thesignificance
densityin the document,

σn =
sin,j∑Kj

n=1 sin,j

. (15)

Thus, portions of the document containing terms with higher tf-idf weight will
have higher density. This means that if we were to choose a portion of the docu-
ment, we would prefer one with the largest total significance density.

Similarly, for a shape we can define the significance density as,

σ(x) =
si(x),j∫

X
si(x),jdµX

. (16)

Figure2 shows a few examples of significance density for different shapes. One
can see, for example, that a point on the back of the horse is less significant than
a point on its hoof for discriminating a horse from the rest of the shapes in the
database.

Let us now return to the trivial definition of significance based on the area of
the parts,

p(X ′) =

∫

X\X′
dµX . (17)

The underlying assumption in this definition is that every point of the shape has
equal importance. However, as we have seen from the previous discussion, dif-
ferent point have different significance densityσ(x). Therefore, we can define a
significance function taking this fact into consideration,

p(X ′) =

∫

X\X′
(λ + (1− λ)σ(x))dµX , (18)
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where0 ≤ λ ≤ 1. Forλ = 1, we obtain the old definition of significance based
on part area.

4 Feature descriptors

Computation of descriptors that act as shape “words” is key for creating signif-
icance densities. The descriptors should be sufficiently rich to discriminate be-
tween different parts of shapes, and at the same time be invariant to different
transformations that a shape can undergo. Since we are particularly interested in
non-rigid shapes, our descriptors must be invariant to non-rigid deformations. A
way to achieve it is to base the descriptors on intrinsic geometric properties.

In this paper, our descriptors are computed as local distributions of geodesic
distances. Similar approaches have been used for shape recognition [23]. Such
descriptors are suitable for non-rigid shapes (since geodesic distances are insensi-
tive to inelastic deformations) as well as for rigid shapes, which can be considered
a particular case thereof. More formally, given a shapeX, for every pointx ∈ X
we define a ballBR(x) of radiusR aroundx and consider the geodesic distances
{dX(x′, x′′), x′, x′′ ∈ X}. Let f(d) : [0, 2R] → [0, 1] be the distribution of these
distances, and̂f(d) = f(d)/2R be the normalized distribution. We define the
descriptorD(x) as anL-dimensional vector

D(x) = (d1, ..., dL), (19)

where

dl =

∫ l/L

(l−1)/L

f̂(δ)dδ, (20)

is the normalized distribution, sampled atL points. In other words,D(x) is an
L-bin histogram of geodesic distances. An example is shown in Figure1.

The choice of the radiusR determines the size of the neighborhood and the
locality of the descriptor. It is reasonable to assume that for a fixed shape,R
should be the same for all points. Additionally, we would likeR to capture the
same amount of detail in every shape, in order to make the descriptors comparable
between different shapes. If the details of different shapes in the database appear
on different scales,R should be shape-dependent. The simplest solution is to scale
R by the geodesic diameter of the shape,diam(X) = maxx,x′∈X dX(x, x′). Thus,
two similar shapes at different scales would have similar environments. In our
experiments, such a choice was reasonable for most shapes.
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As an example of the disadvantages of this method, imagine two shapes of
dogs with bodies of the same size, one with a short tail and the other with a long
one. While it would make sense to use same valueR for both shapes, the long tail
of the second dog will cause it to have a significantly larger diameter, and thus a
significantly higher value ofR. Finding a simple and robust method to estimate
the correctR for every shape remains an open question.

4.1 Vocabulary construction

Once we computed the descriptors for all the shapes in the database, we need
to construct a vocabulary containing representative descriptors that would allow
us to describe parts of all the shapes in the database. A straightforward way to
achieve this goal is using vector quantization of the set of all descriptors. This is
a method widely used in creating vocabularies of visual words in computer vision
applications [28].

Here, we use a variation of the K-means algorithm for vector quantization.
We use theEarth Mover’s Distance(EMD) between the distributions. The EMD
can be intuitively thought of as the amount of work required to transform one
distribution into another. The EMD has been shown to be a successful perceptual
metric in many applications [25]. For one-dimensional distributions, EMD boils
down to computing theL1 distance between cumulative distributions.

Vector quantization clusters the descriptors into a fixed numberT of regions
that best represent the data. The centroids{v1, ..., vT} of these regions serve as
words or indices in our vocabulary. Given a descriptorD(x), we define its index
in the vocabulary as the closest centroid,

i(x) = argmin
k=1,...,T

‖vk −D(x)‖. (21)

5 Numeric computation

In the discrete setting, we represent the shapes as triangular meshes. We as-
sume that shapeX hasM vertices{x1, ..., xM}, and shapeY hasN vertices
{y1, ..., yN}. The geodesic distancesdX(xi, xj) anddY (yi, yj) on the shapes are
computed using thefast marching method[16]. We discretize the measureµX as
anM -dimensional vectoraX = (a1, ..., aM), whereai is 1/3 of the sum of areas
of the triangles at vertexxi. The measureµY is discretized in the same way.
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The meshes are subsampled by selecting subsets{x1, ..., xm} and{y1, ...yn}
of vertices, for example, usingfarthest point sampling[13]. The descriptors are
computed at the vertices of the subsampled mesh, using the geodesic distances
between all the vertices. To compensate for possible non-uniform sampling, the
contribution of the distancedX(xi, xj) to the distribution is weighted by the prod-
uct of the areas corresponding to those points,aiaj. The significance density of
shapeX is represented as anm-dimensional (n-dimensional forY , respectively)
vector denote bysX .

In discrete formulation, the correspondenceϕ : X → Y can be expressed by
specifyingm points{y′1, ..., y′m} in Y that correspond to the points{x1, ..., xm}.
The partiality function will be discretized as the vectorw = (w1, ..., wm)T. The
components ofw relate to the partiality of the sampled vertices{x1, ..., xm} as
well as their corresponding points{y′1, ..., y′m}. Thus, the discrete version of the
optimization problem over correspondences (Step 1) reads,

min
{y′1,...,y′m}

m∑
i,j=1

wiwjaiaj

∣∣dX(xi, xj)− dY (y′i, y
′
j)

∣∣2 . (22)

where the optimization is preformed over all sets ofm points on the meshY .
While distance terms of the formdX(xi, xj) can be pre-computed using the fast
marching algorithm [16], the termsdY (y′i, y

′
j) have to be interpolated, since the

{y′1, ..., y′m} do not necessarily coincide with the vertices ofY . Problem (22) can
be solved using thegeneralized multidimensional scaling(GMDS) algorithm [9].

Assuming a fixed correspondence, we now discretize the second part of the
alternating minimization. Denote byEϕ them×m local distortion matrix,

[Eϕ]ij =
∣∣dX(xi, xj)− dY (y′i, y

′
j)

∣∣2 . (23)

The dissimilarity term is the simple quadratic form,

wTAEϕAw , (24)

whereA = diag(a). In order to discretize the significance terms, letPX be an
M×m matrix interpolating function onm sampled vertices to the entire meshX.
Similarly, defineN ×m matrixPY , that will be constructed separately for every
correspondence. Letu = PXw andv = PY w denote the interpolated mem-
bership functions. In vector notation, the discretized significance term becomes
sT

XAXu + sT
Y AY v, whereAX = diag(aX) andAY = diag(aY ). Putting all

12



Figure 1: Examples of shape descriptors.

the terms together and substituting foru andv, the second part of the alternating
minimization algorithm reads,

min
0≤w≤1

wTAEϕAw

s.t.
1

2

(
sT

XAXPX + sT
Y AY PY

)
w ≥ p0 . (25)

6 Results

In the following experiment, we used shapes from the TOSCA dataset2. Each
shape was sampled at 2500 points. As described in Section4, descriptors were
computed withL = 21 andR = 10% of the shape diameter (see Figure1 for a few
examples of descriptors). Geodesic distances were computed using fast marching
[16]. Clustering was performed using the Statistical Learning Toolbox3, with 1500
descriptors from every shape (at points chosen with farthest point sampling) to
obtain a vocabulary of sizeT = 300.

Figure2shows examples of the significance density obtained from tf-idf weights.
Distinctive features such as hand, paws and faces have high density. The resulting

2http://tosca.technion.ac.il
3http://web.mit.edu/dhlin/www/softwares/index.html
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significance measures are generally consistent along various poses of the shapes.
Figure3 shows a matching between the shape of a centaur and a human. Once

can observe that a meaningful correspondence is obtained.

7 Conclusions

In this paper, we defined the significance of regions by their ability to distinguish
the shape to which they belong from other shapes in a database. We implemented
this definition using descriptors based on the intrinsic shape geometry, and the
tf-idf ranking common in the field of data-retrieval. We showed how to integrate
the resulting significance maps into existing partial matching frameworks in order
to enhance their performance.
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Figure 3: Matching between human and centaur shapes. Shown in different colors
are corresponding Voronoi regions.
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